
Computing Maximum Matchings in Temporal
Graphs
George B. Mertzios
Department of Computer Science, Durham University, UK
george.mertzios@durham.ac.uk

Hendrik Molter
TU Berlin, Faculty IV, Algorithmics and Computational Complexity, Berlin, Germany
h.molter@tu-berlin.de

Rolf Niedermeier
TU Berlin, Faculty IV, Algorithmics and Computational Complexity, Berlin, Germany
rolf.niedermeier@tu-berlin.de

Viktor Zamaraev
Department of Computer Science, University of Liverpool, UK
viktor.zamaraev@liverpool.ac.uk

Philipp Zschoche
TU Berlin, Faculty IV, Algorithmics and Computational Complexity, Berlin, Germany
zschoche@tu-berlin.de

Abstract
Temporal graphs are graphs whose topology is subject to discrete changes over time. Given a
static underlying graph G, a temporal graph is represented by assigning a set of integer time-labels
to every edge e of G, indicating the discrete time steps at which e is active. We introduce and
study the complexity of a natural temporal extension of the classical graph problem Maximum
Matching, taking into account the dynamic nature of temporal graphs. In our problem, Maximum
Temporal Matching, we are looking for the largest possible number of time-labeled edges (simply
time-edges) (e, t) such that no vertex is matched more than once within any time window of ∆
consecutive time slots, where ∆ ∈ N is given. The requirement that a vertex cannot be matched
twice in any ∆-window models some necessary “recovery” period that needs to pass for an entity
(vertex) after being paired up for some activity with another entity. We prove strong computational
hardness results for Maximum Temporal Matching, even for elementary cases. To cope with this
computational hardness, we mainly focus on fixed-parameter algorithms with respect to natural
parameters, as well as on polynomial-time approximation algorithms.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability; Theory of computation → Approximation algorithms
analysis

Keywords and phrases Temporal Graph, Link Stream, Temporal Line Graph, NP-hardness, APX-
hardness, Approximation Algorithm, Fixed-parameter Tractability, Independent Set

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.27

Related Version A full version of the paper is available at https://arxiv.org/abs/1905.05304.

Funding George B. Mertzios: Supported by the EPSRC grant EP/P020372/1.
Hendrik Molter : Supported by the DFG, project MATE (NI369/17).
Viktor Zamaraev: Supported by the EPSRC grant EP/P020372/1. The main part of this paper was
prepared while affiliated with the Department of Computer Science, Durham University, UK.

© George B. Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and
Philipp Zschoche;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7182-585X
mailto:george.mertzios@durham.ac.uk
https://orcid.org/0000-0002-4590-798X
mailto:h.molter@tu-berlin.de
https://orcid.org/0000-0003-1703-1236
mailto:rolf.niedermeier@tu-berlin.de
https://orcid.org/0000-0001-5755-4141
mailto:viktor.zamaraev@liverpool.ac.uk
https://orcid.org/0000-0001-9846-0600
mailto:zschoche@tu-berlin.de
https://doi.org/10.4230/LIPIcs.STACS.2020.27
https://arxiv.org/abs/1905.05304
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Computing Maximum Matchings in Temporal Graphs

1 Introduction

Computing a maximum matching in an undirected graph (a maximum-cardinality set
of “independent edges”, i.e., edges which do not share any endpoint) is one of the most
fundamental graph-algorithmic primitives. In this work, we lift the study of the algorithmic
complexity of computing maximum matchings from static graphs to the – recently strongly
growing – field of temporal graphs [15, 18]. In a nutshell, a temporal graph is a graph whose
topology is subject to discrete changes over time. We adopt a simple and natural model for
temporal graphs which originates in the foundational work of Kempe et al. [16]. According
to this model, every edge of a static graph is given along with a set of time labels, while the
vertex set remains unchanged.

I Definition 1 (Temporal Graph). A temporal graph G = (G,λ) is a pair (G,λ), where
G = (V,E) is an underlying (static) graph and λ : E → 2N \ {∅} is a time-labeling function
that specifies which edge is active at what time.

An alternative way to view a temporal graph is to see it as an ordered set (according to
the discrete time slots) of graph instances (called snapshots) on a fixed vertex set. Due to
their vast applicability in many areas, temporal graphs have been studied from different
perspectives under various names such as time-varying, evolving, dynamic, and graphs over
time.

In this paper we introduce and study the complexity of a natural temporal extension of
the classical problem Maximum Matching, which takes into account the dynamic nature of
temporal graphs. To this end, we extend the notion of “edge independence” to the temporal
setting: two time-labeled edges (simply time-edges) (e, t) and (e′, t′) are ∆-independent
whenever (i) the edges e, e′ do not share an endpoint or (ii) their time labels t, t′ are at
least ∆ time units apart from each other.1 Then, for any given ∆, the problem Maximum
Temporal Matching asks for the largest possible set of pairwise ∆-independent edges
in a temporal graph. That is, in a feasible solution, no vertex can be matched more than
once within any time window of length ∆. The concept of ∆-windows has been employed
in many different temporal graph problem settings [1, 7, 14,19]. It is particularly important
to understand the complexity of the problem in the case where ∆ is a constant, since this
models short “recovery” periods.

Our main motivation for studying Maximum Temporal Matching is of theoretical
nature, namely to lift one of the most classical optimization problems, Maximum Matching,
to the temporal setting. As it turns out, Maximum Temporal Matching is computationally
hard to approximate: we prove that the problem is APX-hard, even when ∆ = 2 and the
lifetime T of the temporal graph (i.e., the maximum edge label) is 3 (see Section 3.1). That
is, unless P=NP, there is no Polynomial-Time Approximation Scheme (PTAS) for any ∆ ≥ 2
and T ≥ 3. In addition, we show that the problem remains NP-hard even if the underlying
graph G is just a path (see Section 3.2). Consequently, we mainly turn our attention to
approximation and to fixed-parameter algorithms (see Section 4).

In order to prove our hardness results (see Section 3), we introduce the notion of a
temporal line graph2 which is a class of (static) graphs of independent interest and may
prove useful in other contexts, too. This notion enables us to reduce Maximum Temporal

1 Throughout the paper, ∆ always refers to that number, and never to the maximum degree of a static
graph (which is another common use of ∆).

2 We remark that a different notion of temporal line graphs was introduced in a survey by Latapy et
al. [18], which is somewhat similar to our definition for the case of ∆ = 1.

G.B. Mertzios, H. Molter, R. Niedermeier, V. Zamaraev, and P. Zschoche 27:3

Matching to the problem of computing a large independent set in a static graph (i.e., in
the temporal line graph that is defined from the input temporal graph). Moreover, as an
intermediate result, we show (see Theorem 11) that the classic problem Independent Set
(on static graphs) remains NP-hard on induced subgraphs of diagonal grid graphs, thus
strengthening an old result of Clark et al. [9] for unit disk graphs.

During the last few decades it has been repeatedly observed that for many variations
of Maximum Matching it is straightforward to obtain online (resp. greedy offline approx-
imation) algorithms which achieve a competitive (resp. an approximation) ratio of 1

2 , while
great research efforts have been made to increase the ratio to 1

2 + ε, for any constant ε > 0.
It is well known that an arbitrary greedy algorithm for matching gives approximation ratio
at least 1

2 [13,17], while it remains a long-standing open problem to determine how well a
randomized greedy algorithm can perform. Aronson et al. [3] provided the so-called Modified
Randomized Greedy (MRG) algorithm which approximates the maximum matching within
a factor of at least 1

2 + 1
400,000 . Recently, Poloczek and Szegedy [20] proved that MRG

actually provides an approximation ratio of 1
2 + 1

256 . Similarly to the above problems, it
is straightforward3 to approximate Maximum Temporal Matching in polynomial time
within a factor of 1

2 . However, we manage to provide a simple approximation algorithm
which, for any constant ∆, achieves an approximation ratio 1

2 + ε for a constant ε. For
∆ = 2 this ratio is 2

3 , while for an arbitrary constant ∆ it becomes ∆
2∆−1 = 1

2 + 1
2(2∆−1) (see

Section 4.1).
Given that Maximum Temporal Matching is NP-hard, we show fixed-parameter

tractability with respect to the desired solution size parameter. From a parameterized
classification standpoint, this improves a result of Baste et al. [6] who needed additionally ∆
as a second parameter for fixed-parameter tractability.

Finally, we show fixed-parameter tractability with respect to the combined parameter
∆ and size of a maximum matching of the underlying graph (which may be significantly
smaller than the cardinality of a maximum temporal matching of the temporal graph).
Our algorithmic techniques are essentially based on kernelization and matroid theory (see
Section 4).

It is worth mentioning that another temporal variation of Maximum Matching, which
is related to ours, was recently proposed by Baste et al. [6]. The main difference is that
their model requires edges to exist in at least ∆ consecutive snapshots in order for them
to be eligible for a matching. Thus, their matchings need to consist of time-consecutive
edge blocks, which requires some data cleaning on real-word instances in order to perform
meaningful experiments [6].

It turns out that the model of Baste et al. is a special case of our model, as there is an
easy reduction from their model to ours, and thus their positive results are also implied by
ours. Baste et al. [6] showed that solving (using their definition) Maximum Temporal
Matching is NP-hard for ∆ ≥ 2. In terms of parameterized complexity, they provided a
polynomial-sized kernel for the combined parameter (k,∆), where k is the size of the desired
solution.

We see the concept of multistage (perfect) matchings, introduced by Gupta et al. [12], as
the main alternative model for temporal matchings in temporal graphs. This model, which
is inspired by reconfiguration or reoptimization problems, is not directly related to ours:

3 To achieve the straightforward 1
2 -approximation it suffices to just greedily compute at every time slot a

maximal matching among the edges that are ∆-independent with the edges that were matched in the
previous time slots.

STACS 2020

27:4 Computing Maximum Matchings in Temporal Graphs

roughly speaking, their goal is to find perfect matchings for every snapshot of a temporal
graph such that the matchings only slowly change over time. In this setting one mostly
encounters computational intractability, which leads to several results on approximation
hardness and algorithms [5, 12].

Several details and proofs (marked with ?) are omitted due to space constraints.

2 Preliminaries

We use standard mathematical and graph-theoretic notation. In the full version of this paper
there is an overview of the most important classical notation and terminology we use.

Temporal graphs. Throughout the paper we consider temporal graphs G with finite life-
time T (G) = max{t ∈ λ(e) | e ∈ E}, that is, there is a maximum label assigned by λ

to an edge of G. When it is clear from the context, we denote the lifetime of G simply
by T . The snapshot (or instance) of G at time t is the static graph Gt = (V,Et), where
Et = {e ∈ E | t ∈ λ(e)}. We refer to each integer t ∈ [T] as a time slot of G. For every
e ∈ E and every time slot t ∈ λ(e), we denote the appearance of edge e at time t by the
pair (e, t), which we also call a time-edge. We denote the set of edge appearances of a
temporal graph G = (G = (V,E), λ) by E(G) := {(e, t) | e ∈ E and t ∈ λ(e)}. For every
v ∈ V and every time slot t, we denote the appearance of vertex v at time t by the pair
(v, t). That is, every vertex v has T different appearances (one for each time slot) during
the lifetime of G. For every time slot t ∈ [T], we denote by Vt = {(v, t) : v ∈ V } the set
of all vertex appearances of G at time slot t. Note that the set of all vertex appearances
in G is V × [T] =

⋃
1≤t≤T Vt. Two vertex appearances (v, t) and (w, t) are adjacent if the

temporal graph has the time-edge ({v, w}, t). For a temporal graph G = (G,λ) and a set of
time-edges M , we denote by G \M := (G′, λ′) the temporal graph G without the time-edges
in M , where G′ := (V,E′) with E′ := {e ∈ E | λ(e) \ {t | (e, t) ∈M} 6= ∅} and for all e ∈ E′,
λ′(e) := λ(e) \ {t | (e, t) ∈ M}. For a subset S ⊆ [T] of time slots and a time-edge set M ,
we denote by M |S := {(e, t) ∈M | t ∈ S} the set of time-edges in M with a label in S. For
a temporal graph G, we denote by G|S := G \ (E(G)|[T]\S) the temporal graph where only
time-edges with label in S are present.

In the remainder of the paper we denote by n and m the number of vertices and edges of
the underlying graph G, respectively, unless otherwise stated. We assume that there is no
compact representation of the labeling λ, that is, G is given with an explicit list of labels for
every edge, and hence the size of a temporal graph G is |G| := |V |+

∑T
t=1 |Et| ∈ O(n+mT).

Furthermore, in accordance with the literature [23, 24] we assume that the lists of labels are
given in ascending order.

Temporal matchings. A matching in a (static) graph G = (V,E) is a set M ⊆ E of edges
such that for all e, e′ ∈M we have that e ∩ e′ = ∅. In the following, we transfer this concept
to temporal graphs.

For a natural number ∆, two time-edges (e, t), (e′, t′) are ∆-independent if e ∩ e′ = ∅
or |t− t′| ≥ ∆. If two time-edges are not ∆-independent, then we say that they are in conflict.
A time-edge (e, t) ∆-blocks a vertex appearance (v, t′) (or (v, t′) is ∆-blocked by (e, t)) if
v ∈ e and |t − t′| ≤ ∆ − 1. A ∆-temporal matching M of a temporal graph G is a set of
time-edges of G which are pairwise ∆-independent. Formally, it is defined as follows.

I Definition 2 (∆-Temporal Matching). A ∆-temporal matching of a temporal graph G is a
set M of time-edges of G such that for every pair of distinct time-edges (e, t), (e′, t′) in M we
have that e ∩ e′ = ∅ or |t− t′| ≥ ∆.

G.B. Mertzios, H. Molter, R. Niedermeier, V. Zamaraev, and P. Zschoche 27:5

We remark that this definition is similar to the definition of γ-matchings by Baste et al. [6].
A ∆-temporal matching is called maximal if it is not properly contained in any other

∆-temporal matching. A ∆-temporal matching is called maximum if there is no ∆-temporal
matching of larger cardinality. We denote by µ∆(G) the size of a maximum ∆-temporal
matching in G.

Having defined temporal matchings, we naturally arrive at the following central problem.

Maximum Temporal Matching
Input: A temporal graph G = (G,λ) and an integer ∆ ∈ N.
Output: A ∆-temporal matching in G of maximum cardinality.

We refer to the problem of deciding whether a given temporal graph admits a ∆-temporal
matching of given size k by Temporal Matching.

For some basic observations about our problem settings and more details about the
relation between our model and the model of Baste et al. [6] we refer to the full version of
this paper.

Temporal line graphs. In the following, we transfer the concept of line graphs to temporal
graphs and temporal matchings. In particular, we make use of temporal line graphs in the
NP-hardness result of Section 3.2.

The ∆-temporal line graph of a temporal graph G is a static graph that has a vertex
for every time-edge of G and two vertices are connected by an edge if the corresponding
time-edges are in conflict, i.e., they cannot be both part of a ∆-temporal matching of G. We
say that a graph H is a temporal line graph if there exist a ∆ and a temporal graph G such
that H is isomorphic to the ∆-temporal line graph of G. Formally, temporal line graphs and
∆-temporal line graphs are defined as follows.

I Definition 3 (Temporal Line Graph). Given a temporal graph G = (G = (V,E), λ) and a
natural number ∆, the ∆-temporal line graph L∆(G) of G has vertex set V (L∆(G)) = {et |
e ∈ E ∧ t ∈ λ(e)} and edge set E(L∆(G)) = {{et, e′t′} | e∩ e′ 6= ∅∧ |t− t′| < ∆}. We say that
a graph H is a temporal line graph if there is a temporal graph G and an integer ∆ such that
H = L∆(G).

By definition, ∆-temporal line graphs have the following property.

I Observation 4. Let G be a temporal graph and let L∆(G) be its ∆-temporal line graph. The
cardinality of a maximum independent set in L∆(G) equals the size of a maximum ∆-temporal
matching of G.

It follows that solving Temporal Matching on a temporal graph G is equivalent to solving
Independent Set on L∆(G).

3 Hardness Results

In this section we show that Maximum Temporal Matching is APX-hard and that
Temporal Matching is NP-complete when the underlying graph is a path.

3.1 APX-completeness of Maximum Temporal Matching
In this subsection, we look at Maximum Temporal Matching where we want to maximize
the cardinality of the temporal matching. We prove that Maximum Temporal Matching
is APX-complete even if ∆ = 2 and T = 3. For this we provide a so-called L-reduction [4] from

STACS 2020

27:6 Computing Maximum Matchings in Temporal Graphs

the APX-complete Maximum Independent Set problem on cubic graphs [2] to Maximum
Temporal Matching. Together with the constant-factor approximation algorithm that we
present in Section 4.1 this implies APX-completeness for Maximum Temporal Matching.
The reduction also implies NP-completeness of Temporal Matching. Formally, we show
the following result.

I Theorem 5 (?). Temporal Matching is NP-complete and Maximum Temporal
Matching is APX-complete even if ∆ = 2, T = 3, and every edge of the underlying graph
appears only once. Furthermore, for any δ ≥ 664

665 , there is no polynomial-time δ-approximation
algorithm for Maximum Temporal Matching, unless P = NP, and Temporal Matching
does not admit a 2o(k) · |G|f(T)-time algorithm for any function f , unless the Exponential
Time Hypothesis fails.

We provide the following construction for a reduction from Maximum Independent
Set on cubic graphs. It is easy to check that it uses only three time steps and every edge
appears in exactly one time step.

I Construction 1. Let G = (V,E) be an n-vertex cubic graph. We construct in polynomial
time a corresponding temporal graph (H,λ) of lifetime three as follows. First, we find a
proper 4-edge coloring c : E → {1, 2, 3, 4} of G. Such a coloring exists by Vizing’s theorem
and can be found in O(|E|) time [21]. Now the underlying graph H = (U,F) contains two
vertices v0 and v1 for every vertex v of G, and one vertex we for every edge e of G. The
set F of the edges of H contains {v0, v1} for every v ∈ V , and for every edge e = {u, v} ∈ E
it contains {we, uα}, {we, vα}, where c(e) ≡ α (mod 2). In temporal graph (H,λ) every edge
of the underlying graph appears in exactly one of the three time slots:
1. λ({we, uα}) = λ({we, vα}) = 1, where c(e) ≡ α (mod 2), for every edge e = {u, v} ∈ E

such that c(e) ∈ {1, 2};
2. λ({v0, v1}) = 2 for every v ∈ V ;
3. λ({we, uα}) = λ({we, vα}) = 3, where c(e) ≡ α (mod 2), for every edge e = {u, v} ∈ E

such that c(e) ∈ {3, 4}.
It is easy to check that the reduction also implies NP-completeness of Temporal Matching.
The full proof of Theorem 5 can be found in the full version of this paper.

I Observation 6 (?). Temporal Matching is NP-complete, even if ∆ = 2, T = 5, and
the underlying graph of the input temporal graph is complete.

The importance of this observation is due to the following parameterized complexity
implication. Parameterizing Temporal Matching by structural graph parameters of
the underlying graph that are constant on complete graphs cannot yield fixed-parameter
tractability unless P = NP, even if combined with the lifetime T . Note that many structural
parameters fall into this category, such as domination number, distance to cluster graph,
clique cover number, etc. We discuss how our reduction can be adapted to the model of
Baste et al. [6] in the full version of this paper.

3.2 NP-completeness of Temporal Matching with Underlying Paths
In this subsection we show NP-completeness of Temporal Matching even for a very
restricted class of temporal graphs.

I Theorem 7. Temporal Matching is NP-complete even if ∆ = 2 and the underlying
graph of the input temporal graph is a path.

G.B. Mertzios, H. Molter, R. Niedermeier, V. Zamaraev, and P. Zschoche 27:7

We show this result by a reduction from Independent Set on connected cubic planar
graphs, which is known to be NP-complete [11]. More specifically, we show that Independent
Set is NP-complete on the temporal line graphs of temporal graphs that have a path as
underlying graph. Recall that by Observation 4, solving Independent Set on a temporal
line graph is equivalent to solving Temporal Matching on the corresponding temporal
graph. We proceed as follows.
1. We show that 2-temporal line graphs of temporal graphs that have a path as underlying

graph have a grid-like structure. More specifically, we show that they are induced
subgraphs of so-called diagonal grid graphs or king’s graphs.

2. We show that Independent Set is NP-complete on induced subgraphs of diagonal grid
graphs which together with Observation 4 yields Theorem 7. More specifically:

We exploit that cubic planar graphs are induced topological minors of grid graphs
and extend this result by showing that they are also induced topological minors of
diagonal grid graphs.
We show how to modify the subdivision of a cubic planar graph that is an induced
subgraph of a diagonal grid graph such that NP-hardness of finding independent sets
of certain size is preserved.

I Definition 8 (Diagonal Grid Graph). A diagonal grid graph Ẑn,m has a vertex vi,j for all
i ∈ [n] and j ∈ [m] and there is an edge {vi,j , vi′,j′} if and only if |i− i′|2 + |j − j′|2 ≤ 2.

It is easy to check that for a temporal graph with a path as underlying graph and where
each edge is active at every time step, the 2-temporal line graph is a diagonal grid graph.

I Observation 9. Let G = (Pn, λ) with λ(e) = [T] for all e ∈ E(Pn), then L2(G) = Ẑn−1,T .

Further, it is easy to see that deactivating an edge at a certain point in time results in
removing the corresponding vertex from the diagonal grid graph. See Figure 1 for an example.
Hence, we have that every induced subgraph of a diagonal grid graph is a 2-temporal line
graph.

I Corollary 10. Let Z ′ be a connected induced subgraph of Ẑn−1,T . Then there is a λ and
an n′ ≤ n such that Z ′ = L2((Pn′ , λ)).

Having these results at hand, it suffices to show that Independent Set is NP-complete
on induced subgraphs of diagonal grid graphs. By Observation 4, this directly implies that
Temporal Matching is NP-complete on temporal graphs that have a path as underlying
graph. Hence, in the remainder of this section, we discuss the following result.

I Theorem 11 (?). Independent Set on induced subgraphs of diagonal grid graphs is
NP-complete.

This result may be of independent interest and strengthens a result by Clark et al. [9], who
showed that Independent Set is NP-complete on unit disk graphs. It is easy to see from
Definition 8 that diagonal grid graphs and their induced subgraphs are a (proper) subclass
of unit disk graphs.

In the following, we give the main ideas of how we prove Theorem 11. The first building
block for the reduction is the fact that we can embed cubic planar graphs into a grid [22].
More specifically, a cubic planar graph admits a planar embedding in such a way that
the vertices are mapped to points of a grid and the edges are drawn along the grid lines.
Moreover, such an embedding can be computed in polynomial time and the size of the grid
is polynomially bounded in the size of the planar graph.

STACS 2020

27:8 Computing Maximum Matchings in Temporal Graphs

e5, λ(e5) = {1, 2, 5}

e4, λ(e4) = {1, 4}

e3, λ(e3) = {1, 2, 3}

e2, λ(e2) = {2, 4}

e1, λ(e1) = {2, 4, 5}

(a) Temporal graph G = (P6, λ) with λ as
visualized.

1

e1

2

e2

3

e3

4

e4

5

e5

(b) 2-Temporal line graph L2(G).

Figure 1 A temporal line graph with a path as underlying graph where edges are not always
active and its 2-temporal line graph.

Note that if we replace the edges of the original planar graph by paths of appropriate
length, then the embedding in the grid is actually a subgraph of the grid. Furthermore, if we
scale the embedding by a factor of two, i.e. subdivide every edge once, then the embedding
is also guaranteed to be an induced subgraph of the grid. In other words, we argue that
every cubic planar graph is an induced topological minor of a polynomially large grid graph.
We then show how to modify the embedding in a way that insures that the resulting graph
is also an induced topological minor of an polynomially large diagonal grid graph. The
last step is to further modify the embedding such that it can be obtained from the original
graph by subdividing each edge an even number of times, this ensures that NP-hardness of
Independent Set is preserved.

It is easy to check that Theorem 11, Observation 4, and Corollary 10 together imply
Theorem 7. Theorem 7 also has some interesting implications from the point of view of
parameterized complexity: Parameterizing Temporal Matching by structural graph
parameters of the underlying graph that are constant on a path cannot yield fixed-parameter
tractability unless P = NP, even if combined with ∆. Note that a large number of popular
structural parameters fall into this category, such as maximum degree, treewidth, pathwidth,
feedback vertex number, etc.

4 Algorithms

Here, we show one approximation and two exact algorithms for Temporal Matching.

4.1 Approximation of Maximum Temporal Matching
In this section, we present a ∆

2∆−1 -approximation algorithm for Maximum Temporal
Matching. Note that for ∆ = 2 this is a 2

3 -approximation, while for arbitrary constant ∆
this is a (1

2 + ε)-approximation, where ε = 1
2(2∆−1) is a constant, too. Specifically, we show

the following.

I Theorem 12 (?). Maximum Temporal Matching admits an O (Tm(
√
n+ ∆))-time

∆
2∆−1 -approximation algorithm.

G.B. Mertzios, H. Molter, R. Niedermeier, V. Zamaraev, and P. Zschoche 27:9

Algorithm 4.1 ∆
2∆−1 -Approximation Algorithm (Theorem 12).

1 M ← ∅.
2 foreach ∆-template S do
3 Compute a ∆-temporal matching MS with respect to S.
4 if |MS | > |M | then M ←MS .
5 return M .

e1

λ(e1) = {2}
e2

λ(e2) = {1, 3}
e3

λ(e3) = {1}
e4

λ(e4) = {2}

Figure 2 A temporal graph witnessing that the analysis of Algorithm 4.1 is tight for ∆ = 2.

The main idea of our approximation algorithm is to compute maximum matchings for
slices of size ∆ of the input temporal graph that are sufficiently far apart from each other
such that they do not interfere with each other, and hence are computable in polynomial
time. Then we greedily fill up the gaps. We try out certain combinations of non-interfering
slices of size ∆ in a systematic way and then take the largest ∆-matching that was found
in this way. With some counting arguments we can show that this achieves the desired
approximation ratio. In the following we describe and prove this claim formally.

We first introduce some additional notation and terminology. Recall that µ∆(G) denotes
the size of a maximum ∆-temporal matching in G. Let ∆ and T be fixed natural numbers
such that ∆ ≤ T . For every time slot t ∈ [T −∆ + 1], we define the ∆-window Wt as the
interval [t, t + ∆ − 1] of length ∆. We use this to formalize slices of size ∆ of a temporal
graph. An interval of length at most ∆ − 1 that either starts at slot 1, or ends at slot T
is called a partial ∆-window (with respect to lifetime T). For the sake of brevity, we write
partial ∆-window, when the lifetime T is clear from the context. The distance between two
disjoint intervals [a1, b1] and [a2, b2] with b1 < a2 is a2 − b1 − 1.

A ∆-template (with respect to lifetime T) is a maximal family S of ∆-windows or partial
∆-windows in the interval [T] such that any two consecutive elements in S are at distance
exactly ∆ − 1 from each other. Let S be a ∆-template. A ∆-temporal matching MS in
G = (G,λ) is called a ∆-temporal matching with respect to ∆-template S if MS has the
maximum possible number of edges in every interval W ∈ S, i.e.

∣∣MS |W ∣∣ = µ∆(G|W) for
every W ∈ S.

Now we are ready to present and analyze our ∆
2∆−1 -approximation algorithm, see Al-

gorithm 4.1. The idea of the algorithm is simple: for every ∆-template S compute a
∆-temporal matching MS with respect to S and among all of the computed ∆-temporal
matchings return a matching of the maximum cardinality.

We remark that our analysis ignores the fact that the algorithm may add time-edges from
the gaps between the ∆-windows defined by the template to the matching if they are not
in conflict with any other edge in the matching. Hence, on the one hand, there is potential
room for improvement. On the other hand, our analysis of the approximation factor of
Algorithm 4.1 is tight for ∆ = 2. Namely, there exists a temporal graph G (see Figure 2) such
that on the instance (G, 2) our algorithm (in the worst case) finds a 2-temporal matching of
size two, while the size of a maximum 2-temporal matching in G is three. In this example
any improvement of the algorithm that utilizes the gaps between the ∆-windows would not
lead to a better performance.

STACS 2020

27:10 Computing Maximum Matchings in Temporal Graphs

4.2 Fixed-parameter tractability for the parameter solution size
In this section we provide a fixed-parameter algorithm for Temporal Matching paramet-
erized by the solution size k. More specifically, we provide a linear-time algorithm for a fixed
solution size k. Formally, the main result of this subsection is to show the following.

I Theorem 13 (?). There is a linear-time FPT-algorithm for Temporal Matching
parameterized by the solution size k.

We discuss the proof Theorem 13 in the remainder of this section. Recall that due to
Baste et al. [6] it is already known that Temporal Matching is fixed-parameter tractable
when parameterized by the solution size k and ∆. In comparison to the algorithm of
Baste et al. [6] the running time of our algorithm is independent of ∆, hence improving their
result from a parameterized classification standpoint.

The rough idea of our algorithm is the following. We develop a preprocessing procedure
that reduces the number of time-edges of the first ∆-window. After applying this procedure,
the number of time-edges in the first ∆-window is upper-bounded in a function of the solution
size parameter k. This allows us to enumerate all possibilities to select time-edges from the
first ∆-window for the temporal matching. Then, for each possibility, we can remove the
first ∆-window from the temporal graph and solve the remaining part recursively.

Next, we describe the preprocessing procedure more precisely. Referring to kernelization
algorithms, we call this procedure kernel for the first ∆-window. If we count naively the
number of ∆-temporal matchings in the first ∆-window of a temporal graph, then this
number clearly depends on ∆. This is too large for Theorem 13. A key observation to
overcome this obstacle is that if we look at an edge appearance of a ∆-temporal matching
which comes from the first ∆-window, then we can exchange it with the first appearance of
the edge.

I Lemma 14 (?). Let (G,λ) be a temporal graph and let M be a ∆-temporal matching in
(G,λ). Let also e ∈ Et1 ∩ Et2 , where t1 < t2 ≤ ∆. If (e, t1) 6∈ M and (e, t2) ∈ M , then
M ′ = (M \ {(e, t2)}) ∪ {(e, t1)} is a ∆-temporal matching in (G,λ).

We use Lemma 14 to construct a small set K of time-edges from the first ∆-window such
that there exists a maximum ∆-temporal matching M in (G,λ) with the property that the
restriction of M to the first ∆-window is contained in K.

I Definition 15 (Kernel for the First ∆-Window). Let ∆ be a natural number and let G be a
temporal graph. We call a set K of time-edges of G|[1,∆] a kernel for the first ∆-window of G
if there exists a maximum ∆-temporal matching M in G with M |[1,∆] ⊆ K.

Informally, the idea for computing the kernel for the first ∆-window is to first select vertices
that are suitable to be matched. Then, for each of these vertices, we select the earliest
appearance of a sufficiently large number of incident time-edges, where each of these time-
edges corresponds to a different edge of the underlying graph. We show that we can do this
in a such way that the number of selected time-edges can be upper-bounded in a function of
the size ν of a maximum matching of the underlying graph G. Formally, we aim at proving
the following lemma.

I Lemma 16 (?). Given a natural number ∆ and a temporal graph G = (G,λ) we can
compute in O(ν2 · |G|) time a kernel K for the first ∆-window of G such that |K| ∈ O(ν2).

Algorithm 4.2 presents the pseudocode for the algorithm behind Lemma 16. We show
correctness of Algorithm 4.2 in Lemma 17 and examine its running time in Lemma 18. Hence,
Lemma 16 follows from Lemmas 17 and 18.

G.B. Mertzios, H. Molter, R. Niedermeier, V. Zamaraev, and P. Zschoche 27:11

Algorithm 4.2 Kernel for the First ∆-Window (Lemma 16).

1 Let G′ be the underlying graph of G|[1,∆] and K = ∅.
2 A← a maximum matching of G′.
3 VA ← the set of vertices matched by A.
4 foreach v ∈ VA do
5 Rv ←

{
({v, w}, t) | w ∈ NG′(v) and t = min{i ∈ [∆] | {v, w} ∈ Ei}

}
.

6 if |Rv| ≤ 4ν then K ← K ∪Rv.
7 else
8 Form a subset R′ ⊆ Rv such that |R′| = 4ν + 1 and for every (e, t) ∈ R′ and

(e′, t′) ∈ Rv \R′ we have t ≤ t′.
9 K ← K ∪R′.

10 return K.

I Lemma 17. Algorithm 4.2 is correct, that is, the algorithm outputs a size-O(ν2) kernel K
for the first ∆-window of G.

Proof. LetM be a maximum ∆-temporal matching of G such that
∣∣M |[1,∆] \K

∣∣ is minimized.
Without loss of generality we can assume that every time-edge inM |[1,∆] is the first appearance
of an edge. Indeed, by construction, K contains only the first appearances of edges, and
therefore if (e, t) ∈M |[1,∆] is not the first appearance of e, by Lemma 14 it can be replaced
by the first appearance, and this would not increase

∣∣M |[1,∆] \K
∣∣. Now, assume towards

a contradiction that M |[1,∆] \K is not empty and let (e, t) be a time-edge in M |[1,∆] \K.
Since A is a maximum matching in the underlying graph G′ of G|[1,∆], at least one of the
end vertices of e is matched by A, i.e., it belongs to VA. Then for a vertex v ∈ VA ∩ e we
have that (e, t) ∈ Rv. Moreover, observe that |Rv| > 4ν, because otherwise (e, t) would be
in K. For the same reason (e, t) 6∈ R′, where R′ ⊆ Rv is the set of time-edges computed in
Line 8 of the algorithm. Let W = {(w, t) | ({v, w}, t) ∈ R′} be the set of vertex appearances
which are adjacent to vertex appearance (v, t) by a time-edge in R′. Since Rv contains only
the first appearances of edges, we know that W contains exactly 4ν + 1 vertex appearances
of pairwise different vertices.

We now claim that W contains a vertex appearance which is not ∆-blocked by any time-
edge inM . To see this, we recall that ν is the maximum matching size of the underlying graph
of G. Hence it is also an upper bound on the number of time-edges inM |[1,∆] andM |[∆+1,2∆],
which implies that in the first ∆-window vertex appearances of at most 4ν distinct vertices
are ∆-blocked by time-edges in M . Since W contains 4ν + 1 vertex appearances of pairwise
different vertices, we conclude that there exists a vertex appearance (w′, t′) ∈ W which is
not ∆-blocked by M .

Observe that t′ ≤ t because ({v, w′}, t′) ∈ R′ and (e, t) ∈ Rv \ R′. Hence, (v, t′) is not
∆-blocked by M \ {(e, t)}. Thus, M∗ := (M \ {(e, t)}) ∪ {({v, w′}, t′)} is a ∆-temporal
matching of size |M | with

∣∣M∗|[1,∆] \K
∣∣ < ∣∣M |[1,∆] \K

∣∣. This contradiction implies that
M |[1,∆] \K is empty and thus M |[1,∆] ⊆ K.

It remains to show that |K| ∈ O(ν2). Since each maximum matching in G′ has at most
ν edges, we have that |VA| ≤ 2ν. For each vertex in VA the algorithm adds at most 4ν + 1
time-edges to K. Thus, |K| ≤ 2ν · (4ν + 1) ∈ O(ν2). J

I Lemma 18 (?). Algorithm 4.2 runs in O(ν2(n + m∆)) time. In particular, the time
complexity of Algorithm 4.2 is dominated by O(ν2|G|).

STACS 2020

27:12 Computing Maximum Matchings in Temporal Graphs

Having Algorithm 4.2 at hand, we can formulate a recursive search tree algorithm which
(1) picks a ∆-temporal matchings M in the kernel of the first ∆-window, (2) removes the first
∆-window from the temporal graph, (3) removes all time-edges which are not ∆-independent
with M , and (4) calls itself until the temporal graph in empty. For pseudocode of this
algorithm and the proof of correctness, we refer to the full version of this paper.

4.3 Fixed-parameter tractability for the combined parameter ∆ and
maximum matching size ν of the underlying graph

In this section we show that Temporal Matching is fixed-parameter tractable when
parameterized by ∆ and the maximum matching size ν of the underlying graph.

I Theorem 19 (?). Temporal Matching can be solved in 2O(ν∆) · |G| · T∆ time.

Note that Theorem 19 implies that Temporal Matching is fixed-parameter tractable when
parameterized by ∆ and the maximum matching size ν of the underlying graph, because
there is a simple preprocessing step so that we can assume afterwards that the lifetime T is
polynomially upper-bounded in the input size. This preprocessing step modifies the temporal
graph such that it does not contain ∆ consecutive edgeless snapshots. This can be done by
iterating once over the temporal graph. Observe that this procedure does not change the
maximum size of a ∆-temporal matching and afterwards each ∆-window contains at least
one time-edge. Hence, T∆ ≤ |G|.

Note that this result is incomparable to Theorem 13. In some sense, we trade off replacing
the solution size parameter k with the structurally smaller parameter ν but we do not know
how to do this without combining it with ∆. In comparison to the exact algorithm by
Baste et al. [6] (who showed fixed-parameter tractability with k and ∆) we replace k by
the structurally smaller ν, hence improving their result from a parameterized classification
standpoint. Furthermore, we note that Theorem 19 is asymptotically optimal for any fixed
∆ since there is no 2o(ν) · |G|f(∆,T) algorithm for Temporal Matching, unless ETH fails
(see Theorem 5).

In the reminder of this section, we sketch the main ideas of the algorithm behind
Theorem 19. The algorithm works in three major steps:
1. The temporal graph is divided into disjoint ∆-windows,
2. for each of these ∆-windows a small family of ∆-temporal matchings is computed, and

then
3. the maximum size of a ∆-temporal matching for the whole temporal graph is computed

with a dynamic program based on the families from (Step 2).

We first discuss how the algorithm performs Step 2. Afterwards we formulate the dynamic
program (Step 3). In a nutshell, Step 2 consists of an iterative computation of a small
(upper-bounded in ∆ + ν) family of ∆-temporal matchings for an arbitrary ∆-window such
that at least one of them is “extendable” to a maximum ∆-temporal matching for the whole
temporal graph.

Families of `-complete ∆-temporal matchings. Throughout this section let G = (G =
(V,E), λ) be a temporal graph of lifetime T and let ν be the maximum matching size in G.
Let also ∆ and ` be natural numbers such that `∆ ≤ T .

A familyM of ∆-temporal matchings of G|[∆(`−1)+1,∆`] is called `-complete if for any
∆-temporal matching M of G there is M ′ ∈ M such that

(
M \M |[∆(`−1)+1,∆`]

)
∪M ′ is a

∆-temporal matching of G of size at least |M |. A central part of our algorithm is an efficient
procedure for computing an `-complete family. Formally, we aim for the following lemma.

G.B. Mertzios, H. Molter, R. Niedermeier, V. Zamaraev, and P. Zschoche 27:13

I Lemma 20 (?). There exists a 2O(ν∆) · |G|-time algorithm that computes an `-complete
family of size 2O(ν∆) of ∆-temporal matchings of G|[∆(`−1)+1,∆`].

In the proof of Lemma 20 we employ representative families and other tools from matroid
theory [8, 10].

Dynamic program. Now we are ready to combine Step 2 of our algorithm with the remaining
Steps 1 and 3. More precisely, we employ `-complete families of ∆-temporal matchings
of ∆-windows in a dynamic program (Step 3) to compute the ∆-temporal matching of
maximum size for the whole temporal graph. The pseudocode of this dynamic program
and its proof of correctness is stated in the full version of this paper. This is the algorithm
behind Theorem 19. It computes a table T where each entry T [i,M ′] stores the maximum
size of a ∆-temporal matching M in the temporal graph G|[1,∆i] such that all the time-edges
in M |[∆(i−1)+1,∆i] = M ′. Observe that a trivial dynamic program which computes all
entries of T cannot provide fixed-parameter tractability of Temporal Matching when
parameterized by ∆ and ν, because the corresponding table is simply too large. The crucial
point of the dynamic program is that it is sufficient to fix for each i ∈ [T∆] an i-complete
familyMi of ∆-temporal matchings for G|[∆(i−1)+1,∆i] and then compute only the entries
T [i,M ′], where M ′ ∈Mi.

Kernelization lower bound. Lastly, we can show that we cannot hope to obtain a polynomial
kernel for the parameter combination number n of vertices and ∆. In particular, this implies
that, presumably, we also cannot get a polynomial kernel for the parameter combination ν
and ∆, since ν ≤ n

2 .

I Proposition 21 (?). Temporal Matching parameterized by the number n of vertices
does not admit a polynomial kernel for all ∆ ≥ 2, unless NP ⊆ coNP/poly.

5 Conclusion

The following issues remain research challenges. First, on the side of polynomial-time
approximability, improving the constant approximation factors is desirable and seems feasible.
Beyond, lifting polynomial time to FPT time, even approximation schemes in principle seem
possible, thus circumventing our APX-hardness result. Taking the view of parameterized
complexity analysis in order to cope with NP-hardness, a number of directions are naturally
coming up. For instance, based on our fixed-parameter tractability result for the parameter
solution size, the following questions naturally arise:

1. Is there a polynomial-size kernel for the solution size parameter k?

2. Is there a faster algorithm or a matching lower-bound for the running time of Theorem 13?
To enlarge the range of promising and relevant parameterizations, one may extend the
parameterized studies to structural graph parameters combined with ∆ or the lifetime of the
temporal graph. In particular, treedepth combined with ∆ is left open, since it is a “stronger”
parameterization than in Theorem 19 but has an unbounded value in all known NP-hardness
reductions.

STACS 2020

27:14 Computing Maximum Matchings in Temporal Graphs

References
1 E. C. Akrida, G. B. Mertzios, P. G. Spirakis, and V. Zamaraev. Temporal vertex cover with a

sliding time window. J. Comput. Syst. Sci., 107:108–123, 2020.
2 P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theor. Comput.

Sci., 237(1-2):123–134, 2000.
3 J. Aronson, M. Dyer, A. Frieze, and S. Suen. Randomized greedy matching ii. Random Struct.

Algorithms, 6(1):55–73, 1995.
4 G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.

Complexity and Approximation: Combinatorial Optimization Problems and Their Approximab-
ility Properties. Springer, 2012.

5 E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos. Multistage matchings. In Proc. of
16th SWAT, volume 101 of LIPIcs, pages 7:1–7:13. Schloss Dagstuhl - LZI, 2018.

6 J. Baste, B. Bui-Xuan, and A. Roux. Temporal matching. Theor. Comput. Sci., 806:184–196,
2020.

7 M. Bentert, A-S. Himmel, H. Molter, M. Morik, R. Niedermeier, and R. Saitenmacher. Listing
all maximal k-plexes in temporal graphs. ACM J. Exp. Algorithmics, 24(1):1–13, 2019.

8 R. van Bevern, O. Y. Tsidulko, and P. Zschoche. Fixed-parameter algorithms for maximum-
profit facility location under matroid constraints. In Proc. of 11th CIAC, volume 11485 of
LNCS, pages 62–74. Springer, 2019.

9 B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Math., 86(1-
3):165–177, 1990.

10 F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh. Efficient computation of representa-
tive families with applications in parameterized and exact algorithms. J. ACM, 63(4):29:1–29:60,
2016.

11 M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM
J. Appl. Math., 32(4):826–834, 1977.

12 A. Gupta, K. Talwar, and U. Wieder. Changing bases: Multistage optimization for matroids
and matchings. In Proc. of 41st ICALP, volume 8572 of LNCS, pages 563–575. Springer, 2014.

13 D. Hausmann and B. Korte. k-greedy algorithms for independence systems. Oper. Res.,
22(1):219–228, 1978.

14 A-S. Himmel, H. Molter, R. Niedermeier, and M. Sorge. Adapting the bron-kerbosch algorithm
for enumerating maximal cliques in temporal graphs. Soc. Netw. Anal. Min., 7(1):35:1–35:16,
2017.

15 P. Holme and J. Saramäki. Temporal networks. Physics Reports, 519(3):97–125, 2012.
16 D. Kempe, J. Kleinberg, and A. Kumar. Connectivity and inference problems for temporal

networks. J. Comput. Syst. Sci., 64(4):820–842, 2002.
17 B. Korte and D. Hausmann. An analysis of the greedy heuristic for independence systems.

Discrete Math., 2:65–74, 1978.
18 M. Latapy, T. Viard, and C. Magnien. Stream graphs and link streams for the modeling of

interactions over time. Soc. Netw. Anal. Min., 8(1):61, 2018.
19 G. B. Mertzios, H. Molter, and V. Zamaraev. Sliding window temporal graph coloring. In

Proc. of 33rd AAAI, pages 7667–7674. AAAI Press, 2019.
20 M. Poloczek and M. Szegedy. Randomized greedy algorithms for the maximum matching

problem with new analysis. In Proc. of 53rd FOCS, pages 708–717. IEEE, 2012.
21 A. Schrijver. Bipartite edge coloring in O(∆m) time. SIAM J. Comput., 28(3):841–846, 1998.
22 L. G. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Comput., 100(2):135–

140, 1981.
23 H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu. Efficient algorithms for temporal

path computation. IEEE Trans. Knowl. Data. Eng., 28(11):2927–2942, 2016.
24 P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier. The complexity of finding small

separators in temporal graphs. J. Comput. Syst. Sci., 107:72–92, 2020.

	Introduction
	Preliminaries
	Hardness Results
	APX-completeness of Maximum Temporal Matching
	NP-completeness of Temporal Matching with Underlying Paths

	Algorithms
	Approximation of Maximum Temporal Matching
	Fixed-parameter tractability for the parameter solution size
	Fixed-parameter tractability for the combined parameter Delta and maximum matching size nu of the underlying graph

	Conclusion

