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—— Abstract

Resource Minimization Fire Containment (RMFC) is a natural model for optimal inhibition of
harmful spreading phenomena on a graph. In the RMFC problem on trees, we are given an undirected
tree GG, and a vertex r where the fire starts at, called root. At each time step, the firefighters
can protect up to B vertices of the graph while the fire spreads from burning vertices to all their
neighbors that have not been protected so far. The task is to find the smallest B that allows for
saving all the leaves of the tree. The problem is hard to approximate up to any factor better than 2
even on trees unless P = NP [11].

Chalermsook and Chuzhoy [6] presented a Linear Programming based O(log™ n) approximation
for RMFC on trees that matches the integrality gap of the natural Linear Programming relaxation.
This was recently improved by Adjiashvili, Baggio, and Zenklusen [1] to a 12-approximation through
a combination of LP rounding along with several new techniques.

In this paper we present an asymptotic QPTAS for RMFC on trees. More specifically, let € > 0,
and Z be an instance of RMFC where the optimum number of firefighters to save all the leaves is
OPT(Z). We present an algorithm which uses at most [(1 + ¢)OPT(Z)] many firefighters at each
time step and runs in time n@{°81°87/€)  This suggests that the existence of an asymptotic PTAS is
plausible especially since the exponent is O(loglogn), not O(logn).

Our result combines a more powerful height reduction lemma than the one in [1] with LP
rounding and dynamic programming to find the solution. We also apply our height reduction lemma
to the algorithm provided in [1] plus a more careful analysis to improve their 12-approximation and
provide a polynomial time (5 + €)-approximation.
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1 Introduction

The Firefighter problem and a closely related problem named Resource Minimization Fire
Containment (RMFC) are natural models for optimal inhibition of harmful spreading phe-
nomena on a graph. The firefighter problem was formally introduced by Hartnell [9] and
later Chalermsook and Chuzhoy [6] defined the RMFC problem. Since then, both problems
have received a lot of attention in several research papers, even when the underlying graph is
a spanning tree, which is one of the most-studied graph structures in this context and also
the focus of this paper.
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In both problems (when restricted to trees) we are given a graph G = (V, E), which is
a spanning tree, and a vertex r € V, called root. The problem is defined over discretized
time steps. At time 0, a fire starts at r and spreads step by step to neighboring vertices.
During each time step 1,2, ... any non-burning vertex u can be protected, preventing u from
burning in any future time step.

In the RMFC problem the task is to determine the smallest number B € Z>; such that
there is a protection strategy which protects B vertices at each time step while saving all
the leaves from catching fire. In this context, B is referred to as the number of firefighters
(or budget at each step). In the firefighters problem, given a fixed number of firefighters
(i.e. number of vertices that can be protected at each time step) the goal is to find a strategy
to maximize the number of vertices saved from catching the fire.

For RMFC on trees, King and MacGillivray [11] showed that it is NP-hard to decide
whether one firefighter is sufficient or not. This means that there is no (efficient) approximation
algorithm with an approximation factor strictly better than 2, unless P=NP. On the positive
side, Chalermsook and Chuzhoy [6] presented an O(log* n)-approximation, where n is the
number of vertices. Their algorithm is based on a natural Linear Programming (LP) relaxation,
which is a straightforward adaptation of the one previously used for the Firefighter problem
on trees and essentially matches the integrality gap of the underlying LP (the integrality
gap of the underlying LP is ©(log" n) [6]). Recently, Adjiashvili et al. [1] presented a 12-
approximation for RMFC, which is the first constant factor approximation for the problem.
Their result is obtained through a combination of the known LPs with several new techniques,
which allows for efficiently enumerating subsets of super-constant size of a good solution to
obtain stronger LPs. They also present a PT AS for the firefighter problem.

1.1 Our Results

In this paper our main focus is on RMFC problem. By using Linear Programming and
dynamic programming techniques, we show how to approximate RMFC with a small additive
error by presenting a quasi-polynomial time asymptotic approximation scheme (AQPTAS)
for it. More specifically our main result is the following theorem:

» Theorem 1. For RMFC on trees and for any € > 0 there is an algorithm that finds a
solution using [(1 + O(€))B] firefighters with running time nOUoglogn/e) “where B is the
optimal number of firefighters.

We will also show how applying our more powerful height reduction lemma to the
algorithm used by Adjiashvili et al. [1], plus a more careful analysis, leads to a better constant
factor. In particular, we obtain the following:

» Theorem 2. For any € > 0, there is a polynomial time (5 + €)-approximation for the
RMFC problem on trees.

Recall that the RMFC problem on trees does not admit better than 2-approximation
unless P = NP [11]. However, this does not rule out the possibility of a +1 approximation
or an asymptotic PTAS. Our result is an indication that it is plausible that an asymptotic
PTAS exists, especially since the exponent is O(loglogn), not O(logn) as we don’t know
any natural problem that admits n©(°81°8™) algorithm but not polynomial time.

We start by introducing a more powerful height reduction transformation than the
one used in [1] that allows for transforming the RMFC problem into a more compact and
better structured form, by only losing a (1 + ¢) factor in terms of approximability. This
transformation allows us to identify small substructures, over which we can optimize efficiently,
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and having an optimal solution to these subproblems we can define a residual LP with small
integrality gap. Then we will show how to apply dynamic programming on the transformed
instance to obtain a strategy to protect the nodes at each step to successfully contain the
fire and save all the leaves with using only O(eB) more firefighters at each step. We will
apply our more powerful height reduction lemma to the previous combinatorial approach [1]
to reach a better constant factor approximation in polynomial time, which is presented in
Theorem 2.

1.2 Further Related Work

The Firefighter problem and RMFC, both restricted to trees, are known to be computationally
hard problems. More precisely, Finbow, King, MacGillivray and Rizzi [7] showed the NP-
hardness for the Firefighter problem on trees even when the maximum degree is three. For
RMFC on trees, it is NP-hard to decide whether one firefighter is sufficient or not [11], which
implies that the problem is hard to approximate to a factor better than 2.

Several approximation algorithms have been proposed for both of these problems. Hartnell
and Li [8] proved that a natural greedy algorithm is a %—approximation for the Firefighter
problem. Later, Cai, Verbin and Yang [3] improved this result to 1 — %, using a natural LP
relaxation and dependent randomized rounding. Then Anshelevich, Chakrabarty, Hate and
Swamy [2] showed that the Firefighter problem on trees can be interpreted as a monotone
submodular function maximization (SFM) problem subject to a partition matroid constraint.
This observation yields another (1— 1)-approximation by using a recent (1— 1)-approximation
for monotone SFM subject to a matroid constraint [4, 13].

Chalermsook and Vaz [5] showed that, for any € > 0, the canonical LP used for the
Firefighter problem on trees has an integrality gap of 1 — é + €. This generalized a previous
result by Cai, Verbin and Yang [3]. When restricted to some tree topologies this factor 1 — %
was later improved (see [10]) but, for arbitrary trees, that was the best known approximation
factor for a few years.

Recently, Adjiashvili, Baggio and Zenklusen [1] have filled the gap between previous
approximation ratios and hardness results for the Firefighter problem. In particular, they
present approximation ratios that nearly match the hardness results, thus showing that the
Firefighter problem can be approximated to factors that are substantially better than the
integrality gap of the natural LP. Their results are based on several new techniques, which
may be of independent interest.

Assuming a variant of the Unique Games Conjecture (UGC), the RMFC problem in
general graphs is hard to approximate within any constant factor, according to a recent work
by Lee [12] which is based on a general method of converting an integrality gap instance to a
length-control dictatorship test for variants of the s-t cut problem. For further results and
related work we refer the reader to [1].

1.3 Organization of the Paper

In Section 2 we start by introducing some preliminaries including a (now standard) Linear
Programming relaxation for the problem and then will provide a height reduction lemma.
Section 3 will cover our main algorithm to obtain the asymptotic QPTAS. In Appendix A we
will show how to apply our height reduction lemma to the previous combinatorial approach
of [1] to improve their 12-approximation and provide a (5 + €)-approximation.
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2 Preliminaries and Overview of the Algorithm

Recall that we are given a tree G = (V, E) rooted at a vertex r, from which we assume the
fire starts. We denote by I' C V the set of all leaves of the tree. Given an instance Z for
RMFC and an integer parameter B > 1, called the budget or the number of firefighters, at
each time step we can “protect” up to B non-burning vertices. Such vertices are protected
indefinitely. Our goal is to find the smallest B and a protection strategy such that all the
leaves I' are saved from catching the fire. Observe that we say a vertex u is protected, if we
directly place a firefighter in u, and a vertex v is saved when the fire does not reach to wu,
because of protecting some u on the unique v-r path. This smallest value of B is denoted by
OPT(I).

Let L € Z>1 be the depth of the tree, i.e. the largest distance, in terms of the number of
edges, between r and any other vertex in G. After at most L time steps, the fire spreading
process will halt. For £ € [L] := {1,...,L}, let V; CV be the set of all vertices of distance
¢ from r, which we call the (-th level of the instance. We also use V<y = U{_,Vj, and we
define V>, Vy, and V5, in the same way. Moreover, for each 1 </ < L and each u € V, ,
P, CV<y\ {r} denotes the set of all vertices on the unique u-r path except for the root r,
and T,, C V5, denotes the subtree rooted at u, i.e. descendants of wu.

2.1 Linear Programming Relaxation

We use the following (standard) Linear Programming (LP) relaxation for the problem that
is used in both [6] and [1].

min B (1)
x(P,) > 1 Yuel
e(Ve)) < B-¢ Ve € [L]
;e RUO

Here z(U) := Y.,y x(u) for any U C V' \ {r}. Note that with z € {0,1}V\M"} and
B € Z>o we get an exact description of RMFC where x is the characteristic vector of the
vertices to be protected and B is the budget. The first constraint enforces that for each leaf
u, one vertex between u and r will be protected, which makes sure that the fire will not
reach u. The second constraint ensures that the number of vertices protected after each time
step is at most B - £ and makes sure that we are using no more than B firefighters per time
step (see [6] for more details). Note that (as mentioned in [6]), there is an optimal solution
to RMFC that protects, with the firefighters available at time step ¢, only the vertices in Vj.
Hence, we can change the above relaxation to one with the same optimal objective value by
replacing the constraints z(V<y) < B - £ by the constraints x(V;) < B for all £ € [L].

min B (2)
z(P,) > 1 Vuel
x(Ve) < B Ve € [L]

: e RAW

Throughout the paper we use a lemma of [1] which basically says that any basic feasible
solution of LP(2) (and also LP(1)) is sparse. This is proved for the polytope of the firefighters
problem, which has the same LP constraints (just different objective function). Consider any
basic feasible solution  to LP(2). One can partition supp(z) = {v € V' \ {r} : z(v) > 0} into
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two parts: z-loose vertices and z-tight vertices. A vertex v € V' \ {r} is z-loose or simply
loose if v € supp(x) and z(P,) < 1. All other vertices in supp(z), which are not loose, will
be z-tight or simply tight.

» Lemma 3 (Lemma 6 in [1]). Let x be a vertex solution to LP(2) for RMFC, then the
number of x-loose vertices is at most L, the depth of the tree.

We will use this property crucially in the design of our algorithm. Also, as noted in [1],
we can work with a slightly more general version of the problem in which we have different
numbers of budgets/firefighters at each time step: say By, = myB (for some my € Z>)
firefighters for each time step ¢ € [L] while we are still minimizing B. Lemma 3 is valid for
this generalization too.

2.2 Height Reduction

The technique of reducing the height of a tree at a small loss in cost (or approximation ratio)

has been used in different settings and various problems (e.g. network design problems).

For RMFC, Adjiashvili et al. [1] showed how one can reduce an instance of the problem to
another instance where the height of the tree is only O(logn) at a loss of factor 2. In a
sense, the tree will be compressed into a tree with only O(logn) levels. Here we introduce a
more delicate version of that compression, which allows for transforming any instance to one
on a tree with O(k’%) levels at a loss of 1 + ¢ in the approximation. Our compression is
similar to that of [1] with an initial delay and ratio 1 + €. One key property we achieve with
compression, is that we can later use techniques with running time exponential in the depth
of the tree.

Suppose that the initial instance is a tree with L levels and each level ¢ has a budget
By. To compress the tree to a low height one, we will first do a sequence of what is called
up-pushes. Each up-push acts on two levels ¢, ¢5 € [L] with ¢; < {5 of the tree, and moves
the budget By, of level ¢5 up to ¢;. This means the new budget of level ¢, will be By, + By,
and for level /5 it will be 0.

We will show that one can do a sequence of up-pushes such that: (i) the optimal objective
value of the new instance is very close to the one of the original instance, and (ii) only
O(log L/¢) levels have non-zero budgets. Finally, 0-budget levels can easily be removed
through a simple contraction operation, thus leading to a new instance with only O(log L/¢)
depth. The following theorem is a more powerful version of Theorem 5 in [1] with some
improvements such as reducing the loss to only 1 + € (instead of 2) and some differences in
handling of the first levels.

» Theorem 4. Let G = (V, E) be a rooted tree of depth L. Then for some constants ¢,d > 0
(that only depend on €) we can construct efficiently a rooted tree G' = (V' E') with |V'| < |V|
and depth L' = O(%), such that:

(i) If the RMFC problem on G has a solution with budget B € Z>o at each level, then the
RMFC problem on G’ has a solution with non-uniform budgets of By = B for each level £ < c,
and a budget of By = my-B for each level £ > ¢, where my = ([(1+4€) 4D —[(1+4¢)¢=97).

(i) Any solution to the RMFC problem on G’, where each level £ < ¢ has a budget of
By = B and each level £ > ¢ has a budget of By = my - B can be transformed efficiently into
an RMFC solution for G with budget [(1 + 2¢)B].

Proof. We start by describing the construction of G’ = (V’, E’) from G. We first change
the budget assignment of the instance and then contract all 0-budgets levels.

33:5
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We set i* to be the smallest integer such that (1+€)" > % and we let ¢ = [(14¢€)"].
The set of levels £ in which the transformed instance will have non-zero budget contains
the first ¢ — 1 levels of G and all the levels £ > ¢ of G such that £ = [(1 + €)"] for some

" <i < et = O(log Lfe):

i . log L

E—{ISESL | £<c or £=][(1+¢)"] for some i* <i< [IO’EﬂJFG)J}

For all other levels ¢ ¢ £ we first do up-pushes. More precisely, the budget of these
levels ¢ € [L] \ £ will be assigned to the closest level in £ that is above ¢ (has smaller index
than ¢). We then remove all 0-budget levels by contraction. For each vertex v in a level
l; = [(14€)*] > ¢ we will remove all vertices in the levels ¢; < £ < £;11 = [(1 + €)"*1] from
its sub-tree and connect all the vertices in level ¢; 11 of its sub-tree to v directly. This leads
to a new tree G’ with a new set of leaves. Since our goal is to save all the leaves in the
original instance, for each vertex v € G’ such that v € G has some leaves in its contracted
sub-tree, we will mark v as a leaf in G’ and simply delete all its remaining subtree.

This finishes our construction of G’ = (V’/, E’) and it remains to show that both (i) and
(#3) hold. Note that the levels in G’ correspond to levels of G in L: the first ¢ levels of G’ are
the same as the first ¢ levels of G; for each £ > ¢, level £ in G is level [(1+€)*~ "] of G.

Here we want to determine what will be the budget of each level of G’. For each
¢ < c=[(1+€)"], the level £ of G’ is the same as the level £ of G and has the same budget
By = B, because these levels are not involved in up-pushes. For ¢ = ¢, all the budgets
from level [(1 4 €)*' ] to [(1 4 ¢)* 1] — 1 in G are up-pushed to this level. This means
that the budget for level ¢ in G’ is B. = ([(1+¢€)" 1] — [(1 + €)' ]) - B. Now for each
it <i< Llog(%ie)Jv all the budgets from levels [(1+¢)*] to [(14+¢€)iT1] -1 in G are up-pushed
to level [(1 + ¢€)%], which becomes level i — i* + ¢ in G; this means that the budget for this
level of G’ will be [(1+4€)*1] —[(1+¢€)"]. Setting £ = i —i* +c and d = ¢ —i*, the budget of
level £ in G, is By = ([(1 4 €)* =91 — [(1 + €)*~%]) - B. To prove (i), we use the following
lemma:

» Lemma 5. For any two consecutive levels £ > ¢ and £+ 1 in G, the difference between
my and myyq is relatively small. More precisely: my(1 + 2€) > myyq

Proof. Based on the definition of m, and myy; we have:

[+ [0+ > 1+ — (1 4+ -1

my =
=my(l+e) > (14D (146D _(1+4¢). (3)
On the other hand:
Moy = {(1 + 6)(Zid+2)w . [(1 +€)(Z*UlJrl)‘l < (1 + 6)(Z*dJrZ) o (1 +€)(Z7d+1) +1
< mp(l+e)+2+¢€ using (3) (4)

Also by our choice of ¢,d and i* = ¢ — d we can conclude that:

[+ D] —[(1+ 6]

my =
> 140 140D _1=e1+eD -1
i* 2(1
> 1+ —1=€-(1+6 —1>¢ ( ;FE) -1
€
2
= my > +€:> EngQ—i,—e. (5)

€

Combining (4) and (5) completes the proof. <
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» Corollary 6. For each ¢ > ¢ and each budget B > 0:
mMyy1 - B <my- I_(l + 26)B~|

Notice that in the constructed graph G’ for each level ¢ > ¢, we have By = my - B. Now
consider the instance of the problem on graph G with budget [(1 + 2¢)B] at each level. We
will show that by doing some down-pushes on G (i.e. move the budget of each level to some
level down) we can construct G’ again where the budget of each level ¢ is my - B, and this
means that if G’ has a solution with budget my - B in each level, then G has a solution with
uniform budget [(1 + 2¢)B].

Like before the set of levels £ with non-zero budgets will be the same. Instead of up-
pushes, we will down-push the budget from all levels £ ¢ L to the closest level in £ which is
below ¢ (i.e has larger index than ¢). We will also down-push budget [2eB] from each level
{ < ctolevel £ =c.

By doing the same contraction, for each level ¢ < ¢ we will have B, = B and for each
level ¢ > ¢ we will have By = my—1 - [(1 + 2¢) B], which is greater than m, - B based on the
above lemma.

The only remaining level to consider is level £ = ¢. For this level, by doing down-pushes,
we will have budget B. = B + [2eB] - ¢. Our claim is that this is not less than m, - B, which
is equal to ([(1+ €)c] —¢) - B (based on the definition of m.):

B.

B+ [2eB] ¢
B+2eB-c=(1+42¢e)-B
[2¢c] - B =[(14+2€)c—c]| B
([1+¢€)c] —¢)-B=m.-B.

AVARAVARIY]

This will complete the proof of the theorem, because by considering these down-pushes,
any solution to the RMFC problem on G’, where level £ > ¢ has a budget of B, = m; - B and
level ¢ < ¢ has a budget of By = B, can be transformed efficiently into an RMFC solution
for G with budget [(1 + 2¢)B]. <

logn + 2(14-¢)
log(1+e€) e

so L = O(k’%). After finding a solution with budget B for a tree with this height, then we
could apply the compression theorem and find a solution for the original tree by having [eB]
more firefighters at each level.

In the following we assume that the depth of the tree is not more than

2.3 Overview of the Algorithm

Given an instance Z, our first step of the algorithm is to use Theorem 4 to reduce Z to an
instance Z' with L = O(logn/e) levels. Note that when we use B to refer to core budget
for instance Z' we mean each level ¢ has budget m, - B for £ > ¢, and budget B for each
level £ < ¢. Also, by OPT(Z’) we mean the smallest value B such that Z’ has a feasible
solution with core budget B as above. By Theorem 4, if we find a solution with core budget
B for 7’ then it can be transformed to a solution for Z with budget [(1 + 2¢)B]. So we
focus on the height reduced instance Z’ from now on. We present an algorithm such that if

B > OPT(Z') then it finds a feasible solution to Z' with core budget at most [(1 + €)B].

Then, using binary search, we find the smallest value of B, (for B) for which the algorithm
finds a feasible solution. This would give us a solution of budget at most [(1 + ¢)OPT(Z')],
which in turn implies a solution for Z of value at most [(1 4 O(e))OPT(Z)].
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So let us assume we have guessed a value OPT(Z') < B,. We consider LP(2) (with fixed
B = B,) for 7' with guessed core budget B,. Let z* be a basic feasible solution to this
instance. Using Lemma 3 we know that there are at most L loose vertices. As we will see,
when B, is relatively large, i.e. B, > %, then we can easily find an integer solution using
core budget at most [(1 4 €)B,| and this yields the desired bound for the original instance.

The difficult case is when B, is small compared to L. The difficulty lies in deciding which
vertices are to be protected by the optimum solution in the top A levels of the tree for some
h = O(loglogn); as if one has this information then we can obtain a good approximation as
in [1].

One way to do this would be to guess all the possible subsets of vertices that could be
protected by the optimal solution in the first h levels of the tree, but this approach would
have a running time far greater than ours. Still, we can solve the problem on instance Z’ in
quasi-polynomial time using a bottom-up dynamic programming approach. More precisely,
starting with the leaves and moving up to the root, we compute for each vertex u € V' the
following table. Consider a subset of the available budgets, which can be represented as a
vector ¢ € [B1]x...x[By]. For each such vector ¢ and node v, we want to know whether or not
using budgets described by ¢ for the subtree T, (subtree rooted at v) allows for disconnecting
v from all the leaves below it, i.e. saving all the leaves in T,. Since L = O(logn/e) and
the size of each budget By is at most the number of vertices, the table size is n©(°g"/¢)).,
Moreover, it is easy to show that this table can be constructed bottom-up in quasi-polynomial
time using an auxiliary table and another dynamic programming, to fill each cell of the table.

This approach would have the total running time of n©1°87/€) hecause of the size of the
table. In order to reduce the running time to n@(1°81°87/€) e would consider each budget
vector value rounded up to the nearest power of (1+ﬁ). So, instead of O(nt) = nCUosn/e)
many options for budget vectors ¢, we will have O((logn/e)3l) = n@Ueglogn/€) many options
and we will show how by being more careful in our dynamic programming on these budget

O(loglogn/

vectors we can still compute the table in time n ©); this leads to an approximation

scheme (instead of the exact algorithm) for the instance Z’.

3 Asymptotic Approximation Scheme

As mentioned above, first we use the height reduction as discussed in the previous section to
reduce the given instance Z to a new one 7’ with L = O(lo%) levels. We assume we have
guessed a value B, > OPT(Z'). Recall that, as in the statement of Theorem 4, for some
constants ¢, d (depending on ¢€) the budget of each level £ < ¢ is By = B, and for each level
¢ > c the budget is By = my - B, where m; = ([(1 + ) =dHD] — [(1 + €)=D7).

We consider two cases: (I) when B, > £, and (II) when B, < L. For the first case we
show how we can find a solution with core budget at most [(1 + €)B,] by rounding the
standard Linear Programming relaxation. For the second case we show how we can use a
bottom-up dynamic programming approach to find a quasi-polynomial time approximation
scheme.

3.1 Easy Case: B, > f

In this case we consider LP(2) (with fixed B = B,) for this instance. If x* is a feasible
solution to this LP and B, > £ then we add L < [eB,] extra budget (i.e. number of
firefighters) to the first level which is enough to protect all the loose vertices. Since by using
Lemma 3 we know that there are at most L loose vertices and we can protect them all in the
first step using L extra firefighters.
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It remains to show that by using a budget of my - B, at every level £, for ¢ < { < L, and
B, for ¢ < ¢, we can protect all the tight vertices and so all the leaves would be saved, by
adding only L many extra firefighters to only the first level.

Observe that for each tight vertex v, either z(v) < 1, then we would have a loose vertex
in P,, or z(v) = 1. In the first case v is already saved by protecting the loose vertices in the
first step. If we only consider vertices with z(v) = 1, we can see that the solution is integral
itself for these vertices. So we have rounded a fractional solution with B, > % to an integral
one by using only [eB,] more firefighters just in the first level. In this case we find a feasible
solution with core budget B, + [€¢B,] in polynomial time.

3.2 When B, < £

Recall that we have a budget of B, = B, < L/e for each level ¢ < cand B; = my- B, < my %
for each ¢ < ¢ < L. We denote by ¢* the L-dimensional total budget vector that has ¢*[¢] = By
for each 1 < ¢ < L. Also for each L-dimensional vector g € [Bi] X [Bs] X ... x [Bg], we
denote by Q(q) the set of all vectors ¢’ such that ¢’ < gq. Suppose that |Q(¢*)| = m. We
first describe a simpler (and easier to explain) dynamic programming with running time
nOUogn/€) " Then we change it to decrease the running time and have our final approximation

scheme with running time n@{oglogn/e),

3.2.1 First Algorithm

Our dynamic program (DP) consists of two DP’s: an outer (main) DP and an inner DP. In
our main DP table A we have an entry for each vertex v and each vector ¢ € Q(¢*). This
entry, denoted by A[v, q], will store whether using budgets described by ¢ for levels of T,
allows for disconnecting v from all leaves below it or not.

More formally, if we assume v € V4, then Afv, g] would be true if and only if there is a
strategy for T, such that (i) all the leaves in T;, are saved, and (ii) the budget for levels of
T, are given by vector ¢ in indices £+ 1,..., L, i.e. g[¢ + 1] for the first level of T,, (direct
children of v) , g[¢ + 2] for the second level, and so on.

We compute the entry A[.,.] in a bottom up manner, computing A[v, q] after we have
computed the entries for children of v. To compute cell Afv, q], we would use another auxiliary
table B. Suppose v has k children uy,...,u; and assume that we have already calculated
Alu;,¢'] for every 1 < j < k and all vectors ¢’ € Q(g). Then we define a cell in our auxiliary
table Blv, ¢, j] for each 1 < j < k and ¢’ € Q(q), where Blv, ¢, j] is supposed to determine
if the budget vector ¢’ is enough for the union of subtrees rooted at u1, ..., u; to save all the
leaves in T),, U ...T,; or not, where the total budgets for union of those subtrees are given
by ¢’. We can compute Blv, ¢, j| having computed Au;, "] and Blv,q —¢",j — 1] for all
q" € Q(¢’). This means that we can compute each cell Afv, q] using auxiliary table B and
internal DPs and the running time is O(n? - m3). We need to find A[r, ¢*]. If this cell is true,
then we can save all the leaves of the tree using ¢* as the budget vector for each level and if
it is false, B, would not be enough.

The problem is that my could be large (my = O(n)) and so the options we have for
the budget of each level is O(n). Recall that we can have B, < £ many choices for g[/]
when ¢ < ¢ and my - % many options when ¢ < ¢ < L. Using the definition of the my:
mg = O(e(1 + €)~%), and so the total possible different budget vectors we could have is:

SICRR (T IRNCRNEED (T B ()

This means that the total running time will be O(n’) = n©(°87/¢) and this is an exact
algorithm to solve the RMFC problem on instance Z'.
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3.2.2 Reducing Budget Possibilities

To reduce the running time, we only consider budget vectors where each entry of the vector is
a power of (14 (¢/ log n)Q) In this case we have at most O (log (mg - L) x (1%62)2) = O(log® n)
many options for £th entry of ¢ for each ¢ < ¢ < L, and so m = O((logn)%) = nOUoglogn/e),
Also, we have to show how we can compute the entries of the table in time n@(°glogn/€) and
why this would give a (1+ €)-approximation of the solution. For each real z, let RU(x) denote
the value obtained by rounding up z to the nearest power of (1 + (¢/logn)?). The main idea
is that if for each vector ¢ we round up each entry ¢; to RU(g;) and denote the new vector
by RU(q) then if Afv,q| = true then Afv, RU(q)] is also true. So we only try to fill in entries
of the table that correspond to vectors ¢ where each entry is a power of (1 + (¢/logn)?). We
show this can be done in time n@(eglogn/€) and the total loss in approximation is at most
1 + € at the root of the tree.

From now on, we assume each vector ¢ has entries that are powers of (1 + (¢/logn)?);
and recall that Q(q) is the set of all such vectors ¢’ such that ¢ < ¢’ and assume we have
already calculated Afuj, ¢'] for every vector ¢’ € Q(q) (again with all entries being powers of
(1+ (¢/ logn)?)).

If we try to compute A[v, q] from Afuj,q']’s the same way, we need to calculate B[v, ¢’, j]
for each 1 < j < k and each time we round up the results of addition/subtractions (such as
q — ¢') to the nearest power of (1+ (¢/logn)?).

3.2.3 Reducing Height of Inner Table

To compute cell Afv, g] then this round-up operation could happen k = O(n) times and the
approximation loss blows up. Instead, we consider a hypothetical full binary tree with root v
and leaves (at the lowest level) being uy, .. ., ug; this tree will have height O(log k) = O(logn).
Then we define a cell in our auxiliary table for each internal node of this tree. See Figure 1

for an illustration.
(o) (2

Figure 1 Illustration of the hypothetical full binary tree with root v and leaves w1, ..., us.

More formally we would define a cell in our auxiliary table Blv, ¢, 7, j'] for each 0 < j <
[logk], 1 < j' < [£] and ¢’ € Q(q) with all entries being powers of (1 + (¢/logn)?), where
Blv,q',7,7'] is supposed to determine if the budget vector ¢’ is enough for the subtrees rooted
at ujy, ..., uj,, where j; =27 (j' = 1) + 1 and jo = min{27 - j', k}, to save all the leaves in
those subtrees, where the total budgets for the union of those subtrees is given by ¢'.

Similar to what we did before, we can compute B[v, ¢, j, j'] having computed Blv,q”,j —
1,25’ —1] and Blv, RU(¢' — ¢"), 5 —1,24’] (if it exists) for all ¢" € Q(¢’). At each step we are
computing a cell in table B a round-up will be applied to make the result of vector subtraction
to be a vector with entries being powers of (1 + (¢/logn)?). If we can find a ¢” such that
both Blv,q",j—1,2j' — 1] and Blv, RU(¢' —q"),j — 1,2j'] are true, then Blv, ¢, j, j'] would
be true too. Also we can fill A[v, q] by checking the value of Blv, ¢;, [log k], 1].
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In the way we construct our auxiliary tables, while computing A[v, q], when v has k
children, log k many round up operations have happened (going up the auxiliary tree with
root v) to the solution we found for T, only in this step. This means that O(logk) < O(logn)
many round-ups could happen to compute entry A[v, ¢] and the total number of round-ups
starting from the values of A[.,.] at a leaf level to A[r,q] (for any ¢) would be at most
L xlogn < @ and at each round-up we increase our budget by a factor of (1+ (¢/logn)?).
So the total approximation increase while computing the entries for A[r,.] would be at most:

2 log2 n

(1+(1027n)2) ‘ = 1+0(e)

Observe that for every node v and subtree T, if there is a solution with budget vectors
g then there is a solution with budget vector RU(q) as well. Using this fact we can find a
solution with budget vector at most (1 + O(e))g* if there exists a solution with budget vector
q*. This completes the proof of Theorem 1.

4 Conclusion

In this paper we presented an asymptotic QPTAS for RMFC on trees. More specifically, let

e > 0, and Z be an instance of RMFC where the optimum number of firefighters is OPT(Z).

We presented an algorithm that uses at most [(1 + ¢)OPT(Z)]| many firefighters at each step
and runs in time n®(°g1°87/€) " OQur result combines a more powerful height reduction lemma
than the one in [1] by using dynamic programming to find the solution. We also provide a
polynomial time (5 + ¢)-approximation for the problem by applying our height reduction
lemma to the algorithm provided in [1] as well as some minor changes to improve the best
previously known 12-approximation (Appendix A).

We believe that it should be possible to have an asymptotic PTAS for the RMFC problem.

Perhaps one way is to somehow guess the upper part of the optimal solution in polynomial
time and then use the LP to round the solution for the height reduced instance for which we
initially applied the height reduction lemma.
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A Polynomial (5 4 €)-Approximation for RMFC

In this section we show how the approach introduced in [1] can be adapted so that along
with our height reduction lemma gives a (5 + €)-approximation. We largely follow the proof
of [1] only pointing out the main steps that need slight adjustments. We assume the reader
is familiar with that proof and terminology used there.

Let x be a fractional solution to LP(2). We define W, as the set of leaves that are
(fractionally) cut off from r largely on low levels, i.e. there is high z-value on P, on vertices
far away from the root. We first start by recalling Theorem 12 from [1] which basically says
that we can round an LP solution to an integral one by increasing the core budget B by a
small constant such that W, can be saved.

» Theorem 7 (modified version of Theorem 12 in [1]). Let B € Ry, p € (0,1], and
h = {log, . L|. Let x € LP(2) with value B and supp(x) C Vs, and we define W = {u €
T|x(P,) > p}. Then one can efficiently compute a set R C Vs, such that:

RNP,#0 YueW, and

There is an integral solution z = y1 +ya to LP(2), which is a combination of two integral

solutions y1 and yo with value B’ = iB and 1 respectively such that supp(y1) C Vsp, and

supp(y2) € Vep.

Proof. The proof would be very similar to the proof of Theorem 12 in [1], and the only
difference is in providing the extra budget for protectecting the loose vertices in V~p. They
changed B to B + 1 at level h 4+ 1 to provide this required budget. It that was enough,
because the budget in the reduced instance is By, 11 = 2"+ - B at this level, and so by this
change 2" = L many more firefighters are available and they are enough to protect all the
loose vertices. But we need to change B to B 4+ 1 on all levels 1 to h, to have L many more
firefighters for protecting all the loose vertices. This is because our budget in the reduced
instance is By = B when 1 < ¢ < ¢ and By = my - B when ¢ < ¢ < L. So by this change, we
should have ¢ — 1 more firefighters in total for the first ¢ — 1 levels and Z?:C My many more
firefighters for levels ¢ to h and the total would be (1 4 ¢)” = L, which is enough to protect
all the loose vertices. But the difference in our integral solution is that all the added budgets
are from levels 1 to h (one for each level), and the remaining integral solution, which is i
feasible, is the subset of V5. This completes the proof of this theorem. <
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Similar to [1], we consider two cases based on how B compares to log L. When B > log L,
we will have a 3-approximation for the reduced instance, by first solving the LP(2). This is
similar to Theorem 13 in [1] and consistent with our height reduction lemma:

» Theorem 8 (modified version of Theorem 13 in [1]). There is an efficient algorithm that
computes a feasible solution to a compressed instance of RM FC with budget at most 3Bopr
when B > log L.

Proof. Assume z is a fractional LP(2) solution with value B. Then we use Theorem 7 and
set u = 1/2 to obtain an integral solution z, which saves W = {u € T'|x(P,) > pu}, by core
budget 1 at each level 1 < ¢ < h and 2B at each level h + 1 < ¢ < L. Note that we can now
transfer the 1 unit of budget from the very first level £ =1 to level h 4+ 1 and change the core

budget 2B to 2B + 1 on this level and remove that extra budget from the very first level.

This is because these extra firefighters from levels 1 to h are supposed to protect the loose
vertices, which are in V5. By doing so we have an integral solution z such that the core
budget is 0 in the first level, 1 in levels 2 to h, 2B + 1 at level h 4+ 1, and 2B at level h + 2
to L. Now consider leaves I' \ W. If we write another LP similar to LP(2), but specifically
to save only these leaves by only protecting the vertices in V<, this LP would be feasible.
Because all these vertices had x(P,) N V<, > 0.5, and so, 2z restricted to the vertices in V<y,
would be a feasible solution to this LP. Hence, we can find the optimal solution to this LP
call it y. Based on Lemma 3, there would be at most A = log L many loose vertices all in
V<, and so by adding B > log L = h many firefighters in the first level we would be able
to protect all these y-loose vertices. Then all other remaining vertices could be saved by
core budget 2B. Putting these two solutions together (for saving W and I' \ W) we have
found an integral solution to save all the leaves, by having core budget 3B in the first level,
2B+ 1 in levels 2 to h+ 1, and 2B at the remaining levels. This completes the proof of this
theorem. <

We use the same terminology defined before Lemma 14 in [1], in particular for clean set
pairs of vertices A, D. Suppose (A, D) is a clean pair compatible with OPT, i.e. AUD C Vg,
A C OPT and DNOPT = (), for h = loglog L and LP(A, D) by adding two sets of constraints
to LP(2) to force the solution to pick all vertices in A and not picking all vertices in D
as well as the vertices in their path to the root. Also for each fractional solution to this
LP let W, = {u € F|m(Pu NVap) > 1%_5} to be the set of leaves cut off from the root by
an z-load of at least u = 1%;-5 within bottom levels (we changed 2 to 1/(1 + €) from [1]).
For each uw € T'\ Wy, let f, € V<, be the vertex closest to the root among all vertices in
(P, NV<p) \ D, then define F,, = {fy|u € '\ W, } \ A. It follows that no two vertices of F
lie on the same leaf-root path. Furthermore, every leaf u € I' \ W, is part of the subtree T
for precisely one f € F,. Also lets define Q, = V<, N (Usep, Tf).

Now we are ready to provide our modification of Lemma 14 in [1] when B < log L:

» Lemma 9 (modified version of Lemma 14 in [1]). Let (A, D) be a clean pair of vertices
(A, D), which is compatible with OPT, and let x and y be optimal solutions to LP(A, D)
and LP(A,V<p \ A) with objective function B and B respectively. Then, if OPT N Q, = 0,
we have B < (2+€)Bopr.

Proof. The proof is similar to the proof of Lemma 14 in [1] and the first difference is that
1
14+e€
that saves W, with picking only vertices from V<. This is because (1 + €)x restricted to

levels h + 1 to L would save W,. Now partition I \ W, into two groups. The leaves that
OPT cut them from the root by protecting a vertex in V<j,, denote them by Wi, and W5

we changed % to in the definition of W,. First of all we can have a fractional solution
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are the leaves that OPT is cutting them in levels h + 1 to L. By finding such (A, D), we are
actually saving W;. and for W5 there is an integral solution with core budget Bopr, which
is restricted to levels h + 1 to L. So the optimum solution to LP(A, V<j, \ A) would not use
more than (14 €)Bopr + Bopr as the core budget in levels h + 1 to L. This completes the
first part of lemma. To round this fractional solution to an integral one which saves W, and
W (note that Wy is saved already by the choice of A and D), we use the same technique as
Theorem 7.

We need to first find an integral solution restricted to levels hy = log L to L that saves the
leaves with y(P, NVsp,) > ﬁ by adding one core budget to levels 1 to h; and then write
another LP restricted to levels h to hi. Then we find another integral solution restricted to
levels h to h; by adding another core budget to levels 1 to h that saves all the remaining
leaves, which for sure has y(P, N Vsp, N Vep,) > 55— Finally we would have an integral

2(14€)
solution with core budget Bopr + 2 for the first h levels, 2(2 4+ €)Bopr + 1 for levels h + 1
to hy and 2(2 + €)Bopr for levels hy to L. This completes the proof of this lemma. <

The only remaining thing is to show how we can find such (A, D) pair of vertices in
polynomial time that follows in the exact same way of Lemma 15 in [1]. and the only
difference is the running time, which is still polynomial. In their proof they have used
the fact that for each leaf u € I'\ W,, we have x(P, N V< h) > %, and here we can say
x(P,NV<h)>1- 1%5 > ¢ that would only change the constant factor in the actual running
time of O(log L)O(log L), So the total running time would be still polynomial. This means
that we are able to find a (5 + ¢)-approximation for the reduced instance of the RMFC

problem, and then it leads to the (5 4+ €)-approximation for the RMFC problem.
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