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Abstract

The first-fit coloring is a heuristic that assigns to each vertex, arriving in a specified order σ, the
smallest available color. The problem Grundy Coloring asks how many colors are needed for the
most adversarial vertex ordering σ, i.e., the maximum number of colors that the first-fit coloring
requires over all possible vertex orderings. Since its inception by Grundy in 1939, Grundy Coloring
has been examined for its structural and algorithmic aspects. A brute-force f(k)n2k−1

-time algorithm
for Grundy Coloring on general graphs is not difficult to obtain, where k is the number of colors
required by the most adversarial vertex ordering. It was asked several times whether the dependency
on k in the exponent of n can be avoided or reduced, and its answer seemed elusive until now. We
prove that Grundy Coloring is W[1]-hard and the brute-force algorithm is essentially optimal
under the Exponential Time Hypothesis, thus settling this question by the negative.

The key ingredient in our W[1]-hardness proof is to use so-called half-graphs as a building
block to transmit a color from one vertex to another. Leveraging the half-graphs, we also prove
that b-Chromatic Core is W[1]-hard, whose parameterized complexity was posed as an open
question by Panolan et al. [JCSS ’17]. A natural follow-up question is, how the parameterized
complexity changes in the absence of (large) half-graphs. We establish fixed-parameter tractability
on Kt,t-free graphs for b-Chromatic Core and Partial Grundy Coloring, making a step toward
answering this question. The key combinatorial lemma underlying the tractability result might be
of independent interest.
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1 Introduction

A coloring is said proper if no two adjacent vertices receive the same color. The chromatic
number of a graph G denoted χ(G) is the minimum number of colors required to properly
color G. Let us now consider a natural heuristic to build a proper coloring of a graph G.
Given an ordering σ of the vertices of G, consider each vertex of G in the order σ and assign
to the current vertex the smallest possible color (without creating any conflict), i.e., the
smallest color not already given to one of its already colored neighbors. The obtained coloring
is obviously proper and it is called a first-fit or greedy coloring. The Grundy number, denoted
by Γ(G), is the largest number of colors used by the first-fit coloring on some ordering of the
vertices of G. Thus Γ(G) is an upper-bound to the output of a first-fit heuristic.

The Grundy number has been introduced in 1939 [18], but was formally defined only
forty years ago, independently by Christen and Selkow [9] and by Simmons [32]. Grundy
Coloring in directed graphs already appears as a NP-complete problem in the monograph
of Garey and Johnson [15]. The undirected version remains NP-hard on bipartite graphs [21]
and their complements [35], chordal graphs [31] and line graphs [20]. When the input is
a tree, Grundy Coloring can be solved in linear time [23]. This result is generalized
to bounded-treewidth graphs with an algorithm running in time kO(w)2O(wk)n = O(n3w2)
for graphs of treewidth w and Grundy number k [33], but this cannot be improved to
O∗(2o(w log w)) under the ETH [4]. It is also possible to solve Grundy Coloring in time
O∗(2.443n) [4].

In 2006, Zaker [36] observed that since a minimal witness (we will formally define a
witness later) for Grundy number k has size at most 2k−1, the brute-force approach gives an
algorithm running in time f(k)n2k−1 , that is, an XP algorithm in the words of parameterized
complexity. Since then it has been open whether Grundy Coloring can be solved in FPT
time, i.e., f(k)nO(1) (where the exponent does not depend on k). FPT algorithms were
obtained in chordal graphs, claw-free graphs, and graphs excluding a fixed minor [4], or
with respect to the dual parameter n− k [21]. The parameterized complexity of Grundy
Coloring in general graphs was raised as an open question in several papers in the past
decade [31, 22, 16, 4].

Closely related to Grundy coloring is the notion of partial Grundy coloring and b-coloring.
Let G = (V,E) be a graph. We say that a proper coloring V1 ] · · · ] Vk is a partial Grundy
coloring of order k if there exists vi ∈ Vi for each i ∈ [k] such that vi has a neighbor in every
Vj with j < i. The problem Partial Grundy Coloring takes a graph G and a positive
integer k, and asks if there is a partial Grundy coloring of order k. Erdős et al. [13] showed
that the partial Grundy number coincides with the so-called upper ochromatic number. This
echoes another result of Erdős et al. [12] that Grundy number and ochromatic number
(introduced by Simmons [32]) are the same.

The b-chromatic core of order k of a graph G is a vertex-subset C of G with the following
property: C admits a partition into V1 ] · · · ] Vk such that there is vi ∈ Vi for each i ∈ [k]
which contains a neighbor in every Vj with j 6= i. The goal of the problem b-Chromatic
Core is to determine whether an input graph G contains a b-chromatic core of order k. This
notion was studied in [11, 30] in relation to b-coloring, which is a proper coloring such that for
every color i, there is a vertex of color i which neighbors a vertex of every other color. The
maximum number k such that G admits a b-coloring with k colors is called the b-chromatic
number of G. In [30], it was proven that deciding whether a graph G has b-chromatic number
at least k is W [1]-hard parameterized by k. The problem might be even harder since no
polytime algorithm is known when k is constant. The authors left it as an open question
whether b-Chromatic Core is W[1]-hard or FPT.
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Our contribution: the half-graph is key. We prove that Grundy Coloring is W[1]-
complete, thus settling the open question posed in [31, 22, 16, 4]. More quantitatively we
show that the double-exponential XP algorithm is essentially optimal. Indeed we prove
that there is no computable function f such that Grundy Coloring is solvable in time
f(k)no(2k−log k), unless the ETH fails. This further answers by the negative an alternative
question posted in [31, 22], whether there is an algorithm in time nkO(1) .

A key element in the hardness proof of Grundy Coloring is what we call a half-graph
(definition in Section 2.1). The main obstacle encountered when one sets out to prove
W[1]-hardness of Grundy Coloring is the difficulty of propagating a chosen color from a
vertex to another while keeping the Grundy number low (i.e., bounded by a function of k).
Employing half-graphs turns out to be crucial to circumvent this obstacle, which we further
examine in Section 4. Leveraging half-graphs as color propagation apparatus, we also prove
that b-Chromatic Core is W[1]-complete (albeit with a very different construction). This
settles the question posed by [30].

Our contribution: delineating the boundary of tractability. All three problems, Grundy
Coloring, Partial Grundy Coloring, and b-Chromatic Core are FPT for k = Γ(G)
on nowhere dense graphs. The existence of each induced witness can be expressed as a
first-order formula on at most 2k−1 variables in the case of Grundy Coloring, and on at
most k2 variables in the case of Partial Grundy Coloring and b-Chromatic Core.
The problem is therefore expressible in first-order logic as a disjunction of the existence of
every induced witness while the number of induced witnesses is bounded by 222(k−1) . And
first-order formulas can be decided in FPT time on nowhere dense graphs [17]. The next step
is Kt,t-free graphs, i.e., those graphs without a biclique Kt,t as a (non necessarily induced)
subgraph, which is a dense graph class that contains nowhere dense graphs and graphs of
bounded degeneracy. In the realm of parameterized complexity, Kt,t-free graphs have been
observed to admit FPT algorithms for otherwise W[1]-hard problems [34].

We prove that Partial Grundy Coloring and b-Chromatic Core are fixed-parameter
tractable on Kt,t-free graphs, even in the parameter k+ t, now assuming that t is not a fixed
constant. To this end, a combinatorial lemma plays a crucial role by letting us rule out the
case when many vertices have large degree: if there are many vertices of large degree in a
Kt,t-free graph, one can find a collection of k vertex-disjoint and pairwise non-adjacent stars
on k-vertices, which is a witness for b-Chromatic Core and Partial Grundy Coloring.
Now, we can safely confine the input instances to have bounded degrees, save a few vertices.
We present an FPT algorithm that works under this setting.

Statements marked with a ♠ symbol have their proof entirely deferred to the long version,
while statements marked with a ♣ come with a proof sketch or a partial proof. All the
missing proofs can be found in the full version [2] (or in one case in [4]).

2 Preliminaries

For any integer i, j, we denote by [i, j] the set of integers that are at least i and at most j,
and [i] is a short-hand for [1, i]. We use the standard graph notations [10]: for a graph G,
V (G) denotes the set of vertices of G, E(G) denotes the set of edges. A vertex u is a neighbor
of v if uv is an edge of G. The open neighborhood of a vertex v is the set of all neighbors of
v and N [v] denotes the closed neighborhood of v defined as N(v) ∪ {v}. The open (closed,
respectively) neighborhood of a vertex-set S is

⋃
v∈S N(v) \ S (

⋃
v∈S N(v) ∪ S, respectively).

For a vertex-set Y ⊆ V (G), we denote N(v) ∩ Y (N [v] ∩ Y , respectively) simply as NY (v)

STACS 2020
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(NY [v], respectively) and the same applies the open and closed neighborhood of a vertex-set
S. For two disjoint vertex-sets X and Y , we say that X is (anti-)complete with Y if every
vertex of X is (non-)adjacent with every vertex of Y .

2.1 Half-graphs
We call anti-matching the complement of an induced matching. The anti-matching of height t
is the complement of t edges. It will soon be apparent that all the coloring numbers considered
in this paper are lowerbounded by t, in presence of an anti-matching of height t. Therefore
in the subsequent FPT reductions, we will not have the luxury to have anti-matchings of
unbounded size. This will constitute an issue since they are useful to propagate choices.
Imagine we have two sets A and B of size unbounded by the parameter, and we want to
relate a choice in A to the same choice in B. Let us put an antimatching between A and
B. Trivially independent sets of size 2 will correspond to consistent choices. So it all boils
down to expressing our problem in terms of finding large enough independent sets. Now this
option is not available, another way to propagate choices is to use half-graphs.

We call half-graph a graph whose vertices can be partitioned into (A,B) such that there
is no induced 2K2 in the graph induced by the edges with one endpoint in A and the
other endpoint in B, and G[A] and G[B] are both edgeless. These graphs are sometimes
called bipartite chain graphs. Equivalently we say that (A,B) induces, or by a slight
abuse of notation, is a half-graph if A and B can be totally ordered, say a1, . . . , a|A| and
b1, . . . , b|B| such that NB(a1) ⊇ NB(a2) ⊇ . . . ⊇ NB(at) and if aibj is an edge then for every
j′ ∈ [j + 1, t], aibj′ is also an edge. The orderings a1, . . . , a|A| and b1, . . . , b|B| are called
orders of the half-graph.

The half-graph of height t is a bipartite graph with partition (A = {a1, . . . , at}, B =
{b1, . . . , bt}) such that there is an edge between ai and bj if and only if i < j. We denote this
graph by Ht,t. The level of a vertex v ∈ A (v ∈ B) in the half-graph of height t is its index
in the ordering of A (or B). Note that this is not uniquely defined for a half-graph in general,
but it is for the (canonical) half-graph of height t. Any half-graph can be obtained from
the half-graph of height t (for some t) by duplicating some vertices. The name half-graph
actually comes from Erdős and Hajnal (see for instance [14]). More precisely what Erdős
defines as a half-graph corresponds in this paper to the (canonical) half-graph of height t.

A length-` path of half-graphs is a graph H whose vertex-set can be partitioned into
(H1, H2, . . . ,H`+1) such that the three following conditions hold:
(i) there is no edge between Hi and Hj when |i− j| > 2,
(ii) for every i ∈ [`], H[Hi ∪Hi+1] is a half-graph with bipartition (Hi, Hi+1), and
(iii) for every i ∈ [2, `], the ordering of Hi in the half-graph induced by (Hi−1, Hi) is the

same as in the half-graph (Hi, Hi+1).

2.2 Grundy coloring
We say that an induced subgraph H of G is a witness achieving (color) k if H has a Grundy
coloring of order at least k; in this case, we simply say that H is a k-witness (also called
atom by Zaker [36] or critical [19]). We say that a k-witness is minimal if there is no proper
induced subgraph of it whose Grundy number is at least k. A graph G has Grundy number
at least k if and only if it contains a minimal k-witness as an induced subgraph [36].

Let V1 ] · · · ] Vk be a Grundy coloring of order k. We say that a vertex u colored c′

supports v colored c if u and v are adjacent and c′ < c. A vertex v colored in c is said to be
supported if the colors of the vertices supporting v span all colors from 1 to c− 1.
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It was observed that the largest minimal k-witness uses 2k−1 vertices [36]. These witnesses
are implemented by a family of rooted trees called binomial trees (see for instance [4]). The
set of binomial trees (Tk)k>1 is defined recursively as follows:

T1 consists of a single vertex, declared as the root of T1.
Tk consists of two binomial trees Tk−1 such that the root of the first one is a child of the
root of the other. The root of the latter is declared as the root of Tk.

4
3

2

1 1

2

1 1

Figure 1 The binomial tree T4, where the labels denote the color of each vertex in a first-fit
coloring achieving the highest possible color.

We outline some basic properties of k-witnesses and binomial trees Tk.

I Observation 1. Any subset of k′ color classes of a k-witness, with k′ < k, induces a
k′-witness.

The following is shown in a more general form in Lemma 7 of [4].

I Lemma 2 (♣). Let i ∈ [2, k − 2], X ⊆ V (Tk) be a subset of roots of Ti whose parent is a
root of Ti+1, and T ′k be a tree obtained from Tk by removing the subtree Ti−1 of every vertex in
X. We assume that T ′k is an induced subgraph of a graph G and that N(V (G) \ V (T ′k)) = X.
Then the three following conditions are equivalent in G:
(i) There is a Grundy coloring that colors k the root of T ′k.
(ii) There is a Grundy coloring that colors i every vertex of X without coloring their parent

in T ′k first.
(iii) There is a Grundy coloring that colors i− 1 at least one neighbor of each vertex of X

without coloring any vertex of T ′k first.

Proof. (iii) implies (ii), and (ii) implies (i) are a direct consequence of the optimum Grundy
coloring of a binomial tree, as depicted in Figure 1. We show that (i) implies (ii). This
is equivalent to showing that the only way for a Grundy coloring of Tk to color its root k,
even when there is joker that enables us to give any color to a vertex of X, is to respect
the coloring of Figure 1. This holds since coloring a vertex of X with a color greater than i
prevents from coloring its parent w with color i + 1. Indeed in that case w cannot find a
neighbor colored i (which is not its own parent). Coloring a vertex of X with a color smaller
than i, simply will not work, since the Grundy coloring of Tk that gives color k to its root is
unique. Finally (ii) implies (iii), since for every vertex of X, its only neighbor that can obtain
color i− 1 and is not its parent is outside T ′k. For a complete proof, see Lemma 7 of [4]. J

I Lemma 3 (♠). If u and v are false twins in G, i.e., NG(u) = NG(v), then Γ(G) =
Γ(G− {v}).

I Lemma 4 (♠). Let H be an induced subgraph of G such that all the vertices of N(V (H))
have degree at most s. Then no vertex of V (H) can get a color higher than Γ(H) + s in a
Grundy coloring of G.

I Corollary 5. In any greedy coloring, a vertex with at most t neighbors that have degree at
most s cannot receive a color higher than s+ t+ 1.

STACS 2020
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2.3 Partial Grundy and b-Chromatic Core
It is easy to see that admitting a partial Grundy coloring of order k is monotone under
taking an induced subgraph.

I Observation 6. A graph G admits a partial Grundy coloring of order at least k if and
only if there exists a vertex-set S ⊆ V (G) such that G[S] admits a partial Grundy coloring
of order k.

Following from the observation, we can formally define Partial Grundy Coloring as:

Partial Grundy Coloring Parameter: k
Input: An integer k > 0, a graph G.
Question: Is there a vertex-subset S ⊆ V (G) such that G[S] admits a partial Grundy
coloring of order k?

On the other hand, b-coloring is not monotone under taking induced subgraphs. This
leads us to the following monotone problem, which is distinct from deciding whether the
b-chromatic number of G is at least k.

b-Chromatic Core Parameter: k
Input: An integer k > 0, a graph G.
Question: Is there a vertex-subset S ⊆ V (G) such that G[S] admits a b-coloring of
order k?
For both Partial Grundy Coloring and b-Chromatic Core, the subgraph of G

induced by S is referred to as a k-witness if S ⊆ V (G) is a solution to the instance (G, k). A
k-witness H is called a minimal k-witness if H − v is not a k-witness for every v ∈ V (H).

Let V1 ] · · · ] Vk be a proper coloring of G. In the context of partial Grundy coloring
(b-coloring, respectively), we say that a vertex v colored c is supported by u if uv ∈ E(G)
and u is colored c′ < c (c′ 6= c, respectively). In the partial Grundy coloring (b-coloring,
respectively), a vertex v colored c is supported if the colors of the supporting vertices of v
span all colors from 1 to c − 1 (all colors of [k] \ c, respectively). Such a vertex v is also
called a center. A color c is said realized if a vertex v colored c is supported. That vertex v
is then realizing color c. Notice the crucial difference with Grundy colorings that these c− 1
vertices do not need to be supported themselves.

As each center requests at most k − 1 supporting vertices, a minimal k-witnesses of
Partial Grundy Coloring or b-Chromatic Core has size bounded by k2 [11]. We
denote by Γ′(G), respectively Γb(G), the maximum integer k such that G admits a k-witness
for Partial Grundy Coloring, respectively b-Chromatic Core.

3 Barriers to the Parameterized Hardness of Grundy Coloring

It is not difficult to see that deciding if a fixed vertex can get color k in a greedy coloring is
W[1]-hard. Let us call this problem Rooted Grundy Coloring.

I Observation 7. Rooted Grundy Coloring is W[1]-hard.

Proof. We design an FPT reduction from k-Multicolored Independent Set to Rooted
Grundy Coloring. Let H be an instance of k-MIS with partition V1, . . . , Vk. We build an
equivalent instance G of Rooted Grundy Coloring in the following way. We copy H in
G and we add a clique C of size k + 1. We call v a fixed vertex of C and we add a pendant
neighbor v′ to v. We number the vertices of C \ {v}, v1, . . . , vk, and we make vi adjacent to
all the vertices of Vi for each i ∈ [k]. A greedy coloring can color v by k + 2 if and only if
there is a k-multicolored independent set in H. J
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Of course this reduction does not imply anything for Grundy Coloring. Indeed the
vertices of V (H) could get much higher colors than v. This is precisely the issue with showing
the parameterized hardness of Grundy Coloring.

1 2

1 2

1 2

1 2

1 2

(a) Biclique.
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2 2
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(b) Anti-matching.
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(c) Half-graph short cycle.
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(d) Half-graph long path.

Figure 2 The barriers in a propagation gadget for Grundy Coloring. The biclique has small
Grundy number but do not propagate, nor it imposes a unique choice. The three other propagations
have arbitrary large Grundy number, rendering them useless for a parameterized reduction.

A reduction starting from any W[1]-hard problem has to “erase” the potentially large
Grundy number of the initial structure. This can be done by isolating it with low-degree
vertices. However the degree ∆ of the graph should be large, and a large chunk of the
instance should have degree unbounded in k since Grundy Coloring is FPT parameterized
by ∆ + k [31, 4]. Besides, as it is the case with W[1]-hardness reductions where induced
subgraphs of the initial instance have to be tamed, we crucially need to propagate consistently
one choice among a number of alternatives unbounded in the parameter.

A natural idea for encoding one choice among t≫ k is to have a set S of t vertices, one of
which, the selected vertex, receiving a specific color, say, 1. Then a mechanism should ensure
that one cannot color 1 two or more vertices of S. Note that we cannot force that property
by cliquifying S, as this would elevate the Grundy number to at least t. Furthermore, by
Ramsey’s theorem, there will be independent sets of size 2Ω( log t

k ) in S. Thus we might as well
assume that S is an independent set, and look for another way of preventing two vertices
from getting color 1, than by adding edges inside S.

We are now facing the following task: Given a bipartite graph, or a “path” or “cycle” of
bipartite graphs whose partite sets are copies of S, ensure that exactly one vertex can receive
color 1 in each partite set, and that this corresponds to a single vertex in S. A biclique
certainly has low Grundy number (see Figure 2a) but does not propagate nor it actually
forces a unique choice. Anything more elaborate seems to have large Grundy number, be
it the complement of an induced matching, or anti-matching, (see Figure 2b), a “cycle” of
half-graphs (see Figure 2c), or even a long “path” of half-graphs (see Figure 2d). We remind
the reader that, as detailed in Section 2, half-graphs and anti-matchings are (the) two ways
of propagating a consistent independent set.

4 Overcoming the Barriers: Short Path of Half-Graphs

It might be guessed from the previous section that the solution will come from a constant-
length “path” of half-graphs. It is easy to see that half-graphs (that can be seen as length-one
path of half-graphs) have Grundy number at most 3. Due to the 2K2-freeness of the
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half-graph, there cannot be both color 1 and color 2 vertices present on both sides of the
bipartition, say (A,B). If A is the side missing a 1 or a 2 among its colors, then B in
turn cannot have a 3 (nor a 4). The absence of vertices colored 3 in B prevents vertices
colored 4 in A. Overall, no vertex with color 4 can exist. It takes more time to realize that a
length-two path of half-graphs have constant Grundy number. We crucially use the fact that
any constant-length path of half-graphs have constant Grundy number.

I Lemma 8. The Grundy number of a length-` path of half-graphs is at most 4`.

Proof. Achieving a (more) reasonable upper bound –the Grundy number of such graphs is
most likely polynomial or even linear in `– proves to be not so easy. We choose here to give
a short proof of an admittingly bad upper bound.

We show this bound by induction on `. Note that the statement trivially holds for
` = 0, and that we previously verified it for ` = 1. Assume that the Grundy number of any
length-(`− 1) path of half-graphs is at most 4`−1, for any ` > 2.

Let G be a length-` path of half-graphs, with partition V (G) = V0 ] V1 ] · · · ] V` where
G[Vi ∪ Vi+1] is a half-graph for each i ∈ [`− 1]. Observe that G− V0 and G− V` are both
length-(`− 1) path of half-graphs. Let H be a colored witness of G achieving color Γ(G). We
distinguish some cases based on the number of colors of H appearing in V0 or in V`. In each
case, we conclude with Observation 1. No more than 4`−1 colors of H can be missing in V0
(resp. in V`). Otherwise by Observation 1, the corresponding color classes form a k-witness
G− V0 (resp. in G− V`) with some k > 4`−1, contradicting the induction hypothesis.

So we may assume that at least Γ(G) − 4`−1 colors appear in V0 (resp. in V`). Thus
at least (2Γ(G) − 2 · 4`−1) − Γ(G) = Γ(G) − 2 · 4`−1 colors appears in both V0 and V`. If
Γ(G) > 4`, then Γ(G) − 2 · 4`−1 > 4`−1. We further claim that the corresponding color
classes would form a witness in G− V0, a contradiction. If not, it must be because a vertex
x ∈ V1 colored i was adjacent to a vertex y ∈ V0 colored j < i, and is not adjacent to any
vertex colored j in G − V0. But we know that V0 contains a vertex y′ colored i, which in
turn must be adjacent to a vertex x′ ∈ V1 colored j, forming an induced 2K2 in G[V0 ∪ V1],
a contradiction. Therefore, Γ(G) 6 4`.

We observe that our proof works for a more general notion of “path of half-graphs” where
one does not impose the orders of the successive half-graphs to have the same orientation
(see the second paragraph of Section 2.1). J

We are now ready to present the hardness construction. We reduce from k-Multicolored
Subgraph Isomorphism whose definition is the following.

k-Multicolored Subgraph Isomorphism Parameter: k
Input: An integer k > 0, a graph G whose vertex-set is partitioned into k sets V1, . . . , Vk,
and a graph H with V (H) = [k].
Question: Is there φ : i ∈ [k] 7→ vi ∈ Vi such that for all ij ∈ E(H), φ(i)φ(j) ∈ E(G)?

I Theorem 9. Grundy Coloring is W[1]-complete and, unless the ETH fails, cannot
be solved in time f(q)no(2q−log q) (nor in time f(q)n2o(q)) for any computable function f , on
n-vertex graphs with Grundy number q.

Proof. The membership to W[1] is given by the framework of Cesati [7], since there is
always a witness of size 2q−1. We show the W[1]-hardness of Grundy Coloring by
reducing from k-Multicolored Subgraph Isomorphism with 3-regular pattern graphs.
Let (G = (V1, . . . , Vk, E), H = ([k], F )) be an instance of that problem. We further assume
that k is a positive even integer and there is no edge between Vi and Vj in G whenever
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l(u1) r(u1)

l(u2) r(u2)

l(u3) r(u3)

l(u4) r(u4)

l(u5) r(u5)

Li Ri

z(u1, v2)

z(u1, v5)

z(u2, v1)

z(u3, v3)

z(u3, v4)

z(u4, v1)

z(u4, v5)

z(u5, v3)

z(u5, v4)

z(u1, w1)

z(u1, w3)

z(u1, w6)

z(u2, w2)

z(u2, w5)

z(u3, w1)

z(u3, w2)

z(u4, w4)

z(u5, w3)

z(u1, x4)

z(u2, x3)

z(u2, x4)

z(u3, x1)

z(u3, x2)

z(u4, x1)

z(u4, x5)

z(u5, x2)

z(u5, x5)

Vi,i(1) Vi,i(2) Vi,i(3)

l(u3) r(u3)

z(u3, v3)

z(u3, w1)

z(u3, x2)

Figure 3 The encoding Hi of one Vi ordered u1 < u2 < u3 < u4 < u5. In bold, a possible
independent set intersecting the five sets and containing a consistent pair l(u), r(u).

ij /∈ E(H). The goal is now to find v1 ∈ V1, . . . , vk ∈ Vk such that H is isomorphic to
G[{v1, . . . , vk}]. Even with these restrictions k-Multicolored Subgraph Isomorphism
cannot be solved in time f(k)|V (G)|o(k/ log k) = f(|E(H)|)|V (G)|o(|E(H)|/ log |E(H)|), unless
the ETH fails (see [26, 27], and Theorem 5.5 in [28]).

We build an equivalent Grundy Coloring-instance (G′, q) with q = dlog ke+ 258 as
follows. For each color class Vi, we fix an arbitrary total ordering 6i on the vertices of Vi,
and we write u <i u

′ if u 6= u′ and u 6i u
′. Let i ∈ [k] and let i(1), i(2), i(3) ∈ [k] be the

three neighbors of i in H. Each Vi is encoded by a length-4 path of half-graphs denoted by
Hi (see Figure 3). We now detail the construction of Hi.

We set V (Hi) := Li ∪ Vi,i(1) ∪ Vi,i(2) ∪ Vi,i(3) ∪ Ri. The vertices of Li (resp. Ri) are in
one-to-one correspondence with the vertices of Vi. We denote by l(u) (resp. r(u)) the vertex
of Li (resp. Ri) corresponding to u ∈ Vi. For each p ∈ [3], the vertices of Vi,i(p) are in
one-to-one correspondence with the edges of E(Vi, Vi(p)). We denote by z(u, v) the vertex of
Vi,i(p) corresponding to the edge uv ∈ E(Vi, Vi(p)) with u ∈ Vi and v ∈ Vi(p).

We set E(Hi) := E(Li, Vi,i(1)) ∪ E(Vi,i(1), Vi,i(2)) ∪ E(Vi,i(2), Vi,i(3)) ∪ E(Vi,i(3), Ri):
l(u)z(u′, v) ∈ E(Li, Vi,i(1)) if and only if u <i u

′

for p ∈ [2], z(u, v)z(u′, v′) ∈ E(Vi,i(p), Vi,i(p+1)) if and only if u <i u
′

z(u, v)r(u′) ∈ E(Vi,i(3), Ri) if and only if u <i u
′.

For each pair of vertices u, u′ ∈ Vi such that u <i u
′, we add an edge between l(u) and

z(u′, v) ∈ Vi,i(1), respectively z(u, v) ∈ Vi,i(1) and z(u′, v′) ∈ Vi,i(2), respectively z(u, v) ∈
Vi,i(2) and z(u′, v′) ∈ Vi,i(3), respectively z(u, v) ∈ Vi,i(3) and r(u′) (see Figure 3).

For each ij ∈ E(H), we create |E(Vi, Vj)| copies of the binomial tree T5. So these trees
are in one-to-one correspondence with the edges of G between Vi and Vj , and we denote
by T5(uv) the tree corresponding to uv ∈ E(Vi, Vj). We denote by β(uv) and γ(uv) the
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two children getting color 2 of the only two vertices colored 3, in the Grundy coloring of
T5(uv) which gives color 5 to its root. We remove the pendant neighbor of β(uv) and of
γ(uv) (the two vertices getting color 1 and supporting β(uv) and γ(uv)). This results in a
fourteen-vertex tree. We denote this set of trees by Ti,j , and the |E(Vi, Vj)| roots of the T5
by Ri,j . For each ij ∈ E(H) and for every pair z(u, v) ∈ Vi,j , z(v, u) ∈ Vj,i, we make z(u, v)
and β(uv) adjacent, and we make z(v, u) and γ(uv) adjacent.

For every i ∈ [k], we create |Vi| copies of the binomial tree T5. These trees are in
one-to-one correspondence with Vi. Similarly as above, we denote by β(u) and γ(u) the two
vertices getting color 2, whose parents are colored 3, in T5(u) and we remove their pendant
neighbor (colored 1). For every pair l(u) ∈ Li and r(u) ∈ Ri, we link l(u) and β(u), and we
link r(u) and γ(u). We denote this set of trees by Ti, and the |Vi| roots of the T5 by Ri.

We finally create one copy of the binomial tree Tq. We observe that there are |E(H)| sets
Ri,j and |V (H)| sets Ri. The binomial tree Tq has at least |V (H)|+ |E(H)| = 2.5k vertices
getting color 7 in the greedy coloring giving color q to the root. Indeed the number of vertices
colored 7 is 2q−8, and it holds that q − 8 > log k + log 2.5. We map 2.5k distinct vertices
colored 6 in Tq, that are children of vertices colored 7, in a one-to-one correspondence with
V (H) ∪E(H). Let f(i) be the vertex mapped to i ∈ V (H) and f(ij) be the vertex mapped
to ij ∈ E(H). We further remove the subtree T5 of each of these 2.5k vertices colored 6. For
every i ∈ V (H), we link f(i) to all the vertices in Ri. Similarly for every ij ∈ E(H), we
link f(ij) to all the vertices in Ri,j . This finishes the construction of the graph G′. Solving
Grundy Coloring in time f(q)no(2q−log q) = f(dlog ke+ 258)no(k/ log k) would give the same
running time for k-Multicolored Subgraph Isomorphism, which is ruled out under the
ETH. We now prove that the reduction is correct.

A solution to k-Multicolored Subgraph Isomorphism implies Γ(G′) > q

Let v1 ∈ V1, v2 ∈ V2, . . . , vk ∈ Vk be a fixed solution to the k-Multicolored Subgraph
Isomorphism-instance (the colored isomorphism being i ∈ [k] 7→ vi). We say that each edge
vivj is in the solution (for i 6= j ∈ [k]). We color 1 all the vertices of G′ corresponding to edges
in the solution, that is, all the vertices z(vi, vj), as well as all vertices of G′ corresponding
to vertices in the solution, that is l(vi) and r(vi). This is possible since the five vertices
l(vi), z(vi, vi(1)), z(vi, vi(2)), z(vi, vi(3)), r(vi) form an independent set since ¬(vi <i vi).

We can now color 2 the vertices β(vi) and γ(vi). Therefore the root of T5(vi) can receive
color 5. Moreover, for every ij ∈ E(H) we can color 2 the vertices β(vivj) and γ(vivj).
Therefore the root of T5(vivj) can receive color 5. Since one vertex in each Ri, and one
vertex in each Ri,j get color 5, the vertices f(i) and f(ij) can all get color 6. Finally the
root of Tq can receive color q.

Γ(G′) > q implies a solution to k-Multicolored Subgraph Isomorphism

We first show that only the two vertices of Tq with degree q − 1 can get color q. Besides
these two vertices, the only vertices of Tq with sufficiently large degree to get color q are the
vertices f(i) and f(ij). But these vertices have at most one neighbor of degree more than
5. So according to Corollary 5, they cannot receive a color higher than 7 < q. Now we use
Lemma 8 to bound the color reachable outside of Tq. For every i ∈ [k], the induced subgraph
G′[Hi] is a length-four path of half-graphs. Thus by Lemmas 3 and 8, Γ(G′[Hi]) 6 44 = 256.
All the vertices in the open neighborhood of Vi,i(1) ∪ Vi,i(2) ∪ Vi,i(3) have degree at most 2.
So by Lemma 4 vertices outside Tq cannot receive a color beyond 258 < q.
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We now established that if Γ(G′) > q (actually Γ(G′) = q), then either one of the two
possible roots of Tq shall receive color q. By Lemma 2, this implies that all the vertices f(i)
and f(ij) receive color 6, and that in each Ri and each Ri,j there is at least one vertex
receiving color 5. For every i ∈ [k], let T5(ui) be one T5 of Ti whose root gets color 5. We
will now show that {u1, . . . , ui, . . . , uk} is a solution to the k-Multicolored Subgraph
Isomorphism-instance. Again by Lemma 2, this is only possible if β(ui) and γ(ui) both get
color 2, and their unique neighbor outside T5(ui) gets color 1. It means that l(ui) and r(ui)
both get color 1.

Since every Ri,j contains at least one vertex colored 5, Lemma 2 implies that every Vi,i(p)
(for each p ∈ [3]) gets at least one vertex colored 1. Let z(u, v) ∈ Vi,i(1), z(u′, v′) ∈ Vi,i(2), and
z(u′′, v′′) ∈ Vi,i(3) three vertices getting color 1. As {l(ui), z(u, v), z(u′, v′), z(u′′, v′′), r(ui)}
should be an independent set, we have ui >i u >i u

′ >i u
′′ >i ui. This implies that

ui = u = u′ = u′′. In turn that implies that no vertex z(u∗, v) ∈ Vi,i(1) ∪ Vi,i(2) ∪ Vi,i(3)
with u∗ 6= ui can get color 1. Indeed l(ui) prevents a 1 “above” z(ui, v) ∈ Vi,i(1) and
z(ui, v

′) ∈ Vi,i(2) prevents a 1 “below” z(ui, v). The same goes for the color classes Vi,i(2)
and Vi,i(3). Thus the only trees T5(uv) ∈ Ti,j that can get color 5 at their root are the ones
such that {u, v} ⊂ {u1, . . . , uk}. As all the 1.5k sets Ti,j have such a tree, it implies that
{u1, . . . , uk} is a solution to the k-Multicolored Subgraph Isomorphism-instance. J

5 Parameterized hardness of b-Chromatic Core

A length-two path of half-graphs have arbitrary large b-chromatic core. Nevertheless a simple
half-graph only admits b-chromatic cores of bounded size. We show how to still build a
W[1]-hardness construction in this furtherly constrained situation.

I Theorem 10 (♣). b-Chromatic Core is W[1]-complete.

Proof. The inclusion in W[1] is immediate by the characterization of Cesati [7], and the
facts that minimal witnesses have size at most k2, and that given the subgraph induced by a
minimal witness one can check if it is solution. To show W[1]-hardness, we reduce from k-by-k
Grid Tiling. In this problem, given k2 sets of pairs over [n], say, (Pi,j ⊆ [n]× [n])i,j∈[k]×[k],
“displayed in a k-by-k grid”, one has to find one pair (xi,j , yi,j) in each Pi,j such that
xi,j = xi,j+1 and yi,j = yi+1,j , for every i, j ∈ [k − 1]. This problem was introduced and
shown W[1]-hard by Marx [24]. It is called Matrix Tiling in [25], although subsequent
papers refer to it as Grid Tiling. We assume that k is dividable by 3, k2 > 33, and for the
sake of clarity, that each Pi,j contains the same number of pairs, say t 6 n2. This problem
remains W[1]-hard under these assumptions.

Construction

Let (Pi,j ⊆ [n]× [n])i,j∈[k]×[k] be the instance of Grid Tiling. For each (i, j), we have the
set of pairs Pi,j with |Pi,j | = t. For each (i, j), we add a biclique Kt,q−9(i, j) := Kt,q−9, where
q := 14k2. The part of Kt,q−9(i, j) with size t is denoted by Ai,j and the other part by Bi,j

(see Figure 4). We denote by Ai,j the t vertices to the left of Kt,q−9(i, j) on Figure 4, and by
Bi,j , the q − 9 vertices to the right. The vertices of Ai,j are in one-to-one correspondence
with the pairs of Pi,j . We denote by ai,j(x, y) ∈ Ai,j the vertex corresponding to (x, y) ∈ Pi,j .
We make the construction “cyclic”, or rather “toroidal”. So in what follows, every occurrence
of i+ 1 or j + 1 should be interpreted as 1 in case i = k or j = k.

For every vertically (resp. horizontally) consecutive pairs (i, j) and (i+ 1, j) (resp. (i, j)
and (i, j + 1)) we add a half-graph H(i→ i+ 1, j) (resp. H(i, j → j + 1)) with bipartition
H(i → i + 1, j) ∪ H(i → i+ 1, j) (resp. H(i, j → j + 1) ∪ H(i, j → j + 1)). Both sets
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H(i → i + 1, j) and H(i, j → j + 1) are in one-to-one correspondence with the vertices
of Ai,j , while the set H(i → i+ 1, j) is in one-to-one correspondence with the vertices
of Ai+1,j , and H(i, j → j + 1), with the vertices of Ai,j+1. We denote by hi→i+1,j(x, y)
(resp. hi→i+1,j(x′, y′)) the vertex corresponding to ai,j(x, y) (resp. ai+1,j(x′, y′)). Similarly
we denote by hi,j→j+1(x, y) (resp. hi,j→j+1(x′, y′)) the vertex corresponding to ai,j(x, y)
(resp. ai,j+1(x′, y′)). Every vertex in a half-graph H(i → i + 1, j) or H(i, j → j + 1) is
made adjacent to its corresponding vertex in Ai,j ∪Ai+1,j ∪Ai,j+1. Thus ai,j(x, y) is linked
to hi→i+1,j(x, y), hi−1→i,j(x, y), hi,j→j+1(x, y), and hi,j−1→j(x, y). Note that underlined
numbers are used to distinguish names, and to give information on its neighborhood. We
call vertical half-graph an H(i→ i+ 1, j), and horizontal half-graph an H(i, j → j + 1). We
now precise the order of the half-graphs. In vertical half-graphs, we put an edge between
hi→i+1,j(x, y) and hi→i+1,j(x′, y′) whenever y < y′. In horizontal half-graphs, we put an
edge between hi,j→j+1(x, y) and hi,j→j+1(x′, y′) whenever x < x′.

ai,j (1, 3)hi,j−1→j (1, 3)hi,j−1→j (1, 3) hi,j→j+1(1, 3)hi,j→j+1(1, 3)

ai,j (1, 4)hi,j−1→j (1, 4)hi,j−1→j (1, 4) hi,j→j+1(1, 4)hi,j→j+1(1, 4)

ai,j (2, 1)hi,j−1→j (2, 1)hi,j−1→j (2, 1) hi,j→j+1(2, 1)hi,j→j+1(2, 1)

ai,j (2, 5)hi,j−1→j (2, 5)hi,j−1→j (2, 5) hi,j→j+1(2, 5)hi,j→j+1(2, 5)

ai,j (3, 2)hi,j−1→j (3, 2)hi,j−1→j (3, 2) hi,j→j+1(3, 2)hi,j→j+1(3, 2)

ai,j (3, 4)hi,j−1→j (3, 4)hi,j−1→j (3, 4) hi,j→j+1(3, 4)hi,j→j+1(3, 4)

ai,j (3, 5)hi,j−1→j (3, 5)hi,j−1→j (3, 5) hi,j→j+1(3, 5)hi,j→j+1(3, 5)

ai,j (4, 1)hi,j−1→j (4, 1)hi,j−1→j (4, 1) hi,j→j+1(4, 1)hi,j→j+1(4, 1)

ai,j (4, 4)hi,j−1→j (4, 4)hi,j−1→j (4, 4) hi,j→j+1(4, 4)hi,j→j+1(4, 4)

ai,j (5, 3)hi,j−1→j (5, 3)hi,j−1→j (5, 3) hi,j→j+1(5, 3)hi,j→j+1(5, 3)

Ai,jHi,j−1→j Hi,j→j+1

Bi,j

hi,j−1→j (1, 2)hi,j−1→j (1, 2)

hi,j−1→j (1, 4)hi,j−1→j (1, 4)

hi,j−1→j (1, 5)hi,j−1→j (1, 5)

hi,j−1→j (2, 3)hi,j−1→j (2, 3)

hi,j−1→j (3, 1)hi,j−1→j (3, 1)

hi,j−1→j (3, 3)hi,j−1→j (3, 3)

hi,j−1→j (3, 5)hi,j−1→j (3, 5)

hi,j−1→j (4, 2)hi,j−1→j (4, 2)

hi,j−1→j (5, 1)hi,j−1→j (5, 1)

hi,j−1→j (5, 2)hi,j−1→j (5, 2)

hi,j→j+1(1, 1)hi,j→j+1(1, 1)

hi,j→j+1(1, 5)hi,j→j+1(1, 5)

hi,j→j+1(2, 3)hi,j→j+1(2, 3)

hi,j→j+1(2, 4)hi,j→j+1(2, 4)

hi,j→j+1(3, 5)hi,j→j+1(3, 5)

hi,j→j+1(4, 3)hi,j→j+1(4, 3)

hi,j→j+1(4, 4)hi,j→j+1(4, 4)

hi,j→j+1(5, 1)hi,j→j+1(5, 1)

hi,j→j+1(5, 3)hi,j→j+1(5, 3)

hi,j→j+1(5, 5)hi,j→j+1(5, 5)

Hi,j−1→j Hi,j→j+1

Figure 4 The biclique Kt,q−9(i, j) encoding the pairs Pi,j , and its connection to the two neigh-
boring horizontal half-graphs, with n = 5, t = 10, and q = 14.

We then add a global clique C of size q − k2. We attach k2 private neighbors to each
vertex of C. Among the q − k2 vertices of C, we arbitrarily distinguish 33 vertices: a set
D = {d1, . . . , d18} of size 18, and three sets C ′, C−, C+ each of size 5. We fully link dz to
every Bi,j if z takes one of the following values:

3(j mod 3− 1) + i mod 3,
succ(3(j mod 3− 1) + i mod 3),
3(i mod 3− 1) + j mod 3 + 9,
succ(3(i mod 3− 1) + j mod 3 + 9),

where the modulos are always taken in {0, 1, 2}, and succ(x) := x+ 1 if x is not dividable by
3 and succ(x) := x− 2 otherwise (see Figure 5). Note that each Bi,j is linked with dz for
two successive (indicated by the operator succ(x)) integers z in the range of [1, 3], [4, 6] or
[7, 9] depending on the coordinate j modulo 3. Likewise, each Bi,j is linked with dz for two
successive integers z in the range of [10, 12], [13, 15] or [17, 18] depending on the coordinate i
modulo 3.
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Figure 5 The rounded rectangles represent the Bi,j , and the numbers therein, the z ∈ [18] such
that dz is fully linked to it. These are the “colors” that a center in Ai,j will have to fight for. The
circles represent the half-graphs, and the number therein, the only z such that dz is not linked to
it. Red integers are offset by 9 (1 = 10, 2 = 11, and so on). The edges represent the non-empty
interaction between the Ai,j and the half-graphs. The structure is glued like a torus.

We observe that Bi,j and Bi+1,j are linked to exactly one common dz (z ∈ [18]), and we
fully link the half-graph H(i→ i+ 1, j) to D \ {z}. Similarly we fully link the half-graph
H(i, j → j + 1) to D \ {z} where z is the unique integer of [18] such that dz is fully linked to
both Bi,j and Bi,j+1. We fully link each Ai,j to C ′, each H(i→ i+ 1, j) and H(i, j → j + 1)
to C−, and each H(i→ i+ 1, j) and H(i, j → j + 1) to C+. This is just to prevent that one
uses a vertex of a Bi,j or of a half-graph as a center. As we will see, intended solutions have
all their centers in C ∪

⋃
i,j∈[k]Ai,j .

This ends our polytime construction. We denote by G the obtained graph. In the long
version [2], we show that G has b-chromatic number at least q if and only if the k-by-k Grid
Tiling-instance is positive. J

6 Partial Grundy Coloring and b-Chromatic Core on Kt,t-free graphs

In the following subsection, we prove that both b-Chromatic Core and Partial Grundy
Coloring can be solved in FPT time when all but a bounded number of vertices have
bounded degree. This is a preparatory step to show the tractability in Kt,t-free graphs.

6.1 FPT algorithm on almost bounded-degree graphs
The technique of random separation [6, 5], inspired by the color coding technique [3], comes
handy when one wants to separate a latent vertex-subset of small size from the rest of the
graph. A derandomize version of random separation can be obtained with splitters by Naor et
al. [29] (see also Chitnis et al. [8]) and is available in literature. For two disjoint sets A and
B of a universe U , we say that S ⊆ U is an (A,B)-separating set if A ⊆ S and B ∩ S = ∅.
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I Lemma 11 (Chitnis et al. [8]). Let a and b be non-negative integers. For an n-element
universe U , there exists a family F of 2O(min(a,b) log (a+b)) logn subsets of U such that for any
disjoint subsets A,B ⊆ U with |A| 6 a and |B| 6 b, there exists an (A,B)-separating set S
in F . Furthermore, such a family F can be constructed in time 2O(min(a,b) log (a+b))n logn.

I Theorem 12. Let G be a graph in which at most s vertices have degree larger than d.
Then whether G has a k-witness for b-Chromatic Core (Partial Grundy Coloring,
respectively) can be decided in FPT time parameterized by k + d+ s.

Proof. Let X be the set of s vertices of degree larger than d. In order to explain the algorithm
and prove its correctness, it is convenient to assume that G does contain a k-witness H for
b-Chromatic Core (or Partial Grundy Coloring) as an induced subgraph. We define
I := V (H) ∩X,A := V (H) \X, and B := N(A) \X.

We can guess I by considering at most 2s subsets of X. To find A, we use Lemma 11.
From the fact that every vertex of V \ X has degree at most d and that H is a minimal
k-witness, we have |A| 6 k2 and |B| 6 dk2. Hence, by Lemma 11 with universe V (G)\X, we
can compute in time 2O(k2 log (k2+dk2))n logn a family F with 2O(k2 log (k2+dk2)) logn subsets
of V (G) \X, that contains an (A,B)-separating set.

We guess this (A,B)-separating set by iterating over all elements of F . Let S be a correct
guess, i.e., S is an (A,B)-separating set. So A ⊆ S and S ∩ B = ∅. Observe that every
connected component of G[A] appears in G[S] as a connected component.

Let CS be the set of connected components of G[S] of size at most k2. Since |A| 6 k2,
larger connected component of G[S] are clearly disjoint from A. Moreover, by definition of
B and since S is disjoint from B, each connected component of G[A] is an element of CS .

Since each element of CS has at most k2 vertices, the number of equivalence classes of CS

under graph isomorphism is bounded by a function of k. In fact, the number of equivalence
classes under a stronger form of isomorphism is bounded by a function of k. We define a
labeling function ` : S → 2I as `(v) := N(v) ∩ I. Let ∼S be a relation on CS such that, for
every C,C ′ ∈ C′S : C ∼S C ′ if and only if there is a graph isomorphism φ : C → C ′ with
`(v) = `(φ(v)) for every v ∈ C. Let [∼S ] be the partition of CS into equivalence classes
under ∼S . As members of CS have cardinality at most k2 and there are 2|I| 6 2k2 labels,
CS has at most 22k4 equivalence classes under ∼S . And thus we can compute [∼S ] in time
22k4

n. The definition of ∼S clearly implies that two equivalent sets C and C ′ under ∼S are
exchangeable as a connected component of H −X. That is, for any induced subgraph D of
G with V (D) ∩X = I, if C is a connected component of D − I, then G[(V (D) \ C) ∪ C ′] is
isomorphic to D.

We will now guess, by doing an exhaustive search, how many connected components
H − I takes from each part of the partition [∼S ]. There are 22k4k2 possible such guesses and
from the fact that the number of connected components in H − I is at most k2. Choose an
element (i.e. a connected vertex-set) from each part of [∼S ] as many times as the current
guess suggests (if this is impossible, then discard the current guess) and let W be the union
of the chosen connected vertex-sets. We can now verify by brute-force that G[W ∪ I] is
a k-witness for b-Chromatic Core or Partial Grundy Coloring, depending on the
problem at hand.

To complete the proof of correctness, note that if we find a k-witness for some choice of
I, S ∈ F and W , the input graph G clearly admits a k-witness. One can easily observe that
the running time is FPT in k + d+ s. J
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6.2 FPT algorithm on Kt,t-free graphs
In this subsection, we present an FPT algorithm on graphs which do not contain Kt,t as a
subgraph. A key element of this algorithm is a combinatorial result (Proposition 16), which
states that if there are many vertices of large degree, then one can always find a k-witness.

I Lemma 13 (♠). Let t and N be two positive integers with N > t, and let G be a graph on
a vertex-set A]B not containing Kt,t as a subgraph. If |A| > N2N+t and |B| > N + t, then
there exist two sets A′ ⊆ A and B′ ⊆ B, each of size at least N , such that there is no edge
between A′ and B′.

I Lemma 14 (♠). For any integers k and t, there exists an integer M such that the following
holds: given a Kt,t-free graph G and a partition A1 ] · · · ] Ak of V (G) such that each Ai

contains at least M vertices, there exists either a clique on k vertices, or an independent set
of size k2 which contains k vertices from each Ai.

The following statement is proved in [1].

I Lemma 15 (Aboulker et al. [1]). Let t be a positive integer and let ε ∈ (0, 1). Then there
is an integer N(t, ε) that satisfies the following: if H = (V,E) is a hypergraph on at least
N(t, ε) vertices, where all hyperedges have size at least ε|V |, and the intersection of any t
hyperedges has size at most t− 1, then |E| < t/εt.

We are ready to prove the key combinatorial result on Kt,t-free graphs.

I Proposition 16. Let t, k be positive integers. Let G be a Kt,t-free graph and let X ] Y be
a partition of V (G). There exist integers f(t, k) and g(t, k) such that the following holds: If
|X| > f(t, k), and |NY (x)| > g(t, k) for every x ∈ X, then G contains kK1,k as an induced
subgraph. In particular, G admits k-witnesses for b-Chromatic Core and thus for Partial
Grundy Coloring.

Proof. We first observe that kK1,k (even kK1,k−1) is a k-witness for b-Chromatic Core:
color the k centers with distinct colors, and assign colors from [k] \ {i} to the leaves of
the center colored i. Let N(t, 1/k) and M be the integers defined in Lemmas 14 and 15
respectively, and set M ′ := max(M,N(t, 1/k)), f(t, k) := 22t+k(tkt+t), g(t, k) := 2k(tkt+t)M ′.

By Ramsey’s theorem, any graph on at least f(t, k) vertices admits either a clique of size
2t or an independent set of size k(tkt + t). Since G[X] (which has at least f(t, k) vertices) is
Kt,t-free, the former outcome is impossible, so it has an independent set of size k(tkt + t). It
should be noted that the inductive proof of Ramsey’s theorem yields a greedy linear-time
algorithm which outputs a clique or an independent set of the required size. Hence we
efficiently find an independent set of size k(tkt + t) in G[X]. Starting from j = 1, we now
prove the following claim inductively for all j 6 k.

(?) If |X| > j(tkt + t) and |NY (x)| > 2j(tkt+t)M ′ for every x ∈ X, then there are j
vertices {b1, . . . , bj} ⊆ X and a family of j disjoint vertex-sets A1, . . . , Aj ⊆ Y each
of size at least M ′, such that each Ai are private neighbors of bi; that is, the vertices
of Ai are adjacent with bi and not adjacent with any other vertices from {b1, . . . , bj}.

The claim (?) trivially holds when j = 1. Suppose it holds for all integers smaller
than j, where 2 6 j 6 k. We may assume that X has precisely j(tkt + t) vertices by
discarding some vertices if its size exceeds the bound. For each ∅ 6= I ⊆ X, we define
NI =

⋂
v∈I NY (v) ∩

⋂
v∈X\I Y \NY (v). Thus NI corresponds to all the vertices of Y whose

neighborhood in X is exactly I. Observe that the NI ’s partition Y and that NI corresponds
to the set of vertices of Y that are complete with I and anti-complete with X − I.

STACS 2020
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Choose a vertex x ∈ X that minimized |NY (x)|. As there are 2j(tkt+t) possible subsets
of X and |NY (x)| > 2j(tkt+t)M ′, there exists I∗ ⊆ X such that x ∈ I∗ and |NI∗ | >M ′.

Let Xx be the set of vertices in X adjacent with at least k-th fraction of NY (x), that is,

Xx = {v ∈ X : |NY (v) ∩NY (x)| > |NY (x)|
k

}.

Set X ′ = X − (I∗ ∪Xx), Y ′ = Y −NY (x) and let G′ = G[X ′ ∪ Y ′].
We want to apply the induction hypothesis on G′ with respect to X ′ and Y ′. For

this, we need to make sure that it satisfies the conditions of (?) for j − 1. To prove that
|X ′| > (j − 1)(tkt + t), we need to bound the size of I∗ and Xx. To bound the size of I∗,
notice that NI∗ is complete with I∗. Since |NI∗ | > M > t and G is Kt,t-free, we conclude
that |I∗| < t. To bound the size of Xx, we apply Lemma 15 with ε = 1/k to the hypergraph
on the vertex-set NY (x) and with hyperedge set {NY (v) ∩NY (x) : v ∈ X}. Each hyperedge
of size at least |NY (x)|

k corresponds to a vertex in Xx which gives us the bound |Xx| 6 tkt.
Notice that Lemma 15 can be legitimately applied on this hypergraph as NY (x) has at least
M ′ > N(t, 1/k) vertices. Therefore, we have |X ′| > |X| − t− tkt > (j − 1)(tkt + t).

It remains to verify that each v ∈ X ′ has at least 2(j−1)(tkt+t)M ′ neighbors in Y ′. Indeed

|NY ′(v)| > |NY (v)| − |NY (v) ∩NY (x)| > |NY (v)| − |NY (x)|
k

> |NY (v)| − |NY (v)|
k

>
k − 1
k

2j(tkt+t)M ′ > 2(j−1)(tkt+t)M ′.

This proves that G′ meets the requirement to apply the induction hypothesis, and thus
we can find {b2, . . . , bj} and sets A2, . . . , Aj in G′ as claimed in (?). Observe now that NI∗ is
anticomplete to {b2, . . . , bj} and recall that |NI∗ | >M ′. Hence, setting b1 = x and A1 = NI∗
complete the proof of (?). Now, applying Lemma 14 to the sets A1 ] · · · ]Ak given by (?)
gives us either a clique on k vertices or the announced set of stars. J

Combined with the main result of the previous subsection, this implies that b-Chromatic
Core and Partial Grundy Coloring can be solved in FPT time on Kt,t-free graphs.
Observe that our algorithm is FPT in the combined parameter k + t, which is a stronger
than having an FPT algorithm in k when t is a fixed constant.

I Theorem 17. There is a function h and an algorithm which, given a graph G = (V,E) not
containing Kt,t as a subgraph, decides whether G admits k b-Chromatic Core (Partial
Grundy Coloring, respectively) in time h(k, t)nO(1).

Proof. Let X ⊆ B be the set of all vertices whose degree is at least g(t, k) + f(t, k), where
g(t, k) and f(t, k) are the integers as in Proposition 16. If X contains at least f(t, k) vertices,
then we there exists a k-witness in G by Proposition 16. If X contains less than f(t, k)
vertices, the algorithm of Theorem 12 can be applied to correctly decide whether G contains
a k-witness. J
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