
Towards Streaming Evaluation of Queries with
Correlation in Complex Event Processing
Alejandro Grez
Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile
ajgrez@uc.cl

Cristian Riveros
Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile
cristian.riveros@uc.cl

Abstract
Complex event processing (CEP) has gained a lot of attention for evaluating complex patterns over
high-throughput data streams. Recently, new algorithms for the evaluation of CEP patterns have
emerged with strong guarantees of efficiency, i.e. constant update-time per tuple and constant-delay
enumeration. Unfortunately, these techniques are restricted for patterns with local filters, limiting
the possibility of using joins for correlating the data of events that are far apart.

In this paper, we embark on the search for efficient evaluation algorithms of CEP patterns with
joins. We start by formalizing the so-called partition-by operator, a standard operator in data
stream management systems to correlate contiguous events on streams. Although this operator
is a restricted version of a join query, we show that partition-by (without iteration) is equally
expressive as hierarchical queries, the biggest class of full conjunctive queries that can be evaluated
with constant update-time and constant-delay enumeration over streams. To evaluate queries with
partition-by we introduce an automata model, called chain complex event automata (chain-CEA),
an extension of complex event automata that can compare data values by using equalities and
disequalities. We show that this model admits determinization and is expressive enough to capture
queries with partition-by. More importantly, we provide an algorithm with constant update time
and constant delay enumeration for evaluating any query definable by chain-CEA, showing that all
CEP queries with partition-by can be evaluated with these strong guarantees of efficiency.

2012 ACM Subject Classification Information systems → Data streams; Theory of computation →
Database query processing and optimization (theory); Theory of computation → Formal languages
and automata theory; Theory of computation → Automata extensions

Keywords and phrases Complex event processing, Query languages, Correlation, Constant delay
enumeration.

Digital Object Identifier 10.4230/LIPIcs.ICDT.2020.14

Funding A. Grez and C. Riveros were partially funded by the Millennium Institute for Foundational
Research on Data.

1 Introduction

Streaming query evaluation is the most crucial problem in complex event processing (CEP).
Given a CEP query Q, the streaming evaluation of Q over a stream consists in continuously
reading events and outputting all complex events (i.e. sets of events) as soon as the last event
that fires Q arrives. This streaming evaluation can be divided in two parts: (1) the process
that continuously reads events and updates the state of the system whenever a new event
arrives and (2) the process that outputs (i.e. enumerates) all complex events that satisfy the
query. Both processes are required to run separately in such a way that the update process
calls the enumeration process whenever a new output is found [17].

© Alejandro Grez and Cristian Riveros;
licensed under Creative Commons License CC-BY

23rd International Conference on Database Theory (ICDT 2020).
Editors: Carsten Lutz and Jean Christoph Jung; Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ajgrez@uc.cl
mailto:cristian.riveros@uc.cl
https://doi.org/10.4230/LIPIcs.ICDT.2020.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Towards Streaming Evaluation of Queries with Correlation in CEP

Given the high-throughput data streams in areas like Network Intrusion Detection [27],
Industrial Control Systems [19] or Real-Time Analytics [28], the time and space used by
these two processes must be severely restricted. As proposed in [7, 17, 22], an efficient
streaming evaluation process should satisfy at least the following two ideals: the update
process must take constant time per new event and the enumeration process must take
constant delay between two consecutive outputs. Intuitively, this is the best that a CEP
system can aim for efficiently processing high-throughput data streams in practice. In [17]
a streaming evaluation algorithm with constant update time per event and constant delay
enumeration was shown for a meaningful core of CEP query languages when only local filters
are allowed. Unfortunately, not all relevant queries in CEP can be evaluated with these
strong guarantees, which fosters the search of query operators that allow efficient evaluation.

One of the key features in CEP is correlation [12]: to associate different events that
might occur arbitrarily far in the input stream. Verifying that two users have the same
id, or verifying an increasing sequence of temperature events, are some examples of how
correlation is used in CEP. The most basic operator for adding correlation in CEP are
equalities, namely, joining two events which have the same data value. Unfortunately, the
evaluation of join queries is a difficult task even in a static setting [1], stressing the difficulties
of finding efficient evaluation algorithms of CEP queries with equality predicates. One special
operator usually included in CEP systems [5, 31, 15] for correlating events is partition-by [5]
(also referred as segmentation-oriented context in [16] or just context in [15]). As the name
suggests, this operator breaks up the events of a stream into partitions where all events of
the same partition have the same data value. Despite being a useful operator in CEP, there
is a lack of research in evaluating partition-by queries with solid efficiency guarantees, and
usually this operator is severely restricted in CEP systems [31].

In this paper, we embark on the search for efficient evaluation of CEP queries with
correlation when equality and disequality predicates are used. We first formalize the partition-
by operator by extending Complex Event Logic (CEL) [17, 18] with a simple and compositional
semantics. To motivate the expressive power of partition-by, we show that CEL with partition-
by (but without iteration) is equally expressive as hierarchical queries [7, 22], the biggest
subclass of conjunctive queries (CQ) that can be evaluated with constant update time and
constant delay enumeration [7].

With a well-defined operator for doing correlation, we study the evaluation of partition-by
through a machine model that we called chain Complex Event Automata (chain-CEA), an
extension of complex event automata with equality and disequality predicates [17]. Although
automata models over data words usually do not have good closure properties [29], we show
that the chain-CEA model admits determinization and is expressive enough to capture all
CEL queries with partition-by. The most important result of the paper is a streaming
evaluation algorithm for the full class of chain-CEA, with constant update time and constant
delay enumeration. In particular, this shows that all queries with partition-by can be
evaluated efficiently in a streaming fashion.

Related work. Streaming query evaluation has been studied in the context of data stream
management systems (DSMS) [5] and complex event processing (CEP) [31, 12, 21]. The
notion of constant update time per tuple/event and constant delay enumeration has not
been considered until recently [25, 20, 7] and, furthermore, in CEP systems these strong
guarantees of efficiency have not been adopted yet [17]. Therefore, the algorithmic approach
in CEP systems for evaluating queries with correlation is incomparable to our approach.

New techniques in dynamic query evaluation [8, 2, 9] have recently attracted a lot of
attention [7, 22, 23]. In [7, 22], the streaming evaluation of CQ is considered but this does
not include queries with order. In [23], inequalities over atoms are considered, but only for

A. Grez and C. Riveros 14:3

the case of CQ. Our setting also includes disjunction and iteration (but not conjunction),
which makes our work orthogonal to the work in [7, 22, 23].

Register automata [24] have been extensively studied in the context of automata theory
and XML [29]. Nevertheless, this model has not been studied in the context of CEP and
efficient query evaluation. Recently, in [4] a similar extension of complex event automata
with registers was proposed. However, this work does not study the determinization and
evaluation of this model with constant update time and constant delay enumeration.

2 Preliminaries

In this section, we recall the formal definitions for streams and complex events [17], and give
a simplified version of Complex Event Logic (CEL) [18, 17], originally called SO-CEL in [18].
We will later use CEL as a base language to model the partition-by operator.

Streams and complex events. Let A be a set of attribute names and D be an infinite set
of values. A database schema R is a finite set of relation names, where each relation name
R ∈ R is associated to a tuple of attributes denoted by att(R). If R is a relation name, then
an R-tuple is a function t : att(R)→ D. Given a ∈ att(R), we write t.a to denote the value
t(a), and att(t) to denote dom(t). We say that the type of an R-tuple t is R, and denote this
by type(t) = R. For any relation name R, tuples(R) denotes the set of all possible R-tuples.
Similarly, for any database schema R, tuples(R) =

⋃
R∈R tuples(R). Given a schema R, an

R-stream S is an infinite sequence S = t1t2 . . . where ti ∈ tuples(R). When R is clear from
the context, we refer to S simply as a stream. Given a stream S = t1t2 . . . and a position
i ∈ N, the i-th element of S is denoted by S[i] = ti.

A complex event C is defined as a non-empty and finite set of natural numbers. Intuitively,
given a stream S = t1t2 . . . a complex event C = {i1, . . . , in} determines the set of tuples
{ti1 , . . . , tin} and, thus, C represents the set of relevant events. We denote by min(C) and
max(C) the minimum and maximum element of C, respectively. Given two complex events
C1 and C2, we write C1 · C2 for their concatenation, which is defined as C1 · C2 := C1 ∪ C2
whenever max(C1) < min(C2) and empty otherwise. Given a complex event C we define
S[C] = {S[i] | i ∈ C}, namely, the set of tuples in S positioned at the indices specified by C.

Complex event logic (CEL). Let X be a finite set of monadic second-order (SO) variables.
An SO predicate of arity n is an n-ary relation P over sets of tuples, P ⊆ (2tuples(R))n. We
write arity(P) = n. Let P be a set of SO predicates. An atom over P is an expression of the
form P (X1, . . . , Xn) where P ∈ P is a predicate of arity n, and X1, . . . , Xn ∈ X (we also
write P (X̄) for P (X1, . . . , Xn)). A CEL formula is defined by the following syntax:

ϕ := R | ϕ IN X | ϕ FILTER P (X̄) | ϕ OR ϕ | ϕ ; ϕ | ϕ+

where R ranges over relation names, X over variables in X and P (X̄) over atoms in P. We
say ϕ is an atomic formula if ϕ = R.

A valuation is a function µ : X→ 2N such that µ(X) is a complex event for every X ∈ X.
We define the support of µ by supp(µ) =

⋃
X∈X µ(X), and the union between µ1 and µ2 as

(µ1 ∪ µ2)(X) = µ1(X) ∪ µ2(X) for every X ∈ X. Given a formula ϕ and a stream S, we
say that a complex event C belongs to the evaluation of ϕ over S under the valuation µ
(denoted by C ∈ JϕK(S, µ)) if one of the following conditions holds:

ϕ = R, C = {i}, type(S[i]) = R and µ(X) = ∅ for every X.
ϕ = ρ IN X, µ(X) = C, and there exists a valuation µ′ such that C ∈ JρK(S, µ′) and
µ(Y) = µ′(Y) for all Y 6= X.

ICDT 2020

14:4 Towards Streaming Evaluation of Queries with Correlation in CEP

type T R R R T R T R . . .
id 123 155 165 223 252 352 355 411 . . .

user-id 11 48 48 48 13 13 33 79 . . .
tweet-id 123 343 123 252 123 . . .

post/reply #vote #ihate #ihate #ihate #vote #ihate #ihate #stop . . .
index 1 2 3 4 5 6 7 8 . . .

Figure 1 A stream S of events from Twitter. T are tweets with an id, a user-id and a post
message, and R are responses with an id, a user-id, a tweet-id, and a reply message. The last line is
the index of each event in the stream, respectively.

ϕ = ρ FILTER P (X1, . . . , Xn), C ∈ JρK(S, µ) and (S[µ(X1)], . . . , S[µ(Xn)]) ∈ P .
ϕ = ρ1 OR ρ2 and (C ∈ Jρ1K(S, µ) or C ∈ Jρ2K(S, µ)).
ϕ = ρ1 ; ρ2 and there exist complex events C1 and C2, and valuations µ1 and µ2 such
that C = C1 · C2, µ = µ1 ∪ µ2, C1 ∈ Jρ1K(S, µ1) and C2 ∈ Jρ2K(S, µ2).
ϕ = ρ+, and C ∈ JρK(S, µ) or C ∈ Jρ ; ρ+K(S, µ).

We say that C belongs to the evaluation of a CEL formula ϕ over S at position n ∈ N,
denoted by C ∈ JϕKn(S), if C ∈ JϕK(S, µ) for some valuation µ, and max(C) = n.

I Example 1. As a running example, suppose that we consider the stream from Twitter.
For the sake of simplification, suppose that the stream is composed just by tweets (T) and
replies (R). A tweet is composed by three attributes: an id, a user-id and a post message.
Instead, a reply is composed by four attributes: an id, a user-id, a tweet-id of the replied
message, and a reply message. Figure 1 shows an example of a stream with this schema.

As an example of a CEL formula, suppose that a journalist wants to detect all pairs of
events composed by a tweet followed by a response containing ‘#voteforjohn’ and ‘#ihatejohn’,
respectively, representing “hot” debates in Twitter about the election of a candidate called
John. This query can easily be defined with the following CEL-formula:

ϕ1 := (T IN X;R IN Y) FILTER (X.post = ‘#vote’ AND Y.reply = ‘#ihate’)

Here we make use of three operators: sequencing (;) to say we want to find complex events
consisting of a T -tuple followed by an R-tuple; variable names (IN) to assign variables X
and Y to T and R, respectively; and FILTER to define the conditions that the events must
satisfy. We use conjunction (i.e., AND) as a syntactic sugar, which is short for applying a
FILTER operator for each predicate of the conjunction. Predicates X.post = ‘#vote’ and
Y.reply = ‘#ihate’ are basically restricting the T and R tuples t and r so that t.post
contains ‘#voteforjohn’ and r.reply contains ‘#ihatejohn’. Given a stream S = t1t2 . . . and a
valuation µ, one can easily check that Jϕ1K(S, µ) contains complex events of the form {k1, k2}
with k1 < k2 such that tk1 .post contains ‘#voteforjohn’ and tk2 .reply contains ‘#ihatejohn’.
For example, {1, 2}, {1, 3} and {5, 6} in Figure 1 are some outputs of ϕ1 over S. Note that
the replies are not necessarily replying to the tweet they are paired with, contrary to what
one would like. We address this issue in the next section.

I Example 2. Suppose now that we want to find all sequences of debates that start with a
tweet with ‘#voteforjohn’, are followed by one or more responses with ‘#ihatejohn’, and end
with a response containing ‘#stophating’. This query can easily be defined in CEL using (+):

ϕ2 =
(
T IN X ;

(
R+

)
IN Y ; R IN Z

)
FILTER

(
X.post = ‘#vote’

AND Y.reply = ‘#ihate’ AND Z.reply = ‘#stop’
)

A. Grez and C. Riveros 14:5

In ϕ2 we use the (+) operator to extract an unbounded sequence of replies, which are then
assigned to Y so that the predicate Y.reply = ‘#ihate’ filters only the sequences where
all tuples contain ‘#ihatejohn’ (i.e. all tuples t in the complex event represented by Y

must satisfy t.reply = ‘#ihate’). The other predicates are used to ensure that the T -tuple
contains ‘#voteforjohn’ and the last R-tuple contains ‘#stophating’. Finally, one can check
that ϕ2 defines the desired property. For example, if we evaluate ϕ2 over S in Figure 1, then
{1, 2, 4, 8} and {1, 3, 4, 6, 8} will be some outputs in Jϕ2K8(S).

A relevant feature in CEP is to skip arbitrary events when a formula is evaluated [12].
For example, for ϕ1 it would make no sense looking for two contiguous events T and R. For
this reason, the sequencing operator allows to skip an arbitrary number of events between
two relevant events. The iteration operator has a similar semantics, which results in that
for every sequence captured by it, the powerset of events is also captured. To remedy this
problem CEL also includes the so-called selection strategies [17, 18], namely, operators for
filtering the set of output to a meaningful subset. In this paper, our results do not include
the evaluation over selection strategies. We leave this for future work.

CEL fragments and unary predicates. Given a set O of operators (e.g. OR, +), we define
CEL[O] to be the set of CEL formulas constructed from atomic formulas, IN, and operators
in O. For example, ϕ1 is in CEL[; , FILTER] and ϕ2 is in CEL[; , FILTER,+]. Furthermore,
we define CEL+O as the set of all CEL formulas extended with O.

Although CEL does not restrict the set of predicates that can be used by FILTER, not
necessarily all predicates can be evaluated efficiently (or are even computable). For this reason,
in [18] the analysis of CEL was restricted to SO-extensions of first-order unary predicates.
Formally, let U be the set of all unary predicates over tuples, i.e. U = {P ⊆ tuples(R)}.
Given P ∈ U we define the SO-extension P SO ⊆ 2tuples(R) of P such that A ∈ P SO if, and
only if, t ∈ P for all t ∈ A. We denote by USO the set of all SO-extensions of predicates in U.
When writing predicates with SO variables we are referring to the SO extension of the first
order predicate. For example, P := x.post = ‘#vote’ is a predicate in U such that t ∈ P iff t
has the attribute post and t.post contains #voteforjohn. Then P SO := (X.post = ‘#vote’)
is the SO-extension of P that defines all complex events whose tuples satisfy P .

In [17, 18], it was shown that all CEL formulas restricted to predicates in USO can be
evaluated efficiently. For this reason, from now on we assume that for any fragment or
extension of CEL, all FILTER are restricted to predicates in USO.

Streaming evaluation with constant-delay enumeration. As it is standard in the literat-
ure [7, 22], we consider evaluation algorithms on Random Access Machines (RAM) with
addition and uniform cost measure [3]. Furthermore, we assume the existence of a key-value
index (e.g. hash index) that allows insertions and deletions in O(1) time and the index uses
space linear in the number of insertions. In other words, we assume to have perfect hashing
of linear size [10]. Although this is not realistic for practical computers, it can be simulated
with a O(log(n))-factor in the evaluation process with n the number of insertions in the
index. Our complexity analysis is always in data complexity, namely, we assume that the
CEL query ϕ and the schema R of the stream are fixed. Finally, we restrict the set U to
unary predicates with constant time evaluation, namely, for every predicate P in U and
every tuple t, we assume that checking whether t ∈ P takes constant-time.

For efficient evaluation in CEP, we adapt the notion of constant-delay used in [6, 11]
for streaming evaluation. Our evaluation process is a streaming algorithm divided in two
parts: (1) consuming new events and updating the internal memory of the system and (2)

ICDT 2020

14:6 Towards Streaming Evaluation of Queries with Correlation in CEP

generating complex events from the internal memory of the system. A streaming evaluation
algorithm with constant update time and constant-delay enumeration is an algorithm that
reads a stream S = t1t2 . . . sequentially and evaluates a formula ϕ over S such that (1) the
time spent between reading ti and ti+1 is bounded by O(|ti|), and (2) it maintains a data
structure D in memory, such that after reading tn, the set JϕKn(S) can be enumerated from
D with constant-delay. The enumeration requires the existence of a routine Enumerate that
enumerates JϕKn(S) = {C1, C2, . . . , Cm} one by one without repetitions. We call delay(Ci)
the time it takes between enumerating Ci and Ci+1, and we say Enumerate runs with
constant-delay if there exists a constant k depending only on ϕ such that delay(Ci) = k · |Ci|
for all i. We remark that (1) is a natural restriction for a streaming algorithm, while (2)
is the minimum requirement if an arbitrarily large set of arbitrarily large outputs must be
produced [30]. Given that our analysis is in data complexity (i.e. ϕ and R are fixed), then
the update time O(|t|) has a hidden factor that depends on |ϕ| and |R|.

3 Partition-by: syntax and semantics

Our main motivation in this paper is to study queries with correlation in CEP. One of
the main operators for joining multiple events is partition-by [15, 31] (also referred as
segmentation-oriented context in [16] or just context in [15]). Intuitively, events in a stream
are usually correlated by an attribute that has the same value, e.g. an id. Then this attribute
is “partitioning” the stream in multiple streams, where all events of the same stream contain
the same value. In this section, we formally define the PART-BY operator in CEL, and motivate
its usefulness by showing that it is expressive enough to define hierarchical queries.

Given two formulas ϕ1 and ϕ2, we denote by ϕ1 ⊆ ϕ2 when ϕ1 is a subformula of ϕ2.
Consider a formula ϕ and variables X1, . . . , Xk of ϕ. We say that X1, . . . , Xk form a variable
cover of ϕ if, for every atomic subformula ρ of ϕ, i.e. ρ ⊆ ϕ and ρ = R for some R, there
is some i ≤ k and formula ψ = ψ′ IN Xi such that ρ ⊆ ψ ⊆ ϕ, namely, all the events
captured by atomic subformulas will be captured by some of the variables X1, . . . , Xk in ϕ.
For example, in Example 2 variables X, Y and Z form a variable cover of ϕ2.

We extend the syntax of CEL with the operator PART-BY as follows. A formula ϕ is in
CEL+PART-BY if it satisfies the syntax of CEL, plus the following rule:

ϕ := ϕ PART-BY [X1.a1, . . . , Xk.ak]

where X1, . . . , Xk ∈ X form a variable cover of ϕ and a1, . . . , ak ∈ A are attributes. The
semantics of the PART-BY operator is defined as follows. Consider a complex event C, a
stream S = t1t2 . . . and a valuation µ. Then, C ∈ Jϕ PART-BY [X1.a1, . . . , Xk.ak]K(S, µ) if
C ∈ JϕK(S, µ) and for all i, j ∈ N, l ∈ µ(Xi) and m ∈ µ(Xj), it holds that S[l].ai = S[m].aj .
Thus, all events must contain the same data value in their attributes. For the case we only want
to partition using a single attribute a that is common among all events (e.g. an id), we add the
syntactic sugar ϕ PART-BY [a], which is defined as ϕ PART-BY [a] := (ϕ IN X) PART-BY [X.a],
where X is a fresh variable that does not appear in ϕ. Clearly, X is a variable cover of ϕ.

I Example 3. In Example 1 we wanted to extract all pairs of tweets and replies that contain
#voteforjohn and #ihatejohn, respectively. Although ϕ1 extract these complex events, it
fails to relate a reply with the tweet is replying to. For this, we can use the partition-by
operator as follows:

ϕ∗1 :=
(
(T IN X;R IN Y) FILTER (X.post = ‘#vote’

AND Y.reply = #ihate’)
)

PART-BY (X.id, Y.tweet-id)

A. Grez and C. Riveros 14:7

Clearly, X,Y form a variable cover of ϕ1. Furthermore, PART-BY restricts the output to pairs
t and r with t.id = r.tweet-id. In Figure 1 now only {1, 2}, {1, 4} and {5, 6} are in Jϕ∗1K(S).

I Example 4. Now, we want to restrict formula ϕ2 in Example 2 in order to correlate tweets
and replies in a meaningful way. Suppose that we want to restrict ϕ2 such that all replies
are replying to T and all #ihatejohn replies are from the same user. Then we can extend ϕ2
with PART-BY to impose these restrictions (we omit the filters for the sake of readability):

ϕ∗2 =
[(
T IN X ;

(
R +

)
PART-BY (user-id) IN Y ; R IN Z

)
FILTER (· · ·)

]
PART-BY (X.id, Y.tweet-id, Z.tweet-id)

This formula shows the advantage of using nesting of PART-BY. The internal PART-BY over
attribute user-id restricts all #ihatejohn replies to have the same identifier, namely, they
come from the same user. Then the external PART-BY forces all replies to have the same
tweet-id as the first tweet and, therefore, they are replies of the same tweet. In Figure 1,
{1, 3, 4, 6, 8} is no longer an output but {1, 2, 4, 8} still is.

Partition-by and hierarchical queries. Partition-by models a join operator that usually
appears in CEP systems [5, 15, 31]. Although this operator can be considered rather restrictive,
interestingly, it is related to the class of hierarchical queries [13, 26], the biggest class of
conjunctive queries without projection that can be evaluated in a streaming fashion [7, 22].
To formally define hierarchical queries we first introduce some notation. Given a database
schema R, we assume an arbitrary total order < over the attribute names A. For R ∈ R with
att(R) = {a1, . . . , ak} and a1 < . . . < ak, we write R(x1, . . . , xk) for variables x1, . . . , xk to
denote that xi is assigned to attribute ai. We call R(x1, . . . , xk) an atom. A (full) conjunctive
query Q is an expression R1(x̄1)∧ . . .∧Rk(x̄k) where each Ri(x̄i) is an atom (i.e. we restrict
our discussion to CQ without projection). Given a conjunctive query Q with k atoms and a
stream S = t1t2 . . . we say that a complex event C satisfies Q if |C| ≤ k and {ti | i ∈ C} |= Q.
We define JQKn(S) as all complex events C that satisfy Q and max(C) = n.

From now on, we restrict our analysis to hierarchical conjuctive queries. Specifically,
for a variable x define the set atom(x) of all atoms in Q where x is mentioned. Then
Q is hierarchical [13, 26] if for every x and y it holds that either atom(x) ⊆ atom(y),
atom(x) ⊇ atom(y), or atom(x) ∩ atom(y) = ∅. For example, the query R(x) ∧ S(x, y) is
hierarchical and R(x) ∧ S(x, y) ∧ T (y) is not.

Unfortunately, CEL+PART-BY is not enough to capture the expressiveness of hierarchical
queries. The reason is that partition-by combined with sequencing forces all events with
correlated values to be “adjacent”. On the other hand, hierarchical queries do not impose any
order over tuples. For this reason, we consider the ALL-operator, a standard CEP operator
studied in [18]. Formally, given formulas ϕ1 and ϕ2 we define the formula ϕ1 ALL ϕ2 such
that for a stream S and valuation µ it holds that C ∈ Jϕ1 ALL ϕ2K(S, µ) if there exist
complex events C1, C2, and valuations µ1, µ2 such that C1 ∈ Jρ1K(S, µ1), C2 ∈ Jρ2K(S, µ2),
C = C1 ∪ C2 and µ = µ1 ∪ µ2. In other words, ALL makes the pair union of complex events
coming from evaluating ϕ1 and ϕ2, separately. Interestingly, CEL[ALL, PART-BY] captures
exactly the expressiveness of hierarchical queries.

I Proposition 5. For every hierarchical query Q, there is a formula ϕ in CEL[ALL, PART-BY]
such that JQKn(S) = JϕKn(S) for every stream S and position n, and vice versa.

The previous proposition shows the motivation of partition-by from the perspective of
hierarchical CQ. Although CEL+PART-BY is not enough to capture the expressibility of
hierarchical CQ, it shows that partition-by is related with a subclass of CQ that can be
evaluated efficiently in a streaming fashion.

ICDT 2020

14:8 Towards Streaming Evaluation of Queries with Correlation in CEP

q1 q2 q3
T1 R2, id = tweet-id

R1, id = tweet-id

Figure 2 An example of chain-CEA with unary predicates T1 := type(T) ∧ post = ‘#vote’,
R1 := type(R) ∧ reply = ‘#ihate’, and R2 := type(R) ∧ reply = ‘#stop’.

4 Chain complex event automata

Similarly to [17], we base our evaluation approach on an automata model to represent
CEL+PART-BY. We present an automata model, called chain Complex Event Automata
(chain-CEA), and show that each formula in CEL+PART-BY can be represented by this model.

In order to express the PART-BY operator, the automata model needs to be able to handle
equality predicates. Given attributes a, b ∈ A define the equality and disequality predicates
as Pa=b = {(t1, t2) | a ∈ att(t1) ∧ b ∈ att(t2) ∧ t1.a = t2.b} and Pa 6=b = tuples(R) \ Pa=b.
A conjunctive binary predicate, or binary predicate for short, is a predicate B that is a
conjunction of equality and disequality predicates, i.e., B =

⋂n
i=1(Pai∼bi), where ai, bi ∈ A

and ∼i∈ {=, 6=}. For simplicity, we usually drop the predicate notation and denote B simply
as
∧n
i=1(ai ∼ bi). For example, (a = b ∧ c 6= d) represents the predicate B = Pa=b ∩ Pc6=d,

and thus (t1, t2) ∈ B if t1.a = t2.b and, if c ∈ att(t1) and d ∈ att(t2), then t1.c 6= t2.d. To
separate equalities and disequalities from B, we will usually denote B = B= ∧B6= where B=
and B 6= are binary predicates composed only by equalities and disequalities, respectively.
We denote by B the set of all binary predicates.

A chain complex event automaton (chain-CEA) is a tuple A = (Q,∆, I, F) where Q is
a finite set of states, the transition relation ∆ is a set of tuples (p, P,B, q), where p, q ∈ Q,
P ∈ U and B ∈ B, and I, F ⊆ Q are the initial and final set of states, respectively. A
configuration of A is defined by a state and a position in the stream, i.e. a pair (q, i) ∈ Q×N.
An initial configuration is a pair (q, i) where q ∈ I and i = 0. A run ρ of A over a stream
S = t1t2 . . . is a sequence of configurations: (q0, i0) P1/B1−−→ (q1, i1) P2/B2−−→ . . . Pn/Bn−−→ (qn, in) such
that (q0, i0) is an initial configuration and, for every j ≤ n: ij−1 < ij , (qj−1, Pj , Bj , qj) ∈ ∆,
tij ∈ Pj and (tij−1 , tij) ∈ Bj , where we consider t0 being the empty tuple with no attributes.
Further, the run ρ above induces the complex event Cρ = {ij | j > 0}. We say that ρ is an
accepting run if qn ∈ F . We define the set of complex events of A over S ending at position
n as JAKn(S) = {Cρ | ρ is an accepting run of A and max{C} = n}.

It is worth noting that, even though only conjunctions and negations of equality predicates
are allowed, in practice every logical combination (i.e. ∧, ∨ and ¬) can be managed by
simulating disjunction using multiple transitions. However, we need this restricted definition
to later simplify the evaluation algorithm in Section 5.

I Example 6. Recall our complex events in Example 2 of a tweet with #voteforjohn, followed
by one or more responses with #ihatejohn, and ending with a response saying #stophating.
Suppose now that instead of correlating all responses with the first tweet, we want to
extract a chain of responses, namely, for each contiguous responses r1 and r2 it holds that
r1.id = r2.tweet-id (i.e. r2 is a reply of r1). In Figure 2 we show a chain-CEA defining
this query. If the automaton is in the initial state q1 and receives a tweet t event containing
#voteforjohn, it moves to q2 and stores t. Then for each response r containing #ihatejohn
whose tweet-id is equivalent to the id of the stored event, it forgets that event and stores r.
Finally, when it receives an R-event containing #stophating which is responding the stored
event, it reaches a final state.

A. Grez and C. Riveros 14:9

The previous example shows a meaningful CEP query definable by a chain-CEA. This
type of queries are very useful in practice (see for example query (7) in [12]). The next result
shows that chain-CEA are expressive enough to cover the class of CEL+PART-BY formulas.

I Proposition 7. For any formula ϕ in CEL+PART-BY, there exists a chain-CEA A such
that JϕKn(S) = JAKn(S) for every S and n.

On the other hand, one can show that the chain-CEA from Example 6 cannot be defined by
any CEL+PART-BY formula. This, together with Proposition 7, shows that that CEL+PART-BY
is strictly included in the queries defined by chain-CEA.

Like in [17] for CEA, here the determinization of chain-CEA is a crucial property for
having efficient streaming evaluation and necessary property for removing duplicate runs
that produce the same output. We start by defining our notion of deterministic chain-CEA.
Similarly to [17], a deterministic chain-CEA must be “deterministic” with respect to the
input and output, namely, given a stream S and a complex event C, there exists at most
one run over S that produces C. Formally, we say that a chain-CEA A = (Q,∆, I, F)
is I/O deterministic (or just deterministic) if |I| = 1 and, for every pair of transitions
(p, P1, B1, q1) 6= (p, P2, B2, q2), it holds that (P1 ∩B1[t]) ∩ (P2 ∩B2[t]) = ∅ for every tuple t,
where Bi[t] is the set of all t′ such that (t, t′) ∈ Bi. In other words, the conditions (P1, B1)
and (P2, B2) must be disjoint. One can easily check that the chain-CEA from Example 6 is
deterministic.

I Theorem 8. Chain-CEA admit determinization, namely, for any chain-CEA A there
exists a deterministic chain-CEA A′ such that JAKn(S) = JA′Kn(S) for every S and n.

A natural question that arises from the definition of chain-CEA is whether disequalities
are strictly necessary in an automata model for CEP. For example, one can easily see that
disequalities are not necessary for defining CEL+PART-BY formulas, since the partition-by
operator only requires to check that the same value is used through a contiguous subsequence
of the output. In the next result, we show that disequalities are indeed necessary if we want
to find an automata model that admits determinization. More precisely, let chain-CEA= be
the class of chain-CEA where all transitions are restricted to equalities.

I Proposition 9. There exists a chain-CEA= A such that there exists no I/O deterministic
chain-CEA= equivalent to A.

We are ready to state the main result of the paper.

I Theorem 10. For every chain-CEA, there exists a streaming evaluation algorithm with
constant update time and constant delay enumeration.

By combining Proposition 7 and Theorem 10, we get that for any formula in CEL+PART-BY
there exists a streaming evaluation algorithm with constant update time per tuple and
constant delay enumeration. It is important to stress that chain-CEA is more general than
CEL+PART-BY, in particular, the chain-CEA in Figure 2 cannot be defined by a CEL+PART-BY
formula, but it can still be evaluated efficiently. We leave open whether there exists a set of
predicates P (like PART-BY) such that CEL+P characterizes what is definable by chain-CEA.

5 A streaming evaluation algorithm for chain-CEA

In this section we show how to evaluate a chain-CEA over a stream with constant update
time and constant-delay enumeration. We explain first the main data structures used by the
algorithm to later show how to evaluate a chain-CEA.

ICDT 2020

14:10 Towards Streaming Evaluation of Queries with Correlation in CEP

The run DAG. In our algorithms, we compactly represent sets of runs by using a directed
acyclic graph (DAG) annotated with configurations. Formaly, let A = (Q,∆, q0, F) be a
deterministic chain-CEA. A run DAG G of A (or just run DAG) is a tuple G = (V,E,⊥, κ)
consisting of a finite set of vertices V , a set of edges E ⊆ V × V , a special vertex ⊥ ∈ V ,
and a function κ that maps every v ∈ V to a configuration κ(v) ∈ Q×N of A. It is required
that the graph (V,E) is acyclic, κ(⊥) = (q0, 0), and for every v ∈ V there is a directed path
from v to ⊥. Furthermore, it is also required that for every (u, v) ∈ E with κ(u) = (q1, i1)
and κ(v) = (q2, i2), it holds that i1 > i2.

Intuitively, a vertex v labeled by κ(v) = (q, i) is encoding the last configuration of a run
over a stream S. Moreover, by the last two conditions every path starting in v and ending
in ⊥ is representing a run where configurations are listed in decreasing order. We make
this intuition more precise as follows. Let π = vn, . . . , v1,⊥ be a path from v = vn to ⊥
in G and κ(vj) = (qj , ij) for j ≤ n. Then κ(⊥), κ(v1), . . . , κ(vn) represents a run of A and
CE(π) = {i1, . . . , in} the complex event defined by π. We denote by CE(v) the set of all
complex events defined by paths from v to ⊥ in G, and CE(U) =

⋃
v∈U CE(v) for U ⊆ V .

Note that there could be two paths starting from v in G that define the same complex
event in CE(v). We say that a run DAG G is safe if CE(v1)∩CE(v2) = ∅ for every v1, v2 ∈ V .
Indeed, the safety property allows to enumerate all complex events in G without repetitions.

I Lemma 11. Let G = (V,E,⊥, κ) be a safe run DAG such that there is a procedure that,
given any vertex v ∈ V , enumerates its neighborhood {u | (v, u) ∈ E} with constant-delay.
Then there exists a procedure that, given U ⊆ V , it enumerates CE(U) with constant delay.

Therefore, by the previous lemma we can use a safe run DAG to encode the outputs of our
evaluation algorithm for chain-CEA and enumerate these outputs with constant delay.

An index for binary predicates. In our evaluation algorithm we will need a special index
over vertices of a run DAG to efficiently evaluate the binary predicates of a chain-CEA. Given
a new event t and a state p, we want to quickly retrieve all configurations (p, i) that have
reached p and such that (ti, t) ∈ B for some e = (p, P,B, q) ∈ ∆. The run DAG will encode
configurations (p, i), but we will need an index to store ti and quickly “check” (ti, t) ∈ B.

To define this index, we first need to introduce some notation. Let B =
∧n
i=1(ai ∼i bi) be

a binary predicate with ∼i∈ {=, 6=}. Without loss of generality, we assume that all conditions
ai ∼i bi in B are different. Let {(ai, bi)}i be a set of fresh attribute names not used in
the schema R. Given a tuple t, we define the left projection and right projection of t with
respect to B as the tuples ~πB(t) and ~πB(t), respectively, with attributes in {(ai, bi)}i such
that ~πB(t).(ai, bi) = t.ai whenever ai ∈ att(t) and ~πB(t).(ai, bi) = t.bi whenever bi ∈ att(t).
Otherwise, if ai /∈ att(t) or bi /∈ att(t), then ~πB(t).(ai, bi) and ~πB(t).(ai, bi) are not defined,
respectively. The left and right projections extract the relevant information of a tuple t to
define B[t]. To see this, we say that t1 and t2 are totally different, denoted by t1 6≡ t2, if and
only if t1.a 6= t2.a for every a ∈ att(t1) ∩ att(t2), that is, they are different point-wise.

I Lemma 12. Let B = B= ∧ B 6= be a binary predicate. Then (t, t′) ∈ B if, and only if,
~πB=(t) = ~πB=(t′) and ~πB 6=(t) 6≡ ~πB 6=(t′).

With the previous notation, we are ready to define our index of a transition, called the
equality-disequality index or ED-index for short. Let G = (V,E,⊥, κ) be a run DAG and
let e = (p, P,B= ∧ B6=, q) be a transition. We define the ED-index Indexe as a set of
triples (v, t=, t6=) where v ∈ V and t=, t 6= are left projections with respect to B= and B 6=,
respectively. Intuitively, Indexe will keep all configurations that are at state p and are

A. Grez and C. Riveros 14:11

Algorithm 1 Evaluation of a det. chain-CEA A = (Q, ∆, q0, F) and a stream S = t1t2
1: procedure Evaluation(A, S)
2: Init()
3: for i := 1 to ∞ do
4: FireTransitions(i)
5: UpdateIndices(i)
6: Enumerate(∪q∈F U iq)
7: procedure Init()
8: G← NewMappingGraph(q0)
9: U0

q0
← {⊥}

10: for all e0 = (q0, P, ∅, q) ∈ ∆ do
11: Index0

e0
← {(⊥, t∅, t∅)}

12: procedure FireTransitions(i)
13: for all e = (p, P,B= ∧B 6=, q) ∈ ∆ do
14: (t=, t6=)← (~πB=(ti), ~πB6=(ti))
15: if ti ∈ P ∧ Indexi−1

e [t=, t6=] 6= ∅ then
16: v ← AddNewVertex(G, q, i)
17: Connect(G, v, Indexi−1

e [t=, t6=])
18: U iq ← U iq ∪ {v}
19: procedure UpdateIndices(i)
20: for all e = (p, P,B= ∧B 6=, q) ∈ ∆ do
21: Indexie ← Indexi−1

e

22: (t=, t6=)← (~πB=(ti), ~πB6=(ti))
23: for all v ∈ U ip do
24: Indexie ← Indexie ∪{(v, t=, t6=)}

“waiting” to trigger e. More specifically, given a stream S = t1t2 . . . if (v, t=, t6=) ∈ Indexe
then κ(v) = (p, i) and t= = ~πB=(ti) and t 6= = ~πB 6=(ti). Thanks to Lemma 12, whenever
we want to check if (ti, t) ∈ B= ∧ B 6= for a new tuple t, we only need to obtain the tuple
(v, t=, t6=) from Indexe and check whether t= = ~πB=(t) and t6= 6≡ ~πB 6=(t). This motivates the
following main query of an ED-index: given a pair of tuples t′= and t′6=:

Indexe[t′=, t′6=] = {v ∈ V | (v, t=, t6=) ∈ Indexe ∧ t= = t′= ∧ t6= 6≡ t′6=} (1)

That is, Indexe[t′=, t′6=] returns all vertices v representing configurations κ(v) = (p, i) such
that there is a tuple t′ with t′= = ~πB=(t′) and t′6= = ~πB6=(t′) and (ti, t′) ∈ B= ∧B 6=. We will
use the ED-index to store configurations and to quickly return them when e is fired.

The streaming evaluation algorithm. In Algorithm 1 we show how to evaluate a determ-
inistic chain-CEA over a stream. The main procedure is Evaluation that receives as
input a deterministic chain-CEA A = (Q,∆, q0, F) and a stream S = t1t2 This pro-
cedure is composed of four subprocedures: Init for initializing the main data structures,
FireTransitions(i) for firing the transitions in ∆ given a new tuple ti, UpdateIndices(i)
for updating each Indexe given the previous tuple ti, and, finally, Enumerate for enumerat-
ing all complex events ending at position i. For the sake of presentation, instead of having
a yield function that provides each next tuple in the stream, we explicitly index each new
phase by i (i.e. associated to tuple ti) and iterate from 1 to “infinity” (the main for-loop at
line 3). Then, given the next tuple ti, in each i-phase we fire the transitions and update the
indices with ti, and enumerate all complex events at position i. In the sequel, we will first
explain the data structures used by the algorithm to later describe each subprocedure.

Algorithm 1 maintains three structures that are used by all subprocedures: the run DAG
G = (V,E,⊥, κ), the ED-indices Indexe for each e ∈ ∆, and set of vertices Uq ⊆ V for each
q ∈ Q. As it was explained before, G will encode runs of A and Indexe will allow us to
quickly evaluate the binary predicate at e. Moreover, for each q ∈ Q the set Uq will keep the
new vertices v (i.e. configurations) at q. These sets will be useful for updating the indices
and enumerating all new results. For the sake of presentation, we assume that G, Indexe,
and Uq are defined globally and accessible by all subprocedures.

In each i-phase, the algorithm will update G to represent all runs of A over S until
position i. To that end, it will use the following methods on run DAGs. The first method,
NewMappingGraph(q0), creates a new event DAG G containing only the vertex ⊥ with

ICDT 2020

14:12 Towards Streaming Evaluation of Queries with Correlation in CEP

κ(⊥) = (q0, 0) and empty sets of vertices V and edges E. The second method, AddNewVertex,
receives an event DAG G and a configuration (q, i), and creates a fresh vertex v with
κ(v) = (q, i), and adds it to V . Finally, the method returns the vertex v. The last method,
Connect, receives as input a run DAG G, a vertex v on G, and a nonempty set of vertices
U ⊆ V , and connects v with each vertex in U , namely, (v, u) is added to E for every
u ∈ U . Although AddNewVertex and Connect could temporary break the properties of G
(e.g. acyclicity), we will use it one after the other and it will be clear that the properties of
G are always preserved.

For the structures Indexe and Uq, the reader might have noticed that in Algorithm 1 we
use a superscript Indexie and U iq. This i is denoting the “version” of Indexe and Uq at phase i.
We assume that each new i-version is always initialized as empty (i.e. U iq = ∅ and Indexie = ∅).
It is important to note that for U iq we use the index i just to simplify the presentation (i.e.
we could have reuse a set Uq in each phase). However, for Indexie the superscript is crucial
to denote the version of Indexe when, for example, a vertex v is connected with the set
Indexie[t=, t6=] (see line 17). As it will be discussed later (see Section 6), Indexe is a (partially)
persistent data structure [14] and the superscript is denoting the i-version of the structure.

We are ready to describe each subprocedure in Algorithm 1. The algorithm starts with
Init that is in charge of initializing G, Index0

e, and U0
q before phase 1. For this, a new event

DAG G is created and the vertex with the initial configuration ⊥ is assigned to U0
q0

(recall that
U iq = ∅ for i ≥ 0 by assumption). Intuitively, this represents that the initial configuration is
ready to start. For initializing Indexe, we assume without loss of generality that all outgoing
transitions from q0 use trivial predicates, namely, B = ∅ for every e0 = (q0, P,B, q) ∈ ∆.
Then (⊥, t∅, t∅) is the only triple that must contain Index0

e0
with t∅ the empty tuple.

For each new phase i, we call FireTransitions(i) that check for each transition e =
(p, P,B= ∧B 6=, q) whether it can be fired or not given the new tuple ti (line 13). For this,
we extract from ti its right-projections t= and t6= with respect to B= and B 6=, respectively.
Then we check if ti satisfies P and whether there exists a previous configuration (p, j)
such that (tj , ti) satisfies B= ∧ B 6=. We do this through Indexe, t=, and t 6= by checking
if Indexi−1

e [t=, t6=] 6= ∅. If this is the case, all pairs of configurations (p, j) and (q, i) with
(p, j) ∈ Indexi−1

e [t=, t6=] satisfy e and we must extend G with a new configuration (q, i) that
represents all these new runs. For this, we create a new node v in G for configuration (q, i)
and connect v with each vertex in Indexi−1

e [t=, t6=] (lines 16-17). Finally, the new vertex v is
added to the set U iq of new vertices in state q at phase i.

The next step in phase i is to update Indexi−1
e to its new version Indexie given ti. For

this, we use the set U ip to update each transition e = (p, P,B= ∧B 6=, q). More specifically, in
UpdateIndices(i) we iterate over each transition e = (p, P,B= ∧B6=, q) and make Indexie
equal to its previous version. Then, we extract from ti its left-projections t= and t 6= with
respect to B= and B 6=, respectively, and add (v, t=, t6=) to Indexie for each v ∈ U ip. Recall
that U ip contains all the new vertices added during FireTransitions(i) and, in particular,
κ(v) = (p, i) for each v ∈ U ip. After UpdateIndices(i) is done, the ED-index Indexie contains
all the relevant information for checking B= ∧B 6= in the next phases.

Up to this point, it is straightforward to prove the following invariant after each phase i,
which leads to the correctness proof of Algorithm 1.

I Lemma 13. Consider {U iq}q∈Q and G after the end of the i-phase. Then, for every run
(q0, 0), (q1, i1) . . . , (qn, in) of A over S with in = i, there exist v ∈ U iqn

and a path vn, . . . , v0
in G with vn = v and v0 = ⊥ such that κ(vj) = (qj , ij) for every j ≤ n. Conversely, for every
v ∈ U iq and every path vn, . . . , v0 in G with vn = v and v0 = ⊥, it holds that κ(v0), . . . , κ(vn)
is a run of A over S. Moreover, if A is deterministic, then G is safe.

A. Grez and C. Riveros 14:13

The final step at phase i is to enumerate all complex events of accepting runs. For this,
we call the subprocedure Enumerate over the set of vertices ∪q∈FU iq. By Lemma 13, we
know that G correctly encodes all runs of A until the i-th tuple of S and, moreover, G is safe
(i.e each complex event is represented by exactly one path in G). Therefore, we can easily
enumerate all complex events JAKi(S) one-by-one and without repetitions, by enumerating
all paths in G starting at vertices in ∪q∈FU iq and ending at ⊥.

It is only left to show that Algorithm 1 satisfies constant update time and constant-delay
enumeration. To do this, we have to dig deeper into the implementation of Indexe, which is
the goal of the last section.

6 A persistent index structure for equalities and disequalities

Fix a transition e = (p, P,B= ∧B 6=, q). Let (v0, t0, r0), (v1, t1, r1), . . . be a sequence of triples
such that vi is a vertex and ti, ri are tuples for all i ∈ N. Furthermore, define Index0

e = ∅
and Indexie = Indexi−1

e ∪{(vi, ti, ri)}. Call (vi, ti, ri) an insertion and i the version of Indexe.
To have constant update time and constant-delay enumeration, Indexe must satisfy the

following properties, for every pair of tuples t, r and point in time i ∈ N:
1. every new insertion in Indexe takes constant time, and
2. for all j ≤ i, Indexje[t, r] can be can be enumerated with constant-delay.
The last condition implies that Indexe is a persistent data structure [14], namely, it preserves
the previous version (i.e. Indexje) of itself whenever it is modified.

We claim that, if Indexe satisfies the above three properties, then Algorithm 1 runs with
constant update time and constant-delay enumeration. First, given that A is fixed, then it is
clear that every step of Algorithm 1 can be done in constant time, except lines 15, 17, and 24.
Checking whether Indexe[t, r] 6= ∅ (line 15) or doing an insertion in Indexe (line 24) can be
done in constant time by properties (2) and (1), respectively. Furthermore, one can execute
Connect(G, v, Indexie[t, r]) (line 17) in constant time if, instead of coding the graph G with
adjacency lists, we represent the neighborhood of each vertex v by storing t, r, and i in v
and, because of (2), we can later call Indexie[t, r] whenever needed. Finally, from Lemma 11
we know that, if the neighborhood of each vertex from a safe run DAG can be enumerated
with constant delay, then CE(U) can also be enumerated with constant delay. Given that
Indexie[t, r] allows to enumerate the neighborhood of each vertex, then the enumeration with
constant-delay follows.

In the sequel, we show how to implement Indexe in order to satisfy properties (1) and (2).

Case without disequalities. If e does not have disequalities (i.e. B6= is trivial), then for
every (v, t, r) ∈ Indexe, we can drop r and keep only (v, t). To satisfy (1) and (2) we
use a key-value index DS where keys are tuples t and each value DS[t] is a list of pairs
(u0, i0), . . . , (un, in) where each uk is a vertex and ik is a “timestamp”, namely, the phase
when uk was inserted. Then, for every new insertion (ui, ti) in phase i, we go to DS[ti] and
insert (ui, i) at the end of the list. Finally, for every query of the form Indexje[t] we can go
into DS[t], jump into the pair (uk, ik) with ik = j and enumerate (uk, ik), . . . , (u0, i0) with
constant-delay. Recall that by our RAM model of computation, we can find the list DS[t]
and find the pair (uk, ik) inside DS[t] in constant time (in the latter case, we need another
key-value index for DS[t] that, given j, finds (DS[t])[j] = (uk, j)). Furthermore, by keeping
DS[t] as a linked list, one can easily enumerate (uk, ik), . . . , (u0, i0) with constant-delay.

ICDT 2020

14:14 Towards Streaming Evaluation of Queries with Correlation in CEP

a

b

1
s1

4
2
s2

4
5
s3

3
2
s4

4
2
s5

3
5
s6

3
5
s7

3

[a]
[ab]

[b]
[ba]

a

b

1
s1

4
2
s2

4
5
s3

3
2
s4

4
2
s5

3
5
s6

3
5
s7

3
2
s8

3

[a]
[ab]

[b][ba]

Figure 3 A list of tuples s1 . . . s7 with the additional bookkeeping to support disequalities.

Case with disequalities. If e includes disequalities (i.e. B 6= is non-trivial), then we need to
extend our lists DS[t] to support insertions (vi, ti, si) and queries Indexie[t, r]. For this, extend
DS[t] as a list of triples (u0, s0, i0), . . . , (un, sn, in) where uk and ik are as before, and sk is
the tuple for supporting disequalities. Similar to the case without disequalities, for every
new insertion (vi, ti, si) at phase i we go into the list DS[ti] and insert the triple (vi, si, i) at
the end of the list. Then for every query Indexie[t, r] we can jump into the list DS[t], jump
into the triple (uk, sk, ik) with ik = i and enumerate all ul with l ≤ k such that sl 6≡ r (i.e.
sl and r are totally different). Of course, this last enumeration step cannot be done with
constant delay, unless some extra bookkeeping is added to the data structure. The rest of
this section is then devoted to do this.

For the sake of simplification, from now on assume that each list DS[t] is composed only by
tuples s1, . . . , sn. Then the problem is reduced to, given a tuple r and position i, enumerate
the set {sk | k ≤ i ∧ sk 6≡ r}. Without loss of generality, assume also that all s1, . . . , sn have
the same set of attributes A, i.e. att(sk) = A, and define d = |A|. If not, complete each
tuple sk with the missing attributes and a fresh value for each new attribute. For example,
at the left of Figure 3 we give a list s1, . . . , s7 with attributes A = {a, b} and d = 2 where
each column is a tuple (over integers) and each row is an attribute.

Let ā = a1a2 . . . am be a sequence of non-repeating attributes of A, and define Ā to be the
set of all ā. For each tuple sk and each ā, we define a tuple sk[ā] = sj with j < k. Strictly
speaking, sk[ā] will be a (backward) pointer from sk to sj that allows us to jump to sk[ā] in
constant time. Given that our analysis is in data complexity, |Ā| is of constant size, so we
only store a constant number of pointers in each tuple sk (although exponential in d). In
Figure 3, the pointers [a], [b], [ab], and [ba] of s7 are displayed with arrows.

Now, for each sk in the list DS[t] = s1, . . . , sn, the tuple sk[ā] is defined recursively as
follows. First, for every attribute a ∈ A, sk[a] points to the maximum j < k such that
sk.a 6= sj .a. Next, for each sequence ā = a1a2 . . . am, sk[ā] points to the maximum j < k

such that, for all 1 ≤ l ≤ m, sj .al 6= sk[a1 . . . al−1].al where sk[ε] = sk (ε is the empty
sequence in Ā). In the case that there is no such tuple sj , then sk[ā] is not defined, which
means we reached the beginning of DS[t].

I Example 14. Consider the list s1, . . . , s7 at the left of Figure 3 and consider tuple s7.
Then s7[a] = s5 is the last tuple before s7 with a value different than 5, and s7[ab] = s4 is
the last before s7 with s4.a = 2 6= 5 = s7.a and s4.b = 4 6= 3 = s5.b. Similarly, s7[b] = s4 is
the last node before s7 with s4.b = 4 6= 3 = s7.b, and s7[ab] = s1 is the last before s7 with
s1.b = 4 6= 3 = s7.b and s1.a = 1 6= 2 = s4.a.

A. Grez and C. Riveros 14:15

With the previous structure over s1, . . . , sn, we show how to enumerate with constant
delay the set {sk | k ≤ i∧sk 6≡ r} given a tuple r and index i. For this, we define a procedure
findNext(sk, r) that returns the last tuple sj with j < k such that sj 6≡ r (and false if sj
does not exist). Note that, if findNext runs in constant time, then we can enumerate the set
{sk | k ≤ i∧ sk 6≡ r} with constant delay: first, if si 6≡ r then we enumerate si; then for every
last node sk we enumerated, we call findNext(sk, r) to get the next one, until findNext
returns false. For computing findNext(sk, r), let s := sk−1 be the node immediately before
sk in DS[t]. In the first step we check if s[ε] fulfills the condition, namely, if s 6≡ r. If so,
we return s[ε]; otherwise, there must be some attribute a1 such that s[ε].a1 = r.a1. In the
next step we consider s[a1] and check if s[a1].a 6= r.a for each a ∈ att(R) \ {a1}; if so, we
return s[a1]. Notice we do not need to compare r with all tuples between s[a1] and s[ε]
because, by definition, each tuple s′ between both satisfy s′.a1 = s[ε].a1 = r.a1. Furthermore,
we no longer need to check the value of a1 in s[a1] because s[a1].a1 6= s[ε].a1 = r.a1. We
repeat this procedure inductively. If we are in step 1 ≤ m < d and failed in all previous
steps, then for ā = a1 . . . am ∈ Ā, assume s[a1 . . . al−1].al = r.al for every l ≤ m. If
s[ā] 6≡ r, return s[ā]; otherwise consider some attribute am+1 ∈ A \ {a1, . . . , am} such that
s[ā].am+1 = r.am+1. Then we consider s[ā · am+1] in the next step. Again, we do not need
to compare r with all elements between s[ā · am+1] and s[ā]: each tuple s′ between both
satisfies s′.am+1 = s[ā].am+1 = r.am+1. Also we do not need to compare s[ā · am+1] with
r on {a1, . . . , am+1} given that, by induction, s[ā · am+1].am+1 6= s[ā].am+1 = r.am+1 and
s[ā · am+1].al 6= s[a1 . . . al−1].al = r.al. At some point we will find some tuple that fulfills
the conditions; in the worst-case scenario we iterate d times, in which case we are sure by
definition that s[a1 . . . ad] satisfies the condition or is undefined (i.e. it does not exists). All
in all, the procedure takes O(d) steps, which is constant. Moreover, this procedure does not
use the pointers of sk, but the ones of sk−1. This is an important property that we use next
when we want to insert a new node in DS[t].

It is left only to show how to update DS[t] = s1, . . . , sn when we read a new tuple sn+1.
For this, we add sn+1 to the end of the list and define sn+1[ā] for each ā ∈ Ā in the following
way. If the list is empty, then sn+1[ā] is undefined for all ā ∈ Ā. Otherwise, for each
ā = a1 . . . am we define sn+1[ā] incrementally over the length m. Suppose that, sn+1[a1 . . . al]
is already defined for every l < m. Define the tuple r such that r.al = sn+1[a1 . . . al−1].al
for all l < m. Then, define sn+1[a1 . . . am] := findNext(sn+1, r). In other words, we collect
all values c1 = sn+1[ε].a1, c2 = sn+1[a1].a2, . . . , cm = sn+1[a1 . . . am].am and find the last
tuple s such that s.al 6= cl for every l ≤ m. As it was mentioned above, since findNext only
uses the pointers of sn, and not of sn+1 itself, the function is well-defined. Moreover, given
that findNext(sn+1, r) can be found in constant time, then sn+1[a1 . . . am] is computed in
constant time as well.

I Example 15. Suppose that we want to add the node s8 = {a→ 2, b→ 3} to the list on
the left of Figure 3. The result is shown on the right of Figure 3 where s8 is the last dashed
column. We define s8[ā] incrementally using findNext. For a, we call findNext(n8, {a→ 2}),
which tries with the last tuple s7 and, because s7.a 6= 2, we set s8[a] := s7. For b, we call
findNext(s8, {b → 3}), which first tries with s7, but s7.b = 3, so it tries with s7[b] = s4;
since s4.b 6= s7.b, we set s8[b] = s4. For sequence ab, we have s8.a = 2 and s8[a].b = 3, so we
call findNext(s8, {a→ 2, b→ 3}). As s7 conflicts in b, it tries with s7[b] = s4, but this time
it conflicts with a, so it tries with s7[ba] = s1. As s1.a 6= 2 and s1.b 6= 3, we set s8[ab] = s1.
The same procedure is done for ba, resulting in s8[ba] = s1.

By combining the key-value index DS where the keys are tuples and the values are the
extended list with the additional bookkeeping mentioned above, we get properties (1) and(2)
needed for Algorithm 1 to have constant update time and constant-delay enumeration.

ICDT 2020

14:16 Towards Streaming Evaluation of Queries with Correlation in CEP

7 Future work

This work rises several research opportunities regarding streaming evaluation of queries
with correlation in CEP. The first problem is to find a unified class of queries that includes
chain-CEA and hierarchical queries. Indeed, there are simple hierarchical queries (e.g.
R(x) ∧ S(y) ∧ T (x)) that are not definable by chain-CEA. Another relevant question is
whether partition-by queries with projection can be evaluated efficiently. Chain-CEA forbid
the use of projection and it is not clear how to extend Algorithm 1 to support it. In particular,
it is not clear how to extend this algorithm to support selection strategies [17], an important
operator in CEP to filter the number of outputs. Finally, this work studies the streaming
evaluation of equality and disequality predicates in CEP, but leaves open the evaluation of
other predicates for correlation, like inequalities.

References
1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases: the logical level. Addison-Wesley,

1995.
2 Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. Dbtoaster: Higher-order

delta processing for dynamic, frequently fresh views. Proceedings of the VLDB Endowment,
5(10):968–979, 2012.

3 A. Aho and J. Hopcroft. The design and analysis of computer algorithms. Pearson Education
India, 1974.

4 E. Alevizos, A. Artikis, and G. Paliouras. Symbolic Automata with Memory: a Computational
Model for CEP. arXiv preprint arXiv:1804.09999, 2018.

5 A. Arasu, S. Babu, and J. Widom. The CQL Continuous Query Language: Semantic
Foundations and Query Execution. The VLDB Journal, 2006.

6 Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear
delay. In International Workshop on Computer Science Logic, pages 167–181. Springer, 2006.

7 C. Berkholz, J. Keppeler, and N. Schweikardt. Answering conjunctive queries under updates.
In PODS, pages 303–318, 2017.

8 Stefano Ceri and Jennifer Widom. Deriving Production Rules for Incremental View Mainten-
ance. In VLDB, 1991.

9 Rada Chirkova, Jun Yang, et al. Materialized views. Foundations and Trends® in Databases,
4(4):295–405, 2012.

10 T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to algorithms. MIT press,
2009.

11 Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discrete Applied
Mathematics, 157(12):2675–2700, 2009.

12 G. Cugola and A. Margara. Processing flows of information: From data stream to complex
event processing. ACM Computing Surveys, 2012.

13 Nilesh N. Dalvi and Dan Suciu. The dichotomy of conjunctive queries on probabilistic
structures. In Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 11-13, 2007, Beijing, China, pages 293–302, 2007.

14 James R Driscoll, Neil Sarnak, Daniel D Sleator, and Robert E Tarjan. Making data structures
persistent. Journal of computer and system sciences, 38(1):86–124, 1989.

15 Esper Enterprise Edition website. http://www.espertech.com/. Accessed: 2018-12-21.
16 Opher Etzion, Peter Niblett, and David C Luckham. Event processing in action. Manning

Greenwich, 2011.
17 A. Grez, C. Riveros, and M. Ugarte. A formal framework for Complex Event Processing. In

ICDT, 2019.
18 A. Grez, C. Riveros, M. Ugarte, and S. Vansummeren. A Second-Order Approach to Complex

Event Recognition. arXiv preprint arXiv:1712.01063, 2017.

http://www.espertech.com/

A. Grez and C. Riveros 14:17

19 M. Groover. Automation, production systems, and computer-integrated manufacturing. Prentice
Hall, 2007.

20 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 21–30. ACM, 2015.

21 Martin Hirzel, Guillaume Baudart, Angela Bonifati, Emanuele Della Valle, Sherif Sakr, and
Akrivi Akrivi Vlachou. Stream processing languages in the big data era. ACM SIGMOD
Record, 47(2):29–40, 2018.

22 M. Idris, M. Ugarte, and S. Vansummeren. The dynamic Yannakakis algorithm: Compact
and efficient query processing under updates. In SIGMOD, 2017.

23 M. Idris, M. Ugarte, S. Vansummeren, H. Voigt, and W. Lehner. Conjunctive queries with
inequalities under updates. VLDB, 11(7):733–745, 2018.

24 M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer Science,
134(2):329–363, 1994.

25 Christoph Koch. Incremental query evaluation in a ring of databases. In Proceedings of the
twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 87–98. ACM, 2010.

26 Paraschos Koutris and Dan Suciu. Parallel evaluation of conjunctive queries. In Proceedings of
the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 223–234. ACM, 2011.

27 B. Mukherjee, T. Heberlein, and K. Levitt. Network intrusion detection. IEEE network, 1994.
28 B. Sahay and J. Ranjan. Real time business intelligence in supply chain analytics. Information

Management & Computer Security, 2008.
29 L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL, 2006.
30 L. Segoufin. Enumerating with constant delay the answers to a query. In Proceedings of the

16th International Conference on Database Theory, pages 10–20. ACM, 2013.
31 E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over streams. In

SIGMOD, 2006.

ICDT 2020

	Introduction
	Preliminaries
	Partition-by: syntax and semantics
	Chain complex event automata
	A streaming evaluation algorithm for chain-CEA
	A persistent index structure for equalities and disequalities
	Future work

