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Abstract
Positive Datalog has several nice properties that are lost when the language is extended with negation.
One example is that fixpoints of positive Datalog programs are robust w.r.t. the order in which facts
are inserted, which facilitates efficient evaluation of such programs in distributed environments. A
natural question to ask, given a (stratified) Datalog program with negation, is whether an equivalent
positive Datalog program exists.

In this context, it is known that positive Datalog can express only a strict subset of the monotone
queries, yet the exact relationship between the positive and monotone fragments of semi-positive and
stratified Datalog was previously left open. In this paper, we complete the picture by showing that
monotone queries expressible in semi-positive Datalog exist which are not expressible in positive
Datalog. To provide additional insight into this gap, we also characterize a large class of semi-positive
Datalog programs for which the dichotomy ‘monotone if and only if rewritable to positive Datalog’
holds. Finally, we give best-effort techniques to reduce the amount of negation that is exhibited by
a program, even if the program is not monotone.
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1 Introduction

Within classical model theory, several results exist that equate syntactic with semantic
restrictions of first-order logic (FOL). One example is the homomorphism preservation
theorem [22], which states that the fragment of FOL that is preserved under homomorphisms
has the same expressive power as the set of existential positive FOL formulas. Analogously,
Lyndon’s preservation theorem states that the fragment preserved under surjective homo-
morphisms equals the set of positive FOL formulas. (Recall that query q is preserved under
homomorphisms if, for all instances I, J and mappings h, h(I) ⊆ J implies h(q(I)) ⊆ q(J).)

For finite structures, which are the central interest in database theory, it is well-known
that most of such equalities fail. For example, for Lyndon’s theorem this was shown in the
80’s by Ajtai and Gurevich [4] (and by Stolboushkin [25], using a simplified counterexample).
One of the only exceptions is the homomorphism theorem, which Rossman [22] proved to
hold in the finite as well. A similar result exists in the context of Datalog. Here, Feder and
Vardi [12] showed that the fragment of semi-positive Datalog (in which negation is allowed
only over extensional atoms) preserved under homomorphisms has the same expressive power
as the positive fragment of Datalog. That the latter result does not transfer to general
fixpoint logics was shown by Dawar and Kreutzer [10].
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Figure 1 Schematic overview of the different fragments of semi-positive Datalog that we consider
and the relationship between their expressive power and the classes of homomorphically closed
queries (denoted H) and monotone queries (denotedM). Here, arrows mean subsumption.

In this paper, we study the relationship between the positive and the monotone fragment
of stratified Datalog (which allows negation in a stratified fashion) and semi-positive Datalog
(which allows negation over existential predicates only; thus consisting of the single stratum
programs). Their positive fragment is the fragment in which all forms of negation are
forbidden. Their monotone fragment is the subclass of programs expressing a monotone
query q; thus with I ⊆ J implying q(I) ⊆ q(J) for all instances I and J . It is known that
positive Datalog can only express monotone queries [3, 5, 18], and that some polynomial time
computable monotone queries are not expressible in positive Datalog [3, 10]. To the best of
our knowledge it remained open whether such queries exist that are themselves expressible
in stratified Datalog.

Our first set of contributions addresses this gap and proves the relationships that were
previously left open:

(a) The monotone fragment of stratified Datalog without inequalities is strictly more express-
ive than positive Datalog, even when restricted to two-stratum programs. (Theorem 7.2)

(b) The monotone fragment of stratified Datalog with inequalities is strictly more expressive
than positive Datalog, even when restricted to single-stratum programs. (Theorem 4.1)

(c) The monotone fragment of semi-positive Datalog without inequalities is equally expressive
as positive Datalog without inequalities. (Theorem 5.1)

Motivated by contributions (a) and (b), we explore further the expressivity gap between
the monotone fragment of semi-positive Datalog and positive Datalog:

(d) Based on the notion conflict-freedom, we identify a large fragment of semi-positive Datalog,
called negation-bounded Datalog, for which the two restrictions coincide. (Theorem 6.2)
We show that deciding conflict freedom is exp-complete, respectively, conp-complete if a
bound is assumed on the arities of relations. (Theorem 3.13)

Our motivation to study the monotone fragment and the positive fragment of Datalog with
negation is driven by an underlying interest in the declarative networking paradigm [1, 19],
which is concerned with the design of network programs in extensions of Datalog. In this
setting, it is folklore knowledge that positive Datalog programs can be computed efficiently
via asynchronous pipelined joins [19, 16], because Datalog rules without negation can fire
independently of each other, without a need for synchronisation. This is in stark contrast to
the case where rules have negated atoms, as then a round of consensus is needed to reach
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agreement on the absence of facts. A model-theoretic explanation for this observation is that
fixpoints of positive Datalog programs are robust w.r.t. the order in which facts are inserted.
Monotonicity on the other hand is recognized as the facilitating property for this observation
and as theoretical upper-bound on what can be computed efficiently [6, 16, 17, 28]. Not
surprisingly, the terms positive and monotone are often mentioned in the same breath.

Our contributions (a-b) shows that the terms positive and monotone do not always
interchange, even in the context of a language as simple as semi-positive Datalog.

We note that avoiding negation completely is usually not desirable, as this puts a significant
limitation on the type of programs that can be formulated. Nevertheless, it is common in
practice to strive for both goals: To find an optimal rewrite for a program (i.e., equivalent
with less exposure to negation) as well as to give up robustness in favour of computational
properties (i.e., less exposure to negation at the cost of some expressive power). A real-world
example of the latter is the choice of the 2-phase commit (2PC) protocol to support atomicity
of distributed transactions: While it is well-known that 2PC blocks under certain types
of failures, it is usually favoured over more robust alternatives, because their robustness
comes at the cost of additional rounds of consensus, and thus higher latency [14, 15]. When
formulated in a logical language, consensus is recognisable as universal quantification, which
in Datalog-like languages is encoded through negation.

In non-distributed contexts a similar trade-off exists, which is in terms of the number of
strata that the program admits. Indeed, while there are several well-known optimization
techniques to evaluate single-stratum programs, like semi-naive evaluation and magic-set
optimization, traditional Datalog engines evaluate the strata of a stratified Datalog program
one after another and thus benefit from techniques that reduce the number of strata.

Our final contribution elaborates on this by addressing the negation elimination problem:
(e) We describe how the exposure to negation in stratified Datalog programs can be reduced

even if the program is not monotone. Together, these techniques form a best effort
procedure to remove negated atoms from programs, which we show to run with exponential
space (respectively polynomial space if a bound on the arity of relations is assumed).
(Theorem 8.5) Given that almost all properties for Datalog are undecidable, this is
essentially the best one can hope for.

Outline

In Section 2, we give the essential definitions that are used throughout the paper. Section 3
covers the concept of conflict-free proof trees, which is central in several of our results. In
Section 4, we show that the monotone fragment of semi-positive Datalog is not expressible
in positive Datalog. In Section 5 and Section 6, we give positive results on this equality for
when no inequalities occur in the considered programs, or when a bound exists on the number
of negated facts that can occur in proof trees of a program. Finally, in Section 7, we describe
best-effort techniques that can be used to remove negation from programs independent of
whether these programs are monotone.

2 Preliminaries

In this section, we give an overview of the necessary concepts and definitions that are used
throughout the paper.

For positive integers n, henceforth we abbreviate the set {1, . . . , n} by [n].

ICDT 2020
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2.1 Schemas and Instances
As usual, a (database) schema σ is a set of relation names R with associated arities arity(R).
We often write R(r) ∈ σ, as abbreviation for R ∈ σ with arity(R) = r.

Throughout the paper, we assume the existence of an infinite domain dom of data values.
Given schema σ, a fact f over σ is then defined as a tuple f := R(t), with R(r) ∈ σ and
t ∈ domr. By Facts(σ) we denote the infinite set consisting of all facts over σ. A (database)
instance I over σ is a finite subset of Facts(σ).

2.2 Queries
A query q is a mapping from instances over some database schema σ1 to instances over
another database schema σ2. We call σ1 the input schema and σ2 the output schema of q.
As usual, we assume queries to be generic, which means that π(q(I)) = q(π(I)), for every
permutation π of dom.

For two instances I and J over σ1, we call a mapping h a homomorphism from I

to J , if h(I) ⊆ J . We say that query q is preserved under homomorphisms (also called
strongly monotone [3]) if for every homomorphism h from some instance I to instance J ,
h(q(I)) ⊆ q(J). We say that q is monotone if I ⊆ J implies q(I) ⊆ q(J), for every pair of
instances I and J , Henceforth, we denote the class of all queries that are preserved under
homomorphisms by H and the class of all monotone queries byM.

A query q is contained in a query q′, denoted q ⊆ q′, if q(I) ⊆ q′(I) for every instance I.

2.3 Datalog with Negation
We define semi-positive Datalog. For this, let var be an infinite domain of variables, disjoint
from dom, and let σ be a schema. An atom R(x) over σ consists of a relation name R(r) ∈ σ
and a tuple x from varr. We do not allow constants in atoms. For a set U of atoms, we
write Vars(U) to denote the set of all variables used by the atoms in U .

A Datalog rule τ over σ has the following form:

H(y)← R1(x1), . . . , R`(xk),¬S1(z1), . . . ,¬Sm(zm), β1, . . . , βn.

Here, for every i ∈ [`] and j ∈ [m], H(y), Ri(xi) and Sj(zj) are atoms over σ, and, for
every k ∈ [n], βi is an inequality of the form x 6= y, with {x, y} ⊆ var. Henceforth, we
also refer to H(y) by headτ (the head of τ); to {Ri(xi) | i ∈ [`]} by Posτ (the positive body
atoms in τ); to {Si(zi) | i ∈ [m]} by Negτ (the negated body atoms in τ); and finally to
{β1, . . . , βn} by Ineqτ (the inequalities in τ). As usual, we only consider safe rules, thus with
Vars(Negτ ∪ Ineqτ ∪ {headτ}) ⊆ Vars(Posτ ).

For a schema σ, a Semi-positive Datalog program P over σ is a set of Datalog rules P .
As usual, we call relation names from σ that occur in the head of a rule in P intensional
and all others extensional. For rules τ in P , the set Negτ must contain only atoms with
extensional relation names. By Sp-Datalog(6=) we denote the class of all semi-positive
Datalog programs. We also consider the following subclasses: Sp-Datalog (semi-positive
Datalog without inequalities) denotes the programs in which Ineqτ is empty for every rule τ ;
Pos-Datalog(6=) (positive Datalog) denotes the programs in which Negτ is empty for every
rule τ ; and Pos-Datalog (Positive Datalog without inequalities) denotes the intersection of
the latter two, thus in which Ineqτ and Negτ are empty for every rule τ .

Since we are interested in Datalog programs that express queries, we assume that the
schema σ that a Datalog program P is defined over has distinguished input and output
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relation names. We denote these by in(P ) ⊆ σ and out(P ) ⊆ σ, respectively. When not
explicitly mentioned, we assume that in(P ) coincides with the extensional relation names in
P and that out(P ) = {Output(k)}, for some integer k ≥ 0.

I Example 2.1. As a running example throughout this paper, we consider semi-positive Data-
log program P∆. This program is defined over schema σ := {Edge(2),T1(2),T2(2),Output(2)},
with in(P∆) = {Edge} and out(P∆) = {Output}, and has the following rules:

T1(x, y)← Edge(x, y),Edge(y, z),¬Edge(z, x). (1)
T2(x, y)← Edge(x, y),¬Edge(y, z),Edge(z, x). (2)

Output(x, y)← Edge(x, y),Edge(y, z),Edge(z, x). (3)
Output(x, y)← T1(x, y),T2(x, y), x 6= y. (4)

Intuitively, P∆ expects a directed graph as input and asks for edges (a, b) for which one
of the following properties is true: (a, b) is part of a triangle; or (a, b) is part of two open
triangles, one in which the edge to a is missing, the other in which the edge from b is missing.
We will later show (in Proposition 3.12) that P∆ is of particular interest because it expresses
a monotone query.

2.4 Proof Tree Semantics
The semantics of Datalog is usually defined bottom-up, in terms of an immediate consequence
operator. We use the equivalent top-down definition via proof trees. (We refer to [2] for a
detailed discussion on their equivalence.) For a formal definition, we first define a prevaluation
v for a Datalog rule τ as a mapping from the variables occurring in τ to values from dom. A
prevaluation v for τ is a valuation for τ if each inequality x 6= y ∈ Ineqτ admits v(x) 6= v(y).
Before defining the concept proof tree, we first define a slightly weaker concept, which we
call a candidate proof tree:

I Definition 2.2. Given a fact f , instance I and program P ∈ Sp-Datalog(6=), a candidate
proof tree T of f from I and P is a labeled tree with the following properties:
1. Each vertex is labeled with a fact;
2. Each leaf is labeled with a fact g over an extensional relation name, and with either sign

‘+’, if g ∈ I, or ‘-’, if g 6∈ I.
3. The root is labeled with f ;
4. Each intermediary vertex is associated with a rule τ ∈ P and prevaluation v for τ , such

that its label equals v(headτ ), and for each atom A ∈ Bodyτ it has a child whose label
equals v(A). If A has an extensional relation name this child must have a sign that equals
‘+’ if A ∈ Posτ and ‘-’ if A ∈ Negτ .

Unless stated otherwise, we assume throughout the paper that the root of a candidate
proof tree is always labeled with a fact from an output relation. Further, we denote by
Fringe+

T the set of all extensional facts that occur as labels for leafs in T with sign ‘+’, and
by Fringe−T the set of extensional facts for leafs with sign ‘−’.

I Definition 2.3. A proof tree T of f from I and P ∈ Sp-Datalog( 6=) is a candidate proof
tree of f from I and P in which all prevaluations are valuations (for the respective rule),
Fringe+

T ⊆ I, and Fringe−T ∩ I = ∅.

We sometimes refer to a (candidate) proof tree T from program P without specifying a fact
or instance. In that case, we assume that T is a (candidate) proof tree of the fact that its
root is labeled with, and that it is a proof tree from some instance I and P .

ICDT 2020
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Every semi-positive Datalog program P expresses a unique query qP : in(P ) 7→ out(P )
that is defined by P and its distinguished input and output relation names. Its evaluation
over instances I ⊆ Facts(in(P )), denoted by qP (I), is defined by the set of all facts f ∈
Facts(out(P )) for which a proof tree of f from I and P exists. Henceforth, we say that two
programs P1 and P2 having the same input and output relation names are equivalent if they
express the same query, thus with qP1(I) = qP2(I) for every instance I ⊆ Facts(in(P1)). For
every class of Datalog programs we consider also the class of queries that are expressed
by these programs. To distinguish between the two, the latter are always in boldface.
For example, Sp-Datalog(6=) refers to the class of queries expressible with Sp-Datalog(6=)
programs.

3 Conflicts

In this section, we introduce the main machinery that we use to reason about the relationship
between proof trees from different programs. We start with two simple constructions. Given
a semi-positive Datalog program P , P+ denotes the program in Pos-Datalog(6=) obtained
by removing all negated atoms from rules in P ; P ∗ denotes the program in Pos-Datalog
obtained by removing, in addition to the negated atoms, also all inequalities from rules
in P+. We leave the schema definitions untouched, thus in(P ) = in(P+) = in(P ∗), and
out(P ) = out(P+) = out(P ∗).

I Example 3.1. For an example of the constructions, take program P∆ from Example 2.1.
Then, P+

∆ contains the following rules:

T1(x, y)← Edge(x, y),Edge(y, z).
T2(x, y)← Edge(x, y),Edge(z, x).

Output(x, y)← Edge(x, y),Edge(y, z),Edge(z, x).
Output(x, y)← T1(x, y),T2(x, y), x 6= y.

Program P ∗∆ has the next rules:

T1(x, y)← Edge(x, y),Edge(y, z).
T2(x, y)← Edge(x, y),Edge(z, x).

Output(x, y)← Edge(x, y),Edge(y, z),Edge(z, x).
Output(x, y)← T1(x, y),T2(x, y).

Both constructions result in well-defined Datalog programs. Particularly notice that
the constructions preserve safeness of the programs by only removing negated atoms and
inequalities, whose variables all occur also in non-negated atoms (due to safeness of the
original program P ).

We conclude this section with the following observation:

I Proposition 3.2. Let σ be a database schema and P a semi-positive Datalog program over
σ. Then, qP ⊆ qP+ ⊆ qP∗ .

3.1 Fringe and Inequality Conflicts
To reason about the other direction of the containments in Proposition 3.2 (that is, qP∗ ⊆ qP
and qP+ ⊆ qP ), we need to reason about subtle differences in the proof trees that these
programs admit. For this purpose, our distinction between proof trees and candidate proof
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trees comes in handy. First, recall that every proof tree T from an instance I and program
P ∈ Sp-Datalog( 6=) is a candidate proof tree from I and P (by definition). The opposite
direction is not true, because a candidate proof tree T may admit

fringe conflicts, a term we use to refer to facts in Fringe+
T ∩ Fringe

−
T ; and

inequality conflicts, a term we use to refer to inequalities in rules (associated to vertices
of T ) that are not made true by the associated prevaluation.

I Example 3.3. For an example of a proof tree with fringe conflicts, consider the proof tree
for program P∆ from Example 2.1 that is given below.

(T1(a, b))

(Output(a, b))

(T2(a, b))

(Edge(a, b),+)
(Edge(a, b),+)

(Edge(b, c),+)
(Edge(c, a),−)

(Edge(b, c),−)
(Edge(c, a),+)

The following relationship applies:

I Proposition 3.4. A candidate proof tree T from semi-positive Datalog program P is a
proof tree from P if and only if T is free of fringe and inequality conflicts.

3.2 Expansion Trees
A special type of candidate proof tree is the (unfolding) expansion tree [9], which we generalize
here for semi-positive Datalog:

I Definition 3.5. An expansion tree is a candidate proof tree T in which every intermediate
vertex n (including the root) is associated with a rule τ and prevaluation V , such that V
maps every pair of different variables not occurring in headτ onto different values that all
occur only in the subtree of T with n as root.

While a candidate proof tree for a semi-positive Datalog program is not necessarily an
expansion tree, it always is the homomorphic image of an expansion tree. Henceforth we use
the following naming conventions: We denote expansion trees by Te. For a mapping g over
dom and candidate proof tree T , g(T ) denotes the candidate tree obtained by substituting
all facts f occurring as labels in T and all valuations v associated to vertices in T by their
respective images g(f) and g ◦ v under g.

I Proposition 3.6. Let P ∈ Sp-Datalog(6=). For every candidate proof tree T from P , there
is an expansion tree Te and mapping g such that g(Te) = T . Moreover, if T is free of fringe
and inequality conflicts, then Te is free of fringe and inequality conflicts.

I Example 3.7. The below tree is an example expansion tree for P∆.

(T1(a, b))

(Output(a, b))

(T2(a, b))
(Edge(a, b),+)
(Edge(a, b),+)
(Edge(b, c),+)
(Edge(c, a),−)

(Edge(b, d),−)
(Edge(d, a),+)

ICDT 2020
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3.3 Conflicts and Monotonicity
In the remainder of this section, we show the relevance of conflicts in the relationship between
monotone and positive programs. First, we distinguish two categories of programs depending
on which conflicts their candidate proof trees admit.

I Definition 3.8. Let P ∈ Sp-Datalog(6=). Program P is conflict-free if each candidate proof
tree from P without inequality conflicts is without fringe conflicts. Program P is free of
explicit conflicts if each expansion tree from P is without fringe and inequality conflicts.

The intuition behind the term explicit conflict is that expansion trees are less diverged
from the rules of the program than arbitrary candidate proof trees are, and that conflicts in
expansion trees therefore can be observed more easily than fringe conflicts by looking at the
wiring of variables throughout rules in the program.

I Proposition 3.9. For P ∈ Sp-Datalog( 6=) we have the following equivalences:
1. qP = qP∗ if qP ∈ H and P is free of explicit conflicts;
2. qP = qP+ if qP ∈M and P is conflict-free.

Proof. Since qP ⊆ qP∗ and qP ⊆ qP+ follow from Proposition 3.2, we need to show only
qP∗ ⊆ qP and qP+ ⊆ qP .
(1) Let I be an arbitrary instance and f an arbitrary fact in qP∗(I). Let T ∗ denote the proof
tree of f from I and P ∗. We show f ∈ qP (I).

By Proposition 3.6, there exists an expansion tree T ∗e for P ∗ that is without fringe and
inequality conflicts and a mapping g, with g(T ∗e ) = T ∗. It follows from the construction of
P ∗ that T ∗e can be extended to an expansion tree Te from P : For vertices n, let τ∗n and Vn
denote its associated rule and valuation. Then let Te be the candidate proof tree obtained
from T ∗e by replacing, for each vertex n, its rule τ∗n by a rule τ from P with Posτ = Posτ∗ ;
and by adding, for every fact g in Vn(Negτ ), a leaf under n with label g and sign ‘−’. Note
that rules τ exist by definition of P ∗ and that Te is an expansion tree because rules in P are
safe and T ∗e is an expansion tree. Furthermore, rootTe

= rootT ∗e and Fringe+
Te

= Fringe+
T ∗e

.
It follows from the assumption that P is without explicit conflicts that Te is free of

fringe and inequality conflicts, thus with rootTe ∈ qP (Fringe+
Te

), and from qP ∈ H and
homomorphism g with g(Fringe+

Te
) = I, that f = g(rootT ∗e ) = g(rootTe

) ∈ qP (I).
(2) Let I be an arbitrary instance over in(P ), and f an arbitrary fact in qP+(I).

To show f ∈ qP (I), we observe that the presence of f in qP+(I) implies the existence
of a proof tree T + for P+ with root f and Fringe+

T + ⊆ I. By Proposition 3.6, there is an
expansion tree T +

e for P+ that is without fringe and inequality conflicts; and a mapping g,
with g(T +

e ) = T . We observe that T +
e can be extended to an expansion tree Te for P by

adding ‘−’ signed leafs. Indeed, for every intermediate vertex n in T +
e , say with label fn

and associated rule τn and valuation vn, there is a rule τ ∈ P that differs from τn only w.r.t.
the set of negated atoms (by construction of P+). Due to safeness of rules, negated atoms
do not introduce new variables that are not already in τn, hence, for every A ∈ Negτ we just
add a new leaf under vertex n with label vn(A) and sign ‘−’.

Another consequence of the safeness of rules is that g is a total mapping for Te. Moreover,
since P is free of fringe conflicts, and g(Te) is a correctly defined candidate proof tree, it
must be that g(Te) is free of fringe conflicts. Since all inequalities in Te already exist in T +

e ,
the fact that g(T +

e ) is free of inequality conflicts transfers to g(Te).
As a consequence, T := g(Te) is a proof tree for f from P , with Fringe+

T = Fringe+
T + ,

and Fringe+
T ∩ Fringe−T = ∅, thus f ∈ qP (Fringe+

T ). We conclude from qP ∈ M and
Fringe+

T = Fringe+
T + ⊆ I that f ∈ qP (I). J
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Proposition 3.9(1) reveals a relation that was also observed by Feder and Vardi [12], albeit
less explicit, to show the following result:

I Theorem 3.10 ([12]). Sp-Datalog(6=) ∩H = Pos-Datalog.

More precisely, the construction in [12] implies the next proposition, which together with
Proposition 3.9 is a proof for Theorem 3.10.

I Proposition 3.11. For every program P ∈ Sp-Datalog(6=) there is a program P ′ ∈
Sp-Datalog(6=) that is free of explicit conflicts and with qP = qP ′ .

For an example of a program that is monotone but not conflict-free, one can take program
P∆ from Example 2.1.

I Proposition 3.12. Program P∆ expresses a monotone query and is not conflict-free.

Since each program in Pos-Datalog(6=) is conflict-free by definition, it is immediate that
a query q ∈ Sp-Datalog( 6=) ∩M is in Pos-Datalog(6=) if and only if it can be expressed
by a program in Sp-Datalog(6=) that is conflict-free. We conclude this section by showing
that conflict freedom is a decidable property.

I Theorem 3.13. The problem of deciding whether a given program in Sp-Datalog( 6=) is
conflict-free is polynomial-time equivalent with the non-satisfiability problem for programs in
Pos-Datalog(6=):

exp-complete in general; and
conp-complete if a bound on the arity of relations is assumed.

4 Semi-Positive Datalog

In this section, we answer one of the central questions of the paper and show that not all
monotone queries expressible in semi-positive Datalog have an equivalent in positive Datalog.

I Theorem 4.1. Sp-Datalog( 6=) ∩M 6⊆ Pos-Datalog(6=).

The proof for Theorem 4.1 is similar to a recent proof by Rudolph and Thomazo [23],
which shows that the homomorphically closed queries expressible in order-invariant semi-
positive Datalog do not all have an equivalent in order-invariant Datalog without negation
(and without inequality). Before proceeding with the details, we first give a definition of
order-invariant Datalog.

4.1 Order-Invariant Semi-Positive Datalog
Let σ be a database schema and σ≤ the extension of σ with relation names Succ(2), Min(1),
and Max(1). (We assume of course that Succ, Min and Max do not already occur in σ.)
Then for an instance I over σ, by I≤ we denote the extension of I over σ≤ in which Succ is
interpreted as the successor relation of some linear order over the active domain of I, and in
which Min and Max are interpreted to contain exactly the minimal, respectively maximal,
value that occurs in I according to the assumed linear order.

An order-invariant Sp-Datalog(6=) program P over schema σ then is defined as an
Sp-Datalog(6=) program, say P ′, over schema σ≤, whose output is independent of the chosen
linear order. That is, qP ′(I≤) = qP ′(I ′≤), for every instance I over σ and pair of extensions
I≤ and I ′≤ of I. Due to the latter, the semantics of qP itself can be defined in terms of
instances I over σ, as qP (I) := qP (I≤) for arbitrary extension I≤ of I. Henceforth, we refer
by Sp-Datalog(≤, 6=) to the class of order-invariant Sp-Datalog(6=) programs.
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4.2 The perfect Matching Problem over Ordered Graphs
The query qPM that we use to show Sp-Datalog(6=) ∩M ( Pos-Datalog(6=) expresses a
variant of the perfect matching problem. Given a graph G = (V,E), the perfect matching
problem asks whether a subset M ⊆ E of edges exists such that every vertex in V is
incident to exactly one edge in M . For the definition of qPM , consider schemas σ1 :=
{Edge(2),Next(2),First(1), Last(1)} and σ2 := {Output(0)}. Given an instance I over σ1, we
denote by Ge the graph obtained by interpreting relation Edge as edge relation and its set
of end-points as vertices. Graph Gn is defined analogously, by interpreting relation Next as
edge relation and its set of end-points as vertices. We say that a vertex has label first if its
associated value is in relation First and that it has label last if its value is in relation Last.

I Definition 4.2 (Separating Query). Let qPM be the boolean query over input schema σ1
and output schema σ2, and with Output() ∈ qPM (I) if (and only if) one of the following
conditions is true:
1. At least two different vertices have label first or last;
2. Some vertex in Gn has either label first and an incoming edge, label last and an

outgoing edge, two incoming edges, two outgoing edges, or a self-loop; or
3. For set C, defined as the vertices in connected components of Ge that connect a vertex

with label first to one with label last, graph Ge induced by the vertices in C has a
perfect matching.

Next, we show that qPM has the desired properties.

I Proposition 4.3. The following properties are true for qPM :
1. qPM is in Sp-Datalog( 6=);
2. qPM is monotone; and
3. qPM is not in Pos-Datalog(6=).

Proof Sketch. (1) Since the perfect matching problem is well-known to be in ptime, we can
assume an implementation in Sp-Datalog(6=). The latter is due to another well-known result,
that the language Sp-Datalog(≤, 6=) captures exactly the ptime computable queries [2].

To write a program in Sp-Datalog(6=) that expresses qPM , we make use of program P (in
which the relations Succ, Min, and Max are now intensional and no longer interpreted), and
feed it a conservative fragment of the extensional relations Next, First, and Last.
(2) Monotonicity can be verified easily from Definition 4.2.
(3) The proof is analogous to a recent proof by Rudolph and Thomazo [23] for the statement
Sp-Datalog(≤) ∩H ( Pos-Datalog(≤). While our query is slightly different to the query
used in [23] and admits inequalities, it uses the same key ingredients:
(a) A result by Razborov [21], which states that no family of monotone boolean circuits

exists that answers the perfect matching problem and has circuits of polynomial size in
the number of input gates.

(b) The existence of an algorithm that converts programs in Pos-Datalog(6=) that express
qPM into a family of monotone boolean circuits that answers the perfect matching
problem and has circuits of polynomial size in the number of input gates. J

5 Semi-Positive Datalog without Inequalities

This section is devoted to showing Theorem 5.1.

I Theorem 5.1. Sp-Datalog ∩M = Pos-Datalog.
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Theorem 5.1 is a consequence of the observation that, for semi-positive Datalog without
inequalities, the fragment of monotone queries and the fragment of queries preserved under
homomorphisms collapses (cf. Proposition 5.2). That is, Sp-Datalog∩M = Sp-Datalog∩
H. Given this observation, Theorem 5.1 follows directly from Theorem 3.10.

I Proposition 5.2. For a program P ∈ Sp-Datalog, qP ∈M implies qP ∈ H.

Proof. We show that for an arbitrary fact f , instance I, and homomorphism h from I to
h(I), the fact h(f) is in qP (h(I)). The proof is by an iterative procedure that searches for
an instance I(i), with the following properties:
1. There is a proof tree T of f from I(i) and P ;
2. adom(I(i)) = adom(I);
3. h(I(i)) = h(I); and
4. h(Fringe−T ) ∩ h(Fringe+

T ) = ∅.

Suppose that the described instance I(i) exists, then the combination of Property (1)
and Property (2) allows to apply homomorphism h to all valuations and facts associated
to vertices in T . The result is a candidate proof tree T ′ from P with Fringe+

T ′ ⊆ h(I(i))
and rootT ′ = h(f). Since rules in P have no inequalities, T ′ is without inequality conflicts.
Property (4) implies that T ′ is also without fringe conflicts, thus T ′ is a proof tree of h(f) from
P and Fringe+

T ′ witnessing h(f) ∈ qP (Fringe+
T ′). Now, the desired result h(f) ∈ qP (h(I))

follows from Property (3), implying Fringe+
T ′ ⊆ h(I(i)) = h(I), and qP ∈M.

It remains to describe the procedure to find I(i), which uses an inductive argument
taking conditions (1), (2), and (3) as invariants over the tentative instances that are being
considered. As base case, we observe that the three invariants are true on I itself, by taking
as T the proof tree of f from I and P . We now refer to I as I(0).

If Property (4) is true on the currently considered instance I(i), then we terminate the
procedure. Otherwise, (†) there must be a fact g ∈ Fringe−T , such that h(g) ∈ h(Fringe+

T ) ∩
h(Fringe−T ), with T the proof tree as defined by Property (1). It also follows from Property (1)
that g 6∈ Fringe+

T ⊆ I(i).
We now construct a new instance I(i+1) by adding g to I(i). Clearly, Property (3) is

true, since h(g) ∈ h(Fringe+
T ) ⊆ h(I(i)) = h(I), which implies h(I(i+1)) = h(I(i)) = h(I).

Property (2) is straightforward as well, since the safeness of rules in P and g ∈ Fringe−T imply
adom(g) ⊆ adom(Fringe+

T ) ⊆ adom(I(i)) = adom(I). Finally, I(i) ⊆ I(i+1) and qP ∈ M
imply f ∈ qP (I(i+1)), which means that Property (1) is also as well.

Since the active domain of I is fixed and the number of facts g 6∈ I with adom(g) ⊆ adom(I)
is finite, eventually I(i) cannot grow further and (†) must fail. From this, we conclude that
the desired instance I(i) exists. J

6 Negation-Bounded Datalog

In Section 4, we have formally shown that some monotone queries in Sp-Datalog(6=) have no
equivalent in Pos-Datalog( 6=). This result implies that restricting ourselves to write programs
in the positive variant of Sp-Datalog(6=) as a convenient way to write monotone programs in
Sp-Datalog(6=), comes at the cost of some loss in expressive power. While a theoretician may
be satisfied with this observation alone, a practitioner would likely wonder whether this gap
matters in practice, for example, within a specific application domain. To help answer this
question, an interesting direction is to consider conservative fragments of Pos-Datalog( 6=) for
which the monotone and positive fragment coincide. In Section 5, we have already seen that
programs in Sp-Datalog have this property.
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In this section, we define an orthogonal fragment, which we call negation-bounded Datalog.

I Definition 6.1. Let P ∈ Sp-Datalog( 6=) be over some schema σ and R ∈ σ. Program P is
negation-bounded if a positive integer k exists, such that for every instance I over σ and
fact f ∈ qP (I), there is a proof tree T of f from I and P with |Fringe−T | ≤ k.

We immediately proceed with the main result of this section:

I Theorem 6.2. For every program P in Sp-Datalog(6=) that is negation bounded, qP ∈M
implies there is a program P ′ in Pos-Datalog(6=), with qP ′ = qP .

For a proof of Theorem 6.2, we combine Proposition 3.9 with the below result.

I Proposition 6.3. For every program P in Sp-Datalog(6=) that is negation bounded, there
is a conflict-free program P ′ in Sp-Datalog( 6=), with qP = qP ′ .

The proof of Proposition 6.3 uses a technique that is inspired by the indexing technique
in [12] to show Theorem 3.10, but rather than statically annotating relation names with
associated dependencies, we encode indexes in a prefix of the intensional relations, which
serve as pivot through the program evaluation. More precisely, program P ′ encodes the
facts whose absence it observes while simulating program P in the prefix of intensional
relation names and fires a rule of P in the simulation only if it is consistent with the index at
hand. That is, if the index does not encode a fact that is required by the rule or any of its
children. The latter is enforced via inequalities. (We note that similar techniques are used
in, e.g., [27, 8, 17].) As the proof of Proposition 6.3 is tedious, we illustrate the construction
by an example.

I Example 6.4. Let P∆ be again the program from Example 2.1. We notice that expansion
trees for P∆ have at most two negated atoms, corresponding, respectively, to the negated
atom in the first and second rule of program P∆. Program P∆ is thus clearly negation
bounded. After applying the construction underlying Proposition 6.3, we obtain the following
rules. First, two rules to collect in relation Adom the active domain of the input instance:

Adom(x)← Edge(x, y). Adom(x)← Edge(y, x).

Then, for every choice β ∈ {x 6= z, y 6= x}, γ ∈ {y 6= z, z 6= x}, χ ∈ {x 6= y, y 6= z} of
inequalities, we consider variants of the T1 and T2 generating rules in P∆, in which their
negated facts are encoded as a prefix in the head of the rule:

T1(z, x, x2, y2, x, y)←Edge(x, y),Edge(y, z),¬Edge(z, x),Adom(x2),Adom(y2), β, γ.
T2(x1, y1, y, z, x, y)←Edge(x, y),¬Edge(y, z),Edge(z, x),Adom(x1),Adom(y1), χ, γ.

Rules without negated atoms forward the prefix of body atoms that are over intensional
relation names, or (if no intensional relation name occurs in the body) generate facts with
arbitrary prefix:

Output′(x1, y1, x2, y2, x, y)←Edge(x, y),Edge(y, z),Edge(z, x),
Adom(x1),Adom(y1),Adom(x2),Adom(y2).

Output′(x1, y1, x2, y2, x, y)←T1(x1, y1, x2, y2, x, y),T2(x1, y1, x2, y2, x, y), x 6= y.
Output(x, y)←Output′(x1, y1, x2, y2, x, y).
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Finally, we have to deal also with proof trees for P∆ that have no leafs with sign ‘−’. To
support this case, we augment the program with all rules from P∆ that are without negation:

Output(x, y)←Edge(x, y),Edge(y, z),Edge(z, x).

It is easy to verify that the program consisting of the above listed rules is conflict-free,
since every fringe conflict now implies an inequality conflict. Equivalence follows from the
observation that the constructed program simulates P∆ with some additional bookkeeping.

We remark that the concept negation boundedness is related to the well-known concept
boundedness for Datalog programs: A program P in Sp-Datalog( 6=) is bounded if there is a
positive integer k such that, for every instance I and fact f ∈ qP (I), there is a proof tree
of f from I and P with depth at most k. Since the latter implies existence of a bound on
the size of Fringe+

T , and thus on the domain of Fringe+
T ∪ Fringe−T , it follows directly that

boundedness implies negation boundedness. Not surprisingly, the decision problem that asks
whether a given program P ∈ Sp-Datalog( 6=) is negation bounded is undecidable.

I Proposition 6.5. No algorithm exists that decides for an arbitrary program
P ∈ Sp-Datalog(6=) whether it is negation bounded.

Analogously to the classical result that the class of bounded programs is equally ex-
pressive as UCQ(¬, 6=) (the subset of Sp-Datalog( 6=) programs in which the body of rules
are constructed solely out of extensional relation names), we have the following syntactical
characterisation:

I Proposition 6.6. For every negation bounded program P in Sp-Datalog(6=) there is an equi-
valent program P ′ in Sp-Datalog(6=) that has a stratification P1, P2, with P1 ∈ Pos-Datalog(6=)
and P2 ∈ UCQ(¬, 6=) (with no intensional relation name of P2 occuring in P1).

Finally, we remark that the class of negation bounded programs can be extended a little,
for example, by requiring a bound on the number of negated atoms only for relation symbols
that occur positively in the program; or, by extension, for relation symbols that are not
excluded from generating fringe conflicts due to some other syntactic reason. It is currently
unclear whether a more fundamental generalization of Theorem 5.1 and Theorem 6.2 exists.

7 Stratified Datalog

A stratified Datalog program P is a set of rules as defined in Section 2.3, for which a
stratification exists in a sequence of disjoint subprograms P1, . . . , Pm, with the following
constraints: Every intensional relation name R in P occurs as a head in at most one
subprogram Pi (we refer to Pi as the stratum in which R is defined).

If an intensional relation name occurs positively in the body of a rule in subprogram Pi,
then it is defined in a subprogram Pj , with j ≤ i.
If an intensional relation name occurs negated in the body of a rule in subprogram Pi,
then it is defined in a subprogram Pj , with j < i.

We denote the class of stratified Datalog programs by Str-Datalog(6=). Since the subprograms
Pi can be considered semi-positive, the semantics is defined as follows: qP (I) = qPm

◦ qPm−1 ◦
· · · ◦ qP1(I). Here, we assume that for the subprograms Pi, with i < m all relation names are
output relation names, and for Pm only the distinguished output relations as defined by P .
Similarly as before, we write Str-Datalog( 6=) to denote the class of all queries expressible
by programs in Str-Datalog(6=).

The following corollary is a straightforward consequence of Theorem 4.1.
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I Corollary 7.1. Str-Datalog( 6=) ∩M 6⊆ Pos-Datalog( 6=).

Despite Theorem 5.1, the gap between the monotone and positive fragment of stratified
Datalog remains also without the interpreted inequality relation. The proof argument
combines Theorem 4.1 with the observation that inequality is expressible through negation
over intensional relation names.

I Theorem 7.2. Str-Datalog ∩M 6⊆ Pos-Datalog( 6=).

8 A Best-Effort Approach to Negation Elimination

In this section, we consider the scenario in which an arbitrary Str-Datalog( 6=) program is
given and we are interested in finding an equivalent program with better computational
properties (i.e., with less exposure to negation). Here, a program without negation is the
ideal. Unfortunately, results like Proposition 3.9 do not help much to find such a program:

Firstly, the question if a given program in semi-positive Datalog is monotone is undecidable.
Therefore, we cannot automatically infer whether a given program is in one of the desired
subclasses.

I Proposition 8.1. Testing whether a program in Sp-Datalog is monotone is undecidable.

Secondly, these results only indicate whether an ideal equivalent rewriting (i.e., a rewriting
to a positive program) “certainly exists” or “may not exist”. They do not help, especially in
the latter case, to find such a program. Thirdly, even if no equivalent positive program exists,
we may still be interested in finding an equivalent program with less exposure to negation.

The section proceeds as follows: In Section 8.1, we define a formal cost measure that
allows to compare programs with negation. In Sections 8.2 and 8.3, we describe best-effort
approaches towards improving the cost of a program as defined by this cost measure.

8.1 Cost Measure
We base our cost measure on observations from distributed Datalog evaluation (cf. Section 1):
In an asynchronous distributed context (e.g., [19, 16]), deciding the absence of a fact is
significantly more difficult than deciding its presence, as it requires a round of consensus
between the participating machines. One way to translate this observation into a formal cost
measure is by hypothesising a correlation between the time it takes to derive an output fact
for the first time and the minimal number of negated facts that its proof trees admit.

Notice that, in this hypothesis, positive programs are a conservative ideal (because proof
trees of positive programs admit no negated facts), but programs that admit negated atoms
are not necessarily considered worse (i.e., if the rules with negated atoms are redundant).

For a formal definition, let P be an arbitrary program in Sp-Datalog(6=). We call a proof
tree T from P minimal if no other proof tree T ′ from P exists that agrees with T on the label
of its root, and has Fringe+

T ′ ⊆ Fringe+
T and Fringe−T ′ ⊆ Fringe−T . Clearly, for every instance

I and fact f ∈ qP (I), we can always assume that a witnessing proof tree T exists that
is minimal. Now, for two programs P1, P2 ∈ Sp-Datalog( 6=), we write cost(P1) ≤ cost(P2)
if for every minimal proof tree T1 for P1, with root an output fact, there is a proof tree
T2 for P2 that agrees with T1 on the label of its root, and with Fringe+

T2
⊆ Fringe+

T1
and

Fringe−T2
⊆ Fringe−T1

. We write cost(P1) < cost(P2) if cost(P1) ≤ cost(P2) and for at least
one such pair of proof trees T1 and T2, we have Fringe−T2

( Fringe−T1
. We notice that our

cost measure is defined over Sp-Datalog(6=) programs only, as we will use it to compare
single-stratum fragments of Str-Datalog( 6=) programs.
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As can be expected, deciding properties about cost(·) quickly become undecidable.

I Proposition 8.2. No algorithm exists that can decide for arbitrary equivalent programs
P1, P2 ∈ Sp-Datalog(6=) if cost(P1) < cost(P2).

8.2 Containment Testing

We start with an exploration of containment tests. Given a program P ∈ Sp-Datalog(6=), we
call a program P ′ ∈ Sp-Datalog(6=) a superior equivalent of P if it is obtained by removing
(some) negated atoms in rules from P . Clearly, P+ is the extreme case, but now we are
interested in programs P ′ that remain equivalent to the original program P . We note that
qP ⊆ qP ′ holds for every superior equivalent P ′ of P (the proof is a simple generalization of
the proof argument for Proposition 3.2). Unfortunately, the other direction is undecidable.

I Proposition 8.3. No procedure exists that decides qP ′ ⊆ qP for arbitrary programs P ∈
Sp-Datalog(6=) and superiorequivalent P ′ of P .

To overcome this limitation, we test for UCQ(¬, 6=) containment instead (which is conexp-
complete [13], respectively Πp

2-complete [26, 20], if the arity of relations is bounded).
To formulate the next proposition, we need some additional notation: Given a program

P ∈ Sp-Datalog(6=), we denote by #(P ) the program in UCQ(¬, 6=) obtained by adding a
prime to all relation names occurring in the heads of rules (i.e., T(x, y) ← E(x, z),T(z, y)
becomes T′(x, y)← E(x, y),T(z, y)). Then, for P1, P2 ∈ Sp-Datalog( 6=) we test q#(P1) ⊆ q#(P2)
instead of qP1 ⊆ #(P2). Alternatively, one can consider uniform containment [24], which
means that containment is tested for the queries described by P1 and P2, but taking as
input schema the set of all extensional and intensional relation names of P1 (resp, P2) and
as output schema the set of all intensional relation names of P1 (resp, P2). For the bounded
arity case, a Πp

2-completeness result is known due to Eiter and Fink [11]. The complexity
for the non-bounded case appears to be open (albeit at least conexp-hard due to the earlier
mentioned result for UCQ(¬, 6=) containment).

I Proposition 8.4. For a program P ∈ Sp-Datalog( 6=) and superior equivalent P ′ of P ,
#(P ′) ⊆ #(P ) implies qP ′ = qP and cost(P ′) ≤ cost(P ).

Let P be a stratified Datalog program. Then Proposition 8.4 admits a naive procedure,
which we call neg-elim, that applies to every stratum of P the following steps:
1. Test for every combination of negated atoms whether qP is contained in qP ′ , with P ′ the

superior equivalent of P in which the selected atoms are removed.
2. Choose the superior equivalent of P that minimizes the total number of negated atoms,

among those for which the test succeeds.

I Theorem 8.5. Procedure neg-elim runs with exponential space (respectively polynomial
space, if a bound on the arity of considered relations is assumed).

We remark that the special structure of #(P ) and #(P ′) (i.e., P ′ is a superior equivalent
of P ), does not admit a more efficient containment test.

I Proposition 8.6. Testing for an arbitrary program P ∈ Sp-Datalog(6=) and superior
equivalent P ′ of P whether q#(P ′) ⊆ q#(P ) is conexp-hard (respectively Πp

2-hard, if a bound
on the arities of considered relations is assumed).
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8.3 Rule Expansions
One way to make the procedure from the previous section more powerful, is by doing
containment tests for partially expanded program.

Let P ∈ Sp-Datalog(6=) and τ ∈ P . By exp(P ) we denote the set of all 1-step expansions
of rules in P . That is, the set of rules obtain from P by considering all possible replacements
of intensional atoms in rules by the bodies of rules whose head matches the respective atom
(after doing the necessary variable renaming).

I Proposition 8.7. For every P ∈ Sp-Datalog( 6=), qexp(P ) = qP and cost(exp(P )) = cost(P ).

I Example 8.8. For an example illustrating the use of expansions in combination with
algorithm neg-elim, consider the two stratum program P , whose second stratum is pro-
gram P∆ from Example 2.1, and whose first stratum is a program P ′ over schema σ′ :=
{Arc(2),Edge(2),Adom(1)} with the next rules:

Adom(x)← Arc(x, y).
Adom(x)← Arc(y, x).

Edge(x, y)← ¬Arc(x, y),Adom(x),Adom(y).

Now consider the expansion exp(P∆) of the second stratum:

Output(x, y)← Edge(x, y), Edge(y, z), Edge(z, x).
Output(x, y)← Edge(x, y), Edge(y, z),¬Edge(z, x), Edge(x, y),¬Edge(y, w), Edge(w, x), x 6= y.

While directly applying algorithm neg-elim over P∆ does not improve the program, an
application over exp(P∆) finds a negation-free equivalent:

Output(x, y)← Edge(x, y),Edge(y, z),Edge(z, x).
Output(x, y)← Edge(x, y),Edge(y, z),Edge(x, y),Edge(w, x), x 6= y.

Hence, while P is not monotone, and therefore has no equivalent in Pos-Datalog(6=), we do
obtain an equivalent single-stratum program P1 ∪ P ′2.

9 Conclusion

Motivated by applications in network programming, we studied fundamental questions about
the relationship between the monotone and positive fragments of several variants of Datalog
with negation (an overview is given by Figure 1). We also showed how the amount of negation
that such programs admit can be decreased independently of whether they are monotone.

Related to monotonicity is the concept preservation under extensions (E). While it is
known that Sp-Datalog(6=) ⊆ E [3], to the best of our knowledge, it is still an open question
whether Str-Datalog(6=) ∩ E ?= Sp-Datalog(6=). The latter question is of particular interest,
because E is another notion that is associated with coordination in distributed systems [7].

The techniques that we discuss in Section 8, to remove negation from stratified Datalog
programs, are by no means exhaustive. We also do not provide formal guarantees on the
effectiveness of the approach. An interesting question therefore is whether other decidable
techniques exist that can be of use for this purpose. Additionally, it would be interesting to
perform an experimental study to see if these techniques can be combined into an effective
procedure that is of use for real-live programs. The techniques that we present in Section 8
aim for a best-effort approach to automatically reduce the need for consensus in a program,
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which in the context of Datalog, translates to the elimination of (stratified) negation. While
it is obvious that such a procedure cannot beat optimization by hand, we see it useful in
complex systems, that a program may be composed out of multiple programs and views.
Then, optimization of individual subprograms does not necessarily imply optimization of the
program as a whole, and a best-effort approach may be the only way to achieve improvement.
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