
What Makes a Variant of Query Determinacy
(Un)Decidable?
Jerzy Marcinkowski
Institute of Computer Science, University of Wrocław, Poland

Abstract
This paper was written as the companion paper of the ICDT 2020 invited tutorial. Query determinacy
is a broad topic, with literally hundreds of papers published since late 1980s. This paper is not
going to be a “survey” but rather a personal perspective of a person somehow involved in the recent
developments in the area.

First I explain how, in the last 30+ years, the question of determinacy was formalized. There
are many parameters here: obviously one needs to choose the query language of the available views
and the query language of the query itself. But – surprisingly – there is also some choice regarding
what the word “to compute” actually means in this context.

Then I concentrate on certain variants of the decision problem of determinacy (for each choice
of parameters there is one such problem) and explain how I understand the mechanisms rendering
such variants of determinacy decidable or undecidable. This is on a rather informal level. No really
new theorems are presented, but I show some improvements of existing theorems and also simplified
proofs of some of the earlier results.

2012 ACM Subject Classification Theory of computation → Database theory

Keywords and phrases database theory, query, view, determinacy

Digital Object Identifier 10.4230/LIPIcs.ICDT.2020.2

Category Invited Talk

Funding Jerzy Marcinkowski: Supported by the Polish National Science Centre (NCN) grant
2016/23/B/ST6/01438.

Acknowledgements The author would not have been in a position to write this invited paper had
he not been first blessed with the opportunity to work with extraordinary students: Tomasz Gogacz,
Grzegorz Głuch and Piotr Ostropolski-Nalewaja.

1 Introduction (1)

“Assume that a set of derived relations is available in a stored form. Given a query, can it be
computed from the derived relations and, if so, how?” is the first sentence of [10], the oldest
paper I know addressing the Query Determinacy Problem (QDP). On the very informal level
this first sentence still does very good job explaining the idea of QDP. But in order to be
really able to work on it, to formulate theorems and to try to prove them, we need to be a
bit more precise.

And, as it turns out, there is a huge number of ways in which one can be more precise,
each way leading to one variant of QDP. One can choose (1) between various query languages
defining the stored views and (2) defining the given query, (3) between information-theoretic
notion of determinacy (this paper) and various rewriting languages (not this paper), (4)
between considering only finite database instances (QDP f), or any relational structures, finite
or infinite (QDP∞), and finally (5) between exact (QDPe) and sound (QDPs) semantics.
Let us first stick to the exact semantics, which is (I think) simpler to understand (sound
semantics will be briefly discussed in Section 7).

© Jerzy Marcinkowski;
licensed under Creative Commons License CC-BY

23rd International Conference on Database Theory (ICDT 2020).
Editors: Carsten Lutz and Jean Christoph Jung; Article No. 2; pp. 2:1–2:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2020.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 What Makes a Variant of Query Determinacy (Un)Decidable?

Each variant of QDP is a decision problem. The instance is always a set of queries
V = {V1, . . . Vk} in query language LV and another query Q in some query language LQ.
We are asked whether it is true that for each database instance D the query Q(D) can be
computed by a device from some set C, from the set of views V1(D), V2(D) . . ., Vk(D).

We are going to use notation QDP_
e (LV ,LQ,_) to denote the variant of QDP , under

exact semantics, with arguments reflecting our choice of parameters. So, for example,
QDP fe (UCQ,UCQ,FO) will be the version of QDP where views are defined by queries
V1, . . . Vk being unions of conjunctive queries, query Q is also a union of conjunctive queries,
only finite instances are allowed, and we ask whether there is a First Order rewriting of
a given query Q, computing, regardless of D, the query Q(D), when applied to the views
V1(D), V2(D) . . ., Vk(D). As another example QDP∞e (CQ,CQ) will denote the problem of
deciding, for a set of conjunctive queries V1, . . . Vk, and another conjunctive query Q, whether
Q(D) can in any way1 be computed from V1(D), V2(D) . . ., Vk(D) for any (possibly infinite)
structure D. Notice that we do not assume that it needs to be computed by an algorithm,
or a Turing machine2. The only thing that matters is that the complete information about
Q(D) is already in V1(D), V2(D) . . ., Vk(D). In other words, and more precisely:

I Definition 1. We say that a set V = {V1, V2 . . . , Vk} of queries, written in some query
language LV (finitely) determine query Q, written in some query language LQ, denoted as
[V, Q] ∈ QDP∞e (LV ,LQ) (resp. QDP fe (LV ,LQ)) if for each two database instances (resp.
finite database instances) D,D′ such that for each 1 ≤ i ≤ k there is Vi(D) = Vi(D′) there is
also Q(D) = Q(D′).

A pair of structures D, D′ as above will be sometimes called a counterexample for determinacy.
In this paper we will mainly be interested in complexity (or rather decidability) of

problems of the form QDP_
e (_,_) which we think of as of proper determinacy problems,

rather than “rewriting” problems (which require different methods). Among them, we mainly
concentrate on problems of the form QDP∞e (_,_). But, at least when talking about the
negative results, this is only for convenience – analysis for the unrestricted case is simpler and
more intuitive than in the finite case, but does not require, as far as we know, significantly
different tools than the respective QDP fe (_,_) variants3.

2 Preliminaries

We mainly try to use standard notions and notations of relational database theory. In
particular, for a query Ψ, with k free variables, and for a database instance D, the notation
Ψ(D) denotes the k-ary relation resulting from applying the query Ψ to D. For a conjunctive

1 The distinction between query rewritability and query determinacy in the information-theoretic sense,
as considered in this paper, was not really fully realized before the end of 1990s. The earliest paper I
know which makes a clear distinction is [3]. Let me quote it here: Unfortunately, many of [the previous
papers on view-based query answering] do not distinguish between view-based query answering and
view-based query rewriting, and give raise to a sort of confusion between the two notions. [...] So, in
spite of the large amount of work on the subject, the relationship between view-based query rewriting and
view-based query answering is not completely clarified yet.

2 There are only two arguments now – since there is no rewriting now there is also no need to specify the
rewriting language.

3 In order to translate an undecidability proof for some QDP ∞
e (LV , LQ) to a proof of the same result for

QDP f
e (LV , LQ) one usually needs to recall what recursively inseparable sets are.

J. Marcinkowski 2:3

query ψ by the frozen body of ψ, denoted as [ψ], we mean the relational structure4 (unique
up to isomorphism) whose elements5 are the variables of ψ and whose relational atoms are
the atomic formulas of ψ.

A tuple generating dependency (TGD) is a formula of the form: ∀x̄, ȳ (φ(x̄, ȳ) ⇒
∃z̄ ψ(x̄, z̄)), where φ and ψ are conjunctions of atomic formulas (which means that our TGDs
are “multi-head”). Formula φ is called the body of the TGD and ψ is its head. The universal
quantifier in front of the formula is always omitted and implicit.

Another notion we often use is the one of disjunctive TGD. They are like TGDs except
that ψ is now of the form ψ =

∨
1≤i≤k ψi(x̄, z̄i), for some k, where each ψi is a conjunction

of atomic formulas and each z̄i is a subtuple of z̄ (in this way we are trying to say that there
is the same set x̄ of free variables in each of the disjuncts of ψ, but the sets of quantified
variables may differ). An analogous condition holds for φ.

2.1 The zoo of query languages
Let us now define the classes of languages which occur as LQ or as LV .

We have two kinds of them. First kind are the fundamental languages from the relational
databases tradition. CQ is the language of conjunctive queries, being conjunctions of atomic
formulas preceded by some existential quantifiers. UCQ are unions of conjunctive queries,
which means they are formulas of the form ψ =

∨
1≤i≤k ∃z̄i ψi(x̄, z̄i), for some k, where each

ψi is a conjunction of atomic formulas (notice that we again assume that free variables are
the same in each disjunct).

We will also consider languages of unary (monadic) CQs and unary (monadic) UCQs
(notations mCQ and mUCQ will be used). These are queries with only one free variable (so
that Ψ(D) is a unary relation, that is a set of elements of D).

DL queries are ones defined by Datalog programs. We only consider boolean DL queries,
which means that there is always one special arity zero predicate goal in each program, and,
for a program P and a database instance D we think that P (D) is true if P proves goal in D.
Monadic Datalog (mDL) are DL queries defined by a program with all the IDB predicates
(this means, the predicates that occur in a head of any rule) being unary.

Then there is the second sort of query languages, coming from the tradition of graph
databases. Path Queries (PQ) are conjunctive queries of the form:

∃z1, z2, zm−1 E1(x, z1) ∧ E2(z1, z2) ∧ . . . Em(zm−1, y)

A Path Query always has two free variables. It says, about two elements of the structure,
that there is a path between them, labelled with the particular sequence (word) of labels
(predicate names). We identify such query with this word, for example the above PQ is
usually denoted as simply E1E2 . . . Em.

A union of Path Queries (UPQ) is a UCQ whose CQs are path queries. Hence it also has
two free variables, and it says, about x and y, for some finite set of words W , that there is a
path, from x to y, labelled with a w ∈W .

Finally, a Regular Path Query (RPQ) is like a union of Path Queries, but the set W no
longer is assumed to be finite: it can be any regular set over the language of labels. In a
sense RPQ is, for the graph databases tradition, what DL is for the relational databases one.

4 The terms “relational structure” and “database instance” mean the same thing for us.
5 Relational structures have elements (vertices). We never call them “constants” or “nulls”: the term
“constant” is reserved (according to the tradition of mathematical logic) for the constants of the language.

ICDT 2020

2:4 What Makes a Variant of Query Determinacy (Un)Decidable?

2.2 Unfoldings of Datalog programs
We often want to build a minimal structure satisfying some query Ψ. The word “minimal”
means minimal from the point of view of positive information. For such minimal structure M
and for any other structure D with D |= Ψ we would like to be sure that a homomorphism
exists from M to D. This is easy for CQs – the frozen body of Ψ is always such a minimal
structure. If Ψ is a UCQ we no longer have the minimal M , but we have a finite number
M1,M2 . . .Mk of structures (frozen bodies of the disjuncts of Ψ) such that if D |= Ψ then
we are sure that there exists a homomorphism from one of the Mi to D.

But how about Datalog queries? Here we no longer have a finite set of such minimal
structures (unless the program in question is bounded). The minimal structures are now the
unfoldings of the program – all the possible ways of proving goal. It will be helpful at some
point to see that:

I Exercise 2. For each Datalog program P there exists a constant c such that all the
unfoldings of P have tree width bounded by c.

3 Introduction (2)

3.1 Examples
Let us see an example or two.

Suppose Q is a Path Query BACA (see Section 2.1 for explanation) and:

V1 = {BAC,ACA,AC} V2 = {BAC,ACA,CA}

Then [V1, Q] ∈ QDP∞e (PQ,PQ) while [V2, Q] is a negative instance of QDP∞e (PQ,PQ) –
there is no determinacy.

In order to prove the second claim (the one about [V2, Q]) it is enough to take:

D1 = {B(a, b), A(b, c), C(c, d), A(d, e)}

D2 = {B(a, b′), A(b′, c′), C(c′, d), A(b, c), C(c, d′), A(d′, e)}

Then V2(D1) = V2(D2) (exercise!) and D1 |= Q but D2 6|= Q. This was easy. But how could
we possibly prove the first claim?

3.2 What is this paper about?
Definition 1 is precise and simple. But it does not usually mean that for given LV ,LQ one
can easily figure out if the problem QDP∞e (LV ,LQ) (or QDP fe (LV ,LQ)) is decidable or not.

The first obstacle is that it is not obvious at all how to work with this definition. How
can we make sure that something is true for “each two database instances”?

To deal with this problem we ([8]) invented the notion of Green-Red Chase. The idea to
explain determinacy in terms of Chase was not totally absent in some of the previous papers,
including [11]. The Green-Red Chase is just a very little step forward. But, as we are going
to explain, due to this little step we suddenly can see things we were unable to notice before.

Green-Red Chase will be introduced in Section 4. Then, in Section 5 we are going to
show how the insight provided by Green-Red Chase can be very easily used to prove some
positive results.

J. Marcinkowski 2:5

It was shown in [11] that QDP∞e (mCQ,CQ) is decidable. In Section 5.1 the Reader
is going to see how this result can be significantly strengthened, and without using the
complicated argument from [11]. We will show that, for example, QDP∞e (mUCQ,CQ) is
decidable. And everything will be very simple, almost trivial.

Another known positive result is the one from [1] (later slightly improved by [12]). It is
shown, in [A11], that QDP∞e (PQ,PQ) is decidable. In Section 5.2 we are going to build on
the top of the technique from [1] to show a slightly stronger result, that QDP∞e (PQ,RPQ)
is also decidable.

Both the techniques we present in Section 5 rely, apart from the insight given by the
Green-Red Chase, on simple automata-theoretic arguments.

Then we are going to move to the negative results. It was proved in the paper [13]
that QDP∞e (UCQ,UCQ) is undecidable. Then, in [6] we have shown undecidability of
QDP∞e (RPQ,RPQ) (solving a problem left open in the series of papers on “loselessness” of
Regular Path Queries, including [4]). In [7] we refined the technique from [6] showing that
QDP∞e (UPQ,UPQ) is also undecidable (notice that this result is also strictly stronger than
the aforementioned negative result from [13] about QDP∞e (UCQ,UCQ)). As it turns out6,
the technique in [6] and [7] relies mainly on, as I call it here, the Cold/Hot Trick. Thanks to
this trick one can easily encode a Turing machine computation inside the Green-Red Chase.
All that is needed is disjunction, both in LV and in LQ. In Section 6 we explain the trick
and show how it can be used to prove undecidability of QDP∞e (UCQ,UCQ).

But how about query languages without disjunction, where the Cold/Hot Trick does not
work? It turns out that proving lower bounds for variants of the form QDP∞e (CQ,_) is
quite hard. Indeed, the only negative result for a variant of this form known before 2015
was the one from [5] where undecidability of QDP∞e (CQ,DL) is proved. And, as we explain
in Section 7, this result does not really, on the technical level, have much to do with the
phenomenon of determinacy. It is just a simple consequence of undecidability of Datalog
programs containment.

In Section 4.3 we reveal the reason behind this hardness, which is the Curse of Pâte
Feuilletée7. Then, in Section 8 we show how to break the Curse of Pâte Feuilletée. This is the
most complicated part of this paper and we are only able to explain some ideas of our proof
technique from [8] and [9], where undecidability of QDP∞e (CQ,CQ) and of QDP fe (CQ,CQ)
is proven.

In the meantime, in Section 7, we report some work in progress [2] regarding the sound
semantics, which means variants of the form QDP∞s (_,_). We explain how Green-Red
Chase is also relevant in this case, and also how the simple automata-theoretic techniques
from Section 5.1 can be helpful there. We also remark that the Cold/Hot Trick can be useful
for the variants of QDP∞s (_,_) where disjunction is available, and that the Curse of Pâte
Feuilletée seems to be in force for at least one variant of QDP∞s (_,_) (for which decidability
of determinacy remains open).

4 The Green-Red Chase

The notion of Chase is one of the ubiquitous notions of database theory. Suppose we have a
set T of TGDs, a database instance D and a conjunctive query Q. And, for some reason, we
want to know whether T , D |= Q, which means that Q is true in all superstructures D+ of

6 From the perspective, it seems to me, that when writing [6] and [7] we did not understood the technique
well enough yet, and we did a poor job explaining what constitutes the core of the technique there and
what is the implementation.

7 This is how we called it with Tomek Gogacz, who was my student at that time, when we struggled, in
the years 2012-13, to solve the problem of the decidability status of QDP ∞

e (CQ, CQ).

ICDT 2020

2:6 What Makes a Variant of Query Determinacy (Un)Decidable?

D satisfying all the TGDs in T . Then we can construct Chase(T , D) and check whether
Chase(T , D) |= Q. If Q is satisfied in Chase(T , D) then it is satisfied in all structures D+

as above8. Due to this property Chase(T , D) is called a universal structure.
How is this universal structure built? We start from9 Chase0 = D. Suppose that Chasei

is defined. Then Chasei+1 is defined by applying the following step, in parallel, to all possible
TGDs T ∈ T and all tuples c̄ of elements of Chasei: suppose the body φ(c̄, l̄) of T is satisfied
in Chasei for some tuple l̄ and that T postulates that there exists some tuple of elements k̄
which, together with the tuple c̄ of elements of Chasei, satisfy the head ψ(c̄, k̄). Then we
simply invent a tuple k̄ of new elements, and add them to Chasei together with the atoms
which occur in ψ. And – importantly – we do it in the minimal way, from the point of
view of the amount of positive knowledge: the elements that are being added are all
new, and they are never equal unless the TGD T explicitly requires them to be equal.

Finally, Chase(T , D) =
⋃
i∈N Chasei turns out to be the universal structure.

We use the same idea in the context of Definition 1. Imagine we have an instance of the
problem QDP∞e (LV ,LQ). Such an instance, to recall, will be a pair I consisting of a set of
V of queries and a query Q. Following the idea of Chase, in order to check whether there is
determinacy, we should try to construct a “universal counterexample” – a pair of database
instances” DG (as green) and DR (as red) such that (♣1) V (DG) = V (DR) for each V ∈ V,
that10 (♣2) DG |= Q, and that the two conditions:

(♠1) DR |= Q and (♠2) I ∈ QDP∞e (LV ,LQ)

are equivalent, which means that if there exists any counterexample for determinacy for this
instance then DG and DR are such an example.

4.1 Green and red structures and queries

We prefer however (and this is exactly the idea of the Green-Red Chase from [GM15]) to,
instead of constructing two structures DG and DR, over some signature Σ, construct a single
structure over a new signature ΣG ∪ ΣR consisting of colored (green and red) versions of the
predicates from Σ.

To speak about objects over this new signature it will be convenient to have two operators:
G and R, painting any object over Σ green or red. So, for example, for a query Φ over Σ
we will have its red version R(Φ), over ΣR. Another operator we will sometimes need is
daltonization (denoted dalt()). It takes green or red objects (over the signature ΣG ∪ ΣR)
and returns the same objects with colors removed (over Σ).

Now, instead of producing two structures over the signature Σ of I we will construct
one structure DGR over ΣG ∪ ΣR such that for each V ∈ V there will be (♣1) R(V)(DGR) =
G(V)(DGR), such that (♣2) DGR |= G(Q) and that the conditions:

(♠1) DGR |= R(Q) and (♠2) I ∈ QDP∞e (LV ,LQ)

are equivalent.

8 The “only if” direction is of course trivially true.
9 From now on we will skip the arguments of Chase: we will write simply Chasen instead of Chasen(T , D).
Unless we think this can lead to any confusion.

10As it turns out, one can restrict the attention to Q being a boolean query, by which we mean a query
without free variables.

J. Marcinkowski 2:7

4.2 The Green-Red chase. The CQ case.
Now, to begin with, imagine the simplest case, that LV = LQ = CQ.

We want to construct DGR satisfying (♣1) R(V)(DGR) = G(V)(DGR) for each V ∈ V.
Let V be ∃x̄ φ(x̄, ȳ), where φ is a conjunction of atoms. Then (♣1) is equivalent to the
conjunction of two TGDs:

G(φ)(x̄, ȳ)⇒ ∃x̄′ R(φ)(x̄′, ȳ) R(φ)(x̄, ȳ)⇒ ∃x̄′ G(φ)(x̄′, ȳ)

Let TV be the set of all TGDs generated in this way from the queries in V.
Since we also want to have DGR |= G(Q), first take a minimal, from the point of view of

the amount of positive knowledge structure which satisfies G(Q), and see it as Chase0. In
the CQ case, which we now consider, there is just one such minimal structure: the frozen
body of G(Q). So Chase0 = G([Q]).

And now it follows from all we know about the Chase, that DGR = Chase(TV , G([Q])) is
indeed the universal structure we were looking for.

4.3 Discussion and the Curse of Pâte Feuilletée
Let us go back to the instance [V1, Q] from Section 3.1. One of the views from V1, is the
conjunctive query BAC, or ∃z1, z2 B(x, z1), A(z1, z2), C(z2, y). Then the two Green-Red
TGDs generated by BAC are:

(♥gr) G(B)(x, z1), G(A)(z1, z2), G(C)(z2, y)⇒ ∃z′1, z′2 R(B)(x, z′1), R(A)(z′1, z′2), R(C)(z′2, y)

and:

(♥rg) R(B)(x, z1), R(A)(z1, z2), R(C)(z2, y)⇒ ∃z′1, z′2 G(B)(x, z′1), G(A)(z′1, z′2), G(C)(z′2, y)

Imagine how (♥gr) is applied. Suppose we have some Chase2k already constructed11 and
there are some a1, a2, a3 and a4 there, which form a green BAC-path in this Chase2k (or, in
other words, we have a green copy of the frozen body of BAC). The TGD (♥gr) tells us
that there also should also be such red BAC-path, from a1 to a4. If there is no such path
in Chase2k then a new copy R(B)(a′1, a′2), R(A)(a′2, a′3), R(C)(a′3, a′4) of the frozen body of
R(BAC) is created, it is added to Chase2k, with a′1 identified with a1 in the new structure
and a′4 identified with a4. The vertices a′2 and a′3 are not identified with anything in the old
structure – they are new in Chase2k+1.
An important take away from the example is that when constructing Chasen+1 from
Chasen we produce many copies of the (colored versions) of the frozen bodies of queries in V
and join them with Chasen by identifying the elements that relate to the free variables of the
respective V (like the x and y in the example) with elements of Chasen. The elements that
relate to the quantified variables of the respective V are the “new” elements of Chasen+1.
Back to the [V1, Q] from Section 3.1. Now we can prove that indeed [V1, Q] ∈
QDP∞e (PQ,PQ). Let us run the Green-Red chase. There will be12 Chase0 = {G(B)(a, b),
G(A)(b, c), G(C)(c, d), G(A)(d, e)} for some elements a, b, c, d, e. Then, Chase1 = Chase0 ∪
{R(B)(a, b1), R(A)(b1, c1), R(C)(c1, d), R(A)(b, c2), R(C)(c2, d), R(A)(b, c3), R(C)(c3, d3)}

There will be also, among some other atoms: G(A)(b1, c4), G(C)(c4, d) in Chase2 and
R(A)(b1, c5), R(C)(c5, d5) and R(A)(d5, e) in Chase3. But the last three atoms, together
with R(B)(a, b1) form R([Q]) and, by universality of the Green-Red chase we get that
[V1, Q] ∈ QDP∞e (PQ,PQ).

11Why 2k? Wait, Observation 3 is coming.
12The Reader is invited to run the chase herself, to make sure that what I write here makes sense.

ICDT 2020

2:8 What Makes a Variant of Query Determinacy (Un)Decidable?

I Observation 3. When constructing Chase2k only green atoms are added. When construct-
ing Chase2k+1 only red atoms are added.

Proof. Induction. Clearly, since there is nothing red in Chase0 only red atoms will be added
when constructing Chase1. For the induction step, since nothing red (resp. green) was added
while constructing Chase2k (resp. Chase2k+1), all the TGDs of the form (♥rg) (resp. (♥gr))
TGDs are satisfied in Chase2k (resp. Chase2k+1). J

For the following Observation recall that we still assume that LV = CQ.

I Observation 4. For each n ∈ N there exists a homomorphism hn from dalt(Chasen) to
dalt(Chase0), with hn ⊆ hn+1.

Similar observation, in the context of the chase with two separate structures rather than
one green-red structure can be found in [13].

Proof. Induction. Clearly, h0 is the identity. For the induction step, in order to keep the
notations light, we will use the above example. Suppose some elements of Chasen+1 were
added by an application of the (♠gr), as in the example. Then define hn+1(a′2) = hn(a2) and
hn+1(a′3) = hn(a3). For any element a of Chasen define hn+1(a) = hn(a). J

It immediately follows from the observation that
⋃
n∈N hn is a homomorphism from⋃

n∈N dalt(Chasen) to dalt(Chase0).

The Curse of Pâte Feuilletée. When trying to prove a lower bound for a problem of the
form QDP∞e (CQ,_) one soon realizes that Observation 4 is the main obstacle. How can we
possibly encode anything in the structure of Chase if all we get there is basically Chase0
repeated infinitely many times? Each time something new is added to the structure it is
merely a (re-colored) version of something that already was there. What we get is a pâte
feuilletée, with infinite number of almost identical layers, each of them being a copy of G([Q])
and nothing but air between them.

4.4 The Green-Red Chase. The non-CQ case.
Now let LV = LQ = UCQ. Imagine we have an instance [V, Q] of QDP∞e (UCQ,UCQ) and
recall that we assume that for each V ∈ V all the disjuncts of V have the same free variables.

Again, we want to have DGR |= G(Q). But no longer the minimal, from the point of view
of the amount of positive knowledge structure which satisfies G(Q) exists. There are several
such minimal structures, namely the (green versions) of the frozen bodies of the CQs being
the disjuncts of Q.

We need to choose one of these disjuncts, call it Q′, and put Chase0 = G([Q′]).
But who is this “we” here? There was no need to ask this question in Section 4.2 as the

Chase there was a normal, deterministic chase, leading to the same result regardless of who
performs it. But now there is a choice, so who makes it and with what goal on mind?

In [6] and [7] we do not use the word “Chase” at all in this context. Instead, we consider
a game, with a single player, called the Fugitive, and we call this version of Chase “the game
of Escape”. The goal of this player is to show that the QDP instance in question is a negative
one – there is no determinacy. In the process of his Escape the Fugitive tries to construct
a green-red structure DGR for which it holds that (♣1) G(V)(DGR) = R(V)(DGR) and (♣2)
DGR |= G(Q) but DGR 6|= R(Q).

J. Marcinkowski 2:9

So it is the Fugitive who begins the game choosing some disjunct Q′ of Q, and defining
Chase0 as G([Q′]). At this point he is already sure that (♣2) is satisfied. But how about
(♣1)?

Like in Section 4.2 we need to ask what it means, for a structure DGR, that (♣V1)
R(V)(DGR) = G(V)(DGR) for a V ∈ V (which is a UCQ now). It is easy to see that now
(♣V1) is equivalent to the conjunction of two disjunctive TGDs:

(♥gr)
∨

0≤i<kG(φi)(x̄′i, ȳ)⇒
∨

0≤i<k ∃x̄′i R(φi)(x̄i, ȳ)

’ (♥rg)
∨

0≤i<k R(φi)(x̄′i, ȳ)⇒
∨

0≤i<k ∃x̄′i G(φi)(x̄i, ȳ)

where k is the number of disjuncts in V , the formula φi is the quantifier-free part of the i-th
disjunct, and ȳ are the free variables of (each conjunct of) V .

Now suppose the body of (♥gr) is satisfied in some13 Chase2n. Then Chase2n |=
G(φi)(ā, b̄) for some φi and some tuple ā, b̄ of elements of Chase2n. An application of our
disjunctive TGD will produce a tuple ā′ in Chase2n+1 such that Chase2n+1 |= R(φi′)(ā′, b̄).
But there is no reason for i′ to equal i, and it is the job of the Fugitive to choose the i′ which
suits him best (remember, his goal is to reach the fixpoint without satisfying R(Q)).

Now, a lemma in [6] and [7] is that such a game indeed characterizes determinacy: the
Fugitive has a winning strategy if and only if [V, Q] 6∈ QDP∞e (UCQ,UCQ). The proof of
the lemma goes in the footsteps of the standard proof of universality of Chase, which means
that “induction” and “homomorphism” are the keywords.

5 Some applications on the positive side

5.1 Unary queries
It is proven in [11] (it is not a long proof but the argument is not so easy to understand)
that QDP∞e (mCQ,CQ,CQ) equals to QDP∞e (mCQ,CQ). In other words, if a set of unary
conjunctive queries determines a CQ, then there exists a rewriting, which itself is a conjunctive
query. Then a corollary follows in [11] that QDP∞e (mCQ,CQ) is decidable.

But it seems to me that a stronger decidability result, not provable in any obvious way
by the aforementioned rewriting argument, can be easily proved using the insight given by
the Green-Red Chase14. Let LV be any query language, consisting of unary queries, and
such that (*) all the minimal bodies of queries are of bounded tree width (so, for example
LV may contain unions of unary conjunctive queries and/or Monadic DL queries). And let
also LQ be any15 query language satisfying (*). Then QDP∞e (LV ,LQ) is decidable.

Let us now explain the proof idea using the example of QDP∞e (mUCQ,CQ). Suppose
that we have given a set V of mUCQs and a CQ Q. Then (and this is the sentence
which summarizes the whole proof) any structure which the Fugitive can construct as his
Chase(TV , G([Q])) is a structure having the tree width bounded by some k: indeed, the bags
of the tree decomposition in question are the (red or green versions of) the frozen bodies
of the conjunctive queries being the disjuncts of the queries from V. This is because such

13There are many structures now which can be built by the Fugitive as his Chasem, and as his final
Chase. But – hoping this will not lead to additional confusion – we call each of them Chasem or Chase.

14While reading this subsection the Reader may notice that the idea of having, instead of two structures
over Σ, a single structure over a green-red signature is of critical importance here.

15 If it was a regular paper we should be slightly more formal here: condition (*) should also require that
the set of minimal bodies of queries is regular. This is of course satisfied for mUCQs and for mDL.

ICDT 2020

2:10 What Makes a Variant of Query Determinacy (Un)Decidable?

a frozen body, when being added to Chase at some point, only connects to the current
structure via the elements being substituted for its free variables, which in this case is a
single element16.

Now one can construct an automaton A1 which, for a given structure A, of tree width
bounded by k, decides whether A |= TV and A |= G([Q]). It will accept any structure that
can be built as Chase(TV , G([Q])) and probably also many other structures which, while
satisfying TV and containing G([Q]), cannot be produced by a Green-Red Chase procedure.

One can also construct another automaton A2 which, on any structure with the tree
width bounded by k, decides whether R([Q]) is contained in this structure. Then we apply
the standard automata-theoretic procedure to check whether there exists a structure accepted
by A1 but not by A2.

5.2 Slightly beyond Path Queries
It is proved in [1] that QDP∞e (PQ,PQ) is decidable. And the decision algorithm, while
quite simple, gives a really very nice insight into PQ determinacy. In our language the
algorithm can be expressed as follows.

Given a path query Q and a set V of path queries first construct Chase0, which, as we
know, will be G([Q]). This structure is a green path. Let s be the starting point of this path
and let t be its endpoint.

Then construct Chase1. This means that a set of new red paths connecting some pairs
of elements of Chase0 will be added. Consider now the graph being the red part of Chase1
(that is all the edges that are in Chase1 but not in Chase0). It is not terribly hard to prove
(and is left for the Reader as a rather non-trivial exercise) that [V, Q] ∈ QDP∞e (PQ,PQ) if
and only if s and t are in the same connected component17 of this graph.

Notice that this really works for the [V1, Q] from Section 3.1: the a and e there indeed
are connected via the red edges of Chase1 (one needs to make 3 steps going “forward”, then
two steps “backward” and then again 3 steps “forward”).

Using the above “connectivity” criterion one18 can show that:

I Theorem 5. QDP∞e (PQ,RPQ) is decidable.

For the proof of the theorem suppose Q and V are given. Q is a query defined as a union
of some regular set R of path queries, and each of the queries in V is a path query, so there
is no disjunction there. This means that the only choice the Fugitive has here is when he
constructs Chase0. He can take, as Chase0, any green path G([w]), from some s to t, for
some w ∈ R

He is deemed to lose if for each such choice of w the vertices s and t will be in the
same connected component of the red part of Chase1(TV , G([w])). He wins (and so [V, Q] 6∈
QDP∞e (PQ,RPQ)) if he can find a w for which s and t will be in two different connected
components.

16As I learned from a discussion with Sebastian Rudolph, this argument holds true even for non-unary
queries if all the free variables always occur in a single atom of each disjunct of V . The general picture
is that what we actually do here is deciding query entailment for the theory TV , and this is decidable
for sets of TGDs which are frontier guarded. One can also notice here that for positive results for the
respective QDP f

e (LV , LQ) variants known theorems regarding Finite Controllability for certain sets of
TGDs can be applied.

17We think of an undirected connected component of a directed graph here.
18Theorem 5 comes from the unpublished master’s thesis by my student Grzegorz Głuch.

J. Marcinkowski 2:11

How can we decide whether such w exists? First of all recall how Chase1(TV , G([w]))
is constructed: for two vertices a, b of G([w]) connected with some word G(v) (which is a
sub-word of w) a new red path from a to b, labelled with R(v) is created in Chase1 if and
only if v ∈ V. We imagine we have a green straight path from s to t, with w being the
sequence of the labels of its edges (this is Chase0), and red arcs over this green straight path
joining each two vertices which are connected with a path being some green v ∈ V.

It is now easy to construct a two-way non-deterministic finite automaton which will
accept w if and only if s and t are in the same connected component of the red part of
Chase1: the automaton starts its run in the head in s, and then, at each stage of the run19
it first guesses whether it should now walk down some red arc (towards the t) or up (back,
towards s), and which v ∈ V is the label of the arc it now takes. And then it just walks
down or up G([v]) imagining it moves down or up a red arc (and checking whether it indeed
is labelled with v). It accepts when t is reached after completing some number of stages.

Notice that in the case of of the instance [V1, Q] from Section 3.1 our two-way automaton
will first go towards t (the v will be BAC), then back towards s (the v will be AC), and
finally it will reach t after the third stage where v will be ACA.

Now, this two-way nondeterministic finite automaton can be translated into a normal
DFA AV . We also have a DFA AR, deciding the language R. All we need to do to see
whether the Fugitive is deemed to lose is to decide, using handbook methods, the containment
of languages for AR and AV .

I Exercise 6. Why doesn’t it prove that also QDP∞e (RPQ,RPQ) is decidable? Exactly the
same automata trick would work in this case.

Notice that, instead of building this two-way automaton we could just use the fact that
(since the red arcs are short and local) the structure Chase1 is of bounded tree width (and
the bound does not depend on w).

6 How disjunction leads to undecidability. QDP ∞
e (UCQ, UCQ).

If disjunction is available in LQ and LV then the Curse of Pâte Feuilletée is not in force:
the Fugitive can, while executing the Green-Red Chase, add to the structure something
that is not just a copy of Chase0. For example, suppose that some query V ∈ V equals
∃x̄ φ(y, z, x̄) ∧ φ′(y, z, x̄), for some CQs φ and φ′, and that R(V) is satisfied in some Chasei,
because there is Chasei |= R(φ)(a, b) for some elements a and b. Suppose however that
G(V)(a, b) is not satisfied in Chasei. Then the Fugitive must satisfy G(V) in Chasei+1 and
he can do it by adding to Chasei+1 a new copy of G([φ]), connected to Chasei via a and b
(“a re-colored copy of something we already saw”) or a new copy of G([φ′]) (connected in the
same way). So he can produce something new. But can we force him to? This is what the
Cold/Hot trick is about, which we are going to present in this Section.

The example we are going use is QDP∞e (UCQ,UCQ). We will show that the problem is
undecidable. The result comes from [11], but the proof we present here is based on the ideas
from [6], where we employed the cold/hot trick to show undecidability of QDP∞e (RPQ,RPQ)
(and of QDP fe (RPQ,RPQ)) and from [7] where analogous results were shown for UPQ as
both LV and LQ. Clearly, both RPQ and UPQ support disjunction, and disjunction is all
we need for the Cold/Hot trick to work.

19The run will consist of an unbounded number of stages, each of them comprising a bounded number of
steps.

ICDT 2020

2:12 What Makes a Variant of Query Determinacy (Un)Decidable?

6.1 The Cold/Hot Trick
Imagine that our signature Σ = ΣC ∪̇ ΣH , so it is a disjoint union of cold and hot relation
symbols20. This means that there can possibly be four kinds of atoms in the Green-Red
Chase: red-warm, red-cold, green-warm and green-cold. The idea is to construct21 Q and V
in such a way that if the Fugitive chooses anything green-hot or red-cold then he loses the
game immediately. In other words he will need to always make sure that the green part of
the Chase is entirely cold and the red part is entirely hot.

Let Lukewarm be the set of all conjunctive queries of the form22 C(x, x′)∧H(y, y′) where
– unsurprisingly – C is cold and H is hot. Our UCQ Q is:

∃x, x′, y, y′ αC(x, y) ∨ ωH(x, y) ∨
∨

φ∈Lukewarm

φ(x, x′, y, y′)

where αC is a certain cold relation symbol and ωH is a certain hot one. Our set of UCQs V
is the disjoint union of Vgood and Vbad.

Each UCQ V ∈ Vgood is of the form V H ∨ V C where V H is a CQ being a conjunction
of hot atoms and the V C is a CQ being a conjunction of cold ones. We assume that
αC(x, y) ∧ βH(x, y) is one of the queries in Vgood, for some hot βH , and that this is the
only place where αC occurs in Vgood The set of queries Vgood is where the instance of some
undecidable problem is going to be encoded. But we do not need to think of the details now.

At this point Vbad is more interesting, which is defined as the set containing all the queries
from Lukewarm and the query ωH(x, y). All the queries in Vbad are CQs.

Let, as always, TV be the set of all green-red disjunctive TGDs generated by V.
Now let us analyze what the Fugitive choices for Chase0 are:

I Observation 7. The Fugitive must pick G([αC]) as Chase0 or he will lose immediately.

Proof. See what his other choices of minimal structures satisfying Q are. One is to pick
G([ωH]). But notice that G(ωH)(x, y) ⇒ R(ωH)(x, y) is one of the TGDs in TV . Its body
would be satisfied in Chase0 so its head would need to be satisfied in Chase1. So, it would
be that Chase1 |= R(ωH) and hence Chase1 |= R(Q) and the game is over for the Fugitive.

The other choice would be to pick, as Chase0, the structure G([φ]) for some lukewarm
query φ. But then he loses again, since in this case G(φ) ⇒ R(φ) is one of the TGDs in
TV . J

Once we know that Chase0 = {G(αC)(s, t)} for some s, t, let the Fugitive build Chase1:

I Observation 8. Chase1 = Chase0 ∪ {R(βH)(s, t)} or the Fugitive loses immediately.

Proof. Recall that αC(x, y) ∧ βH(x, y) is one of the queries in Vgood. Hence the TGD:

G(αC)(x, y) ∨G(βH)(x, y)⇒ R(αC)(x, y) ∨R(βH)(x, y)

is in TV . So there either must be R(αC)(s, t) in Chase1 or R(βH)(s, t). But having R(αC)(s, t)
means that Chase1 |= R(Q) and loses the game for the Fugitive. J

20Let us also assume that all the relations in Σ are binary.
21This is an undecidability proof, so we construct Q and V, depending on the instance of our favourite

undecidable problem.
22Queries from the set Lukewarm, as defined here, are UCQs, but they are not UPQs (or RPQs). When

implementing the idea of the Cold/Hot Trick in order to prove undecidability of QDP ∞
e (UP Q, UP Q)

(or QDP ∞
e (RP Q, RP Q)) one needs to invent something that would play the same role as Lukewarm

but would also be expressible as path queries. This is easy in the RP Q case [6] but a bit complicated in
the case of UP Q [7].

J. Marcinkowski 2:13

We are now sure that (unless the Fugitive is suicidal) there must be one green cold atom
(namely, G(αC)(s, t)) and one red hot atom (namely, G(βH)(s, t)) in Chase1. Finally:

I Observation 9. The Fugitive loses immediately if he ever produces a red cold atom or a
green hot atom.

Proof. Clearly, if a red cold atom was ever produced then it would satisfy, together with
R(βH)(s, t), some R(φ) for a lukewarm query φ. And red lukewarm queries are forbidden (by
Q) if the Fugitive wants to win23. Now notice that if a green hot atom was ever produced
then it would satisfy, together with G(αC)(s, t), some G(φ) for a lukewarm query φ. In this
case, in the next step of Chase, R(φ) would also be satisfied. J

6.2 Now undecidability follows easily
To explain the remaining part of the proof let us use an example. Imagine Vgood consists,
apart from αC(x, y) ∧ βH(x, y), of the queries:

(i) βH(x, y) ∨ CEFβ (x, y)
(ii) CEFβ (x, z) ∨ ∃y E(x, y) ∨ F (y, z)
(iii) F (x, y) ∨ CEFF (x, y)
(iv) CEFF (x, z) ∨ ∃y E(x, y) ∨ F (y, z)

Where E and F are hot and CEFβ and CEFF (x, y) are cold.
Now, let us recall that if the Fugitive wants to win, there must be R(β)(s, t) in Chase1.

Then the red-green TGD generated by (i) forces the Fugitive to have, in Chase2, either
G(βH)(s, t) or G(CEFβ)(s, t). But, by Observation 9, G(βH)(s, t) is forbidden, so there will
be G(CEFβ)(s, t) in Chase2. Then, by analogous reasoning, there will be a new element s1
in Chase3, such that Chase3 |= R(E)(s, s1), R(F)(s1, t).

I Exercise 10. There will be Chase5 |= R(E)(s, s1), R(E)(s1, s2), R(F)(s2, t) or the Fugitive
will lose.

In this way, using queries like (i)-(iv) we can easily encode the word problem for finitely
represented semigroups: for each word w which is, in the given semigroup, equivalent to the
word βH we will finally get a red path in Chase, from s to t, labelled with the symbols of
w. Like in our example, where the semigroup is represented by βH = EF and F = EF we
soon forced the Fugitive to produce the path EEF . The Fugitive of course loses if at some
point he is forced to produce atom ωH . But it is a very well known undecidable problem
whether, in a given finitely represented semigroup, there is any word w which contains ωH
and is equivalent to the word βH .

7 Aside: determinacy under sound semantics

A variant of Query Determinacy Problem, studied in a number of papers in 1990s and early
2000s, and enjoying some new interest recently [2] is determinacy under sound semantics.
It combines determinacy as formalized by Definition 1 with the observation that one never
can be sure whether a queried database represents all the facts about some phenomenon,

23Rev. 3:16 (ESV) “So, because you are lukewarm, and neither hot nor cold, I will spit you out of my
mouth.”

ICDT 2020

2:14 What Makes a Variant of Query Determinacy (Un)Decidable?

and thus all the views should be seen as correct but potentially incomplete. The precise
definition is complicated24, and we decided not to copy it here. And we actually do not need
to copy it here, because we have another one, which happens to be equivalent25:

I Definition 11. QDP∞s (LV ,LQ) is the set of such instances [V, Q], with Q ∈ LQ, V ⊆ LV
that regardless of the strategy of the Fugitive it holds that Chase1 |= R(Q).

Notice that it is almost like our characterization of QDP∞e with the only difference, that
for determinacy under “exact semantics” to hold, the Fugitive must be deemed to satisfy R(Q)
anywhere at any point of the Green-Red Chase, while for sound semantics this must happen
already in Chase1. This in particular means that QDP∞s is a (much) stronger notion than
QDP∞e for the same parameters. It also follows directly from the definition that if languages
LQ and LV have the property that each query has only finitely many “minimal structures”
satisfying this query, then there are only finitely many possible structures Chase1 and
QDP∞s (LQ,LV) is trivially decidable (so, for example QDP∞s (UCQ,UCQ) is decidable).

I Exercise 12 (CGLV02). Show that QDP∞s (RPQ,RPQ) is decidable.

Hint: Like in Section 5.2 (compare to Exercise 6). But easier: a one-way finite automaton is
sufficient here.

On the other hand, it is very easy to see that:

I Observation 13. QDP∞s (CQ,DL) is undecidable, even if the CQs defining the views are
projection-free.

Proof. For the proof of the observation first recall that the containment of Datalog programs
is undecidable. In other words it is undecidable whether, for two given programs φ and ψ, it
holds that for each database instance D if goal ∈ φ(D) then goal ∈ ψ(D). One can of course
assume here that the sets of IDB predicates of φ and of ψ are disjoint (except of course for
the arity zero predicate goal which is an IDB both in φ and in ψ). We also assume that both
the programs are over some set Σ0 of EDB predicates.

Now, let tr (like “trigger”) be a new arity zero EDB predicate, and let φ′ be a new
Datalog program, which is exactly like φ but with the additional atom tr in the body of each
rule. Which means that φ′ behaves exactly like φ on the instances where tr is true, and does
nothing at all on the instances where tr is false.

Let now our Q be the union of ψ and φ′ and let our V contain a query E(x̄) for each26
predicate E in Σ0. We claim that [V, Q] ∈ QDP∞s (CQ,DL) if and only if ψ contains φ.

To see why the claim is true first suppose that Chase0 is somehow constructed and notice
that, due to the way V is defined, each atom of Chase1 is either some G(A) which was
already in Chase0 or R(A). Or, in other words, Chase1 is a union of Chase0 and a red
version of Chase0. Except for tr: it may happen that Chase0 |= G(tr), but there is no way
to have R(tr) in Chase1. This in particular means that no rule of R(φ′) can ever be applied
in Chase1 and the only way to have Chase1 |= R(goal) is to prove the R(goal) using R(ψ).

Now let us go back one step and think of the ways in which the Fugitive can pick Chase0.
It is any minimal structure in which the program G(Q) proves G(goal), in other words it
is an “unfolding” of the Datalog program G(Q). There are infinitely many possible choices

24The notion of certain answers plays a role there.
25This equivalence, I understand, is proved in [2] (I didn’t have the opportunity to see the paper yet).
The main difficulty here is to understand the original definition of QDPs (see for example [4]).

26Recall that tr 6∈ Σ0.

J. Marcinkowski 2:15

for the Fugitive (if there is any recursion in Q). But the main choice he has, from the point
of view of this argument, is whether he wants G(Q) to be proven by means of the program
G(ψ) or G(φ′).

In the first case, when Chase0 is an unfolding of G(ψ), it follows from the previous
paragraph, that the red part of Chase1 is an unfolding of R(ψ), so R(goal) can be proved
there and the Fugitive loses. So the only way for him is to take, as Chase0, an unfolding of
G(φ′).

Notice that in such case the red part of Chase1 is any (chosen by the Fugitive) unfolding
of R(φ) (not R(φ′) but R(φ), as there is no R(tr) in Chase1 !). Now, ψ contains φ if and
only if in every such unfolding R(goal) will be provable by R(ψ). J

The variants of QDP∞s (LV ,LQ) studied in [2] are ones with LQ being Datalog programs
syntactically restricted in such a way that containment is decidable, and the above very
simple argument cannot be applied. One of the theorems they prove is that:

I Theorem 14. QDP∞s (UCQ,mDL) is undecidable.

The proof is by a clever application of the cold/hot trick.
On the positive side [2] shows that:

I Theorem 15. QDP∞s (CQ,mDL) is decidable.

I did not have the opportunity to see the proof from [2] so far, but I understand that it
uses a tree automata argument, basically following the ideas presented in Section 5.1. Any
unfolding of a monadic datalog program (and thus also every possible Chase0) is a tree of
bounded tree width. Then, for a Pâte Feuilletée reason nothing really new is added, only
elements which were close to each other in Chase0 can be close to each other in Chase1, and
the red part of Chase1 is of bounded tree width too. And then, since the Datalog program
in question is monadic, it can be decided by an automaton whether R(goal) can be proven
on such a bounded tree width Chase1.

I am summarizing the proof of Theorem 15 in order to remark that things are a bit subtle
here. For example, one could ask, why isn’t Chase1 a structure of bounded tree width even
in the QDP∞s (UCQ,mDL) case? The answer is in a query:

(A(x) ∧B(y)) ∨ ∃z (E(x, z) ∧ E(y, z))

With such query in V two remote elements a, b of Chase0, such that Chase0 |= G(A(a))
and Chase0 |= G(B(b)) can be connected27, in Chase1, via a new element e such that
Chase1 |= R(E(a, e)), R(E(b, e)).

Another subtlety regards the situation where we allow constants in the language. Normally,
one would think, adding constants to the signature of a Datalog program should not change
much: we can always replace S(x, y, c) (where S is a relation symbol and c is a constant
of the language) with an atom of a new predicate S3=c(x, y). Since there are finitely many
constants, such an operation could possibly cost us in the terms of complexity of problems,
but should not impact their decidability.

But imagine that for every variable x occurring somewhere in the body of any rule
in Q, there is an atom E(x, c) in this body. Which means that every element of Chase0
will be connected, by G(E), to c. It looks innocent. But imagine also that the query

27This works because one of the CQs in our UCQ is connected and the other is not. It seems to me that
the version of QDP ∞

s (UCQ, mDL) where only such UCQs are allowed which have each of their CQs
connected, is decidable, by the same proof which works for QDP ∞

s (CQ, mDL).

ICDT 2020

2:16 What Makes a Variant of Query Determinacy (Un)Decidable?

∃z E(x, z), E(y, z) is in V. Then, by the rules of the Green-Red Chase, for each pair of
elements a, b of Chase0 there will be a new element s in Chase1 such that Chase1 |=
R(E)(a, s), R(E)(b, s).

In consequence Chase1 will not have bounded tree width. Decidability of the version of
QDP∞s (mDL,CQ) where constants are allowed in Datalog is, to the best of my knowledge,
left open in [2].

8 Encoding. Spiders live here.

In Section 6 we explained how the Green-Red Chase can be used to simulate some computing
device (which, in this case, was the word problem for semigroups). The mechanism we
constructed there crucially required disjunction in the views from V (and in Q). Can anything
similar be done without disjunction? In [8] and [9] Spiders are the answer.

8.1 Spiders and spider queries
Let K ∈ N be a fixed natural number. Full Spider is any structure S isomorphic to
{H(a)} ∪ {Ti(a, bi), Ci(bi, ci) : 1 ≤ i ≤ K} ∪ {2 more atoms to come}. There can be of
course Full Red Spider, which is R(S), and Full Green Spider, G(S).

But the workhorses of our construction are Lame Spiders. An i-Lame Red Spider SiR, for
1 ≤ i ≤ K, is a Full Red Spider with the atom R(Ci)(bi, ci) replaced with G(Ci)(bi, ci). An
i-Lame Green Spider SiG is defined in an analogous way.

So a (Green or Red) Full Spider is a creature, either entirely red or entirely green, with a
head (where the predicate H is) and K legs of length two. Legs are distinguishable and each
of them comprises a thigh (predicate T) and a calf (predicate C). A Lame Spider, from the
daltonized point of view, looks like a Full Spider, but has one calf of the opposite color.

To operate on Lame Spiders we define Spider Queries. For 1 ≤ i, j ≤ K we define the
spider query Ψi,j as a CQ (with variables of the form zn as free variables):

∃x, ȳ H(x) ∧ Ti(x, zi) ∧ Tj(x, zj) ∧
∧
k 6=i,j

(Tk(x, yk) ∧Ck(yk, zk) ∧ 2 more atoms to come

So each Spider Query looks like a colorless Full Spider, but with two calves missing.
A pivotal example now. Let K = 4, i = 2, j = 3 and imagine there is an i-Lame Red

Spider S somewhere28 in Chasel (with the nodes a, b1, . . . b4, c1 . . . c4). Suppose also that
Ψi,j is in V, meaning that the Red-Green TGD θ generated by Ψi,j must be satisfied in
Chase.

Let us convince ourselves that the body of θ matches with S: there is an atom R(H)(x)
in the body of θ and there indeed is R(H)(a) in S. There is R(T1)(x, y1) ∧ R(C1)(y1, z1)
in the body of θ and there indeed are R(C1)(a, b1) and R(C1)(b1, c1) in S (and same if we
took 4 instead of 1). Finally, there are R(T2)(x, z2) and R(T3)(x, z3) in the body of θ and
R(T2)(a, b2) and R(T3)(a, b3) in S.

I Exercise 16 (Important in order to understand the idea). Notice that there would be no such
match if we considered the same S but Ψ1,3 instead of Ψ2,3.

Back to our example. We have already noticed that the body of the TGD θ matches with
S. Now suppose the head of θ is not satisfied in Chasel (for this match). Let us see what
will be produced when the red-green TGD generated by θ is applied. We know that new

28 S is a copy, in some Chasel, of Si
R

J. Marcinkowski 2:17

elements will be added in Chasel+1 for all existentially quantified variables in θ: new a′ will
be produced, with G(H)(a′) and with G(T2)(a′, b2) and G(T3)(a′, b3) . And also new b′1 and
b′4 will be created, with G(T1)(a′, b′1), G(C1)(b′1, c1) and G(T4)(a′, b′4), G(C4)(b′4, c4).

Now see, the newly produced atoms, together with atoms R(C2)(b2, c2) and G(C1)(b1, c1)
of S form a j-Lame Green Spider! We assumed that an i-Lame Red Spider is in Chasel
and that Ψi,j is in V and we proved that in this case there must be a j-Lame Green Spider
in Chasel+1! And of course the same holds true for the colors swapped. We proved (by
example):

I Observation 17 (The law of Spider Algebra). If there is SiG somewhere in Chase, and Ψi,j

is in V then SjR is also in the same Chase (and the same for the colors swapped).

And we almost29 proved:

I Observation 18. Let G = 〈{1, 2, . . .K}, E〉 be an undirected graph. Let V consist of all
the queries Ψi,j such that [i, j] ∈ E. Let 1 ≤ k, k′ ≤ K. Then the following two conditions
are equivalent:

k and k′ are in the same connected component of G;
some (red or green) k-Lame Spider is in Chase if and only if some k′-Lame Spider is.

Observation 18 shows how the mechanism of spiders (together with spider queries) can
do some computing for us. But of course proving that determinacy is at least as difficult
as graph reachability is not a big deal. And even if it was, the proof is not yet complete.
The input/output procedures still remain to be a small problem: we need to have G([Q])
as Chase0, which is entirely green. So where can we get our k-Lame Spider from? And we
know that determinacy holds once R([Q]) occurs somewhere in Chase, but R([Q]) is entirely
red, so it is not our k′-Lame Spider either. This small problem is solved in [8] by a minor
modification of the definition of spider query. But let us skip it here.

8.2 High level view of spiders
In the proof of undecidability of QDP∞e (UCQ,UCQ), as presented in Section 6, we con-
structed our example Vgood ⊆ V in such a way, that (for example) whenever there were two
vertices a, b in Chase such that R(EF)(a, b) was true in Chase (since it was true in some
Chasei) then also R(EEF)(a, b) was true in Chase (since it was true in some Chasei+2).
This example was meant to convince the Reader that any instance of the word problem for
finitely represented semigroups can be encoded.

If we wanted to be more precise we would probably have said that for a proof of
undecidability two tricks are needed: first, we need to be able to ensure that whenever
there are two vertices a, b in Chase such that if Chase |= R(AZ)(a, b) then also Chase |=
R(Z ′A′)(a, b) (this reflects a single operation of a Turing machine: think of Z as the machine
head, in certain state). Second, we need to always be able to give this Turing machine more
space, so we need to be able to ensure that whenever there are two vertices a, b in Chase
such that Chase |= R(B)(a, b) then also Chase |= R(BB)(a, b).

In [8] we show how to employ spiders for the two tricks. Two disjoint ideas are needed
for that, and here we only have room to try to explain one of them – the first one.

It is now time to reveal what the two more atoms in the definition of Spider are. They
are An(a, an) and Ta(ta, a). The elements an and ta are called the Spider’s antenna and tail
(a is , as it was earlier, its head). We also have respective two atoms An(x, xa) ∧ Ta(xt, x)
as the two more atoms in the definition of Spider Query.

29Clearly, the ⇐ implication is missing.

ICDT 2020

2:18 What Makes a Variant of Query Determinacy (Un)Decidable?

So far nothing has changed, apart from things being slightly more complicated. Observa-
tion 17 still holds true.

But imagine now a complicated structure, full of Spiders (Lame and Full, Red and Green),
possibly some of them sharing some body parts (like they do in the Chase in Observation 18).
And imagine there are two kinds of vertices of this structure: major and minor ones. The
major elements serve only as antennas and tails of some Spiders (and each tail or antenna
is a major element). Minor elements are spiders’ heads and the elements of the legs. Now
imagine you are taking your reading glasses off and now you only see the major vertices – the
tails and antennas. And you also see the Spiders between them, but only as abstract objects,
without being able to notice the details. What you now get is a graph, whose vertices are
the major vertices of the old structure, and whose edges are labelled with labels from the set
{SiR,SiG : 1 ≤ i ≤ K} ∪ {SR,SG} – there is an edge labelled with SiR from a vertex a to b
in the “abstract” graph if there are major vertices a and b and a Spider SiR in the original
structure, with a being the tail of this Spider and b being its antenna. Nobody is going to be
surprised that we will think of such Spider as of an atom SiR(a, b).

8.3 Two-spider queries
Let now Ψi,j be a Spider Query, as defined in Section 8.1, with the two additional atoms
that came in Section 8.2. Let us write Ψi,j as ψi,j ∧An(x, xa) ∧ Ta(xt, x). Let also Ψ′i′,j′ be
a new spider query, like Ψi′,j′ , but with a fresh set of variables – every variable that occurs
in Ψi′,j′ is primed30 in Ψi′,j′ . Let Ψ′i′,j′ = ψ′i′,j′ ∧An(x′, x′a) ∧ Ta(x′t, x′).

Now define Φi
′,j′

i,j as the query31:

∃xt ψi,j ∧ ψ′i′,j′ ∧An(x, xa) ∧ Ta(xt, x) ∧An(x′, x′a) ∧ Ta(x′t, x′) ∧ xt = x′a

The query Ψi′,j′

i,j , like any other query, generates two Green-Red TGDs, call them ♥gr and
♥rg. Let us try to understand when the body of ♥gr is satisfied in some Chasel. The
no-glasses view is that there need to be three major vertices in the structure, a, b = a′ and
b′ and it must hold that Chasel |= SiG(a, b) (suppose this is the case) or Chasel |= SjG(a, b)
and that Chasel |= Si

′

G(a′, b′) (suppose this is the case) or Chasel |= Sj
′

G (a′, b′). Then the
TGD ♥gr will be applied, creating a new node c (matching with the existentially quantified
variable xt = x′a) , and – according to the Law of Spider Algebra – new spiders/edges between
the major vertices: SjR(a, c) and Sj

′

R (c, b′).
Notice that our Ψi′,j′

i,j (or, rather, the TGDs it generates) does exactly the “first trick”
from Section 8.2.

8.4 An easy hill to climb: undecidability of QDP ∞
e (CQ, MDL)

Without the second trick (as we called it in Section 8.2) we of course will not be able to
present the proof here, of the result from [8], that QDP∞e (CQ,CQ) is undecidable. But at
least we can briefly explain how one can use the “first trick” from Section 8.3 to prove:

I Theorem 19. QDP∞e (CQ,mDL) is undecidable.

30Of course, i′ and j′ are not variables. They are some fixed natural numbers, which may, or may not, be
different from i and j.

31We use equality in this CQ, which is of course only needed to keep the notation reasonably simple.

J. Marcinkowski 2:19

It is shown in [5] that QDP∞e (CQ,DL) is undecidable. The proof is essentially what the
Reader could see in Section 7, and relies on undecidability of Datalog programs containment.
Notice that Theorem 19 is already beyond the reach of the technique from [5], as containment
of monadic Datalog programs is decidable.

To cook a proof of Theorem 19 we will need three ingredients. First is a trivial lemma:

I Lemma 20. The following problem is undecidable:
Given a set of word equations32 of the form SiGSi

′

G = SjRS
j′

R , and three numbers33
1 ≤ k, k′, k′′ ≤ K. Is it true that, for each m ∈ N, the above equations imply that:

Sk
′

G (SkG)mSk
′′

G = Sk
′

R (SkR)mSk
′′

R ?

Our second ingredient, which we are not going to discuss in details here, is the the
input/output procedure. We can write a query, quite similar to a Spider Query, which will
add34, to the Chase, the edge SkR(a, b) everywhere where it was SG(a, b) and will add the
edge SR(a, b) everywhere where it was SkG(a, b). And also, we can write two more similar
queries, one of them will add Sk′

R (a, b) everywhere where it was SG(a, b) ∧ α(a), where α
is a new unary predicate, and the other one will add Sk′′

R (a, b) everywhere where it was
SG(a, b) ∧ ω(b), with ω being another new unary predicate. This may sound cryptic, but
only until you read about the third ingredient, which is our monadic Datalog program Q.
Let Φ be the conjunctive query whose frozen body is the Full Spider S, as defined at the
beginning of Section 8.1, with variables xa and xt matching with the spider’s antenna and
tail. The program Q will consist of 3 rules:

Φ(xt, xa), α(xt)⇒M(xa)
M(xt),Φ(xt, xa)⇒M(xa)

M(xt),Φ(xt, xa), ω(xa)⇒ goal

Now imagine a Green-Red chase forQ and TV , which are the Green-Red TGDs representing
our given set of word equations. The elements of V are two-spider queries, which are CQs,
so there will be no room for the Fugitive for any maneuver there. But he can choose Chase0,
as it is going to be the green version of some unfolding of Q. Unfoldings of Q are chains of
Full Spiders, with the antenna of a predecessor always being the tail of its successor, and
with the first tail marked with α and last antenna marked with ω. The input/output rules
will produce another chain, of Lame Red Spiders, with the same antennas and tails, and
with Sk′

R as the first Spider, Sk′′

R as the last one, and with SkR everywhere in between. Then,
in the process of Chase, all the words equal to Sk′

R (SkR)mSk′′

R (modulo the equations enforced
by TV) will be created. Which means that if Sk′

G (SkG)mSk′′

G = Sk′

R (SkR)mSk′′

R then the word
Sk′

G (SkG)mSk′′

G will be created in Chase at some stage. Then, in the next step of Chase, due
to the input/output queries, a red version of an unfolding of Q will be produced, causing the
Fugitive to lose the game. Of course many details remain unexplained here, including the
“only if” direction, but all the important ideas have been presented here.

32We consider a semigroup here, whose generators are (names of) Green and Red Lame Spiders.
33We already met these, or at least similar, k and k′, in Observation 18.
34More precisely, a red-green TGD generated by this query will add.

ICDT 2020

2:20 What Makes a Variant of Query Determinacy (Un)Decidable?

References
1 Foto N. Afrati. Determinacy and query rewriting for conjunctive queries and views. Theoretical

Computer Science, 412(11):1005–1021, 2011. doi:10.1016/j.tcs.2010.12.031.
2 Michael Benedikt, Stanislav Kikot, Piotr Ostropolski-Nalewaja, and Miguel Romero Orth.

Unpublished manuscript, 2019.
3 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. What is

View-Based Query Rewriting? In Proceedings of the 7th International Workshop on Knowledge
Representation meets Databases (KRDB 2000), Berlin, Germany, August 21, 2000, pages
17–27, 2000. URL: http://ceur-ws.org/Vol-29/02-cdlv.ps.

4 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Lossless
Regular Views. In Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS ’02, pages 247–258, New York, NY, USA,
2002. ACM. doi:10.1145/543613.543646.

5 Wenfei Fan, Floris Geerts, and Lixiao Zheng. View determinacy for preserving selected
information in data transformations. Inf. Syst., 37:1–12, 2012.

6 Grzegorz Gluch, Jerzy Marcinkowski, and Piotr Ostropolski-Nalewaja. Can One Escape Red
Chains?: Regular Path Queries Determinacy is Undecidable. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, pages 492–501, New York,
NY, USA, 2018. ACM. doi:10.1145/3209108.3209120.

7 Grzegorz Gluch, Jerzy Marcinkowski, and Piotr Ostropolski-Nalewaja. The First Order Truth
Behind Undecidability of Regular Path Queries Determinacy. In 22nd International Conference
on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal, pages 15:1–15:18, 2019.
doi:10.4230/LIPIcs.ICDT.2019.15.

8 Tomasz Gogacz and Jerzy Marcinkowski. The Hunt for a Red Spider: Conjunctive Query
Determinacy Is Undecidable. In Proceedings of the 2015 30th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), LICS ’15, pages 281–292, Washington, DC, USA, 2015.
IEEE Computer Society. doi:10.1109/LICS.2015.35.

9 Tomasz Gogacz and Jerzy Marcinkowski. Red Spider Meets a Rainworm: Conjunctive Query
Finite Determinacy Is Undecidable. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’16, pages 121–134, New York, NY,
USA, 2016. ACM. doi:10.1145/2902251.2902288.

10 Per-Åke Larson and H. Z. Yang. Computing Queries from Derived Relations. In Proceedings
of the 11th International Conference on Very Large Data Bases - Volume 11, VLDB ’85, pages
259–269. VLDB Endowment, 1985. URL: http://dl.acm.org/citation.cfm?id=1286760.
1286784.

11 Alan Nash, Luc Segoufin, and Victor Vianu. Determinacy and Rewriting of Conjunctive Queries
Using Views: A Progress Report. In Thomas Schwentick and Dan Suciu, editors, Database
Theory – ICDT 2007, pages 59–73, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

12 Daniel Pasailă. Conjunctive Queries Determinacy and Rewriting. In Proceedings of the 14th
International Conference on Database Theory, ICDT ’11, pages 220–231, New York, NY, USA,
2011. ACM. doi:10.1145/1938551.1938580.

13 Luc Segoufin and Victor Vianu. Views and queries: determinacy and rewriting. In Proceedings
of the Twenty-fourth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 13-15, 2005, Baltimore, Maryland, USA, pages 49–60, 2005. doi:10.1145/
1065167.1065174.

https://doi.org/10.1016/j.tcs.2010.12.031
http://ceur-ws.org/Vol-29/02-cdlv.ps
https://doi.org/10.1145/543613.543646
https://doi.org/10.1145/3209108.3209120
https://doi.org/10.4230/LIPIcs.ICDT.2019.15
https://doi.org/10.1109/LICS.2015.35
https://doi.org/10.1145/2902251.2902288
http://dl.acm.org/citation.cfm?id=1286760.1286784
http://dl.acm.org/citation.cfm?id=1286760.1286784
https://doi.org/10.1145/1938551.1938580
https://doi.org/10.1145/1065167.1065174
https://doi.org/10.1145/1065167.1065174

	Introduction (1)
	Preliminaries
	The zoo of query languages
	Unfoldings of Datalog programs

	Introduction (2)
	Examples
	What is this paper about?

	The Green-Red Chase
	Green and red structures and queries
	The Green-Red chase. The CQ case.
	Discussion and the Curse of Pâte Feuilletée
	The Green-Red Chase. The non-CQ case.

	Some applications on the positive side
	Unary queries
	Slightly beyond Path Queries

	How disjunction leads to undecidability. QDP_e^infty(UCQ, UCQ).
	The Cold/Hot Trick
	Now undecidability follows easily

	Aside: determinacy under sound semantics
	Encoding. Spiders live here.
	Spiders and spider queries
	High level view of spiders
	Two-spider queries
	An easy hill to climb: undecidability of QDP_e^infty(CQ, MDL)

