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Abstract
It is well understood that a system built from individually fair components may not itself be
individually fair. In this work, we investigate individual fairness under pipeline composition.
Pipelines differ from ordinary sequential or repeated composition in that individuals may drop out
at any stage, and classification in subsequent stages may depend on the remaining “cohort” of
individuals. As an example, a company might hire a team for a new project and at a later point
promote the highest performer on the team. Unlike other repeated classification settings, where the
degree of unfairness degrades gracefully over multiple fair steps, the degree of unfairness in pipelines
can be arbitrary, even in a pipeline with just two stages.

Guided by a panoply of real-world examples, we provide a rigorous framework for evaluating
different types of fairness guarantees for pipelines. We show that naïve auditing is unable to uncover
systematic unfairness and that, in order to ensure fairness, some form of dependence must exist
between the design of algorithms at different stages in the pipeline. Finally, we provide constructions
that permit flexibility at later stages, meaning that there is no need to lock in the entire pipeline at
the time that the early stage is constructed.
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1 Introduction

As algorithms reach ever more deeply into our daily lives, there is increasing concern that
they be fair. The study of the theory of algorithmic fairness was initiated by Dwork et al. [5],
who introduced the solution concept of individual fairness. Roughly speaking, individual
fairness requires that similar individuals receive similar distributions on outcomes. Dwork
and Ilvento [6] examined the behavior of individual fairness (and various group notions
of fairness) under composition. They showed that although competitive composition, i.e.,
when two different tasks “compete” for individuals, can result in arbitrarily bad behavior
under composition, fairness under simple repeated or sequential classifications (for the
same task) degrades gracefully, similar to degradation of differential privacy loss under
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7:2 Individual Fairness in Pipelines

multiple computations.1 In this work we expand the investigation of individual fairness
under sequential composition to the case of cohort pipelines. Cohort pipelines differ from
ordinary sequential composition in that each stage of the pipeline considers only the remaining
cohort of individuals and may change its classification strategy conditioned on the set of
individuals remaining.

Cohort pipelines are common: many data-driven systems consist of a sequence of cohort
selection or filtering steps, followed by decision or scoring steps. A running exemplary
scenario in this work will be a two-stage cohort pipeline: a company hires a team (cohort) of
individuals to work on a project and subsequently promotes the highest performer on the
team to a leadership position. Although the team selection may be fair in the sense that
similarly qualified candidates have similar chances of being chosen for the team, the selection
of the highest performer critically depends on the other members of the team. As we will see,
being compared fairly to other members of the cohort in each stage doesn’t imply fairness of
the entire pipeline, as the competitive landscape can vary between similar individuals.

Indeed, a fair cohort selection mechanism [6] can exploit the “myopic” nature of the
promotion stage to skew overall fairness. This can happen either through good intentions
(e.g., choosing teams so that members of a minority group always have a mentor on the
team) or malice (e.g., ensuring that minority candidates are almost always paired with
a more qualified majority candidate): in both these cases minorities suffer significantly
reduced chances of promotion.2 Unlike other repeated classification settings in which the
degree of unfairness of multiple fair steps degrades gracefully, the degree of unfairness in
cohort pipelines can be arbitrary, even in a pipeline with just two stages. Furthermore,
we demonstrate that construction of malicious pipelines under naïve auditing of fairness is
straightforward and both computationally and practically feasible.

In this work we examine the subtle issues that arise in cohort-based pipelines, focusing
on short pipelines consisting of a single cohort selection step followed by a scoring step. We
formalize fairness desiderata capturing the issues unique to pipelines (not shared by ordinary
sequential composition), and give constructions for robust cohort selection mechanisms
that behave well under (i.e., are robust to) pipeline composition with a variety of future
scoring policies. In particular, we demonstrate that it is possible to design cohort selection
mechanisms that are robust to a rich family of subsequent scoring functions given a simple
description of a policy governing the behavior of the family.3 This provides, for example, a
means for enabling a company to choose an individually fair hiring procedure that will be
robust to many possible compensation functions (all adhering to the policy) chosen at a later
date. Guided by a panoply of real-world examples, this work provides a rigorous framework
for evaluating and ensuring different types of fairness guarantees for pipelines.

We now summarize our contributions. First, we formalize what it means for the outcomes
of a pipeline, which include both the outcome of the initial cohort selection step and the score
conditioned on being chosen, to be fair.4 We then extend this fairness notion to describe how
a cohort selection mechanism can be robust to a scoring policy, i.e., to compose fairly with
any cohort scoring function chosen from a permissible set. Although the choice of scoring
function may not depend on the cohort, the scores assigned to any individual may be highly

1 Note that although fairness degrades gracefully in these scenarios, it does not rule out the existence of
feedback loops which arbitrarily amplify unfairness, see e.g., [12, 20].

2 See Appendix A for additional examples.
3 Formally, we can think of a policy as a description of a set of permitted scoring functions.
4 Bower et al. consider fairness in pipelines for a group-based definition of fairness, and primarily consider

the accuracy of the final pipeline decision [1].
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dependent on their cohort “context.” Second, we determine how the scoring policy imposes
conditions on the cohort selection mechanism. In particular, we show that there is a natural
way to describe the set of cohort contexts in which similar individuals are treated similarly by
all functions permitted by the policy, and we demonstrate that assigning similar individuals
to similar distributions over cohort contexts is sufficient (and sometimes necessary) to ensure
pipeline robustness. Third, we provide constructions for cohort selection mechanisms which
are both robust to a rich set of practical scoring policies and permit flexibility in selection of
the original cohort.

2 Model and Definitions

2.1 Preliminaries
We base our model on individual fairness, as proposed in [5]. The intuition behind individual
fairness is that “similar individuals should be treated similarly.” What constitutes similarity
for a particular classification task is provided by a metric which captures society’s best
understanding of who is similar to whom. Below we formally define individual fairness as
in [5] with a natural Lipschitz relaxation.

I Definition 1 (α-Individual Fairness [5]). Given a universe of individuals U , and a metric
D : U × U → [0, 1] for a classification task with outcome set O, and a distance metric
d : ∆(O)×∆(O)→ [0, 1] over distributions over outcomes, a randomized classifier C : U →
∆(O) is α−individually fair if and only if for all u, v ∈ U , d(C(u), C(v)) ≤ αD(u, v).

We use the phrase “similar individuals are treated similarly” as a shorthand for the indi-
vidual fairness Lipschitz condition. Individual fairness was originally proposed in the context
of independent classification, i.e., each individual is classified exactly once, independently of
all others. However, in many practical settings individuals cannot be classified independently,
particularly when there are a limited number of positive classifications available (e.g., a
university which can only accept a limited number of students each year, an advertiser
with a limited budget). Dwork and Ilvento formalized this problem as the “cohort selection
problem,” in which a set of exactly n individuals must be selected such that the probabilities
of selection conform to individual fairness constraints [6].

I Definition 2 (Cohort Selection Problem [6]). Given a universe U of individuals, an integer
n, and a task with metric D, select a cohort C ⊆ U of exactly n individuals such that
|Pr[u ∈ C] − Pr[v ∈ C]| ≤ D(u, v). We call such a mechanism an individually fair cohort
selection mechanism.

Our work extends the investigation into fair composition by considering composition
within a pipeline of cohort selection and scoring steps. We focus on the case of a two-step
pipeline, and we assume for simplicity that the metric for the cohort selection and scoring
functions are the same.

I Definition 3 (Two-stage Cohort pipeline). Given a universe of individuals U , a two-stage
cohort pipeline consists of: a set of permissible cohorts C ⊆ Pow(U)\∅ (where Pow(U)
indicates the power set of U), a single (randomized) cohort selection mechanism A which
outputs a single cohort C ⊆ C, a set of scoring functions F : C × U → [0, 1], and a scoring
function f ∈ F . The two-stage cohort pipeline procedure is A ◦ f .

FORC 2020



7:4 Individual Fairness in Pipelines

Table 1 Terminology.

Term Definition
U The universe of individuals
D : U × U → [0, 1] The individual fairness metric
C ⊆ Pow(U)\∅ The set of permissible cohorts
F The family of permitted scoring functions.
f : C × U → [0, 1] A scoring function. f(C, x) is undefined whenever x /∈ C, and throughout this

work, whenever we write f(C, x), where x is any element in U , it is the case that
x ∈ C.

A : U → C An individually fair cohort selection mechanism.
A(C) ∈ [0, 1] The probability that A outputs the cohort C.
Cu ⊆ C The subset of permissible cohorts containing u.
p(u) ∈ [0, 1] The probability A outputs a cohort containing U .

We now briefly introduce supporting terminology (summarized in Table 1). For C ∈ C, let
A(C) denote the probability that A outputs C, where the probability is over the randomness
in the cohort selection mechanism A operating on the universe U . We denote the set of cohorts
containing u as Cu, and the probability that A selects u can be expressed p(u) =

∑
C∈Cu A(C).

As initial constraints on A and F , we assume that A is an individually fair cohort selection
mechanism and that each f ∈ F is individually fair within the cohort it observes, i.e., it is
intra-cohort individually fair :

I Definition 4 (Intra-cohort individual fairness). Given a cohort C, a scoring function f :
C × U → [0, 1] is intra-cohort individually fair if for all C ∈ C, D(u, v) ≥ |f(C, u)− f(C, v)|
for all u, v ∈ C.

Although intra-cohort fairness constrains f to be individually fair within a particular cohort,
f(C1, u) can differ arbitrarily from f(C2, u) if C1 6= C2. For ease of exposition we sometimes
refer to C as the “cohort context” or simply the “context” of u for u ∈ C.
I Remark 5 (Intra-cohort individual fairness is insufficient). A pipeline consisting of an indi-
vidually fair cohort selection mechanism and intra-cohort individually fair scoring function
may result in arbitrarily unfair treatment. For example, suppose X = {X1, X2, . . .} is a
partition of U , and A chooses a cohort Xi uniformly at random. Suppose f assigns score 1 to
all members of the cohort corresponding to X∗, and otherwise assigns score 0. A is not only
individually fair, it selects each element with an equal probability; f is not only intra-cohort
individually fair, it treats all members of a given cohort equally; yet the pipeline can result
in arbitrarily large differences in scores for similar individuals. Furthermore, this observation
holds for any partition including adversarially chosen partitions. Although this abstract
example suffices to prove the point, we include an extensive set of realistic pipeline examples,
analogous to the “Catalog of Evils” of [5], in Appendix A. We also include a practical method
for malicious pipeline construction in Appendix B of the full version.

An important part of the pipeline definition is the contextual behavior of f , i.e., the
behavior of the second stage of the pipeline may depend on the selected cohort C. The
simplistic solution to this problem is to design and evaluate the whole pipeline for fairness as a
single unit, i.e., requiring that similar individuals have similar distributions over ∆(Opipeline).
Although such evaluation would catch unfairness, it (1) doesn’t provide explicit guidance for
designing any given component, (2) may miss certain pipeline-specific fairness issues (see
Examples 7 and 9), and (3) “locks” the pipeline into a single monolithic strategy, which is
highly impractical. For example, employers frequently need to change compensation policies
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due to changing market conditions. However, changing compensation policies due to disliking
a particular member of a cohort, e.g., switching to equal bonuses for all team members if
the company does not like the individual who would have received the largest bonus, is not
permitted in our model. Indeed, later stages in the pipeline may be completely ignorant of
the existence of prior stages, e.g., a manager deciding on employee compensation may be
unaware of automated resume screening.

This motivates our design goal of robustness: designing the cohort selection mechanism A

which composes well with every function in F , rather than expecting the scoring function to
properly analyze and respond to the choices made in the original cohort selection mechanism
design. As a result, the only communication necessary between the steps is the description
of F . With this in mind, a deceptively(!) simple extension of Definition 1 gives our fairness
desideratum for pipelines.

I Definition 6 (α-Individual Fairness and Robustness for Pipelines (informal)). Consider
the pipeline consisting of (C, A,F), with outcome space Opipeline. For f ∈ F , the pipeline
instantiated with f satisfies α−individual fairness with respect to the similarity metric D and a
distance measure d : ∆(Opipeline)×∆(Opipeline)→ [0, 1] if ∀u, v ∈ U , d([f◦A](u), [f◦A](v)) ≤
αD(u, v).

If the pipeline satisfies α−individual fairness with respect to every f ∈ F , i.e., if ∀f ∈ F
and ∀u, v ∈ U , d([f ◦ A](u), [f ◦ A](v)) ≤ αD(u, v), we say that A is α−robust to F with
respect to d,D.

We model the contextual nature of the problem by allowing the behavior of each f ∈ F
to depend on the cohort, rather than allowing f to be chosen adaptively in response to the
selected cohort. This modeling choice still allows us to capture the contextual nature of
scoring policies, while keeping our abstractions clean.5

2.2 Fairness of pipelines
Lurking in this informal definition are two subtle choices critical to pipeline fairness: (1)
how should distributions over Opipeline be interpreted, and (2) what distance measure d is
appropriate for measuring differences in distributions over Opipeline. In the remainder of this
section, we consider these two questions and frame the notion of robustness parametrized by
the two axes: distribution and distance measure over distributions.

2.2.1 Choosing the interpretation of the distribution
To account for the fact that individuals not selected by A never receive a score from f the
relevant outcome space is the union of possible scores and “not selected,” i.e., Opipeline :=
[0, 1] ∪ {⊥}. Thus conditioning on whether an individual was selected or not changes the
interpretation of the distribution over the outcome space and, more importantly, changes the
perception of fairness.

I Example 7 (Perception of conditional probability). Suppose Alice (a) and Bob (b) are similar
but not equal job candidates, i.e., D(a, b) ∈ (0, 0.1]. Consider an individually fair cohort
selection mechanism, A which either selects a cohort containing one of Alice or Bob or neither
and satisfies p(a) = p(b) = p∗. Consider the fairness constraint on the scoring function f
for the unconditional distribution over Opipeline: |p(a)f(a) − p(b)f(b))| ≤ D(a, b), which

5 See Appendix A for explicit examples of modeling adaptation to changing market conditions.

FORC 2020
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simplifies to p∗|f(a)− f(b))| ≤ D(a, b). (Note: as Alice and Bob never appeared together
in a cohort, there is no intra-cohort fairness condition.) The constraint on the difference in
treatment by f is essentially diluted by a factor of p∗.

Enforcing fairness on the unconditional distribution essentially allows the company to
hand out job offers of the following form: “Congratulations you are being offered a position
at Acme Corp., you can expect a promotion after one year with probability x%.” Alice and
Bob may receive offers will equal probability, but the values of x printed on the offer may be
wildly different, and as such they will perceive the value of the job offer differently.

The choice of conditional or unconditional distribution boils down to what perception of
fairness is important. In the case of bonuses or promotions awarded long after hiring, the
conditional perception may be particularly important. However, on shorter time frames or if
the only consequential outcome is the final score, the unconditional distribution may be more
appropriate (e.g., resume screening immediately followed by interviews).6 We consider two
approaches which capture these different perspectives: the unconditional distribution
SN,A,fu , treats the ⊥ outcome as a score of 0 and the conditional distribution SC,A,fu

conditions on u being selected in the cohort. More formally:

I Definition 8 (Conditional and unconditional distributions). Let SA,fu ∈ ∆(Opipeline) be the
distribution over outcomes arising from the pipeline, i.e., f ◦ A. SA,fu places a probability
of 1− p(u) on ⊥, and for s ∈ [0, 1], SA,fu places a probability of

∑
C∈C Pr[f(C, u) = s]A(C)

on s.
The unconditional distribution SN,A,fu is identical to SA,fu with the exception that
it treats the ⊥ outcome as if it had score 0. That is, for 0 < s ≤ 1, SN,A,fu places a
probability of

∑
C∈C Pr[f(C, u) = s]A(C) on s; at s = 0, SN,A,fu has a probability of

1− p(u) +
∑
C∈C Pr[f(C, u) = 0]A(C).

The conditional distribution SC,A,fu has probability
∑

C∈C
Pr[f(C,u)=s]A(c)
p(u) for each score

s ∈ [0, 1], i.e., it is SA,fu conditioned on the positive outcome of A(C).7
Each of these approaches can be viewed as a method for converting a distribution SA,fu over
Opipeline to distributions SC,A,fu and SN,A,fu over [0, 1].

2.2.2 Distance measures over distributions
The natural approach for measuring distances between distributions would be to use expect-
ation: that is, duncond,E(SA,fu , SA,fv ) := |E[SN,A,fu ] − E[SN,A,fv ]| and dcond,E(SA,fu , SA,fv ) :=
|E[SC,A,fu ]− E[[SC,A,fv ]|. Difference in expectation generally captures the unfairness in the
examples discussed thus far. However, a subtle issue can arise from the certainty of outcomes,
which requires greater insight into the distribution of scores.

6 Although in this work we consider pipelines with a single relevant metric, the conditional versus
unconditional question is critically important when metrics differ between stages of the pipeline. For
example, the metric for selecting qualified members of a team may be different than the metric for
choosing an individual from the team to be promoted to a management role, as the two stages in the
pipeline require different skillsets.

7 This definition is not defined if p(u) = 0, since it does not make sense to consider a “conditional
distribution” if u is never selected to be in the cohort (and thus never receives a score). In defining
robustness of a cohort selection mechanism, we should thus restrict to considering u ∈ U where p(u) > 0
(and individual fairness of the cohort selection mechanism on its own would provide fairness guarantees
over the probabilities p(u)). For simplicity, we do not explicitly mention this modification.
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I Example 9 (Certainty of outcomes). Consider two equally qualified job candidates, Charlie
and Danielle. As these two candidates are equally qualified, they should clearly be offered
jobs and promotions with equal probability. Recall the company’s pleasant form letter for
job offers from Example 7, “Congratulations you are being offered a position at Acme Corp.,
you can expect a promotion after one year with probability x%.” Danielle receives an offer
with x = 70% (with probability p∗), but Charlie receives either an offer with x = 100%
(with probability 0.7p∗) or an offer with x = 0% (with probability 0.3p∗). Although both are
offered jobs with equal probability and their expectations of promotion are equal, Charlie’s
offers have certainty of promotion (or no promotion) whereas Danielle’s promotion fate is
uncertain.

As Example 9 illustrates, expected score does not entirely capture problems related to
the distribution of scores rather than the average score. Although total-variation distance is
a natural choice for evaluating such distributional differences, it is too strong for this setting.
For example, if Charlie receives a score of 0.7 with probability 1 (over randomness of the
entire pipeline), while Danielle receives a score of 0.7− ε with probability 0.5 and a score
of 0.7 + ε with probability 0.5, then the total variation distance would be 1, though these
outcomes are intuitively very similar. We therefore introduce the notion of mass-moving
distance over probability measures. Mass-moving distance combines total variation distance
with earthmover distance to reflect that similar individuals should receive similar distributions
over close (rather than identical) sets of scores.

I Definition 10 (Mass-moving distance). Let γ1 and γ2 be probability mass functions over
finite sets Ω1 ⊆ [0, 1] and Ω2 ⊆ [0, 1], respectively. Let V ⊆ [0, 1] be the set of real values
v ∈ [0, 1] such that there exist probability mass functions γ̃1 and γ̃2 over [0, 1] with finite
supports Ω̃1 and Ω̃2, respectively, where:
1. Nothing moves far and mass is conserved. For i = 1, 2, there is a function Zi : [0, 1]→

∆(Ω̃i) such that:
a. Nothing moves far. For all x ∈ [0, 1] and y ∈ Supp(Zi(x)), it holds that |x− y| ≤ 0.5v.
b. Mass is conserved. For all y ∈ Ω̃i, it holds that γ̃i(y) =

∑
x∈Ωi z

x
i (y)γi(x), where zxi is

the probability mass function of the distribution Zi(x).
2. Total variation distance is small. It holds that 0.5v ≥ TV (γ̃1, γ̃2) :=

1
2
∑
w∈Ω̃1∪Ω̃2

|γ̃1(w)− γ̃2(w)|.

Then we let MMD(γ1, γ2) = inf(V ).

A simple way to think about mass-moving distance is to break the definition down into
two steps: (1) transforming the original distributions over scores into distributions over a
single shared set of adjusted scores and (2) moving mass between the distributions over
adjusted scores.

Since there is a natural association between probability distributions over [0, 1] and
probability mass functions over [0, 1], Definition 10 also gives a notion of distance between
probability distributions.8 In the example of Charlie and Danielle receiving scores of 0.7 or
0.7± ε described above, the mass-moving distance is at most 2ε since γ̃1 and γ̃2 can both be
taken to be the probability measure that places the full mass of 1 on 0.7.

8 We slightly abuse notation and use MMD(X1,X2) for probability distributions X1 and X2, to denote
MMD(γ1, γ2) where γ1 is the probability mass function associated to X1 and γ2 is the probability mass
function associated to X2.
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7:8 Individual Fairness in Pipelines

Using mass-moving distance, we specify two additional complementary distance meas-
ures dcond,MMD(SA,fu , SA,fv ) := MMD(SC,A,fu , SC,A,fv ) and duncond,MMD(SA,fu , SA,fv ) :=
MMD(SN,A,fu , SN,A,fv ).

2.3 Robustly fair pipelines
Recall our informal notion that a cohort selection mechanism A is robust to a family of
scoring functions F if the composition of A and any f ∈ F is individually fair. We can
now formalize robustness as either conditional or unconditional with respect to either
expected score or mass moving distance over score distributions. By evaluating the
properties of each combination of distribution and distance measure, we can capture a range
of subtle fairness desiderata in pipelines.9

I Definition 11 (Robust pipeline fairness). Given a universe U , a metric D, let A be an indivi-
dually fair cohort-selection mechanism and let F be a collection of intra-cohort individually fair
scoring functions C×U → [0, 1]. Choose d ∈ {dcond,E, duncond,E, dcond,MMD, duncond,MMD}, a
distance measure over SA,fu . We say A is α-robust w.r.t F for d if d(SA,fu , SA,fv ) ≤ αD(u, v)
for all u, v ∈ U and for all f ∈ F .

Throughout the rest of this work, we will examine robustness properties in terms of
particular settings of d. As one might expect, mass moving distance over score distributions
is a stronger condition than expected score, and conditional robustness implies unconditional
robustness up to a Lipschitz relaxation.10

3 Conditions for Success

In this section, we describe conditions on A that will result in our desired robustness
properties with respect to a class of scoring functions F . We first consider the description of
F available to A, i.e., the policy. The simplest method of specifying the policy by describing
all f ∈ F prohibits adding f with similar or identical fairness properties to F at a later
point and is highly unrealistic (and potentially intractable). In practice, we expect policies
to govern how differently f can treat individuals within different contexts, rather than
enumerating the permitted functions. To that end, we propose policies in the form of a
distance function over (cohort, individual) pairs, δF : (C × U) × (C × U) → [0, 1]. This
distance function specifies the maximum difference in score between two (cohort, individual)
pairs δF ((C1, u), (C2, v)) := supf∈F |f(C1, u) − f(C2, v)|. δF captures the salient fairness
behavior of the family of scoring functions, while being succinct in comparison to maintaining
a list of all supported f directly. In fact, as we will show in Lemma 13, a partial description
or an overestimate of δF will also suffice. To illustrate our policy descriptions, consider the
following two families:
1. F1 ignores the cohort context entirely, and treats each u ∈ U the same regardless of the

cohort, i.e., F1 = {f | ∃g : U → [0, 1] s.t. f(C, u) = g(u) for all (C, u) ∈ C × U}.
2. F2 treats u and v similarly within the same context, but has no constraint on treatment in

different contexts, i.e., F2 = {f | f((C\{u})∪{v}, v)− f(C, u)| ≤ D(u, v) for all u, v ∈ U
and ∀C ∈ C s.t. u ∈ C, v /∈ C}.

9 Note that these choices for d are not the only possible choices, and the framework can be extended to
different choices of distribution and distance measure to address other fairness concerns.

10See Propositions E.2 and E.1 in the full version. Interestingly, we show in the full version that for
some classes of score functions, guaranteeing individual fairness w.r.t mass-mover distance fairness is
“equivalent” to guaranteeing individual fairness w.r.t expected score.
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Recall that intra-cohort individual fairness requires that the scoring functions in both
families must treat u and v similarly if they appear in the same cohort, i.e., D(u, v) ≥
|f(C, u)− f(C, v)|.

For the family F1, we observe that δF1((C1, u), (C2, v)) = D(u, v), and, intuitively,
the designers of A will not need to consider the behavior of F in their design of A. On
the other hand, for F2, we observe that δF2((C, u), (C, v)) = D(u, v) for any cohort C, but
δF2((C, u), (C ′, v)) can be much greater than D(u, v) for C ′ 6= C. For this reason, composition
planning for A is non-trivial. As one would expect, δF heavily influences the strength of
conditions on A.

3.1 A’s Task: Designing Mechanisms Compatible with δF

We now describe how to design A to guarantee robustness with respect to F , given (possibly
overestimates of) the distance function δF over (cohort, individual) pairs describing F . The
conditions on A will roughly consist of making sure that A assigns similar individuals to
similar distributions over cohort contexts, where similarity of (cohort, individual) pairs is
defined with respect to δF .

Although δF is a succinct description of a policy, it is more intuitive when designing
with composition in mind to translate δF into a set of “mappings” specifying which (cohort,
individual) pairs will be treated similarly by f ∈ F . That is, for each pair u, v ∈ U , we can
describe δF as a partitioning Pu,v of (Cu × u) ∪ (Cv × v) such that each partition or “cluster”
has small diameter with respect δF , i.e., within a cluster δF ((C1, u), (C2, v)) ≤ D(u, v). The
collection of partitions over all pairs of individuals then defines the mapping.

I Definition 12 (Mapping based on δ). For each pair of distinct individuals u and v, consider
the subset Pu,v := (Cu×{u})∪(Cv×{v}) of (cohort, individual) pairs. Consider a partition of
Pu,v into clusters that respects δ, i.e., that satisfies the following condition: if (C1, x), (C2, y)
are in the same cluster11, then δ((C1, x), (C2, y)) ≤ D(u, v). Let nu,v (and nv,u) be the
number of clusters of the partition. We call a collection of such partitions for each pair
u, v 6= U a mapping of C that respects δ.

Mappings interact well with distance functions δ′ that overestimate δF , as larger distances
between (cohort, individual) pairs imposes more strict conditions on cluster membership.
Lemma 13 states that a mapping that respects δ′ will also respect δF , although the resulting
conditions on the mapping might be more restrictive.

I Lemma 13. Let δ′ : (C × U) × (C × U) → [0, 1] be a distance function. Suppose that δ′
has the property that for all pairs of cohort contexts (C1, x), (C2, y) ∈ C × U , it holds that
δ′((C1, x), (C2, y)) ≥ δF ((C1, x), (C2, y)). If a mapping respects δ′, then the mapping also
respects δF .

Proof. Consider any pair of individuals u and v, and consider any mapping that respects
δ′. In the partition corresponding to u and v, if (C1, x) and (C2, y) are in the same cluster,
then it holds that δF ((C1, x), (C2, y)) ≤ δ′((C1, x), (C2, y)) ≤ D(u, v). Thus, the mapping
respects δF , as desired. J

11Note that x, y ∈ {u, v}. Recall that (C1, u) and (C2, u) may appear in the same cluster, and thus it is
possible that x = y.
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Table 2 Policy and mapping terminology.

Term Definition
δF : (C × U)× (C ×
U)→ [0, 1].

distance function specifying the maximum difference in treatment between
(cohort,individual) pairs by any f ∈ F . δF ((C1, u), (C2, v)) is undefined if
u 6∈ C1 or v 6∈ C2.

Mu,v : Cu → N a mapping of the cohorts containing u to clusters containing (C, u).
nu,v The number of clusters in a mapping
Mδ the set of all mappings which respect δ.

We now briefly introduce supporting terminology for policies and mappings (summarized
in Table 2). To succinctly refer to the clusters in a mapping, we define label functions
Mu,v : Cu → N and Mv,u : Cv → N such that Mu,v(C) is the label of the cluster containing
(C, u) and Mv,u(C) is the label of the cluster containing (C, v). We use nu,v (or nv,u) to
denote the number of clusters in a mapping. We also refer to the set of functions (Mu,v)u6=v∈U ,
which entirely specify the partitions, as a mapping. Valid mappings for δ are not necessarily
unique, as there may be more than one way to partition Pu,v into clusters with diameter
bounded by D(u, v). We letMδ be the set of mappings that respect δ.

Given a mapping of δF (or of an overestimate δ′), we can now interpret “distributions
over cohorts” induced by A as “distributions over clusters” induced by A. Formally, we
convert the distributions over cohorts into measures over [nu,v] for each pair (u, v) ∈ U × U .
As a result, “similar distributions over cohorts” will turn out to mean “similar measures over
[nu,v].”

I Definition 14. Let (Mu,v)u6=v∈U be a mapping of C. For u, v ∈ U , we define measures
q1
u,v and q2

u,v over the sample space [nu,v] as follows:
1. The unconditional measure over cohorts q1

u,v on the sample space [nu,v] for each
(u, v) ordered pair is defined as follows. For i ∈ [nu,v], we let q1

u,v(i) =∑
C∈Cu|Mu,v(C)=iA(C).12

2. The conditional measure over cohorts q2
u,v on the sample space [nu,v] for each (u, v)

ordered pair is defined as follows. For i ∈ [nu,v], we let q2
u,v(i) =

∑
C∈Cu|Mu,v(C)=i

A(C)

p(u) .1314

We now specify sufficient conditions for robustness in terms of distances between these
measures over [nu,v]. The conditions require that for each pair u, v ∈ U , A assigns similar
probabilities to cohorts containing u and cohorts containing v within each cluster.

I Definition 15 (α-Notions 1 and 2). Let (Mu,v)u6=v∈U be a mapping of C. For u, v ∈ U , let
q1
u,v and q2

u,v be defined as in Definition 14. We define α-Notions 1 and 2 as follows:
1. For α ≥ 0.5, we say that A satisfies α-Notion 1 if for all u, v ∈ U such that D(u, v) < 1,

TV (q1
u,v, q

1
v,u) ≤ (α − 0.5)D(u, v). (The 0.5 arising in Notion 1 comes from having to

“smooth out” q1
u,v to a probability measure in a later step.)

2. For α ≥ 0, we say that A satisfies α-Notion 2 if for all u, v ∈ U such that D(u, v) < 1,
TV (q2

u,v, q
2
v,u) ≤ αD(u, v).

12This is not necessarily a probability measure, since the total sum on the sample space is p(u) ≤ 1, but
it is finite.

13Observe that this is in fact a probability measure since p(u) =
∑

C∈Cu
A(C) =∑Mu,v

i=1

∑
C∈Cu|Mu,v(C)=i A(C).

14Like in Definition 8, this definition is not defined if p(u) = 0, since it does not make sense to consider a
“conditional distribution” if u is never selected to be in the cohort (and thus never receives a score). We
should thus restrict to considering u ∈ U where p(u) > 0 (and individual fairness of the cohort selection
mechanism on its own would provide fairness guarantees over the probabilities p(u)). For simplicity, in
this extended abstract, we do not explicitly mention this modification.
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Our main result is that these conditions guarantee pipeline robustness for composition
with any f ∈ F with respect to mass-moving distance (and thus expected score).15 Theorem
16 states that so long as A satisfies Notion 1 (resp. 2) for the mappings associated with F ,
then A will be robust with respect to F .

I Theorem 16 (Robustness to Post-Processing). Let F be a class of scoring functions, let
α ≥ 0.5 be a constant. Suppose that (Mu,v)u 6=v∈U is inM 1

2α δ
F . If A is individually fair and

satisfies α-Notion 1 (resp. α-Notion 2) for (Mu,v)u 6=v∈U , then A is 2α-robust w.r.t. F for
duncond,MMD (resp. dcond,MMD).

The proof of Theorem 16 appears in Appendix B.1 of the full version.
Furthermore, these conditions are necessary both for mass-moving distance and the

weaker condition of expected score for certain rich classes of scoring functions.

I Theorem 17 (Informal). Let d be any metric in
{
duncond,MMD, dcond,MMD, dcond,E, duncond,E

}
.

Loosely speaking, given F described by mappings such that inter-cluster distances are much
larger than intra-cluster distances, the requirements on A in Theorem 16 are necessary for
achieving robustness w.r.t. d.

We formalize Theorem 17 in Appendix B of the full version.16

4 Robust Mechanisms

Although the conditions specified in the previous section are quite strict, and indeed some
pathological scoring function families admit no robust solutions, we can nonetheless con-
struct robust cohort selection mechanisms for rich classes of scoring policies.17 We exhibit
mechanisms robust to two broad classes of policies:
1. Individual interchangeability: replacing a single individual in the cohort does not

change treatment of the cohort too much, i.e., policies like δF2 .
2. Quality-based treatment: cohorts with similar quality “profiles” are treated similarly.

That is, the scoring function only considers the set of qualifications represented within a
cohort and is agnostic to the specific individual(s) exhibiting a given qualification.

These policies cover a wide range of realistic scenarios and allow for significant flexibility and
adaptability in the choice of f . In this section, we demonstrate that these policies also admit
a variety of efficient and expressive constructions for A, i.e., A that may assign a wide range
of probabilities p(u) to individuals.

I Remark 18. As previously noted, robustness is trivial for the class of scoring functions which
ignore the cohort context (F1). We formalize this observation in the following proposition:

I Proposition 19. Consider the mapping that, for each pair of individuals u and v, places
all of the cohort contexts in (Cu×{u})∪ (Cv×{v}) into the same cluster. If A is individually
fair, then A satisfies 0.5-Notion 1 and 0.5-Notion 2 w.r.t. this mapping.

15See Corollary B.1.1 in the full version for a formal statement of the relationship between MMD and
expected score.

16 See Theorem B.5 and Theorem B.6.
17 See Appendix D.1 of the full version for an example of F which admits no robust A.
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4.1 Individual interchangeability
To describe the interchangeability policy, we specify a distance function δint : (C × U) ×
(C × U)→ [0, 1] that requires that “swapping” any individual in a cohort does not result in
significantly different treatment. More formally:

I Definition 20 (Individual interchangeability policy).

δint((C, u), (C ′, v)) =


D(u, v) if C = C ′

D(u, v) if C ′ = (C \ {u}) ∪ {v} .
1 otherwise.

δint can be viewed as an overestimate of δF2 , or as a partial specification of the distance
function on a subset of (C × U)× (C × U), trivially completed to 1 on other pairs of cohort
context pairs. δint is naturally translated into a simple mapping: for any pair of individuals
u and v, the partition corresponding to u and v in the mapping consists of clusters of size 2
consisting of “corresponding” (cohort, individual) pairs. This follows from observing that if
an individual u receives some score f(C, u) in a cohort C, if u were replaced by v /∈ C, then
v would receive a score in [f(C, u)−D(u, v), f(C, u) +D(u, v)]. More formally:

I Definition 21 (Swapping Mapping). Let C be the set of all subsets of U with exactly k
individuals. The swapping mapping is defined as follows. For each pair of individuals
u, v ∈ C:
1. For C ∈ C such that u, v ∈ C, the partition includes the cluster {(C, u), (C, v)}.
2. For C ∈ C such that u ∈ C and v 6∈ C, the partition includes the cluster
{(C, u), ((C \ {u}) ∪ {v} , v)}.

It is straightforward to verify that the swapping mapping respects δint.
For the swapping mapping, there is a simple condition under which cohort selection

mechanisms satisfy unconditional robustness (Notion 1): monotonicity.

I Definition 22 (Monotonic cohort selection). Suppose that C is the set of cohorts of size k. A
cohort selection mechanism A is monotonic if for all pairs of individuals u, v ∈ U , for any
C ′ ⊆ U such that |C ′| = k− 1 and u, v 6∈ C ′, if p(u) ≤ p(v) then A(C ′ ∪ {u}) ≤ A(C ′ ∪ {v}).

The intuition for the link between the monotonicity property and the swapping mapping
is that the probability masses on a cohort containing u and a cohort containing v that are
paired in the swapping mapping are directionally aligned and cannot diverge by more than
D(u, v).

I Lemma 23. Suppose that C is the set of cohorts of size k. If A is monotonic, then A

satisfies 0.5-Notion 1 for the swapping mapping.

Both PermuteThenClassify and WeightedSampling, cohort selection mechanisms proposed in
[6], are monotonic, efficient and have a high degree of expressivity.18

However, monotonicity alone is not sufficient to guarantee conditional robustness (Notion
2) for the swapping mapping (see Appendix B of the full version). Borrowing intuition from
PermuteThenClassify, we give a novel, efficient, individually fair cohort selection mechanism
that achieves conditional robustness (Notion 2) for the swapping mapping:

18See Appendix B of the full version for detailed descriptions of these mechanisms and formal proofs of
the monotonicity property.
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I Mechanism 24 (Conditioning Mechanism). Given a target cohort size k, a universe U and
a distance metric D, initialize an empty set S. For each individual u ∈ U :
1. Assign a weight w(u) such that |w(u)−w(v)| ≤ D(u, v), i.e., the weights are individually

fair.
2. Draw from 1u ∼ Bern(w(u)), (i.e., flip a biased coin with weight w(u)). If 1u, add u to

S.
If |S| ≥ k, return a uniformly random subset of S of size k.19 Otherwise, repeat the
mechanism.

We show that under mild conditions, the Conditioning Mechanism is satisfies Notion 2,
concludes in a small number of rounds, and allows for a high degree of expressivity. (See
Appendix D of the full version for a formal statement and proof details.)

4.2 Quality-based treatment
One downside of the monotonic mechanisms proposed for δint is that they require that any
cohort with a single individual swapped is considered with nearly the same probability as the
original cohort. In practice, this is problematic when A needs to ensure that each cohort has
a certain structure. For example, when hiring a team of software engineers, designers and
product managers, the proportion of each type of team member is important, and arbitrary
swaps are not desirable from the perspective of team structure. By restricting to scoring
functions that only consider the quality profile of a cohort, i.e., how many individuals from
each quality group are represented in a cohort, A can construct highly structured cohorts, so
long as the structure of the cohort is valid with respect to the fairness metric D.

We now consider robust mechanisms for policies predicated on additional structure within
the metric over U . In particular, we assume the existence of a partition of the universe U
into one or more “quality groups” q1, . . . , qn. These quality groups satisfy the property that
the distances within a quality group are smaller than distances between quality groups. How
much smaller is determined by a parameter β. More formally,

I Definition 25. Let β ≤ 1 be a constant and n ≥ 1 be an integer. Consider a partitioning
of a U into subsets q1, . . . , qn, i.e., “quality groups”, and let D∗ be a metric on U . Now,
we define metrics D on {1, . . . , n} and Di for 1 ≤ i ≤ n on qi as follows: we let D(i, j) =
infu∈qi,v∈qj D∗(u, v) and Di be the restriction of D∗ to qi. We call the metric D∗ endowed
with quality groups q1, . . . , qn β-quality-clustered if for all 1 ≤ i ≤ n, we have that

max
u,v∈qi

Di(u, v) ≤ βmin
j 6=i

D(i, j).

Notice that any metric D∗ is trivially 1-clustered with respect to the trivial quality group
q1 = U . The benefit of endowing D∗ with a greater number of quality groups is to exploit
additional structure of the metric, when any exists.

For simplicity in the specification of the relevant policy and family of scoring functions we
introduce a quality profile function P to count the number of individuals in each quality
group in a cohort: that is, P : 2U →

{
(x1, . . . , xn) | xi ∈ Z≥0}, and the ith coordinate of

19One might imagine a mechanism that conditions on exactly k individuals being chosen, but this
mechanism can be arbitrarily far from individually fair. Consider k − 1 individuals with weight 1 and
|U | − k − 1 individuals with weight 0.9. Conditioning exactly k individuals would cause |p(u)− p(v)| to
diverge arbitrarily for w(u) = .9 and w(v) = 1.
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P (C) is |C ∩ qi|. Loosely speaking, the quality-based treatment policy requires that the only
information about a cohort utilized by the scoring functions is its quality profile. We now
formally define F3 and an associated policy δquality :

I Definition 26. Let β ≤ 1 be a constant. Suppose that D is endowed with quality groups
q1, . . . , qn and D is β-quality-clustered. We define F3 to be the set of intra-cohort individually
fair score functions f : C × U → [0, 1] satisfying the following conditions:
1. For C,C ′ ∈ C satisfying P (C) = P (C ′), if u and v that are in the same quality group,

then f(C, u) = f(C ′, v).
2. For integers 1 ≤ i 6= j ≤ n, C,C ′ ∈ C satisfying P (C) = P (C ′), and any individuals

u ∈ qj and v ∈ qj, it holds that |f(C, u)− f(C ′, v)| ≤ D(i, j).
When each quality group is homogeneous in terms of individual “quality”, this corresponds
to score functions that are determined purely by “quality”.20 As in Section 4.1, we specify a
distance function δquality : (C×U)× (C×U)→ [0, 1] that overestimates δF3 , but still preserves
enough of the fairness structure to construct the desired mapping.

I Definition 27 (Quality-based treatment policy). Given a universe U , a set of permissible
cohorts C and distance metrics and quality groups as in Definition 26,
1. For C,C ′ ∈ C satisfying P (C) = P (C ′), if u ∈ qj and v ∈ qj , then δquality((C, u), (C ′, v)) =

0.
2. For integers 1 ≤ i 6= j ≤ n, C,C ′ ∈ C satisfying P (C) = P (C ′), and any individuals

u ∈ qj and v ∈ qj, we set δquality((C, u), (C ′, v)) = D(i, j).

The core intuition is that a nice mapping exists when C is “symmetric with respect
to individuals in each quality group.” It is helpful here to consider a bipartite graph
G = (A,B,E), where A has one vertex for each subset of the universe U , B has one vertex
for each possible profile of a subset of U , and there is an edge (a, b) ∈ E precisely when b is
the profile of a, that is b = P (a).

Fix any C, and consider the subgraph G′ = (A′, B′, E′) of G induced by the vertices in A
corresponding to members of C, the edges incident on these vertices, and the subset of B
induced by these edges. We say that C is quality-symmetric if for all b′ ∈ B′ it is the case
that E′ contains all the edges in E (in the original graph) incident on b′.

That is, C contains all cohorts obtained by swapping out individuals from the same quality
group. If C is quality-symmetric, then consider the following mapping.

I Definition 28 (Quality-Based Mapping). Let β ≤ 1 be a constant. Suppose that D is endowed
with quality groups q1, . . . , qn and D is β-quality-clustered. Suppose C is quality-symmetric.
The quality-based mapping is defined as follows. For each pair of individuals u, v ∈ C, let
Pu,v = (Cu × {u}) ∪ (Cv × {v}). For each (x1, . . . , xn) ∈ P (Cu ∪ Cv), the partitioning of Pu,v
contains a cluster of the form {(C, x) ∈ Pu,v | P (C) = (x1, . . . , xn)}.

We verify that the quality-based mapping indeed respects δquality (and thus respects δF3 by
Lemma 13). If u and v are in the same quality group, then the diameter of each cluster
under δquality is 0, which is trivially upper bounded by D(u, v). On the other hand, if u and
v are in different quality groups qi and qj respectively, then the diameter of each cluster
is no more than D(i, j) ≤ D(u, v). Thus, the properties of a mapping are satisfied by the
quality-based mapping.

20 In this case, F3 includes Equal Treatment, Promotion, Stack Rank, and Fixed Bonus (discussed in
Appendix A) when scores are based on the “quality” of “performance” of individuals.
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In this scenario, the quality-based mapping captures the intuition for the fairness structure
of F3 much better than δquality. The mapping groups together all cohorts with the same
quality profile (i.e., the same number of individuals in each quality group), capturing the
intuition that the only information that a score function in F3 utilizes about a cohort is the
quality profile.

As the score function behavior does not depend on the specific individuals in a quality
group, A should have significant freedom to choose individuals within each quality group
while still satisfying robustness w.r.t. F3. We will show that once the number of members of
each quality group in the cohort is decided, utilizing any individually fair cohort selection
mechanism within each quality group will satisfy our conditions. Moreover, our mechanisms
have some flexibility in deciding the quality profile as well.

I Mechanism 29 (Quality Compositional Mechanisms). Let β ≤ 1 be a constant, and suppose
that D endowed with quality groups q1, . . . , qn is β-quality-clustered. Suppose also that C is
quality-symmetric. For each 1 ≤ i ≤ n and each 1 ≤ xi ≤ |qi|, let Ai,xi be a Di-individually
fair mechanism selecting xi individuals in qi. We define the quality compositional mech-
anism for {Ai,xi} as follows. Let X be any distribution over n-tuples of nonnegative integers
(x1, . . . , xn) ∈ P (C).

1. Draw (x1, . . . , xn) ∼ X .
2. Independently run Ai,xi for each 1 ≤ i ≤ n, and return the union of the outputs of all of

these mechanisms.

In the next lemma, we show that when a quality composition mechanism only selects
cohorts whose quality projection vectors (x1, . . . , xn) are “close” to an inter-quality group
distance multiple of (|q1|, . . . , |qn|), Notion 1 is achieved. (This requirement essentially
says that the relative proportion of selected individuals in each quality group needs to be
approximately reflective of the relative proportion of individuals in each quality group in the
universe, scaled by the difference between the quality groups in the original metric. This
type of requirement turns out be necessary for basic individual fairness guarantees, by the
constrained cohort impossibility result in [6].) Moreover, under stronger conditions, we show
that Notion 2 is also achieved.

I Lemma 30. Let β ≤ 0.5 be a constant, and suppose that D endowed with quality groups
q1, . . . , qn is β-quality-clustered. Suppose also that C is quality-symmetric, and let X be any
distribution over (x1, . . . , xn) ∈ P (C) such that | xi|qi| −

xj
|qj | | ≤ (1−2β)D(i, j). If A is a quality

compositional mechanism, then:

1. A is always individually fair.
2. A always satisfies 0.5-Notion 1.
3. A satisfies 0.5-Notion 2 for D and δF if either of the following conditions hold:

a. (One set) |Supp(X )| = 1 (i.e., one “canonical” (x1, . . . , xn)), or
b. (0-1 metric) D(i, j) = 1 for 1 ≤ i 6= j ≤ n and Di(u, v) = 0 for 1 ≤ i ≤ n.

The quality compositional mechanisms provide a greater degree of structure in cohort
selection than the monotone mechanisms giving in Section 4.1. The Conditioning Mechanism
and similar monotone mechanisms are forced to select individuals essentially independently,
with the only dependence stemming from the cohort size constraint. However, structured
cohorts are necessary in a number of practical applications, as previously noted. Although
δquality imposes more constraints on the permitted F than δint, the basis for these constraints
is likely to be tolerated well in legitimate use cases in which structure is important.
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Moreover, the company has flexibility in selecting individuals within each experience
group, as any individually fair mechanism can be utilized. This offers significantly more
flexibility than selecting members in each quality group uniformly at random. Such flexibility
is particularly crucial, for example, if a company further wants to ensure that tech company
teams have a mixture of software engineers and product managers. The individually fair
mechanisms within each quality group can help achieve this balance through selecting
balanced subsets of engineers and product managers. In essence, the quality compositional
mechanisms allow flexibility in cohort selection while still satisfying robustness for F3, due
to restrictions on the behavior of scoring functions in F3.

5 Discussion and Future Work

We have presented a framework for evaluating the robustness of cohort selection as part of
a pipeline. We’ve demonstrated that naive auditing strategies concerning average cohort
quality or score are unable to uncover significant fairness problems. We’ve also shown that
many reasonable policies for cohort selection and subsequent scoring can conflict with each
other resulting in very poor fairness outcomes. Furthermore, we’ve demonstrated that a
malicious pipeline designer can easily use composition problems to disguise bad behavior.
Despite these hurdles, we’ve shown that it is possible to construct pipelines that are fair.
In particular we’ve shown that constructing cohort selection mechanisms that are robust to
composition with a family of scoring functions is possible. By framing the problem in terms
of robustness, we address the concern that placing requirements on future designs is nearly
unenforceable, whereas designing the current stage to be robust to a large class of potential
future policies can give much better practical guarantees. Finally, we’ve shown robust cohort
selection mechanisms that compose well with reasonable scoring function families.

In the process of exploring robustness and fairness in pipelines, we uncovered a number
of interesting questions for future work. Policy complexity: we have considered a set of
concise and practical policies in this work, but the trade-off between policy complexity and
the expressiveness of cohort selection has not been fully characterized. Fair Matching:
choosing a cohort is very similar to the problem of assigning an individual to an existing
cohort. However, in the traditional matching literature, significant emphasis is placed on
individuals’ and teams’ preferences over placements, rather than external fairness criteria. Is
it possible to simultaneously achieve a good matching, in the sense of satisfying preferences
or stability, and individual fairness? Quantifying the tradeoff : There are significant
differences in the difficulty for constructing mechanisms which satisfy the conditional, versus
unconditional, notion of robustness. Is it possible to more directly quantify the tradeoff in
mechanism expressivity between these two settings? Different metrics: Handling different
metrics in the pipeline: we considered just one metric throughout the entire pipeline, but
using different metrics for different stages of the pipeline may be valid. For example, in
the case of promoting an individual contributor to a management position, the metric for
“manager” may be different. Ranking instead of scoring: although ranking with hard
cutoffs does not satisfy individual fairness, it is frequently used in practice. Can the model
we have outlined with respect to scoring be translated to ranking, e.g., incorporating the
results of [7]?
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6 Related Work

There is a wide variety of work concerning fairness in machine learning [9, 14, 24, 17, 3,
18, 25, 22, 10, 16, 15, 11, 12, 20, 19, 4, 23, 5]. Individual fairness was introduced by Dwork
et al. [5]. Dwork and Ilvento studied composition of combination of individually fair and
group fair classifiers [6]. Two other recent lines of work have also considered composition
problems and fair systems. First, several works have studied the problem of feedback
loops, in which decisions that previous time steps, such as where to send law enforcement
officers, influence outcomes at later time steps potentially unrelated to the original decision
[12, 8, 21]. Bower et al. study fairness in a pipeline of decisions under a group-based notion
of fairness [1]. They primarily consider the combination of multiple non-adaptive sequential
decisions, evaluating fairness at the end of the pipeline. Second, several works have considered
competitive scenarios, such as advertising, in which many (potentially fair or unfair) classifiers
compete for individuals [2, 13]. Although not explicitly addressing composition, recent work
considering fairness in rankings, e.g., [7], also address fairness in a setting in which outcomes,
in this case rankings, naturally depend on the outcomes of others.
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A Extended Motivating Examples

In each example, we consider a universe U comprised of individuals belonging to two groups,
a majority group S and a minority group T , such that the majority group is k times as large
as the minority group (i.e., k|T | = |S|). For the particular employment task in question,
there is a known metric D which specifies who is similar to whom for the purposes of this
task. For simplicity, we assume that D is one-dimensional, i.e., each individual u has a
qualification qu ∈ [0, 1], and D(u, v) := |qu − qv|. We assume that S and T have an equal
distribution of talents: more specifically, for every qualification level q, there are exactly
k times as many individuals with qualification q in S as there are in T . We assume that
there is a nontrivial range of qualifications in [0, 1], and we will generally assume that the
company prefers to hire the most highly qualified candidates, but in order to fill the number
of positions open cannot hire only maximally qualified candidates. We use QH to refer to
the subset of individuals who are highly qualified.

Our examples are based on a set of facially neutral company compensation policies. We
now give precise descriptions of these policies in the form of a scoring function, and indicate
where the scoring policies must be adjusted to give intra-cohort individual fairness. (As we
will see later, even adjusting the policies to be intra-cohort individually fair won’t be enough
to prevent bad behavior under composition.)

1. Fixed Bonus Pool: A fixed pool of bonus money B is assigned to each team and is
split between the members of each team, with the highest achieving members receiving
larger portions of the pool. More formally, given a cohort of individuals C = {x1, . . . , xc}
of size c with qualifications {qx1 , . . . , qxc}, the scoring function fB assigns a bonus share
bi to each individual xi such that

∑
u∈C bu = 1, optimized to ensure that individuals

with higher qualification receive larger bonuses.
In particular, fB can either be a simple proportional mechanism, e.g., fB(u) ∝ qu, or
it can be optimized for specific goals, e.g., maximizing the difference in compensation
between the most and least qualified individuals, creating an even spread of compensations,
etc. For example, the company could choose fB using the following optimization to choose
the largest “weighted spread” to maximize the objective of increasing the difference in
compensation based on difference in qualification: argmax{bu∈[0,1]}{

∑
u,v∈C(bu−bv)(qu−

qv)} subject to |bu − bv| ≤ |qu − qv| for all u, v ∈ C and
∑
u∈C bu = 1.

This optimization will tend to choose bonus shares that maximize the differences in
bonuses between individuals with significantly different qualifications within the cohort.
Notice that the scoring function has no way of knowing what other cohorts may or may
not appear and with what probabilities, and so it only optimizes within the particular
cohort C.

2. Stack Rank: The bottom 10% of each team may be fired or put on “performance plans”.

Formally, f(C, u) :=
{

1 if |{v|qu>qv}||C| ≤ 0.1,
0 otherwise

However, this strict cut off violates intra-cohort individual fairness, as two nearly equally
qualified individuals might find themselves on opposite sides of the cutoff. Alternatively,
we can construct a scoring function which closely approximates the desired policy but still
satisfies intra-cohort individual fairness, by optimizing subject to the intra-cohort fairness
constraints. For example, taking Ou to be the indicator that u is in the bottom 10% of
the cohort, one could use the following optimization to maximize the probability that
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only the bottom 10% are placed on performance plans: argmaxf
∑
u∈C f(C, u)Ou + (1−

f(C, u))(1−Ou)subject to |f(C, u)− f(C, v)| ≤ |qu − qv| for all u, v ∈ C. Alternatively,
if exactly 10% of the cohort should be put on performance plans, Permute-Then-Classify
can be applied or an additional constraint on the expected number of employees placed
on performance plans could be added to the optimization above in order to satisfy
intra-cohort individual fairness.

3. Equal Treatment: Each team’s bonus is determined by average performance of the team
(assumed to be proportional to average quality) and awarded equally to each member.
Formally, the scoring function f first chooses the total bonus amount BC ∝ B

∑
u∈C qu,

and then assigns bu = BC
|C| for all u ∈ C. Intra-cohort individual fairness for f is trivial,

as every individual is treated equally.
4. Promotion: Choose the single most qualified person on the team to promote, based

on performance. As in the case of stack ranking, strictly implementing this policy will
violate intra-cohort individual fairness, as nearly equal individuals may be treated very
differently. As above we can satisfy intra-cohort individual fairness by posing the relevant
optimization question, and Permute-then-Classify (see Appendix B of the full version)
can be used to select exactly one individual for promotion.

We now show that these compensation policies can cause significant unfairness for T
when combined with simple hiring protocols. In each case, we state the set of cohorts the
company intends to select from, and we assume that the company uses a method similar to
the one described in Appendix C.3 of the full version to derive a fair set of weights to use to
sample a single cohort in an individually fair way.21First, we consider the “packing” hiring
protocol.

I Example 31 (Packing). Suppose that in the past, the company had a particular problem
retaining employees from the minority group T and in order to address this problem, the
company ensures that individuals with high potential from T are always hired together
into the same team for mutual support. On the other hand, talented members of S are
spread out between the other teams, to make sure that there is at least one highly talented
individual on each team. Formally, the company specifies the set of cohorts Cpacking = {C ∈
C | (|C ∩ T ∩QH | > 1∧ |C ∩ S ∩QH | = 0)⊕ (|C ∩ T ∩QH | = 0∧ |C ∩ S ∩QH | = 1)}, where
QH is the set of highly qualified candidates, and samples a single cohort from the set such
that individual fairness is satisfied.

“Packing” results in lower compensation for T for Fixed Bonus Pool, Stack Rank,
and Promotion compensation policies

“Packing” causes talented members of T to be on teams of higher average quality than those
with talented members of S. As a result, members of T will receive lower bonuses and
promoted less often than members of S. Thus, this seemingly beneficial practice can backfire
when composed with certain compensation policies.

One may imagine that utilizing a “splitting” strategy, where qualified members of T are
separated from other qualified members to increase their chance of “standing out” on teams,
would solve this issue.

21We omit the details of the method and the particulars of the conditions on the set of cohorts specified
as they are easy to fulfill in these settings.
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I Example 32 (Splitting). The company chooses teams where highly qualified members of
T are always the only highly qualified member of their team, giving them the opportunity to
stand out and be recognized for their talent. More formally, the company chooses from the
set of cohorts Csplitting = {C ∈ C | (|C ∩ T ∩QH | = 1∧ |C ∩S ∩QH | = 0)⊕ (|C ∩ T ∩QH | =
0 ∧ |C ∩ S ∩QH | ≥ 1)}. In each cohort containing a highly qualified member of T , there are
no other highly qualified individuals (from either T or S).

Though this policy no longer leads to lower compensation for T for Stack Rank, Fixed Bonus
Pool, and Promotion, “Splitting” results in lower compensation for T for Equal Treatment,
because the practice causes talented members of T to be on teams of lower average quality
than talented members of S. As a result, with Equal Treatment, qualified S will receive
greater compensation than qualified T . Splitting can also occur when members of T are
primarily hired via outreach. For example, suppose that a company has been trying to form
a team to work on a difficult or low prestige task (e.g., Fortran code maintenance). All of the
talented candidates in S pass on the job offer because they are confident they can do better,
so HR reaches out more aggressively to candidates in T . These candidates may be more
willing to take the job because they are less confident about their other options. Thus, even
without an explicit policy in place to choose minority candidates to be the singular most
qualified member on a less qualified team, these situations can still arise from the interactions
between the hiring procedure and the job market.

I Remark 33. The motivation for both of these policies could be malicious, and determining
whether the stated goals or justifications were legitimate aims of the policy would be difficult.

One may imagine that these issues could be addressed by ensuring that qualified members
of T and qualified members of S appearing on teams with similar average quality. However,
a malicious company can still cause members of T to receive lower compensation.

I Example 34 (Adversarial ranking). Suppose that the company did not want any member
of the T to be chosen for promotion or wished to depress their compensation relative to
the members of S. The company decides to choose teams such that, for each team, there
is a correspondence between the members of T and S included in the team, such that the
members of S are almost always more talented than their counterparts in T . (Given the
equal distribution of talents of T and S, there may be an excess member of T that is allowed
to be the most qualified, but this is a singular case.) More formally, the company chooses
from Cadv.ranking = {C ∈ C | ∃G : C ∩ T → C ∩ S s.t. ∀u ∈ C ∩ T , qu < qG(u)}.

“Adversarial Ranking” is particularly catastrophic for T for Promotion or Stack Ranking
if the hard cutoff (not intra-cohort individually fair) versions are used. Although ensuring
intra-cohort individual fairness helps, members of T will always be seeing depressed levels
of promotion, higher levels of firing, and lower levels of compensation except in the case of
Equal Treatment. Thus “Adversarial Ranking” keenly illustrates that average team quality
is not sufficient to ensure that individuals are truly being treated fairly in cohort-based
pipelines. We stress that Adversarial Ranking can also be efficiently achieved using the
procedure described in Appendix C.3 of the full version.
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Sample Cohorts
To illustrate these issues, we include Figures 1a and 1b to compare the example scoring
functions for a pair of cohorts, demonstrating the issues outlined above.

Quali-
fication

Fixed
Pool
Bonus

Equal
Bonus

Cohort 1
Alice 0.8 35 60
Bob 0.7 25 60
Charlie 0.5 5 60
Dan 0.2 0 60
Eve 0.8 35 60

Cohort 2
Frank 0.8 57 40
George 0.6 36 40
Harriet 0.1 0 40
Ivan 0.2 0 40
Julia 0.3 7 40

(a) Bonus score function comparisons for two
cohorts, each containing five individuals of
varying qualifications. Cohort 1 has an aver-
age qualification of 0.6, and Cohort 2 has an
average qualification of 0.4. In the fixed pool
bonus, a total pool of 100 is split between the
members of the cohorts. The same optimiza-
tion is used for both cohorts, that is according
the maximum possible bonus to the most qual-
ified individual(s). Notice that in Cohort 1,
Alice and Eve have to share the top bonus (35
each), but in Cohort 2, Frank doesn’t have
to split the top bonus (57). Notice also that
George and Julia receive higher bonuses than
Bob and Charlie, even though they are (much)
less qualified. On the other hand, in the equal
bonus setting Frank receives a lower bonus
than both Alice and Eve, even though he’s
equally qualified.

Quali-
fication

Pro-
motion

Stack
Rank
(IF)

Stack
Rank
(exact,
not IF)

Cohort 1
Alice 0.8 35% 0 0
Bob 0.7 25% 10% 0
Charlie 0.5 5% 30% 0
Dan 0.2 0 60% 1
Eve 0.8 35% 0 0

Cohort 2
Frank 0.8 57% 0 0
George 0.6 36% 0 0
Harriet 0.1 0 43% 1
Ivan 0.2 0 33% 0
Julia 0.3 7% 24% 0

(b) Promotion score function comparison of the co-
horts from Figure 1a. The promotion policy attempts
to maximize the probability of promotion for the most
qualified individuals, subject to the individual fairness
constraints and that the expected number of promo-
tions is 1. In this case, essentially the same observations
apply as in the fixed pool bonus setting. In the case
of Stack rank, both cohorts are optimized to maximize
the probability of placing the least qualified person on
a performance plan. Notice that Dan is much more
likely to be placed on a performance plan than the
equally qualified Ivan, due to the larger number of less
qualified individuals in Cohort 2. Although it might
seem that the exact stack rank policy, rather than the
individually fair version, would be less likely to have
this problem, in fact in this case Dan is still treated
differently than Ivan.
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