
An Open Pouring Problem
Fabian Frei
Department of Computer Science, ETH Zürich, Switzerland
fabian.frei@inf.ethz.ch

Peter Rossmanith
Department of Computer Science, RWTH Aachen, Germany
rossmani@cs.rwth-aachen.de

David Wehner
Department of Computer Science, ETH Zürich, Switzerland
david.wehner@inf.ethz.ch

Abstract
We analyze a little riddle that has challenged mathematicians for half a century.

Imagine three clubs catering to people with some niche interest. Everyone willing to join a club
has done so and nobody new will pick up this eccentric hobby for the foreseeable future, thus the
mutually exclusive clubs compete for a common constituency. Members are highly invested in their
chosen club; only a targeted campaign plus prolonged personal persuasion can convince them to
consider switching. Even then, they will never be enticed into a bigger group as they naturally pride
themselves in avoiding the mainstream. Therefore each club occasionally starts a campaign against a
larger competitor and sends its own members out on a recommendation program. Each will win one
person over; the small club can thus effectively double its own numbers at the larger one’s expense.

Is there always a risk for one club to wind up with zero members, forcing it out of business? If
so, how many campaign cycles will this take?

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains; Theory of computation → Representations of games and their complexity

Keywords and phrases Pitcher Pouring Problem, Water Jug Riddle, Water Bucket Problem, Vessel
Puzzle, Complexity, Die Hard

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.14

Acknowledgements We would like to thank the anonymous reviewers who carefully read this paper
for their detailed feedback.

1 The Same Old Pouring Problem Again1

Almost anyone who is even remotely fond of logical puzzles and many others have heard of
and even solved the following problem:

Given two pitchers of three and five ounces capacity and an infinite water supply, can
you precisely measure four ounces?

This already popular pitcher-pouring problem has gained increased prominence when it was
featured in the third installment of the Die Hard movie series, released in 1995. The two
protagonists John and Zeus are forced to figure out the solution to the problem within five
minutes to defuse a bomb. Frantically discussing the problem in detail, they eventually
succeed and prevent the explosion with mere seconds left, as expected.

1 Please patiently pardon particularly peculiar pour puns.

© Fabian Frei, Peter Rossmanith, and David Wehner;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 14; pp. 14:1–14:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabian.frei@inf.ethz.ch
mailto:rossmani@cs.rwth-aachen.de
mailto:david.wehner@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.FUN.2021.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 An Open Pouring Problem

An outpouring of papers discussing different aspects of the problem ensued – considering
the natural generalization to arbitrary capacities of the two pitchers, of course. It also has
become somewhat of a pet problem in Artificial Intelligence [8, 6]. The focus was often
on didactical aspects of the problem as the solution is rather simple from a mathematical
standpoint: The number of liters that can be measured using two given pitchers are exactly
the greatest common divisor of the two capacities and its multiples. The complexity of the
problem – that is, the number of steps required to solve all instances of the problem with
a given total capacity – was first considered and immediately shown to be linear directly
following the movie release in 1995 as well [5].

Fortunately, there is a far more challenging pouring problem that is still open.

2 Our Problem: Significantly Less Pouring

The fifth problem of the fifth All-Union round of the Soviet Mathematics Olympiad, held in
Riga in 1971, reads as follows:

В три сосуда налито по целому числу литров воды. В любой сосуд разрешается перелить
столько воды, сколько в нем уже содержится, из любого другого сосуда. Докажите,
что несколькими такими переливаниями можно освободить один из сосудов. (Сосуды
достаточно велики: каждый может вместить всю имеющуюся воду.) [7]

An integer number of liters of water has been poured into each of three vessels. It is
allowed to pour into each vessel as much water as it already contains from an arbitrary
other vessel. Prove that several such pourings can empty one of the vessels. (The
vessels are sufficiently large: Each one can contain the entire available water.)

Two small clarifications might be in order. First, each of the three vessels may contain a
different natural number of liters of course; the puzzle would be trivial otherwise. Second, it
is only implicit that we can never pour water out of a vessel that contains less water than
the receiving one. See Figure 1 for an illustrating example with a simple instance and its
optimal solution.

The exam designer clearly made an effort to keep the task from being too abstract by
casting it into this vessel form. Nevertheless, coming up with a way to perform such magical
pouring steps that allow us to double a vessel’s content – without additional materials that
would render the entire enterprise obsolete – seems to be the hardest challenge here by far.

However, even when freeing ourselves from the pour setting, it remains a tough task to
find any natural situation where the described situation might arise. While we gave it our
best try in the abstract, the issue is usually skirted altogether, as we will see.

The puzzle made an honoring appearance as the final task in the 54th iteration of the
William Lowell Putnam Mathematical Competition. The organizers of the most prestigious
mathematical competition worldwide opted for a purely abstract description:

Let S be a set of three, not necessarily distinct, positive integers. Show that one can
transform S into a set containing 0 by a finite number of applications of the following
rule: Select two of the three integers, say x and y, where x ≤ y and replace them with
2x and y − x. [1]

Two decades later, when the time-proven problem was presented as a challenge to IBM
researchers, their puzzlemaster embedded it in a contrived betting game [2]. Most recently,
the task took yet another, now overtly magical guise in Germany’s 38th National Computer
Science Competition [3]. This time around, the participants were not asked to solve the
problem mathematically, but had to write a program solving it optimally instead.

F. Frei, P. Rossmanith, and D. Wehner 14:3

Now, this problem was not only foisted upon defenseless exam takers; it has also been
included into a carefully curated anthology of mathematical riddles aimed at every avid
enigma aficionado [10, 9, 11]. In “Mathematical Puzzles: A Connoisseur’s Collection,” the
puzzle-pondering professor Peter Winkler, a well-respected mathematician and computer
scientist, presents the problem in its original form with three water buckets. He goes on
to describe his solution to the problem, which might well have been the intended one. His
approach guarantees that an initial configuration with n liters in total can be turned into
one with an empty bucket in at most O(n2) steps.

This result was independently improved upon by two persons with whom Peter Winkler
had been sharing the puzzle, Svante Janson from Uppsala University and Garth Payne from
Pennsylvania State University. They both described an algorithm that can empty one of the
buckets in at most O(n log n) steps. Winkler concludes: “As far as I know, no one knows
even approximately how many steps are required for this problem.” [9]

The German translation of the book, published in 2008, adds an optimistic conjecture by
Michael H. Albert that the minimal number of steps is far lower, namely Θ((log n)2).

3 Our Contribution

In this section, we first improve in Subsection 3.2 the known upper bound from the linearithmic
O(n · log n) down to O((log n)2), matching Albert’s conjecture. In Subsection 3.2, we then
go on to give experimental evidence that, on the one hand, exhibits the very peculiar and
mathematically interesting behavior of this problem and, on the other hand, strongly suggests
that even Albert’s conjecture is too pessimistic still: The required number of steps is far
more likely to be Θ(log n), which we posit as our improved conjecture. In Subsection 3.3,
we prove a lower bound that not only matches our conjecture asymptotically but in fact
perfectly fits the experimental data for infinitely many n that we analyze more closely in
Subsection 3.4. Note that our results leave open a good gap of a single logarithmic factor,
lest Winkler’s puzzling problem be spoiled entirely for the reader.

We briefly restate the problem in the notation that will be used in our proofs.

Let (a, b, c) ∈ N3 be a triple of nonnegative integers. We are allowed to perform the
following modification step on any triple: Pick from it any two numbers x and y such
that x ≤ y and then replace them by 2x and y − x, respectively.
For any n ∈ N, denote by N(n) the minimum number of such steps that allows us to
transform any given triple (a, b, c) ∈ N3 satisfying a+ b+ c = n into a triple containing
a zero. Prove good upper and lower bounds on N(n).

3.1 Upper Bound
We directly state and then prove our upper bound.

I Theorem 1. The optimal number of steps required to solve any instance with a total liter
count of n is bounded by N(n) ≤ (log n)2.2

Proof. We describe an algorithm that transforms any given configuration (a, b, c) ∈ N3

into one containing a zero in at most (log n)2 steps, where n = a + b + c. Our algorithm
works in rounds. We may assume without loss of generality that every round starts with

2 Throughout this paper, log denotes the logarithm to base 2.

FUN 2021

14:4 An Open Pouring Problem

(a) Initial Configuration. (b) One pouring later. (c) Problem solved.

Figure 1 Optimal solution for the initial instance (2, 5, 4). The total number of liters is n = 11,
the required number of pouring steps is N(n) = 2.

a configuration (a, b, c) that is ordered such that 0 < a ≤ b ≤ c. In every round, it will
transform the configuration (a, b, c) into a new configuration (a′, b′, c′) satisfying a′ ≤ a/2,
using a series of at most log n + 1 steps. As any configuration in ascending order, the initial
configuration satisfies a ≤ n/3. It is thus guaranteed that after at most log n − 1 rounds
we reach a configuration whose smallest number is at most n/3 · 21−log n = 2/3, which just
means it is zero, as required. We note that Svante’s algorithm as described by Winkler [9]
is structured in rounds as well. Instead of halving the number a in each round, it only
guarantees a decrease by at least 1, however. This crucial difference allows us to improve the
upper bound from O(n · log n) to O((log n)2).

We now describe a single round that starts with a configuration (a, b, c) satisfying
0 < a ≤ b ≤ c. Let r := b/a be the ratio between the two smallest numbers. We round this
ratio both ways and denote the resulting integers by p := brc and q := dre. Let pk . . . p0
and q` . . . q0 be the minimal binary representations of p and q, respectively; that is, we
have p0, . . . , pk−1, q0, . . . q`−1 ∈ {0, 1} and pk = q` = 1 for k = blog pc and ` = blog qc with∑k

i=0 pi2i = p and
∑`

i=0 qi2i = q. Note that 0 ≤ b−pa < a and 0 ≤ qa− b < a. This implies
that min{b− pa, qa− b} ≤ a/2 since (b− pa) + (qa− b) = (q− p)a ≤ a. We can thus consider
the following two, potentially overlapping cases.

Case 1: Assume first that b− pa ≤ a/2. In this case we perform k + 1 steps for i = 0, . . . , k

that will always double what was initially the smallest number a in the triple. To do this,
the algorithm has to subtract first a, then 2a, and generally 2ia from one of the other two
numbers in the triple. We use p to decide which one: If pi = 1, we subtract 2ia from the
second number, which initially is b; otherwise we have pi = 0 and subtract from the third
number, which is c initially. After performing these k + 1 steps, the second number and
third number will be b−

∑k
i=0 pi2ia = b− pa ≤ a/2 and c−

∑k
i=0(1− pi)2ia, respectively.

We have to prove that both the b and c of the initial configuration are sufficiently large
so as to never become negative and thus make all steps in this round valid. For b, we can
simply use our general observation b− pa ≥ 0. For c, we have

c−
k∑

i=0
(1− pi)2ia = c−

k−1∑
i=0

(1− pi)2ia = c−
(k−1∑

i=0
2i −

k−1∑
i=0

pi2i

)
a ≥ c− 2ka ≥ 0,

where the last inequality follows from k = blog pc and a ≤ c. We conclude that this
round is feasible and results in a triple whose smallest number is at most b− pa ≤ a/2, as
required. The number of steps in this round is exactly k + 1 = blog pc+ 1 ≤ blog qc+ 1.

F. Frei, P. Rossmanith, and D. Wehner 14:5

Case 2: We now assume qa− b < a/2. In this case, we first perform the following ` steps for
i = 0, . . . , `− 1: We always double the first number a in the triple, as we did in the first
case, but now we will be subtracting the necessary amount from the second number, the
initial b, if qi = 1 and from the third number, the initial c, if qi = 0. After these ` steps, the
first number of the resulting triple will be 2`a, the second one b−

∑`−1
i=0 qi2ia = b−(q−2`)a

and the third one c−
∑`−1

i=0(1− qi)2ia. Again, we have to prove that these ` steps are in
fact possible by showing that b and c are large enough. This is the case because, on the
one hand, we have q ≤ p + 1 and thus b− (q − 2`)a ≥ b− (q − 20)a ≥ b− pa ≥ 0 and, on
the other hand, we have

c−
`−1∑
i=0

(1− qi)2ia ≥ c−
`−1∑
i=0

2ia = b− (2` − 1)a ≥ b− (q − 1)a ≥ b− pa ≥ 0.

We now perform the last, (` + 1)st step of this round. It doubles the second number
b− (q−2`)a = b−qa+2`a and subtracts the corresponding amount from the first number,
which currently is 2`a. This step is valid since 2`a− (b− qa + 2`a) = qa− b ≥ 0. The
round ends with this step and the first number of the triple is now qa− b < a/2. The
number of steps in this round is precisely ` + 1 = blog qc+ 1.

We have shown for both cases how to perform a valid round of at most blog qc + 1 ≤
blog(n/1)c+1 ≤ 1+log n steps that result in a triple whose smallest number is at most ba/2c.
As already mentioned, it now suffices to iterate this entire process for at most (log n) − 1
rounds and we end up with a final configuration whose smallest number is 0. The total
number of steps over all rounds is thus at most (log(n)− 1) · (log(n) + 1) ≤ (log n)2, which
proves the theorem. J

3.2 Experimental Evidence

Figure 2 For any blue point, the ordinate indicates the minimum number of pouring steps
required in the worst case for a starting configuration (a, b, c) with n = a + b + c, where n is given by
the abscissa. The green line shows for each n the average of the 85 blue points (n− 42, . . . , n + 42).
The red line plots our lower bound derived in Subsection 3.3.

FUN 2021

14:6 An Open Pouring Problem

Table 1 All smallest hard instances for the listed minimum number of steps, that is, all worst-case
instances for the smallest n yielding a new step number N(n) for n up to 2020. The values of n are
also found as sequence A256001 in the online encyclopedia of integer sequences [4].

N(n) n = a + b + c (a, b, c)
1 3 (1, 1, 1)
2 6 (1, 2, 3)
3 11 (1, 4, 6)
4 15 (4, 5, 6), (3, 4, 8), (2, 5, 8)
5 23 (3, 8, 12)
6 27 (5, 9, 13)
7 45 (4, 15, 26)
8 81 (8, 27, 46)
9 105 (27, 35, 43), (8, 35, 62), (8, 27, 70)

10 195 (57, 65, 73), (8, 78, 109), (4, 78, 113), (8, 73, 114),
(8, 65, 122), (4, 66, 125), (8, 57, 130), (4, 33, 158)

11 329 (4, 130, 195)
12 597 (175, 199, 223)
13 885 (101, 295, 489)
14 1425 (206, 475, 744)

In order to develop a proper intuition of the behavior of the step complexity N(n), we wrote
a program that calculates N(n) for any given n. It does so by exhaustive enumeration of all
instances and then trying out all feasible solutions. We show our findings in Figure 2. The
blue points plot N(n), the step number required for a worst-case triple whose numbers sum
up to n, against this total for n from 0 up to 2020.

Across the entire spectrum, we observe erratic jumps up and down. The values where
these jumps occur do not seem to follow any discernible pattern, however. Despite their best
efforts, the authors were indeed unable to detect any stable structure, except for a small
detail that we will discuss later on.

From a global perspective, taking a step back and squinting a little bit, a clear consistent
picture emerges out of the confusing micro-behavior: The bulk of the values clearly follows
a logarithmic line; we can approximate it by the green line, which plots the average value
of N(n) across the interval [n− 42, n + 42]. The oscillations of the blue points around the
imagined center of gravity begin very small, but grow in amplitude with increasing n. The
plotted pairs (n, N) where the amplitude first increases over the previous threshold are
the following: From (15, 4) to (16, 3), from (26, 4) to (27, 6), from (105, 9) to (112, 6), and
from (885, 12) to (896, 8). The gaps from one threshold to the next appear to be growing
exponentially, but again the data is too noisy to deduce any rule.

Another point of interest might be the first values for n at which N(n) spikes up to a
new height for the first time. In order to describe the optimal monotone upper bound for
this problem, we would need to understand these values. However, they do not exhibit any
clear pattern either, besides an approximately exponential growth. The values of n up to
2020 for which N(n) reaches a previously unattained value and the corresponding worst-case
instances are displayed in Table 1.

Once more, neither an underlying nor an overarching pattern was to be found, neither in
the instances themselves nor in the optimal solutions’ step sequences.

F. Frei, P. Rossmanith, and D. Wehner 14:7

To address the complementary question about the optimal monotone lower bound, we
should at least know what the largest values n keeping N(n) at any fixed value are. Seeing
how we have been pouring out all the intractabilities of our problem on the reader, it might
be surprising that we can in fact give a quite concise answer to this last question: For any
` ∈ N \ {0}, the largest n to yield N(n) = ` is n = 5 · 2` and the instance(⌊

5
3 · 2

`

⌋
− 1,

⌊
5
3 · 2

`

⌉
,

⌈
5
3 · 2

`

⌉
+ 1
)

,

where by bxe we denote x rounded to the nearest integer, emerged as the corresponding
unique worst-case instance. We will investigate these instances closer in Subsection 3.4.

3.3 Lower Bound
We finally prove our lower bound and show how well it matches our experimental data.

I Theorem 2. The number of steps for solving a worst-case instance with a total liter count
of n is at least dlog((n + 1)/5)e = Ω(log n).

Proof. Let t := n
3 and consider the following configuration (a, b, c) depending on the remainder

of n modulo 3:

(a, b, c) =

(t− 1, t, t + 1), if t− btc = 0 , i. e., n ≡ 0 (mod 3)
(t− 4

3 , t− 1
3 , t + 5

3), if t− btc = 1
3 , i. e., n ≡ 1 (mod 3)

(t− 5
3 , t + 1

3 , t + 4
3), if t− btc = 2

3 , i. e., n ≡ 2 (mod 3).

We can write this down in general as (t+d1, t+d2, t+d3) with d1 < d2 < d3. After one step,
we have either (2t+2d1, d2−d1, t+d3) or (2t+2d1, t+d2, d3−d1) or (t+d1, 2t+2d2, d3−d2).

By re-ordering, all of these configurations can be written as (x1, t + y1, 2t + z1). We
will generally write the configuration after i steps as (xi, t + yi, 2t + zi). Let ui, vi, and
wi be the absolute values of xi, yi, and zi in ascending order, that is, we always have
{ui, vi, wi} = {|xi|, |yi|, |zi|} and ui ≤ vi ≤ wi. For i = 1, we can directly verify that
wi ≤ 5/3 · 2 and vi ≤ 5/3 · 2− 1/3. In general, we observe that the largest absolute value
after step i, namely wi, can be at most double of what the previously largest absolute value
was; we have wi ≤ 2wi−1. Moreover, the second largest absolute value vi can be at most the
sum of the two largest absolute values in the preceding step; we have vi ≤ vi−1 + wi−1. By
induction, we therefore obtain ui ≤ vi ≤ wi ≤ 5/3 · 2i and vi ≤ 5/3 · 2i− 1/3 for the absolute
values after the ith step. It immediately follows that

vi + wi ≤ 5/3 · 2i+1 − 1/3. (1)

Clearly, as long as vi + wi < t, no two of the three numbers can add up to t and thus a,
b, c cannot be equal. However, the only way to reach a configuration that contains a zero
is from a configuration with two equal numbers. Thus, vi + wi ≥ t = n/3 is a necessary
condition for (xi, t + yi, 2t + zi), the configuration after step i, to contain two equal numbers.
Using the bound (1) derived above, we conclude that this condition will not be met as long
as the following two equivalent inequalities remain true:

5
3 · 2

i+1 − 1
3 <

n

3 ⇐⇒ i + 1 < log n + 1
5 .

Consequently, any step number k that affords us just a chance of ending up with two equal
numbers has to satisfy k + 1 ≥ log((n + 1)/5). The number of steps k being an integer, we
can improve this to k ≥ dlog((n + 1)/5)e − 1. Only after at least k steps we might have

FUN 2021

14:8 An Open Pouring Problem

two equal number appearing in our configuration. One additional step involving these two
numbers is then required to produce a zero. Therefore, the minimum number of steps is at
least dlog((n + 1)/5)e = Ω(log n). J

We would now like to present evidence that this bound is in fact optimal for infinitely
many values of n in the following section.

3.4 Solving Hard Instances Optimally
We complement the lower bound derived in Subsection 3.3 with an analysis of all instances
of the form(⌊

5
3 · 2

`

⌋
− 1,

⌊
5
3 · 2

`

⌉
,

⌈
5
3 · 2

`

⌉
+ 1
)

,

where n = 5 · 2` for any natural number `.
For these instances, our lower bound evaluates to

⌈
log(2` + 1/5)

⌉
= ` + 1. (Note that

these instances have the form (t− 4/3, t− 1/3, t + 5/3) and (t− 5/3, t + 1/3, t + 4/3) for even
and odd `, respectively.) We will now show that ` + 1 steps are indeed sufficient for solving
these instances.

For ` = 0 and ` = 1, N(n) ≥ ` + 1 is easily verified by checking all possibilities. Now let
` ≥ 2 and n = 5 · 2`.

Case 1: Assume that ` is odd. Let k = (`− 3)/2. Using binary representation, we can now
represent the numbers in our hard instance (a, b, c) as

a = 11(01)k002,

b = 11(01)k012, and
c = 11(01)k112.

It is easy to check that these numbers sum up to n = 101(0)`
2. We start by trans-

ferring from the last number to the middle one, yielding (a, 2b, c − b) = (a, 2b, 2) =
(11(01)k002, 11(01)k010, 102). We then alternately subtract the last number from the
second and the first, beginning with the second, for 2k + 2 steps in total. Finally, we
subtract the last number from the first one again. The first number will then be zero
after a total of 1 + (2k + 2) + 1 = 2k + 4 = ` + 1 steps.

Case 2: Assume that ` is even. Let k = (`− 4)/2. Using binary representation again, we
have

a = 11(01)k0012,

b = 11(01)k0112, and
c = 11(01)k1002.

Now, we first go from (a, b, c) to (2a, b−a, c) = (2a, 2, c) = (11(01)k00102), 102, 11(01)k1002).
We then subtract the middle number from the first and then from the last. Now we begin
to subtract the middle number alternately from the last and the first, beginning with
the last, for 2k + 1 steps in total. Finally, we subtract once more the middle number
from the last number. This will result in the last number becoming zero after a total of
1 + 2 + (2k + 1) + 1 = 2k + 5 = ` + 1 steps.

We have thus shown log(2n/5) to be the optimal bound for infinitely many hard instances.

F. Frei, P. Rossmanith, and D. Wehner 14:9

4 L’Art Pour l’Art

We hope to have sparked in the reader an unquenchable enthusiasm for the presented pouring-
pot problem, prompting a perplexing pot-pourri of pertinent papers and perceptive proofs
from our prodigious puzzle partners.

References
1 URL: https://kskedlaya.org/putnam-archive/1993.pdf.
2 URL: https://www.research.ibm.com/haifa/ponderthis/challenges/May2015.html.
3 URL: https://bwinf.de/fileadmin/bundeswettbewerb/38/BwInf38-Aufgabenblatt.pdf.
4 URL: https://oeis.org/A256001.
5 Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Measuring with jugs. Theor. Comput.

Sci., 282(2):259–270, 2002.
6 Yiu-Kwong Man. A non-heuristic approach to the general two water jugs problem. Theor.

Comput. Sci., (10):904–908, 2013.
7 Николай Борисович Васильев (Nikolaj Borisovich Vasil’ev) and АлександрАлександрович Егоров

(Aleksandr Aleksandrovich Egorov). Задачи всесоюзных математических олимпиад (Zadachi
Vsesojuznyh Matematicheskih Olimpiad, Problems of the All-Union Mathematical Olympiads).
Наука (Nauka), 1988.

8 Glânffrwd P. Thomas. The water jugs problem: Solutions from artificial intelligence and
mathematical viewpoints. Mathematics in School, 24(5):34–37, 1995.

9 Peter Winkler. Mathematical Puzzles: A Connoisseur’s Collection. A K Peters, 2004.
10 Peter Winkler. Five algorithmic puzzles. In Tribute to a Mathemagician, pages 109–118.

A K Peters, 2005.
11 Peter Winkler. Mathematische Rätsel für Liebhaber. Springer, 2008.

FUN 2021

https://kskedlaya.org/putnam-archive/1993.pdf
https://www.research.ibm.com/haifa/ponderthis/challenges/May2015.html
https://bwinf.de/fileadmin/bundeswettbewerb/38/BwInf38-Aufgabenblatt.pdf
https://oeis.org/A256001

	The Same Old Pouring Problem Again
	Our Problem: Significantly Less Pouring
	Our Contribution
	Upper Bound
	Experimental Evidence
	Lower Bound
	Solving Hard Instances Optimally

	L'Art Pour l'Art

