Foundations for Actively Secure
Card-Based Cryptography

Alexander Koch
Karlsruhe Institute of Technology (KIT), Germany

alexander.koch@kit.edu
Stefan Walzer

Technische Universitat Ilmenau, Germany
stefan.walzer@tu-ilmenau.de

—— Abstract
Card-based cryptography, as first proposed by den Boer [4], enables secure multiparty computation
using only a deck of playing cards. Many protocols as of yet come with an “honest-but-curious”
disclaimer. However, modern cryptography aims to provide security also in the presence of active
attackers that deviate from the protocol description. In the few places where authors argue for
the active security of their protocols, this is done ad-hoc and restricted to the concrete operations
needed, often using additional physical tools, such as envelopes or sliding cover boxes. This paper
provides the first systematic approach to active security in card-based protocols.

The main technical contribution concerns shuffling operations. A shuffle randomly permutes the
cards according to a well-defined distribution but hides the chosen permutation from the players.
We show how the large and natural class of uniform closed shuffles, which are shuffles that select a
permutation uniformly at random from a permutation group, can be implemented using only a linear
number of helping cards. This ensures that any protocol in the model of Mizuki and Shizuya [17] can
be realized in an actively secure fashion, as long as it is secure in this abstract model and restricted
to uniform closed shuffles. Uniform closed shuffles are already sufficient for securely computing any
circuit [19]. In the process, we develop a more concrete model for card-based cryptographic protocols
with two players, which we believe to be of independent interest.

2012 ACM Subject Classification Security and privacy — Information-theoretic techniques; Security
and privacy — Usability in security and privacy; Theory of computation — Models of computation

Keywords and phrases Card-Based Protocols, Card Shuffling, Secure Multiparty Computation,
Active Security, Cryptography without Computers

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.17
Related Version A full version is available at [10], https://eprint.iacr.org/2017/423.

Acknowledgements We would like to thank the anonymous reviewers for helpful comments.

1 Introduction

The elegant “five-card trick” of den Boer [4] allows two players — here called Alice and Bob —
to compute a logical AND of two private bits, using five playing cards. For instance, if the
bit of a player encodes whether they have romantic interest for the other player, the protocol
will result in a “yes”-output if and only if there is mutual interest, sparing a party with an
unrequited crush the embarrassment of having this information revealed.

More generally, using a deck of playing cards (usually with symbols Q. &), Alice and Bob
can jointly compute an arbitrary Boolean function on multiple secret inputs such that neither
player learns anything about the input, except, possibly, what can be learned from looking
at the output. One distinctive feature is that these protocols do not need a computer, which
makes their security tangible. For this reason, they have become popular for introducing
secure multiparty computation in lectures and to non-experts.

? Alexander Koch aI}d Stefan Walze.r;
5v icensed under Creative Commons License CC-BY
10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 17; pp. 17:1-17:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3510-9669
mailto:alexander.koch@kit.edu
https://orcid.org/0000-0002-6477-0106
mailto:stefan.walzer@tu-ilmenau.de
https://doi.org/10.4230/LIPIcs.FUN.2021.17
https://eprint.iacr.org/2017/423
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2

Foundations for Actively Secure Card-Based Cryptography

The key operations that introduce randomness in a controlled manner are shuffles. A
shuffle operation causes a sequence of cards to be rearranged according to random permutation
such that observers cannot tell which permutation was chosen. The formal computational
model of Mizuki and Shizuya [17] permits shuffles with arbitrary distributions on permutations.
The model is useful when showing impossibility results and lower bounds on cards, cf. [12],
but it seems unlikely that all shuffle operations permitted in the model have a convincing
real world implementation. This spawned some formal protocols with apparently good
parameters, but unclear real-world implementations, especially if active security is a concern
[12, Sect. 7]. There is to this day still no positive account of what shuffles can be done with
playing cards beyond the justification of individual protocols, and even then, most make
“honest-but-curious” assumptions, with no guarantees when one of the players deviates from
the protocol. In several places in the literature, e.g. [2, Sect. 8] and [12, Sect. 9], the need for
achieve actively secure shuffles and protocols has been recognized.

Our Contribution

As security guarantees in the physical world are harder to formalize than in the digital

L we introduce a suitable notion of active security. It is slightly non-standard in

domain
that we exclude attackers that are too strong. For instance, there is no possible defense
against attackers that can arbitrarily turn over cards, cf. Section 6 for a discussion. Moreover,
we show how any card-based protocol (in the model of [17]) that is restricted to uniform
closed shuffles can be transformed into an actively secure protocol that increases the number
of cards only by a constant factor. Uniform closed shuffles, namely those that rearrange
the cards according to a uniform distribution on a permutation group, have already been
identified in [12, Sect. 8] as a natural class of operations. More importantly, they suffice to

compute any function?.

Along the way, we define a new model for card-based cryptography, which we call two-
player protocols. These, in turn, use permutation protocols that allow Alice to apply a w € I1
of her choosing to a sequence of face-down cards, such that Bob learns nothing about her
choice. We believe this to be of independent interest, e.g. as an approach to formalize
protocols such as the 3-card AND protocol in [13] that does not fit into the model of Mizuki
and Shizuya.

The idea of using “private permutations” as base operations instead of shuffles was first
mentioned in [12, Sect. 8]. Independently from our work, these operations are used in [23] to
more efficiently perform an instance of the millionaires problem with cards and in [22] for
the case of a three-input voting protocol. To formalize security correctly however, we have
to distinguish between private permutation in the role of introducing uncertainty, and those
which should serve as input (and need special protection), which we discuss in Section 8.
There, we also discuss active attacks against two majority protocols from the literature, that
have their inputs given by the users’s choice of permutation.

1 See also https://xked.com/538/ for a humorous illustration of this fact.

2 Almost all existing Mizuki-Shizuya protocols, e.g. [3, 4, 6, 15, 14, 16, 19, 18, 25, 24, 31, 1], use only
these. This list contains protocols for AND and COPY, hence allowing arbitrary circuits. More general
shuffles appear in [2, 12, 29] for the purpose of using less cards. For example, for committed-format
AND, restricting to uniform closed shuffles needs exactly one additional card, both in the case of finite
runtime and Las Vegas protocols, as shown in [19, 12, 1, 7, 8].

https://xkcd.com/538/

A. Koch and S. Walzer

Related Work

The feasibility of general secure multiparty computation with cards was shown in [4, 3, 24, 31].

Since then, researchers proposed a wide range of protocols with different objectives and

parameters. One line of research has been to minimize the number of cards used in protocols.

In this regard, [19, 16, 12, 28, 7, 1] try to minimize the number of cards for AND, XOR
or bit copy protocols, achieving, for instance, the minimum number of four cards for AND
protocols both in committed® and non-committed format.

With respect to shuffles, all early protocols relied solely on a uniform random cut, which
is a shuffle causing a cyclic shift on a pile of cards with uniformly random offset. Niemi and
Renvall [24, Sect. 3] and den Boer [4] plausibly argue that random cuts can be performed by

repeatedly cutting a pile of cards in quick succession, as players are unable to keep track.

Other shuffles were justified, including “dihedral group” shuffles [24], [31, Sect. 7], random
bisection cuts [19, 32] and unequal division shuffles [2, 28, 27].

Other works have investigated the question of active attacks, albeit with a different focus.

Mizuki and Shizuya [18] address active security against adversaries who deviate from the
input encoding, e.g. giving input (V, Q) instead of (O,). We describe in Section 8 how
our results subsume this, using a separate input phase. Moreover, they stress the necessity
of non-symmetric backs to avoid marking cards by rotating them. Finally, using a secret
sharing-like mechanism, they specify how to avoid security breaches by scuff marks on the
backs of the cards. [30] describe a method against injection attacks in their model using
polarizing plates. Independently, [32] give an implementation of the special case of random
bisection cuts, including experiments showing the real-world security of the shuffle.

Besides short ad-hoc discussions of the shuffle security, we believe that this is an exhaustive
list of all investigations into active security so far. In particular, the issue of ensuring that
only permutations allowed in the protocol description can be performed during a shuffle has
not been addressed for non-trivial cases. Due to our constructions spanning multiple layers
of abstractions as depicted in Figure 1, we are able to solve this by giving a transformation
of passively secure protocols into an actively secure ones, under certain conditions.

2 Preliminaries

Permutations. A permutation of a set X = {1,...,n} for some n € N, is a bijective map
m: X — X. The set S,, of all permutations of {1,...,n} is called symmetric group. It has
group structure with the identity map id as neutral element and composition (o) as group

operation. We apply a permutation 7 of X to a set S C X by writing #(S) := {n(s) | s € S}.

We say that 7 respects S if w(S) = S. In that case, 7 also respects the complement X \ .S and
we can define the restriction of w to S as the permutation 7 with domain S and 7(s) = 7 (s)
for all s € S. For elements x4, ...,z the cycle (1 x2 ... x) denotes the cyclic permutation
7w with 7(z;) = x;41 for 1 <i < k and 7(x) = 21 and 7(x) = z for all not occurring in
the cycle. If several cycles act on pairwise disjoint sets, we write them next to one another
to denote their composition. For instance (1 2)(3 4 5) denotes a permutation with mappings
{1—2,2—1,3— 4,4~ 55+ 3}. Every permutation can be written in such a cycle
decomposition.

3 In a committed-format protocol, input and output bits are encoded by the order of two face-down
cards (a “commitment”) that hides the value and hence, may be used as intermediary input to another
protocol without looking at it, while those not in committed format reveal the output and are hence
unsuitable for larger circuits.

17:3

FUN 2021

17:4 Foundations for Actively Secure Card-Based Cryptography

_ requires | Assumption: Cuts imperfectly observable A uniform cut (p. 6) rotates

a pile of cards by a uniformly
Players lose track of repeated cuts. random value unknown to Al-

ice and Bob. From this we
build chosen cuts (p. 6) leav-
ing a pile rotated by a value
chosen by Alice but unknown
to Bob. When generalized to
chosen pile cuts (p. 7) and for-
malized, we obtain a chosen
pile cut action that rotates a
sequence of equally-sized piles
by a value k chosen by Alice.

Bob remains oblivious of that
value but he can be sure that
the cards are not rearranged
in any other way. In particu-
lar he knows that each pile is
rotated by the same amount,
even if Alice is dishonest.
With the help of a permuta-
- tion protocol (p. 8) this is ex-
Helping Deck tended to the case where piles
[0 860 . .., 0] may have different sizes. This
yields chosen coupled rotations
(p. 8) in the case of two piles
and chosen generalized coupled
5 rotations (p. 10) in the case of
Helping Deck more thar(l two)piles.

(>, C,....0] These are powerful enough to
build arbitrary chosen permu-
tations from a closed permuta-
tion set (p. 10). In that setting,
Alice may choose any permuta-
tion 7 from a group of permu-
tations II. Bob will not learn
7 but can be sure that no per-
mutation outside the set II is
performed.

A two player protocol (p. 11)
may make use of these chosen
closed permutation actions as
well as the other actions turn,
perm and result.

Uniform closed Mizuki—
Shizuya (MS) protocols (p. 16)
are a large natural subset of

Tool: Deck with red backs

Real World — Actual Players

i

uses

See Figure 6.

turn: reveal cards
perm: public permutation
result: output

Two Player Model — Idealized Players

Tmay use protocols as formalized by

Mizuki and Shizuya. Our

Notion: Active Security main result is that for any
Permutation sets implemented, player such protocol there is-a two
knowledge independent of in-/output. player protocol computing the

same function that is actively
secure (p. 14) if the original
--------- |Security—respecting Implementation (see Proposition 2)| - ------- protocol is secure (p. 13).
This security-respecting im-
plementation (p. 15) replaces
Notion: Security each uniform closed shuffle
Execution path independent of with two corresponding chosen
Ay use in-/output. closed permutations.

Active security is bought with
helping cards needed in several
places; intuitively to prove the
legitimacy of Alice’s actions to
Bob.

(no players)

Mizuki—Shizuya Model

Figure 1 Overview of the content of this paper. The images of Alice and Bob are adapted from
xked (by Randall Munroe), which is licensed as CC-BY-NC-2.5.

https://creativecommons.org/licenses/by-nc/2.5/

A. Koch and S. Walzer

By a conjugate of a permutation m € S,, we mean any permutation of the form 7’ :=
7 Yomor where 7 € S,,. For a set Il C S,, of permutations and 7 € S,, the set 7' oIlo7 :=
{r7lomor | ® € II} is a conjugate of II. Given an arbitrary sequence of objects I' =
(T'[1],...,T[n]) and a permutation 7 € S,, then applying 7 to I yields the sequence 7(T") =
(Clx=Y(D)],T[x=(2)],...,C[r~1(n)]). Intuitively, the object in position i is transported to
position 7 (i).

Sets and Groups. If g1,g2,...,9x € G are group elements, (gi,...,gr) is the smallest
subgroup of G containing g1, ..., gr and called the subgroup generated by {g1,...,gx}. For
g € G the order of g is ord(g) = |{g)| = min{k > 1| g* = id}. In the following, a group is
implicitly also the set of its elements.

Multisets and Decks. [, O, <&, ®, 8] is the multiset containing three copies of <» and two
copies of #, also written as [3-<{,2- #]. If such a multiset represents cards, it is called a deck.
All cards are implicitly assumed to have the same back, unless stated otherwise. Cards can
lie face-up or face-down. When face-down, all cards are indistinguishable (unless they have
different backs). When face-up, cards with the same symbol are indistinguishable. Throughout
this paper, cards are always face-down with the exception of during a turn operation. To
simplify the protocol specification, we immediately turn the card(s) face-down again. Unions
of multisets are denoted by U, disjoint unions are denoted by +, e.g. [, &, 8JU[O, O, db, &] =
[6,9, &, &, &] whereas [, &, &] + [0, 0, &, &] = [0, 0., &, &, &, &

3 Implementing Cuts and Pile Cuts with Choice

We are interested in procedures that, for a given set II C S,, of permutations, allow Alice
to apply a w € II of her choosing to a sequence of face-down cards, such that Bob learns
nothing about her choice, but is certain that Alice did not choose 7 ¢ II. Also, no player
learns anything about the face-down cards if the other player is honest.

In this case we say Il has an actively secure implementation with choice, or is implemented
for short.

Example: Bisection Cut with Envelopes

Mizuki and Sone [19] make use of the following procedure on six cards: The cards in positions
1, 2 and 3 are stacked and put in one envelope and the cards in position 4, 5 and 6 are put
into another. Behind her back, Alice then swaps the envelopes or leaves them as they are —
her choice. Unpacking yields either the original sequence or the sequence 4, 5,6,1,2,3. The
bisection cut II = {id, (1 4)(2 5)(3 6)} is therefore implemented (with active security and
choice) using two indistinguishable envelopes.

The envelopes ensure that the two groups of cards stay together and their ordering is
preserved. The idea is that opening the envelopes behind her back would be impractical and
noisy, so even if Alice is malicious, she is limited to the intended options. For a model of
secure envelopes, cf. [20, 21].

Example: Unequal Division Shuffle

A bisection cut on n cards can be interpreted as “either do nothing or rotate the sequence by
n/2 positions”. Generalizing this, we now want to “either do nothing or rotate the sequence
by | positions” for some 0 < [< n, i.e. implement IT; = {id,(1 2 ... n)'}. In [28, 29] a

17:5

FUN 2021

17:6

Foundations for Actively Secure Card-Based Cryptography

corresponding mechanism is described using two card cases with sliding covers. The card
cases behave like envelopes but are heavy enough to mask inequalities in weight caused by
different numbers of cards, and support joining the content of two card cases — for details
refer to their paper (or Appendix D in the full version [10]).

While we are very fond of such creative ideas, in this paper we implement card-based
protocols using only one tool: additional cards.

3.1 Cutting the Cards

By the cut on n cards we mean the permutation set II = ((1 ... n)). Alice would cut a pile
of n cards by taking the top-most k cards (for some 0 < k < n) from the top of the pile,
setting them aside and then placing the remaining n — k cards on top. In this form, Alice
can only approximately pick k while allowing Bob to approximately observe k. Implementing
IT requires fixing both problems.

Uniform Cut

As an intermediate goal we implement a uniform cut on n cards, i.e. we perform a permutation
(12 ... n)* for 0 < k < n chosen uniformly at random and unknown to the players. As
proposed in [4], this is done by repeatedly cutting the pile in quick succession until both
players lost track of what happened. More formally, under reasonable assumptions, the
state of the pile is described by a Markov chain that converges quickly to an almost uniform
distribution after a finite number of steps.

Arguably, if the pile is too small, say two cards, the number of cards taken during each
cut is perfectly observable. In that case, we put a sufficiently large number ¢ of cards with
different backs behind each card, repeatedly cut this larger pile and remove the auxiliary
cards afterwards. Note that [32] found it to work well in practice even for n = 2 and ¢ = 3.4
We shall not explore this further and use uniform cuts as a primitive in our protocols.

Uniform Cut with Alternating Backs

Later we apply the uniform cut procedure to piles of n - (£ + 1) cards with n cards of red
back, each preceded by ¢ cards of blue back. From a “uniform cut” on such a pile, we expect
acut by 0 <k <n-(¢+1) where |k/(¢+ 1)] is uniformly distributed in {0,...,n — 1} and
independent of the observable part k mod (¢4 1). We leave it to the reader to verify that
the iterated cuts still work under the same assumptions.

Chosen Cut

We now show how to implement II = ((1 ... n)) with active security and choice. Say Alice
wants to rotate the pile of n cards by exactly k positions for a secret 0 < k < n. We propose
the process illustrated in Figure 2.

Alice is handed the helping deck [#, (n—1) - $] with red backs and secretly rearranges
these cards in her hand, putting # in position k. The helping cards are put face-down on the
table and interleaved with the pile to be cut (each blue card followed by a red card). The &
is now to the right of the card that was the k-th card in the beginning. To obscure Alice’s
choice of k, we perform a uniform cut on all cards as described previously. The red helping

4 If not satisfied, the reader may accept some variant of Berry’s turntable, cf. [33].

A. Koch and S. Walzer

Example (n =5,k =4) General Description

TN 7 (77
274v 72 P2 172
e lzalzzies

C1C2C3C4C5 D Alice inserts helping cards, puts & right of c.

77 77 77 72
77 77 77 27
) 27 27 27

cp o2 Ocgdcydes

77 (7 77) 77 77
77 7 77| 77 77
27 7 27 77 27

4 W Cs O O e dc

O
Cq Cs C1 C2 C3
0
“Goa e aoa D The helping cards are discarded.

TP (77
iz
e lalzzies

C5C1 C2C3C4

D A uniform cut is performed.
D The helping cards are revealed.

D The & is rotated to the front.

Figure 2 Alice cuts a pile of n cards, here (ci,...,cs), with back [’/ at position k with a helping
deck of n helping cards [#, 4 - $] with back . In this illustration we annotated face-down cards
with the symbol they contain.

- @3@ -

Figure 3 Rotating a sequence of four piles of three cards each by one position (left) is described
by a permutation 7 with three cycles of length 4. Alternatively, we can think of 7w as 7 = 7> where
7 is the cyclic permutation of length 12 (right).

cards are then turned over. Rotating the sequence so as to put # in front, and removing the
helping cards afterward leaves the cards in the desired configuration. Bob is clueless about k
since he only observes the position of & after the cut, which is independent of the position
of & before the cut (which encodes k).

Chosen Pile Cut

Chosen cuts can be generalized in an interesting way. Given n piles of £ cards each and
0 < k < n, Alice wants to rotate the sequence of piles by exactly k positions, meaning the
i-th pile will end up where pile ¢ + k has been (modulo n). Again, k£ must remain hidden
from Bob and he, on the other hand, wants to be certain that Alice does not tamper with
the piles in any other than the stated way. Note that this is equivalent to cutting a pile of
nf cards where only cutting by multiples of £ is allowed, see Figure 3. In that interpretation,
the i-th pile is made up of the cards in positions (i — 1)+ 1,..., /.

We apply the same procedure as before with n helping cards, except this time, instead
of a single blue card we have ¢ blue cards (a pile) before each of the n gaps that Alice may
fill with her red deck [#, (n—1) - {]. Now the special #-card marks the end of the k-th pile
and is (after a uniform cut) rotated to the beginning of the sequence, ensuring that after
removing the helping cards again we end up having rotated the n - £ cards by a multiple
of ¢ as desired. Note that, uniform (non-chosen) pile cuts have been proposed in [6] as
“pile-scramble shuffles”, with an implementation using rubber bands, clips or envelopes.

17:7

FUN 2021

17:8

Foundations for Actively Secure Card-Based Cryptography

Summary

K= {(12...n-£)" forn,f € N, then II is implemented with active security and choice
using the helping deck [#, (n—1) - &]. For £ =1 it is called a cut, for £ > 1 a pile cut. We
use the same name for conjugates of II, i.e. if cards are relabeled. Any subset () # IT' C II
of a (pile) cut is also implemented: Alice places # only in some positions, the others are
publicly filled with <.

4 Permutation Protocols for Arbitrary Groups

We introduce a formal concept that allows to compose simple procedures to implement more
complicated permutation sets.

» Definition 1. A permutation protocol P = (n, H,I', A) is given by a number n of object
cards, a deck of helping cards H with initial arrangement T': {n +1,...,n+ |H|} — H, and
a sequence A of actions where each action can be either

(privatePerm, II) for IT C S, 4 x| implemented with active security and choice, and re-

specting {1,...,n} (i.e. Vo eIl: 7({1,...,n}) ={1,...,n}), or

(check, p,0) for a position p of a helping card (i.e. n < p < n+ |H|) and an expected

outcome o € H.

Indeed, consider the following procedure: We start with n object cards lying on a table
(positions 1,...,n). We place the sequence I" next to it, at positions n+1,...,n + |H|, and
go through the actions of P. Whenever the action (privatePerm,II;) is encountered, we use
the procedure P; implementing II; to let Alice apply a permutation on the current sequence.
When an action (check, p,0) is encountered, the p-th card is revealed. If its symbol is o, Bob
continues, otherwise he aborts, declaring Alice as dishonest. In the end, the helping cards are
removed, yielding a permuted sequence of object cards. (All permutations respect {1,...,n},
hence, the helping and the object cards remain separated).

We are interested in the set comp(P) C S,y g of permutations compatible with P.
If there are k privatePerm actions with permutations sets IIy,...,II; and m; € II;, then
7 ©. ..o is compatible with P if each check succeeds, meaning if (check, p, 0) happens after
the i-th privatePerm action (and before the i + 1st, if i < k) then I'[(m; 0...0m) L (p)] = o.
We argue that this implements II' = comp(P)|;1,...,n) using H (and, possibly, helping cards
to implement II;).

Alice can freely pick any «’ € II'; using an appropriate decomposition, all checks will
succeed. In this case, Bob knows that the performed permutation is from II'. No player
learns anything about the object cards (only helping cards are turned) and conditioned on
Alice being honest, the outcome of the checks is determined, so Bob learns nothing about ’.

Coupled Rotations

Let o = (12 ... 5), ¥ = (s+1 s+2 ... s+t), and assume s < t. For 1 = pop = pot)
we call IT = {7* | 0 < k < s} the coupled rotation with parameters s and t. Note that
IT is not a group since 7° ¢ II. We aim to implement II. We make use of a helping deck
[®, (t—1) - O] available in positions H = {hg, h1,...,ht—1} with & at position hg. Then
define ¢ := po(hg ... hs_1) and ¥ := 1po(hg ... hy_1)~* and consider the permutation
protocol P in Figure 5 (left), and Figure 4 for illustration. The idea here is that Alice may
choose k and k" and perform $* and ¢* to the sequence. However, k is “recorded” in the

A. Koch and S. Walzer

Example (s =3,t =8k=k" =2) General Description

+ Bl

H: @ The sequences A and H (first s

» e e e
A | w
" B

chosen by Alice.
(This is a pile cut.)

H is rearranged to represent —k

W\\
mod ¢): cards i,5 € {0,...,t —1}

23 2 O 9 I i,j &
are swapped iff i + j =0 (mod ¢).

A: @ (This does not leak k.)

: @ H and B are rotated to the right
g Rice. T Alce i hones she st
A e e il cut)

H: E] The first card of H is revealed. A

B: & occurs iff Alice was honest.

Figure 4 The sequence A of length s and B of length t are to be rotated by the same value k
chosen privately by Alice. A helping sequence ensures that the same value is used. All cards are
face-down, except for the highlighted card in the last step. The dotted lines indicate that cards
are belonging to the same pile in a pile cut, i.e. they maintain their relative position during the
cut. The rearrangement of the helping cards is useful in this visualization (so that H and B can be
rotated in the same direction) but is not reflected in the formal description.

—~

configuration of a helping sequence and —k’ is “added” on top. A check ensures that the
helping sequence is in its original configuration, implying k = k' as required. Note that (@)
and (1) are pile cuts, which we already know how to implement. In total, we implemented

comp(P) = {¥ 0 ¢*: 0 <k < 5,0 <k < t,T[(* 0 ") (hg)] = AT,
={F 0" 0<k <s,0<k <tk =k} .m
={fopf 0<k<s}u, =1

Products, Conjugates and Syntactic Sugar

The protocol in Figure 5 (middle) implements ITs o I1; using II; and IIy, showing that if
II; is implemented using H; and Il is implemented using Hs, then Il o Iy is implemented
using H1 U Ho. As a corollary, if IT is implemented using A then so is any conjugate IT' =
{r='}ollo{r}. Figure 5 (right) uses (perm,r) instead of (privatePerm, {r}) to emphasize
that such deterministic actions can be carried out publicly.

17:9

FUN 2021

17:10

Foundations for Actively Secure Card-Based Cryptography

{ privatePerm, () }

¥
‘ privatePerm, (1[)} ‘ {privatePerm,Hl‘ ’ privatePerm, IT ‘
’ checkfho,ﬁ ‘ {privatePerm,Hg‘ ’ perm, ! ‘

Figure 5 Protocols implementing a coupled rotation (left), the product of two permutation sets
(middle) and the conjugation of a permutation set (right).

Generalized Coupled Rotations

We generalize the idea of a coupled rotation to more than two sequences. Let m € S,
with cycle decomposition m = ¢go-- -0, for £ > 2 and increasingly ordered cycle lengths
to <ty <ty <...<t;,. Weaim to implement IT = {7% | 0 < k < to} using t; + 2 - to helping
cards, originally available in the following positions which we label as shown.

OO O A O D O
mo My mi,—1Zo T1 ... ZTte—1 SO S1 ... Stg—1
main temp store

We think of the three areas as “registers” containing values indicated by the position of #
(initially 0). The registers have associated rotations:

wtemp = (xO -Tto—l)7 Ustore = (50 Sto—l)a Y = (mO mti—l)~

The protocol’s idea is that Alice performs <p§° 0---0 cp?e and checks will ensure ky = k1 =
... = kg. To this end, ko is recorded in the store register (we use (@g 0 ¥store)). Then,
for each round ¢ € {1,2...,¢ — 1} the value kg is cloned into the main register by first
swapping it to the temp register and then moving it to the store and main register using
Yeopy 1= wt’e#p 0 Ystore © Wo. The cloned copy of ky in main is consumed when forcing Alice to
do @-ko where @; == @, 09, ! The last round is similar. Using the following two swappings,
the protocol is formally given in Figure 6.

Tlstore<>tmp — (SO xO) ce (Stg—l $t0—1)7 Tlstore<>main -— (30 mO) cee (Sto—l mt0—1)~

We now check that this implements the generalized coupled rotation II using the helping
cards [3 - #, (tp+2to—3) - O], cf. Appendix A in the full version [10]. The main ingredient is
the loop invariant:

If m € Sntoty+t, s compatible with the actions until after the i-th execution of the

loop and S is the starting sequence then there exists k € {0,...,to — 1} such that:

_ Ak k k
{1,y =P 0... 007 05,

in w(S) all registers contain 0 except for store, which contains k.

We remark that by introducing additional check steps, any subset of a generalized coupled
rotation can be implemented as well.

Subgroups of S,

Generalized coupled rotations are sufficient for:

A. Koch and S. Walzer

s
{ privatePerm, (©p 0 Ystore) }]é
R EEELLLE : o=
: [Perm, Tstore<>tmp } o
gl L 2
;\E { prlvatePerm (tcopy) } §
=! &
T [check , L0, M } >
! [privatePerm, (@;) } ;
Novlt v <
! [check, mg, & } =
L — Q

{ Perm, Tstore<smain }
) 3
{ privatePerm, (py) } 5
) &

[check, mg, & }

Figure 6 Protocol to implement a generalized coupled rotation with ¢ + 1 cycles of length
to,t1,...,t,. Notation is explained in the text.

» Proposition 2. Any subgroup 11 of S,, can be implemented with active security and choice
using only the helping deck [3 - &, (n — 3) - $] for (generalized) coupled rotations and the
helping deck [#, (n—1) - O] for (pile) cuts.

Proof. Note that IT = [. (7), i.e. II can be written as the product of cyclic subgroups.

Moreover, any cyclic subgroup can be written as () = {7°,... 78=1}* where k is the length
of the shortest cycle in the cycle decomposition of 7w and ¢ = [ord(7)/(k — 1)]. Hence, IT can
be written as the product of rotations and (generalized) coupled rotations, each of which
are implemented with the required helping decks. Using the implementation of products
(page 9), we are done. <

A simple decomposition of IT into products of previously implemented permutation sets is
desirable to keep the permutation protocol simple. We do not consider this here and merely
state that |II| is an upper bound on the number of terms.

5 Computational Model with Two Players

In the following, two players jointly manipulate a sequence of cards to compute a (possibly
randomized) function, i.e. they transform an input sequence into an output sequence. Both
have incomplete information about the execution and the goal is to compute with no player
learning anything about input or output®.

Two Player Protocols

A two player protocol is a tuple (D, U, Q, A) where D is a deck, U is a set of input sequences,
@ is a (possibly infinite, computable) rooted tree with labels on some edges, and A: V(Q) —
Action is an action function that assigns to each vertex an action which can be perm, turn,

5 An explanation of our security notions follows in Section 6.

17:11

FUN 2021

17:12

Foundations for Actively Secure Card-Based Cryptography

vyt {privatePerm, 1,{id, (1 2)(34)},U(") ‘ D=[3 %29,
1
vg: {privatePerm,Q, {id, (1 2)(3 4)},1/1(')‘ U={(%,&&),
. (%,0,0, %),
v3: | turn, {1,2}
(©.%.0. &)},

vg: | result, 3 U5 | result, 4

Figure 7 A protocol example in the two player model, with possible execution trace: (I =
(0, %,0,%),0 = (9V),T: = (id), T2 = ((1 2)(3 4)), W = (v1,v2,v3,vs5)). This is an actively secure
implementation of the AND protocol in [14, Sect. 3.2]. The first two cards encode an input a as
(%, Q) =0, (V,&) = 1, the third card encodes an input b as & = 0, © = 1. This encoding is also
used for output a A b.

Q, A: as shown on the left

result, and privatePerm, with parameters as explained below. All input sequences have the
same length n and are formed by cards from D. Vertices with a perm or privatePerm action
have exactly one child, vertices with a result action have no children, and those with a turn
action have one child for each possible sequence of symbols the turned cards might conceal,
and the edge to that child is annotated with that sequence.

When a protocol is executed on an input sequence I € U, we start with the face-down
sequence I' = I at the root of @ and empty permutation traces T, and T3 for players 1 and 2,
respectively. Execution proceeds along a descending path in) and for each vertex v that is
encountered, the action A(v) is executed on the current sequence of cards:

(perm, 7) for a permutation 7w € S,,. This replaces the current sequence I' by the permuted

sequence 7(I"). Execution proceeds at the unique child of v.

(turn, T") for some set T C {1,...,n}. For T = {t; < t3 < ... < tx}, the cards
T[t1],...,T'[tx] are turned face-up, revealing their symbols. The vertex v must have
an outgoing edge labeled (I'[t1],...,T'[tx]). Execution proceeds at the corresponding child

after the cards are all turned face-down again.

(privatePerm, p, IT, F(-)) for a player p € {1,2}, a permutation set IT C S,, and F being
a parameterized distribution on II. Formally, F is a function that maps the current
permutation trace 7, of player p to a distribution F(7,) on II. If F(7,) is the uniform
distribution on IT for each 7, we denote this as ¢(-). Player p picks a permutation 7 € II.
The current sequence T is replaced by the permuted sequence 7(T") and 7 is appended to
the player’s permutation trace 7,. If player p is honest she picks 7 according to F (7).
Execution proceeds at the unique child of v.

(result, p1, ..., pg) for distinet positions py,...,pr € {1,...,n}. Execution terminates with
output O = (T'[p1],...,T'[px]) encoded by face-down cards.

The execution yields an execution trace (I,0, Ty, T2, W), containing input, output, permu-
tation traces of the players and the descending path W in @ that was taken, cf. Figure 7.
The output of non-terminating protocols is O = 1. Note that we will use permutation
protocols from Section 4 in the privatePerm steps, however we use them as black boxes. In
particular, the actions specific to permutation protocols (e.g. check) are not part of two
player protocols. We say P is implemented using a helping deck H if each permutation
set of a privatePerm action is implemented using H (as in Section 3). The way we define
it, existence, implementability and security of a protocol are separate issues. Security is
discussed next.

A. Koch and S. Walzer

6 Passive and Active Security

Intuitively, an implemented protocol is (information-theoretically) secure if no player can
derive any statistical information about input or output from the choices and observations
they make during the execution of the protocol. So the first question is, what information
does a player obtain, say Alice, that could potentially be relevant? At first we consider the
setting where both players are honest. Surely, Alice knows the public information W, i.e. the
execution path of the protocol run, in which the sequence of actions and their parameters
are implicit. For each action along W she may have obtained additional information during
its execution. To get a complete picture, we go through all types of actions:

turn actions reveal some card symbols. However, as each outcome corresponds to a unique

child vertex where execution continues, this information is already implicit in W.

perm actions are deterministic and reveal no information. The same is true for result

actions. Note that they only indicate the position of the output, not reveal it.

For privatePerm actions, the observations that can be made depend on the implementation.

If the protocols are implemented in our sense (see Section 3) and Alice is the active player

then Alice learns nothing of relevance except her own choice of permutation (which is

recorded in her permutation trace) and, since Alice is honest, Bob learns nothing at all.
So the only potentially relevant information player p has with regards to input and output is
W and 7T,. Therefore it is adequate to define:

» Definition 3 (Passive Security). A two player protocol P = (D,U,Q, A) is secure against
passive attackers if for any random variable I € U the following holds: If (I,0,T1, T2, W)
is the execution trace when executing P with honest players on input I, then (I,0) is
independent of (T,, W) for both p € {1,2}.

Delegated Computation

Passive security implies that if a player has no prior knowledge about in- or output, executing
the protocol leaves her in this oblivious state. In particular, by following the protocol the
players implement what we call an oblivious delegated computation where the computation is
performed on secret data (provided by a third party), and the output is not revealed to the
executers.

Note that this setting differs from the standard multiparty computation setting, where
players provide part of the input and usually the output is sent to the players in non-
committed (non-hiding) form, i.e., learned by the players. In this case, security means that
the players learn nothing except what can be deduced from the facts they are permitted
to know. It is important to understand that our definition is still adequate for such cases,
as any protocol that is secure in the delegated computation setting is also secure if players
have (partial) information about input and output. The formal reason is the basic fact that
for any event E relating only to (I,0), i.e., E is independent of (7,, W), conditioning the
probability space on E will retain the independence of (I,0) and (7,, W).

Moreover, protocols secure in the delegated setting are flexibly applicable in different
contexts, making it a very suitable framework. For example, non-delegateable (non-committed
input format) protocols which can only be performed by players knowing the input (cf.
[13, 23, 22]) cannot be transferred to the delegated setting and are hence unsuitable for
use with hidden intermediate results from previous computations. Hence, we protect the
output and do not assume knowledge of the inputs. This is a natural setting for card-based
cryptography, as all committed-format protocols in the literature achieve this notion, it
ensures that the protocols can be used in larger protocols, and it is at least as secure as the
other notions, due to the information-theoretic setting.

17:13

FUN 2021

17:14

Foundations for Actively Secure Card-Based Cryptography

The above definition of passive security is sufficient if players can be trusted to properly
execute the protocol. In that case any privatePerm action can directly be performed by the
specified player while the other player looks away. Of course, our main concern here is the
situation where looking away is not an option.

Permutation Security and Active Security

To argue about security in the presence of a malicious player, we must first discuss what such
a player may do. Doing this rigorously would require to closely model the physical world,
which allows for different threats than in the usual cryptographic settings. We certainly
have to assume physical restrictions, as otherwise we cannot achieve anything.® For example,
as our security relies on the possibility of keeping face-down cards, we must assume that
an attacker does not resort to certain radical means that immediately and unambiguously
identify her as an attacker. (However, note that we can protect against such active attackers
which turn over cards by the generic “private circuit” compiler due to Ishai, Sahai, and
Wagner [5].) Hence, we can assume that she does not interfere with the correct execution of
perm and turn actions, nor does she, in open violation of the protocol, spontaneously seize or
turn over some of the cards or mark them in any way.

On the other hand we can plausibly argue that certain mechanisms are sufficient to
counter attacks other than those that our paper is concerned with. We may argue that the
cards could be put into envelopes, and any attempt to reveal its contents contrary to the
protocol will be countered by the cautious other players jumping in to physically abort the
protocol in that case.

Concerning an operation (privatePerm, Alice, IT, 7(-)) with implemented II, there is by
definition of implemented permutation set no possibility for Alice to perform a permutation
w ¢ II. If she causes a permutation protocol to fail, Bob aborts the execution before any
sensitive information is revealed. Otherwise, Alice is limited to disrespecting F(-). This is
captured as follows:

» Definition 4. Let P = (D, U, Q, A) be a two player protocol.

(i) A permutation attack £ on P as player p € {1,2} specifies for each vertex v € V(Q)
with an action of the form A(v) = (privatePerm,p,II, F(-)), a permutation {(v) € II.
Replacing such F(-) with the (point) distributions that always choose &(v), yields the
attacked protocol PS.

(ii) An attack & is unsuccessful if the following holds. Whenever I € U is a random
variable denoting an input and (1,0, Ty, T2, W) and (I, 0%, Tf, 'TQE, W) are the resulting
execution traces of P and P¢, then for any values i,0,w:

Pr[Wé=w] > 0 = Pr[(I,0%)=(i,0) | Wé=w] = Pr[(I,0)=(i, 0)]. (*)

(iii) We say P is secure against permutation attacks if each permutation attack on P is
unsuccessful.
In light of our discussion above we finally define:

» Definition 5. A two player protocol P = (D, U, @, A) has an actively secure implementation
if each permutation set I occurring in a privatePerm action is implemented and P is secure
against permutation attacks.

6 We do not get ultimately strong guarantees for the physical actions such as in quantum cryptography,
where, if (a subset of) quantum theory is true, no adversary can predict a randomness source, no matter
what she does physically.

A. Koch and S. Walzer

Intuitively, a protocol has permutation security if: No matter what permutations a player
chooses (V€), and no matter what the turn actions end up revealing (VIW¢), the best guess
for the in- and output (distribution of (I,0%), given W¥¢) is no different from what he would
have said, had he not been involved in the computation at all (distribution of (I,0)). We
make a few remarks.
Passively secure protocols terminate almost surely, otherwise O = | can be recognized
from an infinite path W. For similar reasons, a permutation attacker can never cause a
protocol with permutation security to run forever.”
In our definition, permutation attackers are deterministic without loss of generality.
Intuitively, if an attacker learns nothing no matter what & she chooses, then choosing &
randomly is just a fancy way of determining in what way she is going to learn nothing.
For similar reasons, permutation security implies passive security, since playing honestly
is just a weighted mixture of “pure” permutation attacks.
We cannot say anything if both players are dishonest or if they share their execution
traces with one another. We also cannot guarantee that player learns nothing if the other
player is dishonest.

Permutation Security from Passive Security

There is an important special case in which the powers of a permutation attacker turn
out to be ineffective, namely if the distributions F(7,) never assign zero probability to a
permutation.

» Proposition 6. Let P = (D, U, Q, A) be a passively secure two player protocol where for
each action of form (privatePerm, p,II, F(-)) and each permutation trace T, of player p, F(T,)
has support TI®. If for each attack & the attacked protocol P& terminates with probability 1°,
then P is secure against permutation attacks.

Proof. Consider an attack £ on P as player p € {1,2}, let I € U be any random variable
denoting an input and (I,0, Ty, T2, W) and (I, O, 7'15, 7'257 W¢) be the execution traces of P
and P¢. Let w be any path in Q with Pr[W¢ = w] > 0 and t the permutation trace that ¢
prescribes for player p along w (whenever W¢ = w, then 7;5 =t). For any 4,0 we have:

Pr((1,0%) = (i,0) | W* = w] = Pr[(I,0%) = (i,0) | (T, W*) = (t,w)]
:Pr[(I’O) = (i70) | (7;7 W) = (tvw)}

:PI'[(I,O):(Zv)]

Q

From the first to the second line, note that firstly, since w is finite, the sequence t of choices
is finite as well, so, using the assumption that supp(F(7,)) = II in all cases, there is some
positive probability that an honest player behaves exactly like the attacker with respect to
this finite sequence of choices. Therefore, the conditional probability in the second line is
well defined. Secondly, the attacked protocol and the original protocol behave alike once we
fix the behavior of player p so we have the stated equality. From the second to the third line
we use the passive security of P. |

7 Protocols that almost surely output L are a pathological exception.
8 Otherwise, active attackers may pick m € IT which honest players never choose.
9 this excludes a pathological case

17:15

FUN 2021

17:16

Foundations for Actively Secure Card-Based Cryptography

7 Implementing Mizuki-Shizuya Protocols

In [17], Mizuki and Shizuya’s self-proclaimed goal was to define a “computational model
which captures what can possibly be done with playing cards”. Hence, any secure real-world
procedure to compute something with playing cards can be formalized as a secure protocol
in their model.!® The other direction is not so clear. Given a secure protocol in the model,
can it be implemented in the real world? We believe the answer is probably “no” (or, at
least, not clearly “yes”). However, our work of identifying implementable actions in the two
player model implies that a very natural subset of actions in Mizuki and Shizuya’s model
is implementable, even with active security: uniform closed shuffles (see below). Note that
these shuffles already allow for securely computing any circuit [19].

Mizuki—Shizuya Protocols

We modify Mizuki and Shizuya’s model slightly: instead of state machine semantics we
stick to a tree of actions as in the two player model. This is an equivalent way of defining
protocols, cf. [7, Sects. 3 and 4].

A Mizuki-Shizuya protocol is a tuple P = (D, U, @, A) similar to a two player protocol.
The actions perm, result and turn are available as before, but instead of privatePerm actions
there are shuffle actions of the form (shuffle, II, F) where II is a set of permutations and F
is a probability distribution on II. Executing a protocol works as before, but there are no
separate permutation traces for players (there are no players at all), instead there is a single
permutation trace 7. The actions perm, turn and result work as before. When an operation
(shuffle, II, F) is encountered, a permutation = € II is chosen according to F (independent
from previous choices). This permutation 7 is applied to the current sequence of cards
without anyone learning 7 and appended to the permutation trace 7.

For any input I € U, an execution of a protocol is described by the execution trace
(I,0,T,W) where O is the output (O = L if it did not terminate), 7 the permutation trace
and W the path of the execution in Q. It is assumed that only W is observed, suggesting
the following security notion:

» Definition 7 (Security of Mizuki-Shizuya Protocols). A Mizuki—Shizuya protocol P is secure
if for each random variable I € U and resulting execution trace (I,0,T, W) of the protocol,
(I,0) is independent from W.

Implementing Uniform Closed Mizuki—Shizuya Protocols

We call a shuffle (shuffe, II, F) uniform if F is the uniform distribution on II, and closed if I
is a group. We call a Mizuki—Shizuya protocol uniform closed if each of its shuffle actions is
uniform and closed. We are ready to state our main theorem.

» Main Theorem. Let P = (D,U,Q, A) be a secure uniform closed Mizuki-Shizuya protocol.
Then there is a two player protocol P = (D, U,Q,/Al) with actively secure implementation
computing the same (possibly randomized) function as P.

Moreover, the implementation of P uses as helping deck only [3-#,(n—23)-3] for
(generalized) coupled rotations and [#, (n—1) -] for chosen (pile) cuts. Here, n is the length
of the input sequences.

10 Excluding the use case of non-committed input protocols from [13] and [23], where the input is provided
by a choice of privatePerm operations by a player, requiring input awareness/knowledge.

A. Koch and S. Walzer

We sketch the proof here and give the formal proof in Appendix B in the full version [10]. Each
uniform closed shuffle (shuffle, II,¢f) of P is replaced by two actions (privatePerm, p, IT, 1) for
p € {1,2}. For m3 o7 to be uniformly random in II, it suffices if 71 or ms is chosen uniformly
random in II (while the other is known). Therefore, the joint permutation applied to the
sequence after both privatePerm actions looks uniformly random to both players. Hence,
they learn nothing from the execution of P that they would not have also learned from
executing P. Since P is secure, P is passively secure and by Proposition 6 also secure against
permutation attacks. Moreover, by Proposition 2 all IT are implemented using the stated
helping decks, so P has an actively secure implementation.

8 Active Input Security

In Section 6 we have argued that results for the delegated computation setting are also
applicable when players have (partial) knowledge of the input and we narrowed our focus
accordingly. In this section we take a second look at protocols where players provide the
input themselves. In some cases, this allows for simpler protocols with fewer cards, but it
also brings about specific issues regarding active security.

We do not attempt a formal definition of active security in this setting, leaving this open
for future work. To simplify notation, we restrict the presentation to cases with two possible
inputs for each player, denoted by 0 and 1.

Warm Up: Inputs in Standard Encoding

The standard encoding of binary inputs uses the card sequence & to represent 0 and Ode
to represent 1. When expected to provide an input in this format, a malicious player could
provide marked cards or cards with altogether different symbols. Mizuki and Shizuya [18]
give special attention to detecting the inputs dd and OO that a malicious player might
provide when given several copies of otherwise uncompromised cards.

A simple solution is to place, for each player, the sequence &O on the table and give the
player the opportunity to swap the cards with no other player noticing. This is a chosen
cut and has an actively secure implementation as discussed in Section 3.1, though, arguably,
simpler procedures exist for this special case. After all players have provided their inputs, an
ordinary protocol expecting inputs in standard format is started.

Input by Permutation

We now turn to protocols that request the inputs of the players sequentially, and by performing
a permutation on the cards. In one case, we even require players to provide their input more
than once.

We capture this with an additional formal action of the form (inputPerm, p, g, 71). When
it is encountered, player p should permute the current card sequence using the permutation
mo, if his input is 0, and using 7, if his input is 1. His choice should stay hidden from the
other players. Note that [9, Sect. 12.9] specifies a more general form of this action (not
limited to inputs of one bit), as well as a more general form of the corresponding state
diagrams (see below). Here, we chose to use a simplified version for ease of exposition.

Considered in isolation, the action is essentially identical to (privatePerm,p, {mo,71}),
however, its role in the surrounding protocol and its relation to security notions is fundamen-
tally different: In the case of inputPerm, the player’s choice corresponds to her input and
may affect the output, while in the case of privatePerm, the choice is (in a secure protocol)
independent of input and output and may be (indirectly) leaked in subsequent actions.

17:17

FUN 2021

17:18 Foundations for Actively Secure Card-Based Cryptography

(inputPerm, 1,id, (23))

SV X, (inputPerm, 1,id, (12))
07
0% Xi- &0 X,

l(inputPermﬂ,id./(l 2)) V% Yoo
i(inputPerm7 2,id, (12))

RO Xoo + X1

SO Xig &0 Xoo + X1

Odde X1 Od Xo1 + X0
‘L(result, 1) ¢(resu|t, 1,2)

%) %)

Figure 8 On the left, we show the state diagram of a three-card AND protocol [13, Sect. 3.2]
with inputs provided by players. The result operation indicates that the first card is the output.
Here, © stands for 1 and & for 0. On the right is the state diagram of a two-card XOR protocol of
[22] in a similar spirit but the output is in standard format.

During a protocol execution, let the input trace Z, of a player p be the sequence of
permutations performed by p during her inputPerm actions encountered so far. To simplify
some diagrams in the following, we write ? for the empty input trace and 0 or 1 for non-empty
input traces of players that have (so far) always chosen the permutation corresponding to
the same input, i.e., have always chosen 7y or always 7.

Two Simple Examples: AND and XOR

We consider two very simple protocols for computing AND and XOR from [13, Sect. 3.2] and
[22], respectively, shown in Figure 8. The AND protocol starts with the sequence &&<. The
first player is expected to perform id or (2 3) if his input is 0 or 1, respectively. The second
player acts similarly, but on the first two cards. In total, the © is moved to the first position
if and only if both players choose the permutation corresponding to input 1. The card in the
first position therefore encodes the AND of the two player’s input bits. Active security can
be achieved since inputPerm actions correspond to chosen cuts. The XOR protocol is even
simpler and easily generalizes to more than two players.

The shown state diagrams are adapted from [12]. Roughly speaking, each state shows
which combination of input traces give rise to which card sequence. For the purposes of this
section, an intuitive understanding is sufficient. For instance, in the initial state of the AND
protocol in Figure 8, the card sequence is & and the input traces of both players are
empty, i.e. they are () = ?. This is represented by Xv. In the second state the input trace of
player 1 could be 0 = (id) or 1 = ((23)) while the second player’s input trace is still empty.
The two possibilities are represented by Xo? and X717 and are given next to the corresponding
possibilities for the card sequence. In the last state, we see that two possibilities for the
input traces may lead to the same card sequence. That card sequence is correspondingly
annotated with the sum of the two possibilities.

Majority Protocols and Two Types of Attacks

The majority function with an odd number of bits as input computes the value (0 or 1) that
makes up at least half of the inputs. Recently, Nakai et al. [22] proposed a protocol for
computing the majority of three bits using four cards with non-standard input and output
format. For comparison, note that among protocols where inputs and outputs are given in
standard format, the known protocol using the fewest cards for three-input majority is [26]

A. Koch and S. Walzer

with eight cards. In our terminology the protocol is given as the left state diagram of Figure 9.

The authors plausibly claim security in the honest-but-curious setting. It is, however, unclear
how active security could be achieved due to the permutation set {my = (23),m; = (34)}
in the inputPerm action of player 2. We cannot think of a simple mechanism that allows
the player to perform 7y and 7; but prevents him from doing id or (2 4), and possibly also
(234) and (24 3).11

On the right of Figure 9, we depict the state diagram in the case where player 2 can
(illegally) perform id or (2 4) without being detected. In this attack scenario, player 2 can,
e.g., force the result to be 0 via applying id, when both other player’s inputs are 1.

Q&0 X727
OO X777 (inputPerm, 1,id, (12))

(inputPerm, 1,id, (12)) O Xors
Q& Xor7 *OR0O X127
0RO Xz l(inputPerm7 2,(23),(34))
i(mputPerm,Z (23), (34)) TV -
QddO Xoor QO% Xo17
Q0% Xo17 SO0 Xio7
ROV Xigr &00® X117
SO0 X117 OQ0%de Xo((24))7
i(inputPerm, 3,id, (23)) *OR Xi@ayr + Xy

VddY Xooo + Xoos l(inputPerm, 3,id, (23))
VeOd Xo10 Qd&dC Xo00 + Xoo1 + Xogayo + Xo(iay
KO0 X100 OdO% Xo10 + Xo(24)1
&O0® X119 + X111 SHO0 X100 + Xi(24))1 + X1ia)1
O0%d Xo11 SO0S X110 + X111
SOSO X101 Q0% Xo11 + Xo(24))0

¢(resu|t, 2) SO0 X101 + Xi(24))0 + X1d)o

@ <‘gresult, 2)

Figure 9 State diagram of the three-inputs majority protocol from [22] on the left. The second
card encodes the result with © standing for 1 and & for 0. On the right we track the same protocol
when player 2 is an active attacker who can illegally perform id or (24) during his inputPerm action.

In Figure 10 we give an alternative four-card majority protocol, which is conceptually
very simple — similar to the AND protocol we saw before. Here each player cyclically rotates
the so-far relevant cards by one for input 1 and does nothing otherwise. If the majority of the
players did input 1, then the © is in the first two positions. A shuffle of these two cards then
conceals which one it was. The protocol has the advantage of only using inputPerm operations
that are simple to implement with active security. The output is, however, encoded in an
unusual way with dede representing 0 and Ode and & both representing 1. Note that there
is a straightforward generalisation of the protocol to more than three inputs.

Finally, consider the three-card three-input majority protocol from [34] in Figure 11. All
permutation sets {my, 71} of inputPerm actions can arguably be implemented with active
security. However, since players 1 and 2 each have two inputPerm actions assigned to them,
these players could choose their permutations incoherently, for instance, my in the first
inputPerm action and 7; in the second. In the state diagram we have tracked this possible

1'We can implement any inputPerm action if the two permutations are encoded as in [11], and a sort
protocol is used to apply a chosen one of the two to the sequence of cards. For the present case this
would, however, require at least 6 helping cards.

17:19

FUN 2021

17:20 Foundations for Actively Secure Card-Based Cryptography

(inputPerm, 1,id, (34))

SSHO Xi2r
S&O& X 27

l(inputPerm7 2,id, (243))

A& X2
SRO® X7 + Xo12
SO%d X2

i(inputPerm 3,id, (1432))

SISO X0
SRO* X100 + Xo10 + Xoo1
SOdd X110 + X101 + Xon1
Qe X111

i(shuffle, (12))

RO X0

SHO% X100 + Xo10 + Xoo1

SO&d 1/2(X110 + X101 + Xon1 + X111)
Q& 1/5(X110 + X101 + Xo11 + X111)

i(result, 1,2)

Figure 10 State diagram of a three-inputs majority protocol. The idea is that players rotate the
sequence by one, if their input is 1, or do nothing otherwise. In the end, if more than one player
rotated, a heart ends up in the first or second position. An additional shuffle obscures which of both
is the case. The first two cards encode the output with Q& and & standing for 1, while dée stands
for 0.

attack for player 1, assuming the other players are honest. The occurrence of X(igiq)00 at the
outcome Qb indicates that an output of 0 can occur even though players 2 and 3 have
both input 0 if player 1 (illegally) chooses the identity permutation in both his inputPerm
actions. It seems unlikely that there is a meaningful defense against such an attack that does
not substantially alter the protocol.

The case of 3-bit majority protocols shows that the question of how many cards are
required does not have a straightforward answer as it depends on the desired input and
output formats, the security requirements, and, if active security is desired also on whether
or not helping cards are counted that might be used in the implementation of the inputPerm
operations.

9 Conclusion

Central to our notion of active security is the concept of a permutation set implemented with
active security and choice, indicating that a player Alice can choose to perform a permutation
from the set while Bob can know that Alice did not cheat, but nothing else. We argued that
cuts and pile cuts have such an implementation and we used permutation protocols to build
more sophisticated procedures handling any group of permutations. Moreover, we defined
security for Mizuki—Shizuya protocols, active and passive security for our own two player
protocols and showed how secure Mizuki—Shizuya protocols using only uniform closed shuffles
can be transformed into actively secure two player protocols. This is a solid foundation for
actively secure card-based cryptography.

A. Koch and S. Walzer 17:21

(inputPerm, 1,id, (23))

SO Xo27

SO X727

l(inputPerm, 2,id, (132))
&0 Xoo?

08 X107 + Xo1r
Odede X117

l(inputPerm, 3,(23),id)

S Xoo1 + X100 + Xo1o

&O® X101 + Xo11 + Xooo
Qb X111 + X110

l(inputPerm, 2,(12),id)
SO Xo10 + Xoo1 + X100

®O* X011
Qb X111 + X110 + X101 + Xooo

l(inputPerm, 1,(12),id)
SO X100 + Xo10 + Xoor + X(ia,iay10 + Xia,iayor + X((23),(12))00

&O® Xooo + Xi,iay1 + X((23),012)11 + X((23),012))10 + X((23),12))01
Odede X111 + X110 + X101 + Xo11 + X(id,id)oo

,L(result, 1)

Figure 11 State diagram of the three-inputs majority protocol from [34]. We track the case that
player 1 is an active attacker who may make incoherent choices during his two inputPerm actions.

Finally, we discuss protocols where input is given by the players via choosing a permutation,
including a corresponding adaptation of the state tree formalism, and present active attacks
on two majority protocols from the literature.

Open Problems

Some card-minimal protocols, e.g. the general k-ary boolean function protocol of [12], use
non-closed shuffles, with no evidence yet that this is necessary. As we have determined that
uniform closed shuffles are a natural shuffle class, which can be done actively secure, it is
interesting to find card-minimal protocols using only uniform closed shuffles.

Another natural problem is to implement more general shuffles, and even to characterize
the shuffles which are possible with (a linear number of) helping cards, and the assumption of
the security of a uniform random cut. To give one non-trivial example, we show in Appendix
D in the full version [10] how any subset of a cut can be implemented.

—— References

1 Yuta Abe, Yu ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. Five-card and protocol in
committed format using only practical shuffles. In Keita Emura, Jae Hong Seo, and Yohei
Watanabe, editors, APKC@QAsiaCCS 2018, pages 3-8. ACM, 2018. doi:10.1145/3197507.
3197510.

2 Eddie Cheung, Chris Hawthorne, and Patrick Lee. CS 758 project: Secure computation with
playing cards, 2013. URL: https://cdchawthorne.com/writings/secure_playing_cards.
pdf.

FUN 2021

https://doi.org/10.1145/3197507.3197510
https://doi.org/10.1145/3197507.3197510
https://cdchawthorne.com/writings/secure_playing_cards.pdf
https://cdchawthorne.com/writings/secure_playing_cards.pdf

17:22

Foundations for Actively Secure Card-Based Cryptography

10

11

12

13

14

15

16

17

18

19

Claude Crépeau and Joe Kilian. Discreet solitary games. In Douglas R. Stinson, edi-
tor, CRYPTO ’93, volume 773 of LNCS, pages 319-330. Springer, 1993. doi:10.1007/
3-540-48329-2_27.

Bert den Boer. More efficient match-making and satisfiability: The five card trick. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, EUROCRYPT ’89, volume 434 of LNCS,
pages 208-217. Springer, 1989. doi:10.1007/3-540-46885-4_23.

Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 463-481.
Springer, 2003. doi:10.1007/978-3-540-45146-4_27.

Rie Ishikawa, Eikoh Chida, and Takaaki Mizuki. Efficient card-based protocols for generating
a hidden random permutation without fixed points. In Cristian S. Calude and Michael J.
Dinneen, editors, UCNC 2015, volume 9252 of LNCS, pages 215-226. Springer, 2015. doi:
10.1007/978-3-319-21819-9_16.

Julia Kastner, Alexander Koch, Stefan Walzer, Daiki Miyahara, Yu ichi Hayashi, Takaaki
Mizuki, and Hideaki Sone. The minimum number of cards in practical card-based protocols.
In Tsuyoshi Takagi and Thomas Peyrin, editors, ASTACRYPT 2017, volume 10626 of LNCS,
pages 126—155. Springer, 2017. doi:10.1007/978-3-319-70700-6_5.

Alexander Koch. The landscape of optimal card-based protocols. TACR Cryptology ePrint
Archive, 2018. Report 2018/951. URL: https://eprint.iacr.org/2018/951.

Alexander Koch. Cryptographic Protocols from Physical Assumptions. PhD thesis, Karlsruhe
Institute of Technology (KIT), 2019. doi:10.5445/IR/1000097756.

Alexander Koch and Stefan Walzer. Foundations for actively secure card-based cryptography.
IACR Cryptology ePrint Archive, 2017. Report 2017/423. URL: https://eprint.iacr.org/
2017/423.

Alexander Koch and Stefan Walzer. Private function evaluation with cards. JACR Cryptology
ePrint Archive, 2018. Report 2018/1113. URL: https://eprint.iacr.org/2018/1113.
Alexander Koch, Stefan Walzer, and Kevin Hértel. Card-based cryptographic protocols using
a minimal number of cards. In Tetsu Iwata and Jung Hee Cheon, editors, ASTACRYPT 2015,
volume 9452 of LNCS, pages 783-807. Springer, 2015. doi:10.1007/978-3-662-48797-6_32.

Antonio Marcedone, Zikai Wen, and Elaine Shi. Secure dating with four or fewer cards. JACR
Cryptology ePrint Archive, 2015. Report 2015/1031. URL: https://eprint.iacr.org/2015/
1031.

Takaaki Mizuki. Card-based protocols for securely computing the conjunction of multiple
variables. Theoretical Computer Science, 622:34—44, 2016. doi:10.1016/j.tcs.2016.01.039.

Takaaki Mizuki, Isaac Kobina Asiedu, and Hideaki Sone. Voting with a logarithmic number
of cards. In Giancarlo Mauri, Alberto Dennunzio, Luca Manzoni, and Antonio E. Porreca,
editors, UCNC 2013, volume 7956 of LNCS, pages 162—173. Springer, 2013. doi:10.1007/
978-3-642-39074-6_16.

Takaaki Mizuki, Michihito Kumamoto, and Hideaki Sone. The five-card trick can be done
with four cards. In Xiaoyun Wang and Kazue Sako, editors, ASTACRYPT 2012, volume 7658
of LNCS, pages 598—-606. Springer, 2012. doi:10.1007/978-3-642-34961-4_36.

Takaaki Mizuki and Hiroki Shizuya. A formalization of card-based cryptographic protocols
via abstract machine. International Journal of Information Security, 13(1):15-23, 2014.
doi:10.1007/s10207-013-0219-4.

Takaaki Mizuki and Hiroki Shizuya. Practical card-based cryptography. In Alfredo Ferro,
Fabrizio Luccio, and Peter Widmayer, editors, FUN 2014, volume 8496 of LNCS, pages
313-324. Springer, 2014. doi:10.1007/978-3-319-07890-8_27.

Takaaki Mizuki and Hideaki Sone. Six-card secure AND and four-card secure XOR. In Xiaotie
Deng, John E. Hopcroft, and Jinyun Xue, editors, FAW 2009, volume 5598 of LNCS, pages
358-369. Springer, 2009. doi:10.1007/978-3-642-02270-8_36.

https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-70700-6_5
https://eprint.iacr.org/2018/951
https://doi.org/10.5445/IR/1000097756
https://eprint.iacr.org/2017/423
https://eprint.iacr.org/2017/423
https://eprint.iacr.org/2018/1113
https://doi.org/10.1007/978-3-662-48797-6_32
https://eprint.iacr.org/2015/1031
https://eprint.iacr.org/2015/1031
https://doi.org/10.1016/j.tcs.2016.01.039
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1007/978-3-319-07890-8_27
https://doi.org/10.1007/978-3-642-02270-8_36

A. Koch and S. Walzer

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Tal Moran and Moni Naor. Polling with physical envelopes: A rigorous analysis of a human-
centric protocol. In Serge Vaudenay, editor, FUROCRYPT 2006, volume 4004 of LNCS, pages
88-108. Springer, 2006. doi:10.1007/11761679_7.

Tal Moran and Moni Naor. Basing cryptographic protocols on tamper-evident seals. Theoretical
Computer Science, 411(10):1283-1310, 2010. doi:10.1016/j.tcs.2009.10.023.

Takeshi Nakai, Satoshi Shirouchi, Mitsugu Iwamoto, and Kazuo Ohta. Four cards are
sufficient for a card-based three-input voting protocol utilizing private permutations. In
Junji Shikata, editor, ICITS 2017, volume 10681 of LNCS, pages 153-165. Springer, 2017.
do0i:10.1007/978-3-319-72089-0_9.

Takeshi Nakai, Yuuki Tokushige, Yuto Misawa, Mitsugu Iwamoto, and Kazuo Ohta. Efficient
card-based cryptographic protocols for millionaires’ problem utilizing private permutations.
In Sara Foresti and Giuseppe Persiano, editors, CANS 2016, volume 10052 of LNCS, pages
500-517, 2016. doi:10.1007/978-3-319-48965-0_30.

Valtteri Niemi and Ari Renvall. Secure multiparty computations without computers. Theoretical
Computer Science, 191(1-2):173-183, 1998. doi:10.1016/S0304-3975(97)00107-2.

Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. Card-based protocols for
any boolean function. In Rahul Jain, Sanjay Jain, and Frank Stephan, editors, TAMC 2015,
volume 9076 of LNCS, pages 110-121. Springer, 2015. doi:10.1007/978-3-319-17142-5_11.
Takuya Nishida, Takaaki Mizuki, and Hideaki Sone. Securely computing the three-input
majority function with eight cards. In Adrian Horia Dediu, Carlos Martin-Vide, Bianca Truthe,
and Miguel A. Vega-Rodriguez, editors, TPNC 2013, volume 8273 of LNCS, pages 193—-204.
Springer, 2013. doi:10.1007/978-3-642-45008-2_16.

Akihiro Nishimura, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone. An implementation
of non-uniform shuffle for secure multi-party computation. In AsiaPKC 2016, pages 49-55.
ACM, 2016. doi:10.1145/2898420.2898425.

Akihiro Nishimura, Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone.
Five-card secure computations using unequal division shuffle. In Adrian Horia Dediu, Luis
Magdalena, and Carlos Martin-Vide, editors, TPNC 2015, volume 9477 of LNCS, pages
109-120. Springer, 2015. doi:10.1007/978-3-319-26841-5_9.

Akihiro Nishimura, Takuya Nishida, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone.
Card-based protocols using unequal division shuffles. Soft Computing, 22(2):361-371, 2018.
do0i:10.1007/s00500-017-2858-2.

Kazumasa Shinagawa, Takaaki Mizuki, Jacob C. N. Schuldt, Koji Nuida, Naoki Kanayama,
Takashi Nishide, Goichiro Hanaoka, and Eiji Okamoto. Secure multi-party computation using
polarizing cards. In Keisuke Tanaka and Yuji Suga, editors, IWSEC 2015, volume 9241 of
LNCS, pages 281-297. Springer, 2015. doi:10.1007/978-3-319-22425-1_17.

Anton Stiglic. Computations with a deck of cards. Theoretical Computer Science, 259(1-2):671—
678, 2001. doi:10.1016/S0304-3975(00)00409-6.

Itaru Ueda, Akihiro Nishimura, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone.
How to implement a random bisection cut. In Carlos Martin-Vide, Takaaki Mizuki,
and Miguel A. Vega-Rodriguez, editors, TPNC 2016, pages 58—69. Springer, 2016. doi:
10.1007/978-3-319-49001-4_5.

Tom Verhoeff. The zero-knowledge match maker, 2014. URL: https://www.win.tue.nl/
~wstomv/publications/liber-AMiCorum-arjeh-bijdrage-van-tom-verhoeff.pdf.

Yohei Watanabe, Yoshihisa Kuroki, Shinnosuke Suzuki, Yuta Koga, Mitsugu Iwamoto, and
Kazuo Ohta. Card-based majority voting protocols with three inputs using three cards. In
International Symposium on Information Theory and Its Applications, ISITA 2018, pages
218-222. IEEE, 2018. doi:10.23919/ISITA.2018.8664324.

17:23

FUN 2021

https://doi.org/10.1007/11761679_7
https://doi.org/10.1016/j.tcs.2009.10.023
https://doi.org/10.1007/978-3-319-72089-0_9
https://doi.org/10.1007/978-3-319-48965-0_30
https://doi.org/10.1016/S0304-3975(97)00107-2
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-642-45008-2_16
https://doi.org/10.1145/2898420.2898425
https://doi.org/10.1007/978-3-319-26841-5_9
https://doi.org/10.1007/s00500-017-2858-2
https://doi.org/10.1007/978-3-319-22425-1_17
https://doi.org/10.1016/S0304-3975(00)00409-6
https://doi.org/10.1007/978-3-319-49001-4_5
https://doi.org/10.1007/978-3-319-49001-4_5
https://www.win.tue.nl/~wstomv/publications/liber-AMiCorum-arjeh-bijdrage-van-tom-verhoeff.pdf
https://www.win.tue.nl/~wstomv/publications/liber-AMiCorum-arjeh-bijdrage-van-tom-verhoeff.pdf
https://doi.org/10.23919/ISITA.2018.8664324

	Introduction
	Preliminaries
	Implementing Cuts and Pile Cuts with Choice
	Cutting the Cards

	Permutation Protocols for Arbitrary Groups
	Computational Model with Two Players
	Passive and Active Security
	Implementing Mizuki–Shizuya Protocols
	Active Input Security
	Conclusion

