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Abstract
The problem of inconsistent planning in decision making, which leads to undesirable effects such
as procrastination, has been studied in the behavioral-economics literature, and more recently in
the context of computational behavioral models. Individuals, however, do not function in isolation,
and successful projects most often rely on team work. Team performance does not depend only
on the skills of the individual team members, but also on other collective factors, such as team
spirit and cohesion. It is not an uncommon situation (for instance, experienced by the authors while
working on this paper) that a hard-working individual has the capacity to give a good example to
her team-mates and motivate them to work harder.

In this paper we adopt the model of Kleinberg and Oren (EC’14) on time-inconsistent planning,
and extend it to account for the influence of procrastination within the members of a team. Our
first contribution is to model collaborative work so that the relative progress of the team members,
with respect to their respective subtasks, motivates (or discourages) them to work harder. We
compare the total cost of completing a team project when the team members communicate with
each other about their progress, with the corresponding cost when they work in isolation. Our main
result is a tight bound on the ratio of these two costs, under mild assumptions. We also show that
communication can either increase or decrease the total cost.

We also consider the problem of assigning subtasks to team members, with the objective of
minimizing the negative effects of collaborative procrastination. We show that whereas a simple
problem of forming teams of two members can be solved in polynomial time, the problem of assigning
n tasks to n agents is NP-hard.
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2:2 Collaborative Procrastination

1 Introduction

Procrastination has taught me how to do 30 minutes of work in 8 hours and 8 hours
of work in 30 minutes.

– anonymous internet user

The synthesis of teams is a fundamental activity within organizations. The importance of
teams in the production of knowledge is increasing. For instance, in the context of scientific
research, teams typically produce more frequently cited research than single individuals [15].
Furthermore, it has been observed that simply putting together the best individuals does
not necessarily create a great team [11], as there are aspects characterizing effective group
members and successful collaborations that are not evident in an individual’s performance.
When forming teams, it is necessary to take many aspects of the team into account, such as
diversity, learning, and cohesion. Although all the aforementioned characteristics play an
important role in the performance of a team, they fail to characterize how team dynamics
evolve when individuals tend to procrastinate.

In many cases, a project is divided in subtasks, which are assigned to the members of a
team. Such a division facilitates cooperation and takes advantage of the different skillsets of
the team members. In such situations, typically the final outcome of the project depends
on the completion of the subtasks that are assigned to the team members. In this work we
assume that the individual members of the team work independently on the subtasks that
have been assigned to them, they are aware of the progress that has been made by their
teammates, and they do not help each other by working on others’ tasks, lacking either the
expertise or the incentive to do so. This is a reasonable assumption, especially in the case
that each subtask requires different skillsets.

To motivate our setting, consider the following example.

Example. A software company gets assigned a project and the project manager gathers a
team of engineers to form a team and work on the project. The project has a number of
different subtasks and the project manager recruits one person with the required skills for
each subtask (e.g., back-end development, data analytics, user interface). Success in the
project depends on completing all subtasks; if one subtask fails, the whole project fails. The
team holds regular meetings, sets milestones, discusses problems that occur, and reports
progress made in the different subtasks. The collective progress affects the motivation and
performance of the team members. An engineer who would normally be motivated to work
and would rarely procrastinate might feel unmotivated if the others do not make progress on
their subtasks. Conversely, if everyone makes good progress, an engineer who is prone to
procrastination might fear that the project will fail because of him and he would put his
best effort to keep up with the team. �

In this example it is clear that progress by motivated individuals may help to motivate
others. At the same time, motivated individuals can be discouraged to make further progress
if they realize that their reward will be unfairly proportional to their effort. Similarly for
procrastinating individuals, their “free-ride” attitude may discourage other team members,
or they can get motivated by realizing that they are the ones who keep the team behind.
Therefore, the overall process is governed by complex dynamics.

Motivated by this discussion, the questions that we study in this paper are the following:
Q1: How can we model interactions among members of a team who work on the same project,

such as to capture the dynamics for motivating (or demotivating) each other?
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Q2: What are the effects of such a model of interaction among team members, and to what
extent the performance of the team can be sped up or slowed down?

Q3: Can we assign optimally team members to the subtasks of a project such as to take
advantage of the interactions among the team members and to minimize the total cost of
completing a project?

The time-inconsistent planning model. To model procrastination of individual team mem-
bers we use the time-inconsistent planning model [1, 13, 14]. Here we adopt the formulation
introduced by Kleinberg and Oren [8]. We refer to individual team members as agents.
According to this model, the progress of an agent for a particular task is represented as a
single-source–single-sink directed acyclic graph. The graph simulates a discrete-time process.
Each vertex in the graph represents the current state in the project and the progress made
so far. An agent being at vertex u at time t picks an edge (u, v) going out of u and moves to
vertex v at time t+ 1. The source vertex represents the start of the project, and the sink
vertex the completion of the project. Edge weights model the effort required to move along
the edges, and agents are assumed that they try to minimize their total effort to complete
the project. An agent with no bias will move from start to completion by following a shortest
path from source to sink. To simulate procrastination, the model assumes a present-time
bias, where agents perceive the cost at present time higher than what it is in reality. In
particular, at any given time, the weights of the outgoing edges from the current vertex are
multiplied by a factor b ≥ 1. The agent calculates the shortest path to the sink using the
inflated weights for the next-step edges. This leads agents to bias their choice of next-step
edges towards low-cost edges, and as a result they follow paths whose total cost is larger
than the cost of the shortest path.

The proposed model. To model collaborative procrastination, and provide an answer to
Q1, we extend the time-inconsistent planning model, to account for interaction among
team members. In particular, we assume that the overall project is divided in subtasks,
each team member is assigned to one of the subtasks, and each subtask is represented by
a single-source–single-sink directed acyclic graph, which is used to model the actions and
progress of the assigned agent to the subtask. We assume that each agent i has a present-time
bias bi. In addition to the original model, we assume that an agent i takes steps towards
completing her subtask, the fraction qi(t) ∈ [0, 1] capturing the progress made up to time
t. The fraction qi(t) is known to agent i, as well as to all other agents. Given two agents i
and j, the difference qi(t)− qj(t) expresses the difference in their progress in their respective
subtasks, at time t. If qi(t) − qj(t) > 0 agent i is ahead in her subtask and she may feel
discouraged by the fact that j has not worked as hard. Conversely, agent j is behind and he
may feel motivated to catch up. To capture the dynamics of this interaction, we propose
to introduce a multiplicative factor γqi(t)−qj(t)

i in the present-time bias factor of i, for some
γi ≥ 1. The effect of our model is that, in addition to the personal present-time bias factor
bi, which captures the tendency of i for procrastination, agents further slow down if they
have done more progress than their peers, or speed up if they have done less progress.

Our results. We define formally the collaborative-procrastination model, outlined above.
To answer research question Q2 we consider the total cost required by the team to complete
a task when they interact and their behavior follows the collaborative procrastination model,
and we compare this with the cost that would be required if each agent was working
independently on their subtasks. We focus on grid graphs, where at each state of the subtask
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2:4 Collaborative Procrastination

an agent has two options: make progress or procrastinate. This family of graphs reportedly
captures the worst-case task graphs that exhibit the less efficient planning by an agent.

To avoid pathological cases, we consider that the subtask graphs satisfy certain natural
assumptions, as proposed by Gravin et al. [7] . Namely, we consider a bounded distance
property, where in all subtask graphs the optimal path to complete the subtask from any
state is never worse than the optimal path from the initial state, and a monotonicity property,
which ensures that in each subtask graph the cost to complete the subtask does not increase
over time. We express our results with respect to the size (n) of the subtask graph, and the
number of agents (k) in the team.

Our main result is to show that, assuming the bounded-distance and monotonicity
properties, the total cost paid by all agents in the collaboration model, compared to the
total cost paid by all agents when they work in isolation, cannot increase more than a factor
of Θ(n). Furthermore, we provide an example, which indicates that this bound is tight.

It is also possible that collaboration helps the overall team performance. We show that,
under an additional (mild) assumption for subtask graphs, namely, that procrastinating
is less costly at the current step than taking an action towards completing the task, our
collaborative model can lead to speeding up the time to complete the overall task by a factor
of Θ(n).

Finally, we turn to our research question Q3, for assigning team members to subtasks
such as to minimize the total cost of completing the project. We consider a simple version of
the problem when the subtask graphs are fixed for all agents, and each agent is characterized
by their own present-time bias parameter, and interaction parameters with other agents. We
show that even this simple version of the problem is NP-hard. We leave as an open problem
the design of an efficient approximation algorithm.

2 Model

Our model builds on the graph-theoretic planning model that was introduced by Kleinberg
and Oren [8] for a single agent. According to that model, a task is represented by a directed
acyclic graph G = (V,E), where each vertex represents a possible state of the task at a
specific time point. In this paper we work with a specific family of task graphs that have
a grid structure. Specifically, we identify every vertex v`

t by its time step t and an index
` ∈ {0, 1, . . . , `max} indicating the progress that has been made so far towards completion of
the task. We assume that no agent is failing her task, even at the expense of heavy cost by
the last-minute work. Hence, the vertex set of the task graph consists of all vertices v`

t with
` ≥ t and tmax − t ≥ `max − `. See Figure 1 for two examples of graphs.

There is a distinguished start vertex σ = v0
0 and a target vertex τ = v`max

tmax
that represent

the starting point and the completion of the task, respectively. The edge set E contains
the following directed edges: (1) an edge (v`

t , v
`+1
t+1) for each vertex v`

t such that for ` =
0, . . . , `max − 1, t = `, . . . , tmax − 1, (2) an edge (v`

t , v
`
t+1) for each vertex v`

t such that
tmax − t ≥ `max − ` (this condition ensures that the agent does not procrastinate when there
is no time for procrastination). For an easy interpretation of the notation, we denote each
edge of type (1) by e �(v`

t ) and each edge of type (2) by e�(v`
t ), and they represent progression

and procrastination of the agent at state v`
t , respectively. Each edge e = (u, v) ∈ E has a

cost c(e), which represents the effort to go from state u to state v.
We note that the family of grid graphs is not a compromise. Kleinberg and Oren [8]

showed that all graphs that exploit the worst-case behavior of a time inconsistent agent on
general directed acyclic graphs, contain as a minor a graph that is trivially simulated by a grid
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Figure 1 On the left an example task graph where the overall cost of completing the tasks
increases compared to the case where the individuals are not aware of each other. On the right, a
task graph where the overall cost to complete the tasks decreases.

graph. Specifically, Kleinberg and Oren [8] show that every task graph that forces an agent
to follow a path that has exponentially larger cost compared to the optimum path, contains
as a minor the graph that has n+ 2 states σ = v0, v1, . . . , vn, τ and edges (vi, vi+1) and (vi, τ)
for all 0 ≤ i ≤ n. We construct a grid with states σ = v0

0 , v
0
1 , . . . , v

0
n, v

1
1 , v

1
2 , . . . , v

1
n+1 = τ ,

and edges (v0
i , v

0
i+1) for all 0 ≤ i ≤ n− 1 with cost equal to the cost of the edges (vi, vi+1) in

the worst-case graph; edges (v0
i , v

1
i+1) for 1 ≤ i ≤ n with cost equal to the cost of the edges

(vi, τ) in the worst-case graph; and edges (v1
i , v

1
i+1) for 0 ≤ i ≤ n with cost 0. The grid graph

essentially splits the state τ of the worst-case graph and replaces it with a path of cost 0 in
all of its edges. This path represents completion of the task, as the remaining path to τ is
zero.

Given a task graph, present-time biased agents act according to their interpretation of
the most effective sequence of actions. Notice that the (objectively) optimum sequence of
actions by the agent corresponds to the shortest path in the task graph from σ to τ . An
agent who follows the shortest path from a state executes the best actions and minimizes
her overall cost. However, according to the quasi-hyperbolic–discounting model [12] the
agent misinterprets the cost of her next actions: the costs of all actions in the next step
are amplified by a multiplicative factor b. In other words, at state v`

t the agent perceives
the overall effort to accomplish the task as b · c(e �(v`

t )) + d(v`+1
t+1 , τ), if she chooses to make

progress, and as b · c(e�(v`
t )) + d(v`

t+1, τ), if she chooses to postpone actions to future time
steps. Subsequently, the agent picks the action that minimizes the perceived cost. Throughout
the paper we assume that if the perceived cost of making progress equals the perceived cost
to procrastinate, the agent chooses to make progress.

In our model we assume that the members of a team T are assigned individual tasks
graphs. Each agent (team member) performs on his own task graph. The present-time bias
of each agent is affected by two factors, the personal bias and the social bias. The personal
bias bi ≥ 1 depends solely on the agent and it does not change throughout the process. As
the agents proceed by performing the tasks assigned to them they interact with each other
and learn their progress. The unnormalized progress of an agent i ∈ T at time t is denoted by
ri(t) ∈ {0, . . . , `max}, where `max is the maximum progress level on i’s task graph. We define
also the (normalized) progress qi(t) ∈ [0, 1] of agent i as qi(t) = ri(t)/`max. This allows us to
compare the progress of agents with different task graphs and different number of progress
levels.

Being aware of the progress made by the other members of the team might affect the
motivation of an agent. We assume that agents exert to each other an amount of social
influence, which is denoted by a weight wij ∈ [0, 1], for each pair of agents i and j (in general
wij 6= wji). We assume wii = 0, for all agents i ∈ T . We are now ready to define the
social-bias factor of our model.
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2:6 Collaborative Procrastination

I Definition 1. The social bias of an agent i ∈ T at time t is denoted by ΓT
i (t) and defined

as

ΓT
i (t) = γ

∑
j∈T

wij(qi(t)−qj(t))
i ,

where γi ≥ 1 is a social-bias parameter, wij ∈ [0, 1] is the social influence between agents i
and j, and qj(t) is the (normalized) progress level of each agent j ∈ T at time t.

Obviously one can consider different functions ΓT
i (t), but in this paper we specialize to

this particular form. Notice that our model is a generalization of the model by Kleinberg and
Oren because T = {i} implies that ΓT

i (t) = 1. The simplest, nontrivial, case for our model
is when there are only two agents, that is, T = {i, j}. In that case Γ{i,j}i (t) = γ

qi(t)−qj(t)
i .

Often we assume that we have γi = γj for all i, j ∈ T and in this case we just use γi = γ.
Whenever ΓT

i (t) < 1 we say that agent i is motivated because of the influence of j, and when
ΓT

i (t) > 1 we say that agent i is discouraged. The following property follows from our model.

I Property 2. Consider a team T and an agent i ∈ T , with γi ≥ 1 and wij ≥ 0, for all
j ∈ T . If qj(t) ≥ qi(t) for all j ∈ T then ΓT

i (t) ≤ 1. Similarly, if qj(t) ≤ qi(t) for all j ∈ T
then ΓT

i (t) ≥ 1.

The present-time bias of an agent i ∈ T is defined as BT
i (t) = max{biΓT

i (t), 1}. The
present-time bias affects the perceived cost of a path for an agent. A path p is a sequence of
nodes p = 〈v1, . . . , vk〉 such that (vj , vj+1) is an edge of the graph for all 1 ≤ j ≤ k − 1. The
cost of p is

∑k−1
j=1 c(vj , vj+1). Consider a path p = 〈v1, . . . , vk〉, where v1 = v`

t is the current
state of an agent i ∈ T . Then the perceived cost for an agent i for the path p is

BT
i (t) · c(v1, v2) + d(v2, τ).

An agent, who aims to complete the assigned task G, follows a path from σ to τ . Note
that each such path is of the form p = 〈σ = v0

0 , v
`1
1 , . . . , v

`max
tmax

= τ〉. We call such a path
progress path on task G. Given two progress paths p = 〈σ = v0

0 , v
`1
1 , v

`2
2 , . . . , v

`max
tmax

= τ〉 and
p′ = 〈σ = v0

0 , v
`′

1
1 , v

`′
2

2 , . . . , v
`max
tmax

= τ〉 on the same task G, we say that p is above path p′, and
write p �G p′, if for each t = 1, . . . , tmax we have that `t ≥ `′t. We define �G (i.e., below)
analogously. Let pT (i) be the progress path of agent i ∈ T . We use p(i) to denote p{i}(i).

Example 1.1 We demonstrate our model with two examples in the case of teams with two
members. In the first example, in Figure 1 (left), the total cost of the progress paths followed
by the two agents increases when the two agents interact compared to the case where the two
agents do not have knowledge of each other’s progress. The two agents operate on the same
task graph. Agent 1 has personal bias b1 = 2 and agent 2 has b2 = 4. If agent 1 would operate
independently of agent 2, it would start from state σ = v0

0 , and would evaluate the options of
following either edge e �(v0

0) (i.e., to make progress) or edge e�(v0
0) (i.e., procrastinate). The

perceived cost of following edge e �(v0
0) is Γ1(0) · b1 · c(e �(v0

0)) + d(v1
1 , τ) = 19/4, whereas

the perceived cost of following the edge e�(v0
0) is Γ1(0) · b1 · c(e�(v0

0)) + d(v0
1 , τ) = 21/4.

Therefore, at state σ agent 1 would follow edge e �(v0
0). At state v1

1 the agent would again
proceed based on the perceived cost of following either edge e �(v1

1) or e�(v1
1). The perceived

cost of following edge e �(v1
1) is Γ1(1) · b1 · c(e �(v1

1)) + d(v2
2 , τ) = 14/4, whereas the perceived

cost of following the edge e�(v1
1) is Γ1(1) · b1 · c(e�(v1

1)) + d(v1
2 , τ) = 15/4. Therefore, at

1 In the appendix we provide the examples with the calculations performed explicitly.



A. Anagnostopoulos, A. Gionis, and N. Parotsidis 2:7

state v1
1 agent 1 would follow edge e �(v1

1). For the last edge, the agent has only the option
to follow the edge e�(v2

2) with cost 0 to reach τ . Hence, the cost of the progress path of
agent 1 when operating individually would be 13/4.

Similarly, if agent 2 operates independently of agent 1, the perceived cost of following
edge e �(v0

0) is Γ2(0) · b2 · c(e �(v0
0)) + d(v1

1 , τ) = 31/4, whereas the perceived cost of following
the edge e�(v0

0) is Γ2(0) · b2 · c(e�(v0
0)) + d(v0

1 , τ) = 29/4. Therefore, at state v0
0 agent 2

would follow edge e�(v0
0). At state v0

1 the agent has no other options that to follow the edges
e �(v0

1) and then the edge e �(v1
2) to reach τ . Hence, the cost of the progress path of agent 2

when operating individually would be 17/4.
Now we analyze the behavior of agents 1 and 2 when they collaborate on the same project

and they both have to perform the same task. At time step t = 0, we have that the social
bias is Γ{1,2}

1 (0) = γq1(0)−q2(0) = 40 = 1. Analogously, we have that Γ{1,2}
2 (0) = 1. Therefore,

the choice of each agent at time step t = 0 is the same as when they perform independently
as their personal bias remains unchanged. That is, agent 1 follows the edge e �(v0

0) making
progress 1 at time t = 1 and agent 2 follows the edge e�(v0

0) making no progress at time
t = 1. At time step t = 1, agent 1 evaluates the options of following edge e �(v1

1) or e�(v1
1).

Notice that now the social bias of agent 1 is Γ{1,2}
1 (1) = γq1(1)−q2(1) = 41/2 = 2. Hence, the

perceived cost of following edge e �(v1
1) is Γ{1,2}

1 (1) · b1 · c(e �(v1
1)) + d(v2

2 , τ) = 28/4, whereas
the perceived cost of following the edge e�(v1

1) is Γ{1,2}
1 (1) · b1 · c(e�(v1

1)) + d(v1
2 , τ) = 23/4.

Therefore, at state v1
1 agent 1 would follow edge e�(v1

1). For the last edge, agent 1 has only
one option, that is, to follow the edge e �(v1

2) to reach τ . Hence, the cost of the progress
path of agent 1 is 17/4, compared to the cost 13/4 of the progress path that it would follow
independently. The progress path of agent 2 does not change when operating with agent 1,
as after the first choice to follow edge e�(v0

0) there are not alternative paths that agent 2
could follow. In conclusion, the total cost of the two agents when operating together is 34/4
compared to the 30/4 when operating independently.

Example 2. We now proceed with an example where the collaboration of two agents leads
to a decrease to the total cost of their progress paths. Consider the case where two agents
1, 2 with personal biases b1 = 2, b2 = 6 operate on the task graph in Figure 1 (right). It can
be verified that the progress path of agent 1 is p(i) = 〈σ = v0

0 , v
1
1 , v

2
2 , v

2
3 , v

2
4 = τ〉 and the

progress path of agent 2 is p(2) = 〈σ = v0
0 , v

0
1 , v

0
2 , v

1
3 , v

2
4 = τ〉. Therefore, the total cost of the

p(1) and p(2) is 36/5.
Now we consider the case where the two agents interact with each other. Similarly to

the first example, at time step t = 0 the social bias is Γ{1,2}
1 (0) = Γ{1,2}

2 (0) = 1 and hence
the choices at time t = 0 of agents 1, 2 are the same as in the case where they operate
independently. That is, q1(1) = 1/2 and q2(1) = 0. At time step t = 1, the social bias of
agent 1 is Γ{1,2}

1 (1) = γq1(1)−q2(1) = 41/2 = 2. According to our model, the perceived cost
of following edge e �(v1

1) by agent 1 is Γ{1,2}
1 (1) · b1 · c(e �(v1

1)) + d(v2
2 , τ) = 24/5, whereas

the perceived cost of following the edge e�(v1
1) is Γ{1,2}

1 (1) · b1 · c(e�(v1
1)) + d(v1

2 , τ) = 26/5.
Therefore, at state v1

1 agent 1 follows edge e �(v1
1). We now review the decision of agent 2 at

time t = 1, whose social bias is Γ{1,2}
2 (1) = γq2(1)−q1(1) = 4−1/2 = 1/2. Hence, agent 2 at time

t = 1 perceives cost Γ{1,2}
2 (1) · b2 · c(e �(v0

1)) + d(v1
2 , τ) = 27/5 for following edge e �(v0

1), and
cost Γ{1,2}

2 (1) ·b1 ·c(e�(v0
1))+d(v0

2 , τ) = 28/5 for following edge e�(v0
1). Therefore, at state v0

1
agent 2 follows edge e �(v0

1) to reach state v1
2 . At time t = 2, we have q1(2) = 1, q2(2) = 1/2.

Agent 1 has no options other than to follow the path 〈v2
2 , v

2
3 , τ〉 to reach τ . The social bias of

agent 2 at time t = 2 is Γ{1,2}
2 (2) = γq2(2)−q1(2) = 1/2. Hence, the perceived cost of agent 2 at
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Figure 2 An example where the interaction of two agents increases the total cost of the
two progress paths exponentially, even when they operate on the same task graph. When
the agents operate independently, they follow the progress paths p(1) = 〈σ, v1

1 , v
2
2 , v

2
3 , . . . , τ〉,

p(2) = 〈σ, v0
1 , . . . , v

0
n−1, v

1
n, τ〉, with total cost Θ(n). When the agents collaborate, they follow

the progress paths p{1,2}(1) = 〈σ, v1
1 , v

1
2 , . . . , v

1
n, τ〉, p{1,2}(2) = 〈σ, v0

1 , . . . , v
0
n−1, v

1
n, τ〉, with total

cost Θ(2n).

time t = 2 in the case of following the edge e �(v1
2) is Γ{1,2}

2 (2) ·b2 ·c(e �(v1
2))+d(v2

3 , τ) = 18/5,
and in the case of following the edge e�(v1

2) is Γ{1,2}
2 (2) · b2 · c(e�(v1

2)) + d(v1
3 , τ) = 21/5.

Therefore, at state v1
2 agent 2 follows edge e �(v1

2). Finally, at time t = 3, both agents have
no other option than to follow edge (v2

3 , τ) to reach τ . In conclusion, agent 1 follows the
progress path p{1,2}(1) = 〈σ = v0

0 , v
1
1 , v

2
2 , v

2
3 , v

2
4 = τ〉 and agent 2 follows that progress path

p{1,2}(2) = 〈σ = v0
0 , v

0
1 , v

1
2 , v

2
3 , v

2
4 = τ〉, with total cost 31/5. That is, if agents 1, 2 collaborate

they decrease the total cost.

I Corollary 3. The total cost of the progress paths of a team can either decrease or increase
(or, of course, remain the same) compared to the total cost of the progress paths of the team
members when they operate in isolation (i.e., with no communication) on the same tasks.

3 Limitations and Further Assumptions

We now show that the vanilla version of our model can lead to unnatural phenomena in the
interaction of the agents in a team. We construct examples having two interacting agents.
Guided by these extreme behaviors we make a set of reasonable assumptions that eliminate
those unnatural phenomena. Similar assumptions have been made previously for the behavior
of individual agents in absence of a team. More specifically, Gravin et al. [7] showed that
the progress path of a time-inconsistent agent can have exponentially larger cost compared
to the optimal progress path on a task graph. Here, we extend their example to show that
there can be an exponential increase to the total cost of the progress paths of two agents,
compared to the case where they operate individually. Our example is depicted in Figure 2.
We note that unlike Gravin et al. [7] , where the cost of an agent can be exponentially larger
compared to the optimal progress path, which was never an option of the agent, in our case
the increase in the total cost is compared to the progress path in the case where the agents
operate individually.

The main reason behind the exponential increase in the total cost of two agents is that
the optimal cost of completing the task can increase at a future state in the progress path of
an agent. In many scenarios, this is an unnatural phenomenon as it implies that the required
effort to complete a task increases exponentially over time. Gravin et al. [7] introduce the
following two assumptions on the task graph that eliminate such pathological instances.

I Property 4 (Bounded-distance property). Let G be a task graph. For every vertex v ∈ V (G),
it is d(v, τ) ≤ d(σ, τ).
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Figure 3 An example where the motivator affects the procrastinator to procrastinate further.

The bounded-distance property allows only task graphs in which the optimal path to
complete the task from any state is never worse than the optimal progress path from the
initial state. This is a natural assumption in a plethora of real-world tasks. For instance,
this includes the tasks in which starting over is always a free and feasible option. Gravin
et al. [7] show that for task graph with the bounded-distance property the cost of an agent
increases by at most a factor of O(n), compared to the optimal progress path.

I Property 5 (Monotone-distance property). For every transition from a vertex u to a vertex v,
where u, v ∈ V (G), it holds that d(v, τ) ≤ d(u, τ).

The monotone-distance property of task graphs implies that the cost to complete the
task does not increase over time. Notice that the monotone-distance property implies
the bounded-distance property: any graph with the monotone-distance property also has
the bounded-distance property. Gravin et al. [7] show that if the task graph has the
monotone-distance property, and the present-time bias of the agent is drawn from a restricted
distribution, then the cost of the progress path compared to the optimal progress path is
bounded by a factor much smaller than n.

In Section 4 we study the behavior of agents in task graphs that obey Properties 4 and 5.
More specifically, we show that the total cost of progress paths by all agents cannot increase
more than a factor of O(n), compared to the cost of the progress paths in the case where the
agents operate individually. We further show that this bound is tight.

In our model, we consider the interaction of two or more agents, which introduces further
pathological scenarios in the behavior of the agents. For instance, consider the example in
Figure 3, where both agents in a team T = {1, 2} operate on the same task graph. Agent
1 has a higher bias than agent 2, and follows the optimal progress path (that is, the path
p(1) = 〈σ = v0

0 , v
0
1 , v

1
2 , v

2
3 = τ〉 with cost 7 − 9.5ε), while the agent with lower bias follows

a progress path with larger cost (that is, the path p(2) = 〈σ = v0
0 , v

1
1 , v

2
2 , v

3
3 = τ〉 with cost

7− 8ε). This phenomenon is unnatural as in this example the motivated individual (i.e., the
agent with smaller personal bias) follows a progress path with larger cost compared to the
procrastinating individual (i.e., the agent with larger personal bias). Moreover, when the two
agents in Figure 3 interact, the motivated individual causes the procrastinating individual to
further procrastinate (follow a progress path with larger cost). To eliminate such behaviors,
we introduce an additional assumption on the task graph. Our assumption is that from any
state the action leading to progress costs more than the action of postponing the progress.

I Property 6. Given a task graph G = (V,E) it holds that c(e �(v`
t)) ≥ c(e�(v`

t)), for all
v`

t ∈ V .
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2:10 Collaborative Procrastination

4 Team Behavior on Task Graphs

We now study the behavior of time-inconsistent agents in teams under our model. We begin
by bounding the change in the total cost of all progress paths compared to the cost in the
case where the agents operate individually. The objective is to bound the maximum loss on
the total effort made by the team when the agents communicate their progress, compared to
the case where the agents operate individually.2

I Lemma 7. Let T = {i1, . . . , ik} be a team of agents, where wij = 1, for all i, j ∈ T ,
operating on task graphs G1, . . . , Gk, where all task graphs should be completed in tmax = n

time steps and all task graphs have Properties 4 and 5. The scenario in which the agents
collaborate can lead to total cost of their progress paths that is larger than the case where
they operate individually by a factor Ω(n).

Gravin et al. [7] showed that the cost of an agent on a graph with Properties 4 and
5 cannot exceed n times the cost of the shortest path. Their proof suffices to prove the
following lemma.

I Lemma 8. Let T = {i1, . . . , ik} be a team of agents, where wij = 1, for all i, j ∈ T ,
operating on task graphs G1, . . . , Gk, where all task graphs have tmax = n time steps and all
task graphs have Properties 4 and 5. Collaboration can increase by at most a factor of n the
total cost spent by the agents to accomplish the assignment compared to the total cost of the
agents operating individually.

We now provide a lower bound on the speedup that the collaboration in a team can
achieve.

I Lemma 9. Let T = {i1, . . . , ik} be a team of agents, where wij = 1, for all i, j ∈ T ,
operating on task graphs G1, . . . , Gk, where all task graphs should be completed in tmax = n

time steps and all task graphs obey Properties 4, 5 and 6. The total cost may decrease by a
factor of Ω(n) due to collaboration.

Agents operating on identical task graphs. We now compare the progress paths of the
agents and the way they relate to each other, in the case where all agents perform on the
same task graph. We begin with the following lemma that states that the order of the
progress paths of the agents is the same as the reverse order of their personal biases.

I Lemma 10. Consider two agent i, j ∈ T operating on the same task graph G. If bi ≥ bj,
then p(i) �G p(j).

Next we relate all progress paths when the agents collaborate with respect to the progress
paths of the agents with the maximum and minimum personal biases. That is, throughout
the process of collaboration in a team, no agent does more (resp., less) progress than the
most (resp., least) motivated agent does independently, at any time. The lemma suggests
that all progress paths in the case where the agents collaborate are between the progress
paths of the most motivated and the least motivated agents when operating individually. We
call this the envelope property.

I Lemma 11 (Envelope property). Consider a team with agents T = {i1, . . . , ik}, with
bi1 ≥ · · · ≥ bik

, operating over the same task graph G. For each i ∈ T we have that
pT (i) �G p(i1) and pT (i) �G p(ik).

2 The proof of this and further results appear in the appendix.
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We now have developed a better understanding on the interaction between agents of a
team operating on the same task graph. Next, we use these results to further bound the
ratio of the total cost of progress paths when the team collaborates compared to the cost of
operating individually. We observe that this setting still allows examples in which the cost
can increase by a factor of Ω(n) (as in Figure 4, used to prove Lemma 7). To cope with such
extreme examples, we introduce the following restriction on the task graph on which the
team operates.

I Property 12. For every two vertices vj
i , v

l
i ∈ V (G), where j ≤ l, it holds that c(vj

i , v
j
i+1) ≥

c(vl
i, v

l
i+1).

Essentially, Property 12 implies that procrastinating at a specific time step cannot cost
more if the agent made more progress compared to the case where the agent made less
progress at the same time step. This is a reasonable restriction to the structure of the task
graph. We acknowledge, however, that there exist scenarios where Property 12 is not natural.
For instance, such a scenario appears in the case of lab experiments where the procrastination
of an agent after starting the experiment might lead to a waste of the whole experiment (i.e.,
the resources), while postponing the starting time of the experiment simply delays the whole
process.

I Lemma 13. Let T be a team of k agents operating on the same task graph, which has
Properties 4, 5, 6, and 12. The total cost of all progress paths when the agents collaborate
is at most k times higher than the sum of cost of progress paths when the agent operate
independently.

5 Assignment Problems

Until now we studied the scenario where the assignment of task graphs to agents is given in
advance. Another natural scenario is when a given task can be assigned to more than one
agents with similar skills. Can we then determine the best assignment so as to minimize the
cost due to procrastination? A simple special case is when a project consists of n/2 identical
tasks and there exist n agents which should be grouped into n/2 two-member teams, such
that the total cost payed by all agents is minimized.

I Problem 14. Assume that we are given n/2 copies of the same task graph G, n agents
1, . . . , n with personal biases b1, . . . , bn and social-influence weights wij for all 1 ≤ i, j ≤
n, i 6= j. The goal is to partition the n agents into n/2 two-member teams, such that when
the two agents of each team work on the common task specified by G, the total cost over all
agents is minimized.

Problem 14 has a simple solution. For each of the
(

n
2
)
pairs of agents, we can compute

the cost of the two agents collaborating together on the given task. We obtain a complete
weighted graph where each node represents an agent and each edge weights correspond to
the total cost of the two agents paired as a team. The problem then reduces to finding a
minimum-weight matching.

Assume that we have a single team of n agents, one project consisting of n tasks, each
one having its own task graph, and we need to assign one agent to each of the tasks, so as to
minimize the total cost of finishing the project. Without much loss of generality we assume
that each team member can perform all tasks. The optimal assignment problem takes the
following form.
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I Problem 15 (OptimalGroupAssignment). Consider n task graphs G1, . . . , Gn, n agents
1, . . . , n with personal biases b1, . . . , bn and social-influence weights wij for all 1 ≤ i, j ≤
n, i 6= j. The task is to assign one agent to each task, such that the total cost of completing
all the tasks in the collaborative-procrastination model is minimized.

We next prove that this problem is hard.

I Theorem 16. The OptimalGroupAssignment problem is NP-hard.

6 Related Work

Some of the first studies in economics attempting to formulate time-inconsistent planning
behavior was the work of Strotz [14] and Pollak [13]. The theory of time-inconsistency
developed to what is called quasi-hyperbolic discounting Laibson [12], Frederick et al. [5].
The theory provides a natural way to model the decision of an agent to procrastinate, using
the notion of present-time bias – the tendency to view costs and benefits that are incurred at
the present moment to be more salient than those incurred in the future. Kleinberg and Oren
[8] propose a graph-theoretic model, in which dependencies among actions are represented
by a directed acyclic graph, and a time-inconsistent agent follows a path through this graph
based on the agent’s biased evaluation of the actions at each time step. Kleinberg and
Oren [8] characterize the worst-case procrastination ratio, and they consider the problem of
reducing the procrastination cost by deleting nodes and/or edges from an underlying graph.

Gravin et al. [7] consider the case where the present-time bias of the agent is drawn at
each time step at random, from a distribution F , They characterize the worst possible cost
of a path chosen by an agent compared to the cost of the optimal path, and under reasonable
assumptions they provide bounds for this ratio. Kleinberg et al. [9] model the behavior of
sophisticated agents – agents who are aware of their tendency to procrastinate and they plan
in advance. Their study includes tight upper bounds on the procrastination relatively to the
optimal path in a task graph. Kleinberg et al. [10] consider the interaction of multiple biases
on an agent’s behavior: they study the interaction of present-time bias factor and sunk-cost
bias factor – the tendency to incorporate costs incurred in the past into ones plans for the
future, even when these past costs are no longer relevant to optimal planning. Moreover,
based again on the model of Kleinberg and Oren [8], several studies consider optimization
problems where the objective is to minimize the cost of the path followed by an agent [2, 4, 3].

Gans and Landry [6] consider the interaction of teams with two present-time biased
agents who collaborate to accomplish a common goal. They assume that both agents can
accomplish all subtasks, and that the agents can either be sophisticated or be naïve – in the
sense that they either know their present-time bias factor or not. The objective of each agent
is to complete the task with the minimum possible effort from their side. The model of Gans
and Landry [6] is different from ours as progress can be done by any agent, and at each time
step there is no distinction with respect to which agent achieved the progress in the previous
step.

7 Conclusion and Open Problems

In this paper we extended the model of Kleinberg and Oren [8] on time-inconsistent planning
into settings where individuals are members of a team and the decision on whether to
perform a task or postpone it depends on the progress of the other team members. Our
model incorporates phenomena that are encountered in real life: participating in a team
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can motivate (or demotivate) individuals compared to when they work individually. In
the proposed setting we showed how different assumptions allow to deduce the extent that
participation to a team may increase or decrease performance. We also showed that our
model can be used to define matching and team-formation problems, when the goal is to
form teams that keep the members motivated.

Whereas our model captures some elements of how agents in teams may collaborate, there
are many other modeling choices. Often, the load of one member who has not progressed
may be transferred to other team members; this may lead to free-riding phenomena, and
a game-theoretic approach may be suitable to model such settings. Note that Lemma 11
implies that the effort of a member who participates on a team cannot exceed the one of
the most efficient member; in particular, it implies that the most efficient member cannot
improve by participating in a team. Often this is not the case: for instance, one can attempt
to model competition between team members, which may lead to more efficient performance.
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A Appendix

Examples of Section 2 with Calculations

In this section we provide the calculations used for the examples in Section 2.

Example 1. We demonstrate our model with two examples in the case of teams with
two members. In the first example, in Figure 1 (left), the total cost of the progress paths
followed by the two agents increases when the two agents interact compared to the case
where the two agents do not have knowledge of each other’s progress. The two agents
operate on the same task graph. Agent 1 has personal bias b1 = 2 and agent 2 has
b2 = 4. If agent 1 would operate independently of agent 2, it would start from state
σ = v0

0 , and would evaluate the options of following either edge e �(v0
0) (i.e., to make

progress) or edge e�(v0
0) (i.e., procrastinate). The perceived cost of following edge e �(v0

0)
is Γ1(0) · b1 · c(e �(v0

0)) + d(v1
1 , τ) = 1 · 2 · 3

2 + 7/4 + 0 = 19
4 , whereas the perceived cost of

following the edge e�(v0
0) is Γ1(0) · b1 · c(e�(v0

0)) + d(v0
1 , τ) = 1 · 2 · 1 + 3

2 + 7
4 = 21

4 . Therefore,
at state σ agent 1 would follow edge e �(v0

0). At state v1
1 the agent would again proceed

based on the perceived cost of following either edge e �(v1
1) or e�(v1

1). The perceived cost
of following edge e �(v1

1) is Γ1(1) · b1 · c(e �(v1
1)) + d(v2

2 , τ) = 1 · 2 · 7
4 + 0 = 14

4 , whereas the
perceived cost of following the edge e�(v1

1) is Γ1(1) ·b1 ·c(e�(v1
1))+d(v1

2 , τ) = 1 ·2 ·1+ 7
4 = 15

4 .
Therefore, at state v1

1 agent 1 would follow edge e �(v1
1). For the last edge, the agent has only

the option to follow the edge e�(v2
2) with cost 0 to reach τ . Hence, the cost of the progress

path of agent 1 when operating individually would be 3
2 + 7

4 + 0 = 13
4 .

Similarly, if agent 2 operates independently of agent 1, the perceived cost of following
edge e �(v0

0) is Γ2(0) · b2 · c(e �(v0
0)) + d(v1

1 , τ) = 1 · 4 · 3
2 + 7

4 + 0 = 31
4 , whereas the perceived

cost of following the edge e�(v0
0) is Γ2(0) · b2 · c(e�(v0

0)) + d(v0
1 , τ) = 1 · 4 · 1 + 3

2 + 7
4 = 29

4 .
Therefore, at state v0

0 agent 2 would follow edge e�(v0
0). At state v0

1 the agent has no other
options that to follow the edges e �(v0

1) and then the edge e �(v1
2) to reach τ . Hence, the

cost of the progress path of agent 2 when operating individually would be 1 + 3
2 + 7

4 = 17
4 .

Now we analyze the behavior of agents 1 and 2 when they collaborate on the same project
and they both have to perform the same task. At time step t = 0, we have that the social bias
is Γ{1,2}

1 (0) = γq1(0)−q2(0) = 40 = 1. Analogously, we have that Γ{1,2}
2 (0) = 1. Therefore, the

choice of each agent at time step t = 0 is the same as when they perform independently as their
personal bias remains unchanged. That is, agent 1 follows the edge e �(v0

0) making progress 1
at time t = 1 and agent 2 follows the edge e�(v0

0) making no progress at time t = 1. At time
step t = 1, agent 1 evaluates the options of following edge e �(v1

1) or e�(v1
1). Notice that now

the social bias of agent 1 is Γ{1,2}
1 (1) = γq1(1)−q2(1) = 41/2 = 2. Hence, the perceived cost

of following edge e �(v1
1) is Γ{1,2}

1 (1) · b1 · c(e �(v1
1)) + d(v2

2 , τ) = 2 · 2 · 7
4 + 0 = 28

4 , whereas the
perceived cost of following the edge e�(v1

1) is Γ{1,2}
1 (1)·b1·c(e�(v1

1))+d(v1
2 , τ) = 2·2·1+ 7

4 = 23
4 .

Therefore, at state v1
1 agent 1 would follow edge e�(v1

1). For the last edge, agent 1 has only
one option, that is, to follow the edge e �(v1

2) to reach τ . Hence, the cost of the progress
path of agent 1 is 3

2 + 1 + 7
4 = 17

4 , compared to the cost 13/4 of the progress path that it
would follow independently. The progress path of agent 2 does not change when operating
with agent 1, as after the first choice to follow edge e�(v0

0) there are not alternative paths
that agent 2 could follow. In conclusion, the total cost of the two agents when operating
together is 34/4 compared to the 30/4 when operating independently.
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Figure 4 An example where the collaboration leads to an increase, by an O(n) factor, on the
total cost.

Example 2. We now proceed with an example where the collaboration of two agents leads
to a decrease to the total cost of their progress paths. Consider the case where two agents
1, 2 with personal biases b1 = 2, b2 = 6 operate on the task graph in Figure 1 (right). It can
be verified that the progress path of agent 1 is p(i) = 〈σ = v0

0 , v
1
1 , v

2
2 , v

2
3 , v

2
4 = τ〉 and the

progress path of agent 2 is p(2) = 〈σ = v0
0 , v

0
1 , v

0
2 , v

1
3 , v

2
4 = τ〉. Therefore, the total cost of the

p(1) and p(2) is 36
5 .

Now we consider the case where the two agents interact with each other. Similarly to the
first example, at time step t = 0 the social bias is Γ{1,2}

1 (0) = Γ{1,2}
2 (0) = 1 and hence the

choices at time t = 0 of agents 1, 2 are the same as in the case where they operate independently.
That is, q1(1) = 1/2 and q2(1) = 0. At time step t = 1, the social bias of agent 1 is Γ{1,2}

1 (1) =
γq1(1)−q2(1) = 41/2 = 2. According to our model, the perceived cost of following edge e �(v1

1)
by agent 1 is Γ{1,2}

1 (1) · b1 · c(e �(v1
1)) + d(v2

2 , τ) = 2 · 2 · 6
5 + 0 + 0 = 24

5 , whereas the perceived
cost of following the edge e�(v1

1) is Γ{1,2}
1 (1) · b1 · c(e�(v1

1)) + d(v1
2 , τ) = 2 · 2 · 1 + 6

5 + 0 = 26
5 .

Therefore, at state v1
1 agent 1 follows edge e �(v1

1). We now review the decision of agent 2
at time t = 1, whose social bias is Γ{1,2}

2 (1) = γq2(1)−q1(1) = 4−1/2 = 1/2. Hence, agent 2
at time t = 1 perceives cost Γ{1,2}

2 (1) · b2 · c(e �(v0
1)) + d(v1

2 , τ) = 1
2 · 6 ·

7
5 + 6

5 + 0 = 27
5 for

following edge e �(v0
1), and cost Γ{1,2}

2 (1) · b1 · c(e�(v0
1)) + d(v0

2 , τ) = 1
2 · 6 · 1 + 7

5 + 6
5 = 28

5
for following edge e�(v0

1). Therefore, at state v0
1 agent 2 follows edge e �(v0

1) to reach
state v1

2 . At time t = 2, we have q1(2) = 1, q2(2) = 1/2. Agent 1 has no options other
than to follow the path 〈v2

2 , v
2
3 , τ〉 to reach τ . The social bias of agent 2 at time t = 2 is

Γ{1,2}
2 (2) = γq2(2)−q1(2) = 4−1/2 = 1/2. Hence, the perceived cost of agent 2 at time t = 2 in

the case of following the edge e �(v1
2) is Γ{1,2}

2 (2)·b2 ·c(e �(v1
2))+d(v2

3 , τ) = 1
2 ·6·

6
5 +0 = 18

5 , and
in the case of following the edge e�(v1

2) is Γ{1,2}
2 (2) ·b2 ·c(e�(v1

2))+d(v1
3 , τ) = 1

2 ·6 ·1+ 6
5 = 21

5 .
Therefore, at state v1

2 agent 2 follows edge e �(v1
2). Finally, at time t = 3, both agents have

no other option than to follow edge (v2
3 , τ) to reach τ . In conclusion, agent 1 follows the

progress path p{1,2}(1) = 〈σ = v0
0 , v

1
1 , v

2
2 , v

2
3 , v

2
4 = τ〉 and agent 2 follows that progress path

p{1,2}(2) = 〈σ = v0
0 , v

0
1 , v

1
2 , v

2
3 , v

2
4 = τ〉, with total cost 31/5. That is, if agents 1, 2 collaborate

they decrease the total cost.

Proofs
Detailed proof of Lemma 7. See Figure 4, where all agents operate on the same task graph.
For agent i1 at state v0

0 the perceived cost is

BT
i1

(0) · c(e �(v0
0)) + d(v1

1 , τ) = bi1 · ΓT
i1

(0) · 6
5 + 6n

5

= 7 · 2k · 40 · 6
5 + 6n

5 = 42 · 2k + 6n
5
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for following edge e �(v0
0) and

BT
i1

(0) · c(e�(v0
0)) + d(v1

0 , τ) = bi1 · ΓT
i1

(0) + 6
5 + 6n

5

= 7 · 2k · 40 + 6
5 + 6n

5 = 35 · 2k + 6 + 6n
5

for following the edge e�(v0
0). Hence, agent i1 follows the edge e�(v0

0).
For agent ix, x > 1, at state v0

0 the perceived cost is

BT
ix

(0) · c(e �(v0
0)) + d(v1

1 , τ) = bix
· ΓT

ix
(0) · 6

5 + 6n
5

= 5 · 40 · 6
5 + 6n

5 = 30 + 6n
5

for following edge e �(v0
0) and

BT
ix

(0) · c(e�(v0
0)) + d(v1

0 , τ) = bix · ΓT
ix

(0) + 6
5 + 6n

5
= 5 · 40 + 6

5 + 6n
5 = 31 + 6n

5

for following the edge e�(v0
0). Hence, agent ix chooses to follow edge e �(v0

0).
At t = 1 agent i1 is at state v0

1 and all other agents are at state v1
1 .

For agent i1 at state v0
1 the perceived cost is

BT
i1

(1) · c(e �(v0
1)) + d(v1

2 , τ) = bi1 · ΓT
i1

(1) · 6
5 + 6n

5
= 7 · 2k · 4−(k−1)/2 · 6

5 + 6n
5 = 84 + 6n

5

for following edge e �(v0
1) and

BT
i1

(1) · c(e�(v0
1)) + d(v0

2 , τ) = bi1 · ΓT
i1

(1) + 6
5 + 6n

5
= 7 · 2k · 4−(k−1)/2 + 6

5 + 6n
5 = 76 + 6n

5

for following edge e �(v0
1). Hence, agent i1 follows edge e�(v0

1).
For agent ix, x > 1, at state v1

1 the perceived cost is

BT
ix

(1) · c(e �(v1
1)) + d(v2

2 , τ) = bix
· ΓT

ix
(1) · 6n

5
= 5 · 41/2 · 6n

5 = 60n
5

for following edge e �(v1
1) and

BT
ix

(1) · c(e�(v1
1)) + d(v1

2 , τ) = bix · ΓT
ix

(1) · n + 6n
5

= 5 · 41/2 · n+ 6n
5 = 56n

5

for following edge e�(v1
1). Hence, agent ix chooses to follow edge e�(v1

1).
Notice that after time t = 2, all agents continue procrastinating as their perceived cost

does not change. Eventually, the progress path pT (i1) of agent i1 costs 6
5 + n · (n− 2) + 6n

5
and the progress path pT (ix) for an agent ix, x > 1, costs n− 2 + 6

5 + 6n
5 . Hence, the total

cost is Ω(k · n2).
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Figure 5 An example where collaboration leads to a decrease, by an Ω(n) factor, on the total
cost.

Notice that in the case where ΓT
iz

(t) = 1 for all z ∈ T , agent i1 would still follow the same
progress path, agent ix, x > 1, would follow the edge e �(v1

1) at state v1
1 as its perceived cost

would be:

BT
ix

(1) · c(e �(v1
1)) + d(v2

2 , τ) = bix

6n
5 = 5 · 6n

5 = 6n

for following edge e �(v1
1) and

BT
ix

(1) · c(e�(v1
1)) + d(v1

2 , τ) = bix
n + 6n

5 = 5 · n+ 6n
5 = 31n

5

for following edge e�(v1
1). Hence, agent ix would choose to follow edge e �(v1

1). In this
scenario, agent i1 would pay cost n− 2 + 6

5 + 6n
5 and ix, x > 1, would pay cost 6

5 + 6n
5 . Hence,

the total cost would be Ω(k · n). Collectively, the total cost of progress paths can increase by
a factor Ω(n). J

Proof of Lemma 8. Follows from Claim 5.1 from Gravin et al. [7] J

Proof of Lemma 9. See Figure 5. J

Proof of Lemma 10. In the case that bi = bj the lemma is clearly true, assuming that i and
j break ties consistently: the two agents will follow the exact same path. For the rest of the
proof, and w.l.o.g., we assume that bi > bj . Note that for each t we have that B{i}i (t) = bi

and B{j}j (t) = bj . For the sake of leading to a contradiction assume that the statement of
the lemma is false. Let v`

t be the first state that agent j went below agent i, formally, that
(v`

t , v
`+1
t+1) ∈ p(i) and (v`

t , v
`
t+1) ∈ p(j). Let pi = 〈v`

t = v0, v
i
1, . . . , v

i
k = τ〉 be the subpath of

p(i) from v`
t to τ and pj = 〈v`

t = v0, v
j
1, . . . , v

j
k = τ〉 be the subpath of p(j) from v`

t to τ . The
perceived cost of the path pi for i is bi · c(v0, v

i
1) + d(vi

1, τ). By the definition of p(i) we have
that

bi · c(v0, v
i
1) + d(vi

1, τ) ≤ bi · c(v0, v
j
1) + d(vj

1, τ)

⇒ bi · (c(v0, v
i
1)− c(v0, v

j
1)) + d(vi

1, τ)− d(vj
1, τ) ≤ 0. (1)

Similarly, for j we have that

bj · (c(v0, v
j
1)− c(v0, v

i
1)) + d(vj

1, τ)− d(vi
1, τ) ≤ 0,

⇒ bj · (c(v0, v
j
1)− c(v0, v

i
1))− d(vi

1, τ) + d(vj
1, τ) ≤ 0, (2)
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2:18 Collaborative Procrastination

By the fact that bi > bj , and our assumption that when the perceived cost of making
progress and procrastinating is equal then the agent chooses to make progress, it follows that
at most one of the two inequalities can hold with equality. Summing the two inequalities, we
obtain that

bi · (c(v0, v
i
1)− c(v0, v

j
1)) + bj · (c(v0, v

j
1)− c(v0, v

i
1)) < 0,

which, recalling that v0 = v`
t , that vi

1 = v`+1
t+1 , and that vj

1 = v`
t+1, can be rewritten as

bi · (c(e �(v`
t ))− c(e�(v`

t ))) + bj · (c(e�(v`
t ))− c(e �(v`

t ))) < 0,

⇒ (bi − bj) · (c(e �(v`
t ))− c(e�(v`

t ))) < 0.

But this is a contradiction because we assumed that bi > bj and by Property 6 it follows
that c(e �(v`

t )) ≥ c(e�(v`
t )). J

Proof of Lemma 11. We prove it by contradiction. Let v`
t be the first node for which there

exists an agent i for whom (v`
t , v

`
t+1) ∈ pT (i) and (v`

t , v
`+1
t+1) ∈ p(i1). Given that this is

the first time that this happens, for each j ∈ T we have that qj(t) ≥ qi(t). Note that by
Property 2 we have that ΓT

i (t) ≤ 1, which implies BT
i (t) ≤ max{bi, 1} ≤ bi1 .

Arguing as in Lemma 10 we obtain that (bi1 −BT
i (t))(c(e �(v`

t ))− c(e�(v`
t ))) < 0, leading

to a contradiction, which means that pT (i) �G p(i1).
Repeating the argument, and observing that by Property 2 we have that ΓT

i (t) ≥ 1,
giving BT

i (t) ≥ max{bi ΓT
i (t), 1} ≥ bik

, we obtain that pT (i) � p(ik). J

Proof of Lemma 13. First, we show that whenever, at some state v`
t agent i follows the edge

e �(v`
t ), then i follows the shortest path from v`

t to σ. That is, d(v`+1
t+1 , τ) = d(v`

t , τ)−c(e �(v`
t )).

To prove our claim, we notice that

BT
i (t) · c(e �(v`

t )) + d(v`+1
t+1 , τ) < BT

i (t) · c(e�(v`
t )) + d(v`

t+1, τ).

⇒ BT
i (t) · (c(e �(v`

t ))− c(e�(v`
t ))) < d(v`

t+1, τ)− d(v`+1
t+1 , τ).

Since BT
i (t) ≥ 1 and c(e �(v`

t )) > c(e�(v`
t )) by Property 6, we have

c(e �(v`
t ))− c(e�(v`

t )) < d(v`
t+1, τ)− d(v`+1

t+1 , τ),

which proves that d(v`+1
t+1 , τ) = d(v`

t , τ)− c(e �(v`
t)). Hence, each time an agent follows an

edge e �(v`
t ) from any state v`

t the remaining shortest path to τ decreases by c(e �(v`
t )) (by

Property 5). Notice that this does not imply anything about the behavior of agent i at any
other time t′ 6= t. Our goal is to rely on Property 5 to guarantee that remaining shortest
path cannot increase (independently of the followed path) and to bound the additional cost
that each agent pays when not decreasing its distance to the target state. By our first claim,
the progress path of agent i only increases (compared to the shortest path) when the agent
procrastinates, that is, the agent follows an edge e�(v`

t ) from some state v`
t .

Assume that imin is the agent in T with the smallest personal bias bimin
. Then, by

Lemma 11, pT (j) � p(imin), for all j ∈ T, j 6= imin. Let i ∈ T be any agent i 6= imin. For
any state v`

t such that i follows the edge e�(v`
t), agent imin at time t at state v`′

t follows
either the edge e �(v`′

t ) or the edge e�(v`′

t ). By Properties 6 and 12 and the fact that `′ ≤ `
(since pT (i) � p(imin)) we have that c(e �(v`′

t )) ≤ c(e�(v`′

t )) ≤ c(e�(v`
t )). That is, each time

agent i follows an edge e�(v`
t) from some state v`

t , agent imin follows an edge with larger
cost when operating independently. As the total increase in the progress path of agent i,
compared to the shortest progress path, is bounded by the number of procrastination edges
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Figure 6 Graphs of type 1 (left) and type 2 (right) that are used in the proof of Theorem 16.

followed by agent i, it follows that the total increase is bounded by the cost of the progress
path p(imin). Hence, each agent adds at most cost equal to the cost of the progress path
p(imin). That is, the total cost increases by a factor of at most k. J

Proof of Theorem 16. We obtain a reduction from the SetCover problem. In the Set-
Cover problem, we are given a universe of items U and a family of sets C1, C2, . . . , C` and we
are asked to find k sets such that each element from the universe is contained in at least one
selected set. Our overall strategy is to construct an instance of the OptimalGroupAssign-
ment problem, in polynomial time, from an instance of the SetCover problem. This means,
if we can solve the OptimalGroupAssignment problem in polynomial time, then our
reduction is a polynomial time algorithm for the SetCover problem, which is known to be
NP-hard.

Assume that we are given an instance of the SetCover problem with universe U and
sets C1, C2, . . . , C`. We construct an instance of the OptimalGroupAssignment problem
as follows. We include k graphs of type 2 and ` + |U | − k graphs of type 1, as they are
shown in Figure 6. For each element u ∈ U , we include an element-agent au. For each
set Ci ∈ {C1, C2, . . . , C`}, we include a set-agent ai. All agents have personal bias b = 2,
and γ = 2. Finally, we set wui = 1 if u ∈ Ci, where Ci ∈ {C1, C2, . . . , C`} and u ∈ U , and
wui = 0 otherwise. Notice that any agent operating on a type-2 graph always pays cost 2
as it always follows the path 〈s, v1

1 , v
2
2 , v

2
3 , t〉. Therefore, the total cost only depends on the

agents that operate on type 1 graphs. An agent operating individually on a type-1 graph
follows the path 〈s, v0

1 , v
0
2 , v

1
3 , t〉, and therefore, pays 14. If for an agent i, that is operating

on a type-1 graph, it holds that wji = 1 and agent j is operating on a type-2 graph, agent i
follows the path 〈s, v0

1 , v
1
2 , v

1
3 , t〉 with cost 13. In the case where wji = 0, for all agents j 6= i,

or wji = 1 but agent j follows a path containing v0
1 (i.e., operates on a type 1 graph), it

holds that i follows the path 〈s, v0
1 , v

0
2 , v

1
3 , t〉 with cost 14.

We show that for any instance of the SetCover problem there exist k sets covering all
elements of the universe if and only if there is a solution to the OptimalGroupAssignment
problem such that the total cost is k · 2 + |U | · 13 + (` − k)14. We begin with the first
direction, that is, we show that if there exists a solution to the SetCover problem, then
there exists an assignment in the OptimalGroupAssignment problem for which the total
cost is k · 2 + |U | · 13 + (`− k)14. For each set Ci in the solution of the SetCover problem,
we assign its corresponding set-agent ai to a type-2 graph (they pay collectively k · 2 cost).
For the rest set-agents corresponding to sets Cj of the SetCover instance, it holds wij = 0,
for all i 6= j, and therefore those (`− k) agents collectively pay (`− k) · 14 cost (i.e., they all
follow the path 〈s, v0

1 , v
0
2 , v

1
3 , t〉 as we explained above). Finally, each element-agent u pays

cost |U | · 13 in total, as there exists a weight wiu = 1, for some i 6= u such that ai operates
on a type 2 graph (as there is a set Ci covering u). This proves the first direction.

Now we prove that if there exists an assignment in the OptimalGroupAssignment
problem for which the total cost is k · 2 + |U | · 13 + (`− k)14 then there is a solution to the
SetCover problem. Notice that, independently of which agents operate on graphs of type
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2, they always pay cost 2. Every agent au, for u ∈ U , pays cost 2 if it operates on a type-2
graph, cost 13 if it operates on a type-1 graph and there exists wiu = 1 where ai operates on
a type-2 graph, and 14 otherwise. Note that for each wiu = 1, there exists a set Ci covering
the element u in the SetCover instance Therefore, the only agents that can pay cost 13 are
the element-agents. Since in any solution there are exactly k agents paying cost 2 (i.e., those
operating on type-2 graphs) and at least (`− k) agents paying cost 14 (i.e., the set-agents
that operate on type-2 graphs), the minimum possible total cost is k · 2 + |U | · 13 + (`− k)14,
which is achieved by assigning k set-agents to type-2 graphs, such that for each element-agent
u it holds wiu = 1 for at least one of the set-agents that were assigned to type-2 graphs.
Such an assignment indicates that there exists a set of k set-agents a1, a2, . . . , ak such that
for each u ∈ C, there exists a 1 ≤ i ≤ k such that wiu = 1. These k set-agents correspond to
a solution of the SetCover instance. This concludes the proof. J
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