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Abstract
Parameterized complexity was classically used to efficiently solve NP-hard problems for small values
of a fixed parameter. Then it has also been used as a tool to speed up algorithms for tractable
problems. Following this line of research, we design algorithms parameterized by neighborhood
diversity (nd) for several graph theoretic problems in P (e.g., Maximum Matching, Triangle counting
and listing, Girth and Global minimum vertex cut). Such problems are known to admit algorithms
parameterized by modular-width (mw) and consequently – being the nd a “special case” of mw – by
nd. However, the proposed novel algorithms allow to improve the computational complexity from a
time O(f(mw) · n + m) – where n and m denote, respectively, the number of vertices and edges in
the input graph – which is multiplicative in n to a time O(g(nd) + n + m) which is additive only in
the size of the input.
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1 Introduction

A large online marketplace Grove is about to design a novel marketing strategy exploiting the
data available thanks to their largely adopted premium program Grove-FUN. The CEO of
Grove realized that customers’ activities, reactions, and interactions on Grove-FUN can be
used to perform predictive analysis on marketing, which increases both customer satisfaction
and company returns. Indeed, the predictive analysis can be used to devise:

Personalized recommendation system. For example, when a user adds a comic to his/her
online shopping cart, similar comics purchased by other customers or other products
purchased by customers having some similarity with the user can be recommended.
Anticipatory Shipping Model for predicting the products customers are going to purchase,
when and where they might need the products. According to the analysis, the items are
pushed to a local distribution center or warehouse so they will be ready for shipping
once a customer orders them. This approach increases product sales and profit margins
because it reduces delivery time and overall expenses.
Price optimization. Prices are set according to customer activities, item preferences, order
history, and other factors.
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Viral marketing strategies. Sales of a new product can be improved by taking advantage
of the human tendency to conform [5] by means of a viral marketing campaign based on
targeted discounts [10].

The Grove Marketing Analysts realized that the data available on the premium program
Grove-FUN can be easily modeled as a networked structure in terms of nodes (customers)
and edges, or links (friendship or interactions) that connect them. This approach enables
them to study the data through the use of networks and graph theory [16]. Several classical
graph theory algorithms gained popularity in social network analysis. For instance, Triangle
counting is used to detect communities and measure the cohesiveness of those communities,
Maximum matching can be used to devise matching market strategies, the betweenness
centrality is used to individuate influential vertices and their importance. Unfortunately, the
Grove-FUN network is very large, with millions of customers and billions of edges. It is often
prohibitively expensive to perform network analysis using standard algorithms on very large
networks.

Fortunately, the clever Grove analysts have observed that the structure of Grove-FUN
relationships follows the rules of social relationships. For instance, it is possible to observe
how the connections are balanced between staying within a well identified community (where
everybody knows each other) and cutting across communities. Such a specific structure of
the network suggests a different way of thinking about standard algorithms in terms of their
dense communities, and the ways in which they interact with each other.

On the basis of this observation, the following mathematical model was put forward. The
network of customers is represented by a graph G = (V,E), where V is the set of customers,
and there is an edge between two customers if they reviewed the same product. Then the
analysts were able to compress the network (keeping most of the information described by the
original network) – exploiting the neighborhood diversity approach, introduced by Lampis
in [32] – grouping similar nodes. A new graph H, called the type graph of G, characterized
by a smaller number of nodes (each representing a group of customers) is generated in linear
time and, starting from it, analysts have started having FUN redesigning and speeding up
some classical algorithms such as maximum matching, triangle counting, girth, and global
minimum vertex cut to use the graph H solving problems defined on G.

2 The hardness in P context

Algorithmic research aims to determine the best possible running time algorithms for
computational problems. A first goal toward the classification of the problems according
to their complexity was achieved by the NP-completeness theory, whose goal is to identify
problems that are unlikely to be solved in polynomial time. However, there are still many
intensively studied problems in P for which the worst-case running time of the best current
algorithm is not known to be optimal. Namely, many important problems have classical
algorithms running in Õ(nk) time1 for some constant k, and this running time has not been
significantly improved upon, in spite on many years of intensive research.

Recently, the Hardness in P tool for determine a hierarchy of the complexity of polynomial-
time solvable problems has been introduced [37]. The key starting point here is the conjecture
that there are problems that do not admit algorithms that perform significantly better than
the already known ones. In particular, it has been conjectured that there is no O(n2−ε) time
algorithm for 3-SUM and no O(n3−ε) time algorithm for All-Pairs Shortest Paths. Moreover,

1 The Õ(f) notation ignores factors of log(f)
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the Hardness in P theory is based on the Strong Exponential Time Hypothesis (SETH):
There is no c < 2 such that k-SAT can be solved in time O(cn) for each fixed k. This
conjecture is used to obtain lower bounds to the complexity of some problems in P, in the
sense that the existence of a faster algorithm for one of these problems implies the existence
of a faster algorithm for one of the fundamental problems mentioned above. Recent work in
the area can be found in [1, 2, 9, 22, 38].

On the positive side, efforts have been made to improve algorithms for problems in P
on some restricted classes of graphs. In particular, parameterized algorithms have been
recently proposed as a tool to speed up algorithms for problems in P [12]. Parameterized
complexity was classically used to efficiently solve NP-hard problems for small values of a
fixed parameter [14, 36]. Formally, a parameterized problem with input size n and parameter
t is called fixed parameter tractable (FPT) if it can be solved in time f(t) · nc, where f is a
function only depending on t and c is a constant.

Unfortunately there are several parameters whose computation is an NP-hard problem
itself. As an example computing treewidth, rankwidth, and vertex cover are all NP-hard
problems– even though they are computable in FPT time when their respective parameters
are bounded. Moreover, the parameterized complexity of computing the clique-width of a
graph is still an open problem [13]. On the contrary, modular-width [21] and neighborhood
diversity [32] are two recently introduced parameters that are computable in linear time
O(m) on a graph with m edges [3, 7, 11, 12, 15, 18, 19, 21, 24, 25, 32].

2.1 Our results
In this paper we design algorithms parameterized by neighborhood diversity for well studied
tractable problems. Namely, we consider the maximum matching, triangle counting, girth,
and global minimum vertex cut problems. Such problems are known to admit algorithms
parameterized, among other parameters, by modular-width (mw) of the input graph. This
implies, being the neighborhood diversity (nd) a “special case” of modular width (i.e.,
mw ≤ nd )[21], that the same algorithm can be used with respect to nd. However, for
a graph with n nodes and m edges the proposed novel algorithms allow to improve the
computational complexity from a time O(f(mw) · n+m), which is multiplicative in n [12] to
a time O(g(nd) + n+m) which is only additive in the size of the input.

3 Neighborhood diversity

Given a graph G = (V,E), two nodes u, v ∈ V have the same type iff N(v)\{u} = N(u)\{v}.
The neighborhood diversity of a graph G, introduced by Lampis in [32] and denoted by nd(G),
is the minimum number t of sets in a partition V1, V2, . . . , Vt, of the node set V , such that
all the nodes in Vi have the same type, for i = 1, . . . , t. In the following we use nd, instead of
nd(G), when the graph G is clear from the context. The family V = {V1, V2, . . . , Vt} is called
the type partition of G.

Let G = (V,E) be a graph with type partition V = {V1, V2, . . . , Vt}. By definition, each
Vi induces either a clique or an independent set in G. Whenever Vi ∈ V is a singleton, we
consider it as inducing an independent set, so any Vi inducing a clique has |Vi| ≥ 2. For each
Vi, Vj ∈ V, we get that either each node in Vi is a neighbor of each node in Vj or no node in
Vi has a neighbor in Vj .

Starting from a graph G and its type partition V = {V1, . . . , Vt}, we can see each element
of V as a vertex of a new graph H, called the type graph of G, with V (H) = {1, 2, . . . , t} and
E(H) = {(x, y) | x 6= y, there is a complete bipartite graph between Vx and Vy in G, }

∪ {(x, x) | |Vx| ≥ 2 and Vx and induces a clique in G}.
Determining nd(G) and the corresponding type partition, can be done in time O(n+m) [32].
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4 Maximum matching

A matching in a graph is a set of edges with pairwise disjoint end vertices. The maximum
matching (mm) problem consists in computing a matching of maximum size.

maximum matching can be solved in polynomial time by Edmond’s algorithm [17].
A simple implementation of such an algorithm requires time O(n4), however Micali and
Vazirani showed how to implement Edmond’s algorithm in time O(m

√
n) [34].

maximum matching is considered fundamental to the study of fixed-parameter algorithm
for problems in P [26, 33]. In particular Mertzios et al. designed new algorithms to solve
maximum matching in O(ρO(1)(n+m)) time for various graph parameters ρ [33]. Coudert
et al. gave a O(ρ4n+m) time algorithms for solving MM, when parameterized by either the
modular-width or the P4-sparseness of the graph [12]. Recently, Kratsch et al. improved this
last result to O(mw2 log mw · n+m)[31].

In the following we present an algorithm parameterized by neighborhood diversity for
solving the maximum matching of a graph G = (V,E). Our algorithm will use the solution
of a generalization of mm, namely the maximum b-matching problem [20].

Let b : V → Z+ be a function on the vertices of G (where G may have also self-loops), a
b-matching for G is a function x : E → Z+ such that for each u ∈ V∑

v: u 6=v∧(u,v)∈E

x(u, v) + 2x(u, u) ≤ b(u). (1)

The value x(u, v) represents the multiplicity of the edge (u, v), that is how many times the
edge (u, v) is used by the matching. Note that if b(u) = 1, for each u ∈ V , then the function
x becomes a classical matching for G.
A maximum b-matching for G is a function x for which

∑
(u,v)∈E x(u, v) is maximum. In the

following we will call by |x| =
∑

(u,v)∈E x(u, v) the size of the b-matching x.
Gabow showed how to find a maximum b-matching in time O(min{b(V ), n logn} (m+n logn)),
where b(V ) =

∑
v∈V b(v) [20].

4.1 The algorithm
We describe now the proposed algorithm.
1. Let V = {V1, . . . , Vt} and H = (V (H), E(H)) be the type partition and the type graph

of G, respectively. Define the function bH : V (H)→ Z+ such that bH(i) = |Vi|.
2. Use Gabow’s algorithm to find a maximum bH -matching for H, let it be xH : E → Z+.
3. Construct the desired maximum matching M for G using xH .
We show now how to implement the above step 3. To this aim, we first notice that (1) implies∑

j
i6=j∧(i,j)∈E

xH(i, j) + 2xH(i, i) ≤ bH(i) for each i ∈ V (H)

xH(i, j) ≤ min{bH(i), bH(j)} for each (i, j) ∈ E(H)

Fix any i ∈ V (H) and let j1, j2, . . . , ja(i) be the neighbors of i in H such that xH(i, j`) > 0,
for ` = 1, . . . , a(i). Recalling that xH(i, j) represents the multiplicity of the edge (i, j) in the
matching and bH(i) = |Vi|, we select

s(i) =
∑

j
i6=j∧(i,j)∈E(H)

xH(i, j) + 2xH(i, i) =
a(i)∑
`=1

xH(i, j`) + 2xH(i, i)
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vertices in Vi and partition them into a(i) + 1 sets, Si,j1 , Si,j2 , . . . , Si,ja(i) , Ci such that

|Ci| =
{

2 xH(i, i) if Vi induces a clique,
0 otherwise,

and |Si,j`
| = xH(i, j`) for ` = 1, . . . , a(i).

A matching M for G can be now obtained as

M =

 ⋃
(i,j)∈E(H)

i6=j

Mi,j

⋃
 ⋃

i∈V (H)
Vi is a clique

Mi

 , (2)

where
Mi,j is a perfect matchings connecting the vertices in Si,j with the vertices in Sj,i (recall
that |Si,j | = |Sj,i| = xH(i, j));
Mi is a perfect matchings connecting xH(i, i) pairs of vertices in Ci, if Vi induces a
clique, and Mi = ∅ otherwise.

I Fact 1. The size of the matching M equals that of the bH-matching in H, that is,
|M | = |xH |.

Proof. By definition |xH | =
∑

(i,j)∈E(H) xH(i, j) =
∑

(i,j)∈E(H)
i6=j

|Mi,j | +
∑
i∈V (H) |Mi| =

|M |. J

The following result implies the desired optimality of the matching in (2).

I Lemma 1. If xH is a maximum bH-matching for H then M is a maximum matching
for G.

Proof. Assume by contradiction that there exists a matching M ′ for G such that |M ′| > |M |.
Let y(i, j) be the number of edges in M ′ connecting one vertex in Vi to a vertex in Vj , for
i, j ∈ V (H) (clearly, y(i, j) = 0 if (i, j) /∈ E(H)). Recalling that M ′ is a matching and,
therefore, each vertex in Vi can be the end vertex of only one edge in M ′, we have that∑

j: i 6=j∧(i,j)∈E(H)

y(i, j) + 2y(i, i) ≤ |Vi| = bH(i).

By (1), y is a bH -matching for H. Moreover, its existence contradicts optimality of xH , since

|y| =
∑

(i,j)∈E(H)

y(i, j) = |M ′| > |M | = |xH |. J

Running time. Considering that bH(V (H)) =
∑
i∈V (H) bH(i) =

∑
i∈V (H) |Vi| = n and

that |E(H)| ≤ nd2, we have that the algorithm due to Gabow [20] for computing a maximum
bH -matching for H requires time O(min{bH(V (H)), nd log nd} · (nd log nd + |E(H)|)) =
O(min{n, nd log nd} · nd2).

Summarizing, we have shown the following result.

I Theorem 2. For any graph G = (V,E), the maximum matching problem can be solved in
time O(nd3 log nd + n+m).

We stress that the above algorithm can be generalized to get a maximum b-matching of G.
Hence, we can obtain a linear-time kernelization for b-matching (a linear-time algorithm to
compress the input into a small input of size f(nd)).

FUN 2021
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5 Cycles

Finding and counting simple cycles in graphs is a classical well studied problem [4]. In
particular, triangle detection, counting and/or enumeration problems have applications in
many areas, such as spam detection over complex network analysis [6, 35] and bioinformatics
[39]. An extensive annotated list of applications can be found in Kolountzakis et al. [29].

Establishing whether there exists a triangle in a general graph is conjectured not to be
solvable in time O(n3−ε), for ε > 0, with a combinatorial algorithm [38]. Furthermore, in [2]
it is also conjectured that triangle counting is not solvable in time O(nω−ε), for ε > 0,
with ω being the exponent for fast matrix multiplication2. The fastest known algorithm for
triangle counting in general graphs relies on fast matrix multiplication and runs in time
O(nω) [4]. Coudert et al. [12] presented a fast algorithm parameterized by the clique-width
cw of the graph running in time O(cw2(n+m)). Bentert et al. [8] have studied the problem
under various parameters including feedback edge number, distance to d-degenerate graphs,
and clique-width. They also presented an algorithm for triangle listing in a graph
parameterized by the clique-width, running in time O(cw2 · n+ n2 + #T ) where #T denotes
the number of triangles in G.

With respect to general cycles in a graph, the girth problem asks to determine the size
of the smallest cycle in a given graph. By an old result of Itai and Rodeh [28], if the girth is
even, it is possible to determine it in time O(n2). If, otherwise, the graph has odd girth then
any algorithm would have to be able to detect if the graph has a triangle, requiring time
O(nω). Itai and Rodeh also showed that any algorithm that can find a triangle in dense
graphs can also compute the girth, so obtaining an O(nω) time girth algorithm. However, in
case of sparse graphs the best running time for the girth is in general O(nm). In [12] was
presented a parameterized algorithms that solve the girth problem in time O(ρ2(n+m))
where ρ is either the modular-width or the split-width.

5.1 Triangle counting and listing
Given a graph G = (V,E), triangle counting problem asks to determine the number of
triangles in G. We present an algorithm that solves the triangle counting problem, then
we extend it to solve the triangle listing problem.

Algorithm. Let V = {V1, V2, . . . , Vt} be the type partition of G and let H = (V (H), E(H))
be the type graph. We count the triangles in G by computing three values
−ai: The number of triangles with all the three vertices in Vi; for i ∈ V (H).
−bi: The number of triangles with exactly two vertices in Vi; for i ∈ V (H).
−c: The number of triangles with each vertex in a different set of the type partition.

It is immediate to see that ai = bi = 0 whenever Vi induces an independent set in G.
If, otherwise, Vi induces a clique in G then each subset of Vi containing three vertices is
a triangle. Furthermore, for each neighbor j of i in H, each pair of vertices in Vi forms a
triangle with any vertex in Vj . Hence, for i ∈ V (H)

ai =
{(|Vi|

3
)

if Vi induces a clique and |Vi| ≥ 3,
0 otherwise.

(3)

2 It is known that 2 ≤ ω < 2.3728639 due to Le Gall [23].
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bi =
{(|Vi|

2
)∑

j:(i,j)∈E(H) |Vj | if Vi induces a clique and |Vi| ≥ 2
0 otherwise.

(4)

To compute c we have to count the number of triangles with each vertex in a distinct set of the
type partition. Hence, for each triangle in H involving for instance the vertices i, j, k ∈ V (H)
we have |Vi||Vj ||Vk| triangles in G

c =
∑
|Vi||Vj ||Vk|, (5)

where the sum is over all i, j, h ∈ V (H) forming a triangle in H.
We use a result due to Kratsch et al.[31] to compute c in (5). We present it in terms of

the type partition of G.

I Lemma 3. [31] Let G = (V,E) be a graph with type partition V1, V2, . . . , Vt and type graph
H. Consider the weight function w : E(H) → R+ with w(i, j) =

√
|Vi||Vj |. Let A be the

weighted adjacency matrix of H with respect to w. Then, the number of triangles in G with
each vertex in a different set of the type partition is

c =
∑

i,j∈V (H)

1
3(A2 ◦A)i,j (6)

where A◦B denotes the Hadamard product of the matrices A and B, i.e., (A◦B)i,j = Ai,jBi,j .

By (3), (4) and (6), we have that the number of triangles in G is

∑
i∈V (H):

Vi induces a clique

|Vi|≥3

(
|Vi|
3

)
+

∑
i∈V (H):

Vi induces a clique

|Vi|≥2

(|Vi|
2

) ∑
j:(i,j)∈E(H)

|Vj |

+
∑

i,j∈V (H)

1
3(A2◦A)i,j (7)

Running time. The first two terms of (7) can be computed in time O(|E(H)|) ≤ O(nd2).
The time to evaluate the last term depends on the time to compute the matrix A2 ◦ A.
The best algorithm to compute the matrix multiplication A2 requires time O(ndω). Finally,
multiplying each element of A2 with the correspondent element in A and summing up all
the obtained values takes time O(nd2).

I Theorem 4. The triangle counting problem can be solved in time O(ndω + n+m).

By exploiting the above algorithm and (7) we can easily obtain an algorithm that lists all
the triangles of G and so solving the triangle listing problem.

I Theorem 5. For any graph G = (V,E), the triangle listing problem can be solved in
time O(ndω + n+m+ #T ), where #T denotes the number of triangles in G.

5.2 Girth

We present an algorithm that finds the girth µ(G) of any connected graph G.

FUN 2021
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Algorithm. Let V = {V1, V2, . . . , Vt} be the type partition of G and let H = (V (H), E(H))
be the type graph.

One can obtain the girth of G by distinguishing the following cases:
1. If there exists i ∈ V (H) such that |Vi| ≥ 2 and Vi induces a clique then µ(G) = 3.
2. If Cases 1. does not hold then compute the girth of H (h = µ(H)):

If either there exist two neighbors i, j ∈ V (H), with |Vi| ≥ 2 and |Vj | ≥ 2
or there exists a vertex i ∈ V (H) with |Vi| ≥ 2 having at least two neighbors

then µ(G) = min{4, h}.
Otherwise, µ(G) = h.

The algorithm first checks if there is a triangle involving an edge connecting two nodes in
the same type set. Indeed, if there exists at least a type set Vi inducing a clique (recall that
|Vi| ≥ 2 in this case) then any two vertices in Vi with any neighbor inside or outside Vi form
a triangle (recall that G is connected). If this is the case the algorithm returns µ(G) = 3.

Otherwise, we know that all the type sets V1, V2, . . . , Vt induce independent sets. In this
case, any cycle in G must involve only edges between pairs of type sets, and so edges of H.
The algorithm computes the girth h of H. Then if there is a cycle of length 4 involving two
nodes in the same type set, the algorithm returns the value min{4, h}. Cycles of length 4
are identified by the following conditions. If there exist (i, j) ∈ E(H), with |Vi| ≥ 2 and
|Vj | ≥ 2, then any two vertices in Vi and any two vertices in Vj induces a cycle of length 4 in
G. Analogously, if there exists a vertex i ∈ V (H) with |Vi| ≥ 2 having at least two neighbors,
say j, h ∈ V (H), then a vertex in Vj together with a vertex in Vh and any two vertices in Vi
induce a cycle of length 4 in G.

If none of the above cases holds, then we know that for each i ∈ V (H), such that |Vi| ≥ 2,
i has only one neighbor j such that |Vj | = 1. Hence, no vertex in Vi may be a vertex of a
cycle. Therefore, there is a cycle of length ` in G iff there is a cycle of length ` in H. Hence,
µ(G) = µ(H) and the girth of G is obtained by computing the girth of H.

Running time. The worst case in the algorithm is the calculus of the girth of H. Hence,
the running time of the algorithm is O(ndω + n+m).

I Theorem 6. For any graph G = (V,E), the girth problem can be solved in time O(ndω +
n+m).

6 Global minimum vertex cut

In this section we consider the global minimum vertex cut problem, a generalization to
vertex capacities of the vertex connectivity of a graph.

Given a graph G = (V,E), a set X ⊆ V is a vertex cut of G if G−X is disconnected. It is
then possible to partition V (G)−X into two non empty sets AX and BX where each vertex
in AX has only neighbors in AX ∪X and, each vertex in BX has only neighbors in BX ∪X.
We call the pair (AX , BX) the disconnected partition of G−X. Given a capacity function
c : V → R+ on the vertices of G, a vertex cut X of minimum capacity c(X) =

∑
u∈X c(u) is

said the global minimum vertex cut of G. The global minimum vertex cut problem asks
to find the global minimum vertex cut of G given a capacity function c.

As highlighted in [31], the global minimum vertex cut in G can be obtained by solving a
global edge capacitated cut in a directed graph using standard reductions between flow/cut
variants. By using the result of Hao et al.[27], it can be done in time O(n3 logn). Kratsch
et al.[30, 31] presented an algorithm parameterized by the modular width mw that solves
the global minimum vertex cut problem in time O(mw2 log mw · n + m). We present here
an algorithm parameterized by the neighborhood diversity that solves the problem in time
O(nd3 log nd + n+m).
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Algorithm. Let V = {V1, V2, . . . , Vt} be the type partition of G and let H = (V (H), E(H))
be the type graph. Consider the capacity function cH : V (H)→ R+ of the type graph H
defined as cH(i) =

∑
u∈Vi

c(u). The algorithm first finds the global minimum vertex cut XH

of H with capacities cH , and then returns X =
⋃
i∈XH

Vi.

We will prove that the set X returned by the algorithm is a global minimum vertex cut of
G with capacity c. To this aim, we first characterize a global minimum vertex cut in terms
of the type partition of G.

I Lemma 7. Let G = (V,E) be a graph with type partition V1, V2, . . . , Vt. Let c : V → R+

be the capacity function of G and let X be any global minimum vertex cut of G with capacity
c.
a) For each disconnected partition AX , BX of G−X, any vertex u ∈ X must have at least a

neighbor in AX and at least a neighbor in BX .
b) For each i = 1, . . . , t, either Vi ⊆ X or Vi ∩X = ∅.
c) There exists a disconnected partition AX , BX of G − X such that either Vi ⊆ AX or

Vi ∩AX = ∅ (resp. either Vi ⊆ BX or Vi ∩BX = ∅), i = 1, . . . , t.

Proof. To prove a) we proceed by contradiction and assume that there exists a vertex u ∈ X
that has only neighbors in X ∪AX (resp. in X ∪BX). In this case X −{u} is a global vertex
cut whose capacity is less than that of X, and this contradicts the minimum capacity of X.

The proof of b) is again by contradiction. Suppose that there exists a vertex u ∈ X ∩ Vi
and a vertex v ∈ Vi −X. W.l.o.g., suppose that v ∈ AX . Since u, v ∈ Vi, they share the
same neighborhood and by a) vertex u must have at least a neighbor in BX . Hence, also
v must have at least a neighbor in BX , thus contradicting the assumption that G −X is
disconnected.

Finally, we prove c). Let AX , BX be any disconnected partition of G − X and let
u ∈ AX ∩ Vi (and Vi 6⊆ AX). By b) no vertex in Vi is in X. We have only to consider the
possibility that BX ∩ Vi 6= ∅. This is not possible if Vi induces a clique in G since otherwise
AX and BX should be connected by at least one edge. In case Vi induces an independent set
in G, we can move each vertex in BX ∩ Vi from BX to AX obtaining again a disconnected
partition of G−X. Hence, AX ∪ (BX ∩Vi) and BX −Vi is a disconnected partition of G−X.
This proves that it is possible to find a disconnected partition of G−X satisfying c). J

I Theorem 8. The set X returned by the algorithm is a global minimum vertex cut with
capacity c.

Proof. We first prove that X is a vertex cut of G, that is we prove that G−X is disconnected.
By the fact that XH is a global minimum vertex cut of H with capacity cH , we can find
a disconnected partition AH , BH of H −XH and so we have that each i ∈ AH has all its
neighbors in AH∪XH and, each j ∈ BH has all its neighbors in BH∪XH . By the construction
of X in the algorithm, i.e., X =

⋃
i∈XH

Vi, we can pinpoint the sets A =
⋃
i∈AH

Vi and
B =

⋃
i∈BH

Vi, that are a partition of V (G) − X. Now, we prove that there is no edge
between vertices of A and B. Fix u ∈ A. Since u ∈ Vi for some i ∈ AH and using the fact
that AH and BH are a disconnected partition of H −XH and so u cannot be neighbor of
any vertex in same set Vj for j ∈ BH , we have that vertex u has all its neighbors in A ∪X.
In the same way we can prove that each v ∈ B has all its neighbors in B ∪X. This proves
that A,B is a disconnected partition of G−X.

Finally, we prove that X has minimum capacity, so completing the proof. By contradiction
suppose there exists a global minimum vertex cut Y with c(Y ) < c(X). By b) in Lemma 7 we
can define the set YH = {i ∈ V (H) | Vi ⊆ Y }. Let AY and BY be the disconnected partition
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of G − Y for which c) in Lemma 7 holds. Hence, if we define A = {i ∈ V (H) | Vi ⊆ AY }
and B = {j ∈ V (H) | Vj ⊆ BY }, then each i ∈ A has all its neighbors in A ∪ YH , and each
j ∈ B has all its neighbors in B ∪ YH proving that YH is a vertex cut of H. Furthermore,

c(YH) =
∑
i∈YH

cH(i) =
∑
i∈YH

∑
u∈Vi

c(u) =
∑
u∈Y

c(u) = c(Y )

< c(X) =
∑
u∈X

c(u) =
∑
i∈XH

∑
u∈Vi

c(u) =
∑
i∈XH

cH(i)

= c(XH),

which contradicts the assumption that XH is a global minimum vertex cut of H respect to
the capacity function cH . J

Running time. The running time of our algorithm strongly depends on the time to compute
the global minimum vertex cut XH of H with capacities cH . By using the best known
algorithm to evaluate the global minimum vertex cut, we have that XH can be computed in
time O(nd3 log nd).

I Theorem 9. For any graph G = (V,E) and capacity function c : V → R+, the global
minimum vertex cut problem can be solved in time O(nd3 log nd + n+m).
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