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Abstract
Mixing (or quasirandom) properties of the natural transition matrix associated to a graph can be
quantified by its distance to the complete graph. Different mixing properties correspond to different
norms to measure this distance. For dense graphs, two such properties known as spectral expansion
and uniformity were shown to be equivalent in seminal 1989 work of Chung, Graham and Wilson.
Recently, Conlon and Zhao extended this equivalence to the case of sparse vertex transitive graphs
using the famous Grothendieck inequality.

Here we generalize these results to the non-commutative, or “quantum”, case, where a transition
matrix becomes a quantum channel. In particular, we show that for irreducibly covariant quantum
channels, expansion is equivalent to a natural analog of uniformity for graphs, generalizing the
result of Conlon and Zhao. Moreover, we show that in these results, the non-commutative and
commutative (resp.) Grothendieck inequalities yield the best-possible constants.
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1 Introduction

In a seminal work [8], Chung, Graham and Wilson – building on work of Thomason [33, 34] –
proved that several seemingly distinct notions of quasirandomness for graphs are equivalent.
In particular, they identified seven properties found in random graphs with high probability,
that always coexist simultaneously in any large dense graph. Two of these properties are
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5:2 Quasirandom Quantum Channels

spectral expansion and uniformity (defined below). A question of Chung and Graham [7]
on the equivalence of these two properties in sparse graphs resulted in a line of research
culminating in recent work of Conlon and Zhao [9], which introduced a surprising new item
to the armory of combinatorics: the famous Grothendieck inequality [13]. In this paper, we
draw a parallel line in the context of quantum information theory, where quantum channels
take the place of graphs. In addition, we give a streamlined proof of the main result of [9]
and show that the use of Grothendieck’s inequality yields an optimal constant. Similarly, we
show that the non-commutative Grothendieck inequality gives an optimal constant in the
quantum setting.

Spectral expansion and uniformity

Spectral expansion is a linear-algebraic property given in terms of the transition matrix of
a graph. This transition matrix is the normalized adjacency matrix, which for a d-regular
graph G = (V,E) is given by Auv = e({u}, {v})/d, where e(S, T ) denotes the number of
edges connecting subsets S, T ⊆ V . We say that the graph G is an (n, d, λ) graph if |V | = n,
it is d-regular and all but the largest eigenvalue of A, which is always 1, have modulus at
most λ. The smallest value of λ for which this holds is denoted by λ(G). Spectral expansion
then refers to the property that λ(G) is much smaller than 1, in which case G is referred
to as a (spectral) expander. Expanders have many important applications in mathematics
and computer science (we refer to [23] for an extensive survey). One such application is
in randomized algorithms, which can exploit the fact that a random walk on an expander
rapidly mixes (i.e. quickly converges to its limit distribution) to significantly reduce the
amount of randomness needed.

Uniformity is a combinatorial property of the configuration of the edges. An n-vertex
d-regular graph G = (V,E) is ε-uniform if for all S, T ⊆ V ,∣∣∣e(S, T )− d

n
|S| |T |

∣∣∣ ≤ εdn (1)

and ε(G) denotes the smallest value of ε for which this holds. Uniformity then refers to
the property that this parameter is much smaller than 1; trivially any graph is 1-uniform.
Intuitively, this says that for any two vertex subsets, the number of edges between those sets
is close to the expected number of edges in a random graph with the same edge density.

A basic result known as the Expander Mixing Lemma [23] shows that for any regular
graph G we have ε(G) ≤ λ(G), which is to say that spectral expansion implies uniformity.
A sequence Gn of dn-regular graphs is called dense if dn ≥ Ω(n), and sparse if dn/n −→ 0.
It was shown in [8] that in the dense case, a converse to the Expander Mixing Lemma
ε(Gn) ≤ o(1)⇒ λ(Gn) ≤ o(1) also holds. In contrast, Krivelevich and Sudakov [25] showed
that this is false for sparse graphs, thereby answering the question posed in [7]. Their
counterexample is not regular, however (and a later one from [4] is not connected). But
in [9] it was shown that even regular sparse graphs (where dn ≤ o(n)) can simultaneously
satisfy ε(Gn) ≤ o(1) and λ(Gn) ≥ Ω(1). Surprisingly, Kohayakawa, Rödl, and Schacht [24]
showed that Cayley graphs over abelian groups, including sparse ones, do again admit such a
converse. Cayley graphs are an important class of regular graphs that include for instance the
famous Ramanujan graphs of Margulis [27] and Lubotzky, Phillips and Sarnak [26]. Conlon
and Zhao [9] generalized this to all Cayley graphs and showed that this implies the same
for all vertex-transitive graphs in general, for which they showed that λ(G) ≤ 4KGε(G),
where 1.6769 . . . ≤ KG < 1.7822 . . . is the famous Grothendieck constant, whose exact value
is currently unknown; the bounds shown here are the best known and were shown by Davie
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and Reeds (independently) in [11, 30] and Braverman et al. in [5], respectively. Spectral
expansion and uniformity are thus equivalent notions of quasirandomness for dense graphs
and vertex-transitive graphs.

Quasirandomness in quantum information theory

A transition matrix, such as the normalized adjacency matrix of a graph, maps probability
vectors1 to probability vectors. A natural non-commutative generalization of a transition
matrix is a quantum channel, a completely positive trace preserving linear map Φ : Mn(C)→
Mn(C); see Section 2 for formal definitions. Quantum channels are the most general operations
on quantum systems that are physically realizable. They encapsulate the “classical” transition
matrices by restricting them to diagonal matrices whose diagonals form probability vectors;
we discuss this in more detail in Section 3. In quantum information theory, general linear
maps from Mn(C) to itself are referred to as superoperators. Since superoperators are in
one-to-one correspondence with bilinear forms on Mn(C)×Mn(C), they also appear in the
context of (generalizations of) Bell inequalities from physics in the form of quantum XOR
games [31, 10], as well as in combinatorial optimization [28].

The graph-theoretic concepts mentioned above have natural analogues for superoperators,
which we discuss next.

In independent work, Hastings [18] and Ben-Aroya, Schwartz and Ta-Schma [3] introduced
quantum expanders as a special class of quantum channels defined analogously to spectral
expanders. For a unital2 quantum channel Φ, the expansion parameter is given by

λ(Φ) = ‖Φ−Π‖S2→S2 = sup
{
‖(Φ−Π)(X)‖S2 : ‖X‖S2 ≤ 1

}
, (2)

where Π : X 7→ 1
nTr(X)Id is the projection onto the identity, ‖X‖S2 =

√
〈X,X〉 is the

Frobenius (or Schatten-2) norm and 〈X,Y 〉 = 1
nTr(Y ∗X) is the normalized trace inner

product. A quantum channel is an expander if λ(Φ) is much smaller than 1. Also quantum
expanders found many applications, one of which is again randomness reduction, where
randomness takes on the form of random unitary matrices. Since a k-qubit unitary requires
4k real parameters, sampling one from the uniform distribution (Haar probability measure)
is very expensive. A 1-design is a fixed collection of unitaries U1, . . . , Um such that the
superoperator Φ(X) = 1

m

∑m
i=1 UiXU

∗
i exactly effects the projection Π, thus mimicking

in a finite way the Haar measure on U(n). Quantum expanders can be used to construct
approximate 1-designs, meaning that Φ(X) and Π(X) are close in trace distance3 instead of
precisely equal. Another application is in cryptography where Ambainis and Smith [1] used
quantum expanders to construct short quantum one-time pads. It was shown in [18] that
truly random quantum channels (given by independent Haar-uniform Ui as described above)
are quantum expanders with high probability, supporting the idea that this is a notion of
quasirandomness.

In this work we introduce a natural notion of uniformity for superoperators, informally
given by how well they mimic the action of Π on projectors on subspaces, which may be
thought of as generalizations of vertex subsets in graphs. This is similar to Hasting’s notion
of edge expansion for quantum channels [18]. In particular, we say that Φ is ε-uniform if for
any two subspaces V,W ⊆ Cn with associated projections PV , PW , it holds that

|〈PV , (Φ−Π)(PW )〉| ≤ ε. (3)

1 We use the convention of writing probability vectors as column vectors intead of row vectors.
2 This is the superoperator analogue of regularity for graphs, defined in Section 2.
3 The trace distance is the distance induced by the Schatten-1 norm, defined in Section 2.
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5:4 Quasirandom Quantum Channels

Let ε(Φ) denote the smallest ε for which this holds. As we show in Section 3.3, the
parameters λ(Φ) and ε(Φ) reduce to their graphical analogs under a suitable embedding of
graphs into quantum channels.

Finally, also symmetry, which in the graph-theoretic context takes the form of vertex
transitivity, is an important property of quantum channels. In particular, irreducibly covariant
quantum channels, which turn out to generalize vertex-transitive graphs (see Section 3), play
an important role in questions about the capacity of quantum channels as noisy transmitters
of quantum information [22]. A now famous result of Hastings [19] shows that the minimum
output capacity in general does not have the intuitively natural property of being sub-additive
under tensor products. However, it was shown earlier by Holevo [21], that the capacity is
additive for the subclass of irreducibly covariant quantum channels.

Summary of our results

In this work we make a first step in the study of the equivalence of quasirandom properties
for quantum channels, or superoperators in general, and show optimality in the case of
vertex-transitive graphs and covariant quantum channels.

(Section 3.2) Our main result shows that under irreducible covariance, expansion and
uniformity are equivalent for superoperators. In particular, while a simple analogue of the
classical Expander Mixing Lemma implies that ε(Φ) ≤ λ(Φ) in general, we show using a
non-commutative version of Grothendieck’s inequality due to Haagerup [14], that for this
class of superoperators, also λ(Φ) ≤ 2π2ε(Φ) always holds. This implies the same result
for vertex-transitive graphs with C-weighted edges, essentially proved in [9] with the
factor 2 replaced by the complex Grothendieck constant 1.3380 . . . ≤ KC

G ≤ 1.4049 . . . .
(Section 3.3) We show that a construction of sparse regular graphs from [9] can be
embedded to give a sequence of quantum channels Φn that are not irreducibly covariant
and for which it holds that ε(Φn) ≤ o(1) and λ(Φn) ≥ Ω(1).
(Section 3.4) We show that for randomizing channels, a notion introduced in [2], the two
notions of quasirandomness are also equivalent. This can be interpreted as a generalization
of the same statement for dense graphs proved in [8].
(Section 4.1) We show that the result of [9] cannot be improved in the sense that the
factors 4KG and π2KC

G are optimal in the case of vertex-transitive graphs with R-weighted
and C-weighted edges, respectively.
(Section 4.2) Our work leaves open whether the factor 2π2 in our main result is optimal.
However, our proof consists of two steps, the first of which gives a factor 2 and the second
a factor π2, and we show these steps are individually optimal. We prove that the first step
is optimal by showing that an example of Haagerup and Ito [16] for the non-commutative
Grothendieck inequality is irreducibly covariant, which uses some representation theory
of SO(n). The optimality of the second step follows directly from a result of [9].

2 Preliminaries

Write [n] = {1, . . . , n}. For a finite set S, write Es∈S for 1
|S|
∑
s∈S . For a compact set S,

write C(S) for the set of continuous functions from S to C. For a compact group Γ, write
Eg∈Γ for the the integral with respect to the (unique) Haar probability measure on Γ.

WriteMn(C) for the set of complex n×n matrices and let U(n) = {X ∈Mn(C) : X∗X =
Id} be the set of unitary matrices. Here, all maps of the form Φ : Mn(C) → Mn(C) are
linear, and we refer to these as superoperators. A superoperator Φ is unital if Φ(Id) = Id
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and it is completely positive if for all k ∈ N the superoperator Id⊗Φ : Mk ⊗Mn →Mk ⊗Mn

maps positive semidefinite matrices to positive semidefinite matrices. Completely positive
superoperators that are trace preserving are called quantum channels.

We normalize inner products so that for x, y ∈ Cn we define 〈y, x〉 = Ei∈[n] yixi and for
matrices X,Y ∈Mn(C) we have 〈Y,X〉 = 1

nTr[Y ∗X].

Norms

For p ∈ [1,∞), x ∈ Cn and X ∈Mn(C), the Lp norm and (normalized) Schatten-p norm are
defined by

‖x‖Lp =
(

E
i∈[n]
|xi|p

)1/p
and ‖X‖Sp =

( 1
n

Tr
[
(X∗X)p/2

])1/p

and ‖x‖L∞ = maxi |xi| and ‖X‖S∞ = sup{|〈Xx, y〉| : ‖x‖L2 , ‖y‖L2 ≤ 1}. Note that for the
identity matrix Id ∈Mn we have ‖Id‖Sp

= 1 for all p ∈ [1,∞].

I Proposition 1. Let p ≥ 1 and let X ∈Mn(C). Then ‖X‖Sp
≥ ‖(X11, . . . , Xnn)‖Lp

.

Proof. For a vector x ∈ Cn, denote by Diag(x) the n× n matrix with x on the diagonal and
for a matrix X denote by diag(X) the matrix where we set the off-diagonal elements to 0. A
small computation shows that

E
s∈{±1}n

Diag(s)X Diag(s) = diag(X).

Since the Schatten-p norms are invariant under conjugation with a unitary matrix, applying
the above with the triangle inequality gives

‖(X11, . . . , Xnn)‖Lp
= ‖diag(X)‖Sp

≤ E
s∈{±1}n

‖Diag(s)X Diag(s)‖Sp
= ‖X‖Sp

. J

For q ∈ [1,∞], define q′ ∈ [1,∞] to be its dual given by 1
q + 1

q′ = 1. For p, q ∈ [1,∞], a
matrix A ∈Mn(C) and a superoperator Φ : Mn(C)→Mn(C), define

‖A‖Lp→Lq = sup{|〈y,Ax〉| : ‖x‖Lp ≤ 1, ‖y‖Lq′ ≤ 1}

‖Φ‖Sp→Sq = sup{|〈Y,Φ(X)〉| : ‖X‖Sp ≤ 1, ‖Y ‖Sq′ ≤ 1}.

Also define the cut norms by

‖A‖cut = max{|〈y,Ax〉| : x, y ∈ {0, 1}n}
‖Φ‖cut = sup{|〈Y,Φ(X)〉| : X,Y projectors}.

It is then not hard to see that if G is a d-regular graph with normalized adjacency matrix A,
then ε(G) = ‖A− 1

nJ‖cut, where J is the all-ones matrix. Similarly, we have ε(Φ) = ‖Φ−Π‖cut.
We have the following relation between these norms, the proof of which is a simple

generalization of the same result from [9] for matrices.

I Lemma 2. For any superoperator Φ, we have ‖Φ‖cut ≤ ‖Φ‖S∞→S1 ≤ π2‖Φ‖cut and π2 is
the best possible constant.

Proof. First note that the cut norm as defined above can also be written as

‖Φ‖cut = sup{|〈Y,Φ(X)〉| : X,Y � 0 , ‖X‖S∞ , ‖Y ‖S∞ ≤ 1}, (4)

TQC 2020



5:6 Quasirandom Quantum Channels

because the set {X : X � 0, ‖X‖S∞ ≤ 1} is the convex hull of the set of projectors. Hence,
by linearity the supremum in (4) will always be attained by projectors.

The first inequality of the lemma follows by dropping the positive semidefinite constraint.
For the second inequality, let z be a complex number of norm 1, and w a uniform random
complex number of norm 1. Then

z = π Ew[w 1{<(zw̄)≥0} ].

Note that Ew[f(w)] = 1
2π
∫ 2π

0 f(eiθ)dθ, hence the equality follows by using
∫ π/2
−π/2 cos(θ)dθ = 2.

We have ‖Φ‖S∞→S1 = sup{|〈Y,Φ(X)〉| : ‖X‖S∞ , ‖Y ‖S∞ ≤ 1}. The set of matrices X such
that ‖X‖S∞ ≤ 1 is the convex hull of the set of unitary matrices, so by linearity we can
assume that the supremum in ‖Φ‖S∞→S1 is obtained by unitary X,Y . Unitary matrices
are diagonalizable, so write X = UAU∗ and Y = V BV ∗ with U, V unitary and A,B

diagonal. Let u,w ∈ C, |u| = |w| = 1 be uniform random complex numbers and define
diagonal matrices A′, B′ as A′ii(w) = 1{<(Aiiw̄)≥0} and B′ii(u) = 1{<(Biiū)≥0}. By the above
we have A = π Ew[wA′(w)] and similar for B, so we have X = π Ew[wUA′(w)U∗] and
Y = π Eu[uV B′(u)V ∗]. Now, UA′(w)U∗ and V B′(u)V ∗ are projections for all values of w
and u, as required in the definition of the cut norm. Therefore

‖Φ‖S∞→S1 = |〈Y,Φ(X)〉| = π2|Eu,wūw〈V B′(u)V ∗,Φ(UA′(w)U∗)〉|
≤ π2Eu,w|〈V B′(u)V ∗,Φ(UA′(w)U∗)〉|
≤ π2Eu,w‖Φ‖cut

= π2‖Φ‖cut,

completing the first part of the proof. Conlon and Zhao show that π2 is the best possible
constant in the commutative case, using the matrix A ∈Mn(C) given by Ast = e2πi(s−t)/n.
This matrix satisfies ‖A‖L∞→L1 = n and one can show ‖A‖cut = (π−2 + o(1))n. By
Proposition 10 in Section 3.3, their example can be embedded into a superoperator with the
same norms so π2 is also the best possible constant here. J

Define the Grothendieck norm of of a matrix A ∈Mn(C) by

‖A‖G := sup
{∣∣∣ 1
n

n∑
i,j=1

Aij〈xi, yj〉
∣∣∣ : d ∈ N, xi, yj ∈ Cd, ‖xi‖L2 ≤ 1, ‖yj‖L2 ≤ 1

}
.

Then, the complex Grothendieck constant is given by

KC
G := sup

{ ‖A‖G
‖A‖L∞→L1

: n ∈ N, A ∈Mn(C)
}
.

The current best upper and lower bounds on KC
G are 1.4049 [15] and 1.338 [11], respectively.

The real version of the Grothendieck constant, denoted by KG and mentioned in the
introduction, is obtained by replacing the underlying field in the above quantities by the
reals.

Some basic group theory

Given a graph G = (V,E), a permutation π : V → V is an automorphism of G if for all
u, v ∈ V , we have {π(u), π(v)} ∈ E ⇔ {u, v} ∈ E. The automorphisms of G form a group
under composition, which we call Aut(G). Then, G is said to be vertex transitive if for every
u, v ∈ V , there is a π ∈ Aut(G) such that π(u) = v. For superoperators, we have the following
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analogous definitions. A unitary representation of a group Γ on Cn is a homomorphism from
Γ to U(n) and it is irreducible if the only subspaces of Cn that are left invariant by the group
action are the zero-dimensional subspace and Cn itself.

I Definition 3 (Irreducible covariance). A superoperator Φ : Mn(C)→Mn(C) is irreducibly
covariant if there exist a compact group Γ and continuous irreducible unitary representations
U, V : Γ→ U(n) such that for all g ∈ Γ and X ∈Mn(C), we have

Φ(U(g)XU∗(g)) = V (g)Φ(X)V ∗(g).

3 Converse expander mixing lemmas

In this section, we prove the “converse expander mixing lemmas” announced in the first and
third bullet in the introduction. As a warm-up, we start with a proof of the commutative
case due to Conlon and Zhao, which we reprove in a slightly different manner analogous to
how we will prove the non-commutative case.

3.1 Commutative case
In the following, let S be a compact set and Γ be a compact group acting continuously and
transitively on S. The Haar probability measure on Γ induces a measure on S (by pullback)
according to which the Lp-norm (for p ∈ [1,∞)) and inner product of f, g ∈ C(S) are given
by

‖f‖Lp
=
(

E
π∈Γ

∣∣f(π(s0)
)∣∣p) 1

p and 〈f, g〉 = E
π∈Γ

f
(
π(s0)

)
g
(
π(s0)

)
, (5)

where (by transitivity) s0 can be taken to be some arbitrary but fixed element of S. We
lift the action of Γ on S to an action on C(S) by precomposition, that is, for any function
f ∈ C(S) and element π ∈ Γ, define the function fπ by fπ(s) := f(π(s)). Furthermore, for
a linear map A : C(S)→ C(S) define Aπ by Aπf := (Afπ)π−1 and say that A is transitive
covariant with respect to Γ if for any π ∈ Γ we have Aπ = A.4 We sometimes omit the group
and simply say A is transitive covariant if such a group Γ exists.

In [9], the following result is proved (over the real numbers) for the case S = [n], in which
case transitive covariant linear maps A are simply n× n matrices which commute with the
permutation matrices of a transitive subgroup Γ of Sn. However, their proof easily implies
the more general version below.

I Theorem 4 (Conlon–Zhao). Let S be as above and let A : C(S)→ C(S) be a linear map
that is transitive covariant with respect to Γ. Then,

‖A‖L2→L2 ≤ KC
G‖A‖L∞→L1 .

Here we give a somewhat more streamlined proof of this result based on a well-known
factorization version of Grothendieck’s inequality [13] (see also [29]), which will serve as a
stepping stone to the proof of the non-commutative case.5 In our setting the inequality
asserts the following

4 In general one says A is covariant with respect to Γ, but we say transitive to emphasize that we require Γ
to act transitively on S.

5 The main difference is that in [9], the result is first proved for weighted Cayley graphs, after which it is
shown that this implies the result for transitive covariant matrices.

TQC 2020



5:8 Quasirandom Quantum Channels

I Theorem 5 (Commutative Grothendieck inequality (factorization)). Let S be as above and
let A : C(S)→ C(S) be a linear map. Then, there exist probability measures λ, ν on S such
that for all f, g ∈ C(S), we have

|〈g,Af〉| ≤ KC
G‖A‖L∞→L1

(∫
S

|f(s)|2 dλ(s)
)1/2(∫

S

|g(s)|2dν(s)
)1/2

.

Proof of Theorem 4. It follows from the triangle inequality and transitivity that

|〈g,Af〉| ≤ E
π∈Γ
|〈g,Aπf〉| = E

π∈Γ
|〈gπ, Afπ〉|.

By Theorem 5 and the AM-GM inequality there are probability measures λ, ν on S such
that the above right-hand side is at most

KC
G‖A‖L∞→L1

2 E
π∈Γ

(∫
S

|fπ(s)|2dλ(s) +
∫
S

|gπ(s)|2dν(s)
)

= KC
G‖A‖L∞→L1

2 (‖f‖2L2 + ‖g‖2L2 ),

where we switched the order of the integrals (using Tonelli’s theorem) and the expression (5)
for the L2 norm. For ‖f‖L2 = ‖g‖L2 = 1 this shows ‖A‖L2→L2 ≤ KC

G‖A‖L∞→L1 . J

3.2 Non-commutative case
Our main technical result is as follows.

I Theorem 6. Let Φ : Mn(C) → Mn(C) be an irreducibly covariant superoperator. Then,
‖Φ‖S∞→S1 ≤ ‖Φ‖S2→S2 ≤ 2‖Φ‖S∞→S1 .

Since the supremum in ‖Φ‖S∞→S1 is taken over X,Y with S∞-norm equal to 1, the first
inequality of the theorem follows from the fact that ‖X‖S2 ≤ ‖X‖S∞ . As projectors have
Schatten-∞ norm 1, the first inequality also easily implies the analogue of the Expander
Mixing Lemma, that is, ε(Φ) ≤ λ(Φ), where λ(Φ) and ε(Φ) are as in (2) and (3), respectively;
note that when Φ is irreducibly covariant, so is Φ−Π. The second inequality is proved at
the end of this section and in Section 4.2 we show that the factor 2 in the theorem is optimal.
With Lemma 2, which relates the uniformity parameter ε(Φ) to ‖Φ−Π‖S∞→S1 , Theorem 6
then immediately gives the following result stated in the introduction.

I Corollary 7 (Converse Quantum Expander Mixing Lemma). Let Φ : Mn(C)→Mn(C) be an
irreducibly covariant superoperator. Then, λ(Φ) ≤ 2π2ε(Φ).

In this non-commutative setting we use the following analog of Theorem 5 (a factorization
version of the non-commutative Grothendieck inequality), proved by Haagerup in [14]; see
also [29]. A density matrix is a positive semidefinite matrix with trace equal to 1.

I Theorem 8 (Haagerup). Let Φ: Mn(C)→ Mn(C) be a superoperator. Then, there exist
density matrices ρ1, ρ2, σ1, σ2 such that for any X,Y ∈Mn(C), we have

|〈Y,Φ(X)〉| ≤ ‖Φ‖S∞→S1 (Tr[ρ1X
∗X] + Tr[ρ2XX

∗])1/2 (Tr[σ1Y
∗Y ] + Tr[σ2Y Y

∗])1/2
.

(6)

We also use the following lemma.

I Lemma 9. Let Γ be a compact group. Then, a unitary representation U : Γ → U(n) is
irreducible if and only if for any X ∈Mn(C), we have

E
g∈Γ

U(g)XU(g)∗ = Tr(X) 1
n

Id.
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Proof. By Schur’s lemma, if U is an irreducible representation, then for T ∈Mn(C)[
∀g ∈ Γ U(g)TU(g)∗ = T

]
⇐⇒

[
∃λ ∈ C T = λ Id

]
.

Let TX = Eg∈Γ U(g)XU(g)∗, then by the group structure we have U(g)TXU(g)∗ = TX for
all g ∈ Γ. Therefore, if U is irreducible then TX = λX Id. By taking the trace, it follows
that λX = Tr(X)/n. In the other direction, if U is reducible then there exists a projector
P onto an irreducible subspace that is left invariant, i.e. U(g)PU(g)∗ = P for all g ∈ Γ, so
TP 6= λId. J

Proof of Theorem 6. Denote by Γ and U, V : Γ→ U(n) the group and irreducible repres-
entations such that Φ is irreducibly covariant with respect to Γ (see Definition 3). For any
X,Y ∈Mn(C) write Xg = U(g)XU∗(g) and Yg = V (g)Y V ∗(g), then we have

|〈Y,Φ(X)〉| = E
g∈Γ
|〈Yg,Φ(Xg)〉|.

By Theorem 8 and the AM-GM inequality, there exist density matrices ρ1, ρ2, σ1, σ2 such
that the right hand side is bounded from above by

1
2‖Φ‖S∞→S1 E

g∈Γ

(
Tr[ρ1X

∗
gXg] + Tr[ρ2XgX

∗
g ] + Tr[σ1Y

∗
g Yg] + Tr[σ2YgY

∗
g ]
)
.

By Lemma 9 we have Eg∈ΓX
∗
gXg = Eg∈Γ U(g)X∗XU∗(g) = 1

nTr[X∗X]Id = ‖X‖2S2
Id. Let

ρ be a density matrix, then Eg∈Γ Tr[ρX∗gXg] = ‖X‖2S2
. The same holds for Eg∈Γ Tr[ρXgX

∗
g ]

but with U , and for Y with V , so we see that the above quantity is equal to

‖Φ‖S∞→S1

(
‖X‖2S2

+ ‖Y ‖2S2

)
.

If ‖X‖S2 = ‖Y ‖S2 = 1 we obtain ‖Φ‖S2→S2 ≤ 2‖Φ‖S∞→S1 . J

3.3 Embedding graphs into quantum channels
In this subsection, we elucidate the claim that quantum channels generalize graphs and
prove the result stated in the second bullet in the introduction, namely that there are
non-irreducible quantum channels for which a converse expander mixing lemma does not
hold.

We consider the following embeddings. For A ∈Mn(C), define ΦA : Mn(C)→Mn(C) as

ΦA(X) =
∑
i,j

AijXjjEii, (7)

where Eij is the matrix with a single 1 at position (i, j). When A is a transition matrix, i.e.,
its column sums are 1, then it is not hard to see that ΦA is completely positive and trace
preserving and that Φ 1

nJ
= Π. Several other ways exist to create quantum expanders from

expander graphs, see for example [20] and [17], but as we show below, our embedding given
above carries over all relevant properties of the graph we consider here.

Conlon and Zhao [9] give an infinite sequence of d-regular graphs Gn that are o(1)-uniform
but for which λ(Gn) ≥ 1/2. Combined with the following proposition, this immediately gives
the result stated in the second bullet in the introduction.

I Proposition 10. Let A ∈Mn(C) and p, q ∈ [1,∞]. Then, for ΦA as in (7), we have

‖ΦA −Π‖Sp→Sq = ‖A− 1
n
J‖Lp→Lq and ‖ΦA −Π‖cut = ‖A− 1

n
J‖cut.
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5:10 Quasirandom Quantum Channels

Proof. Let B = A− 1
nJ , then ΦA −Π = ΦB. By compactness and definition of ‖ · ‖Sp→Sq

we can assume there is an X ∈Mn(C) such that ‖ΦB‖Sp→Sq
= ‖ΦB(X)‖Sq

/‖X‖Sp
. Write

X = diag(x)+Xother where x ∈ Cn is the diagonal ofX, andXother are the off-diagonal entries.
Note that by definition of ΦB we have ΦB(X) = ΦB(diag(x)) = diag(Bx). By definition of
Schatten norms, ‖diag(x)‖Sp

= ‖x‖Lp
and by Proposition 1 we have ‖X‖Sp

≥ ‖x‖Lp
. We

have

‖B‖Lp→Lq
≥
‖Bx‖Lq

‖x‖Lp

≥
‖diag(Bx)‖Sq

‖X‖Sp

=
‖ΦB(X)‖Sq

‖X‖Sp

= ‖ΦB‖Sp→Sq

Now let y ∈ Cn be such that ‖B‖Lp→Lq = ‖By‖Lq/‖y‖Lp . Then

‖ΦB‖Sp→Sq
≥
‖ΦB(diag(y))‖Sq

‖diag(y)‖Sp

=
‖diag(By)‖Sq

‖y‖Lp

=
‖By‖Lq

‖y‖Lp

= ‖B‖Lp→Lq
.

This proves the first part.

The cut norm of a matrix takes the supremum over x, y ∈ {0, 1}n. Instead we can
relax this to x, y ∈ [0, 1]n, since by linearity the supremum will always be attained by
the extreme points. Similarly, for the superoperator case, we use Equation (4). Then,
there exist x, y ∈ [0, 1]n such that ‖B‖cut = |〈Bx, y〉|. We have diag(x),diag(y) � 0 and
‖diag(x)‖S∞ , ‖diag(y)‖S∞ ≤ 1. Therefore

‖ΦB‖cut ≥ |〈diag(y),ΦB(diag(x))〉| = |〈diag(y),diag(Bx)〉| = |〈y,Bx〉| = ‖B‖cut.

In the other direction, let X,Y ∈Mn(C) such that X,Y � 0 and ‖X‖S∞ , ‖Y ‖S∞ ≤ 1. Define
x, y to be the diagonals of X,Y , i.e. xi = Xii and yi = Yii. By Proposition 1 we have
‖x‖L∞ , ‖y‖L∞ ≤ 1. Since X,Y � 0 we know all diagonal entries of X and Y are real and
non-negative, so we have x, y ∈ [0, 1]n. We conclude

‖B‖cut ≥ |〈y,Bx〉| = |〈diag(y),diag(Bx)〉| = |〈Y,ΦB(X)〉| = ‖ΦB‖cut,

completing the proof. J

Note that ‖A− 1
nJ‖L2→L2 is the second largest eigenvalue in absolute value of the matrix A,

so spectral expansion is preserved under the embedding of graphs into quantum channels.
Also, uniformity is preserved since the cut-norm does not change.

The following proposition shows that the embedding (7) preserves transitivity. This shows
that our Theorem 6 generalizes the main result of [9], albeit with a slightly worse constant.

I Proposition 11. For any A ∈Mn(C), A is vertex transitive if and only if ΦA is irreducibly
covariant.
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Proof. Suppose A is vertex transitive. Let π ∈ Aut(A) be a permutation and Pπ ∈Mn(C)
be the associated permutation matrix, so that PπAP ∗π = A. Then,

ΦA(PπXP ∗π ) =
∑
i,j

Aij(PπXP ∗π )jjEii

=
∑
i,j

AijXπ−1(j)π−1(j)Eii

=
∑
i,j

Aiπ(j)XjjEii

=
∑
i,j

Aπ(i)π(j)XjjEπ(i)π(i)

=
∑
i,j

Aπ(i)π(j)Xjj(PπEiiP ∗π ) = PπΦA(X)P ∗π .

This shows that for all π ∈ Aut(A) we have ΦA(PπXP ∗π ) = PπΦA(X)P ∗π .
Let T = {c ∈ C : |c| = 1} be the complex unit circle. For α ∈ Tn, define Uα := diag(α).

We have UαEiiU∗α = |αi|2Eii = Eii and (UαXU∗α)ii = |αi|2Xii = Xii. Therefore

ΦA(UαXU∗α) =
∑
i,j

Aij(UαXU∗α)jjEii =
∑
i,j

AijXjjUαEiiU
∗
α = UαΦA(X)U∗α.

We combine these two observations as follows. First we have that(
E

α∈Tn
UαXU

∗
α

)
ij

= E
α∈Tn

αiXijαj =
∫ 2π

0

∫ 2π

0
αiXijαj dαidαj = Xiiδij

If A is vertex transitive then for all x ∈ Cn we have Eπ∈Aut(A) Pπ diag(x)P ∗π = (Ei xi) Id.
Therefore

E
π∈Aut(A)
α∈Tn

(PπUα)X(PπUα)∗ = E
π∈Aut(A)

Pπ

(
E

α∈Tn
UαXU

∗
α

)
P ∗π = Tr(X)

n
Id.

Letting G ⊂ Mn(C) be the subgroup generated by the Uα and Pπ for π ∈ Aut(A), we see
that for any g ∈ G

ΦA(gXg∗) = gΦA(X)g∗

and by the previous equation and Lemma 9, G acts irreducibly on Cn (and it is unitary).
This proves Φ is irreducibly covariant with respect to the group G with equal representations.

For the other direction, let U : G → U(n) be the irreducible representation such that
ΦA is irreducibly covariant, i.e. ΦA(U(g)XU∗(g)) = U(g)ΦA(X)U∗(g) for all g ∈ G. Define
Pg ∈Mn(C) as (Pg)ij = |U(g)ij |2 so that (U(g)EjjU(g)∗)ii = (Pg)ij . Then

Akl = Tr[EkkΦA(Ell)] = Tr[U(g)EkkU(g)∗ ΦA(U(g)EllU(g)∗)]

=
∑
ij

Aij(Pg)jl(Pg)ik = (PTg APg)kl,

showing PTg APg = A. Since U(g) is unitary, Pg is doubly stochastic so by Birkhoff’s
Theorem Pg is a convex combination of permutation matrices, i.e., Pg = Ei Πi for some (not
necessarily uniform) probability distribution and where Πi is a permutation matrix. We have

Akl = (PTg APg)kl = E
i
E
j
(ΠT

i AΠj)kl = E
i
E
j
Aπi(k) πj(l).
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5:12 Quasirandom Quantum Channels

Since A is {0, 1}-valued, it follows that if Akl = 1 then all elements of the convex combination
on the right-hand side must be 1, and if Akl = 0 then all elements of the right hand side must
be 0. Therefore, for all i we have ΠT

i AΠi = A. By irreducibility, we have for all k, l that

1
n

= Tr[Ekk]
n

Idll =
(

E
g∈G

U(g)EkkU∗(g)
)
ll

= E
g∈G
|U(g)lk|2 ,

showing Eg∈G(Pg)lk = 1/n. It follows that there is a g ∈ G such that (Pg)lk > 0. Decompos-
ing Pg into permutation matrices shows there is a Π ∈ Aut(A) such that Πlk = 1. This holds
for all k, l, proving the lemma. J

3.4 Randomizing superoperators

We prove the following analogue of one of the results from [8] showing that for any d-regular
graph G, it holds that λ(G) ≤

(
2ε(G)/δ2)1/4, where δ = d/n is the edge density. This in

particular establishes a tight relation between spectral expansion and uniformity for sequences
of graphs with δn ≥ Ω(1). For A ∈ Mn(C), we have ‖A‖L1→L∞ = n supij |Aij |, and for an
n-vertex d-regular graph with normalized adjacency matrix A we have supij |Aij | = 1

d so
‖A‖L1→L∞ = 1

δ . Therefore, a sequence of graphs with normalized adjacency matrices An is
dense exactly when ‖An‖L1→L∞ ≤ O(1).

A superoperator Φ is said to be η-randomizing if ‖Φ‖S1→S∞ ≤ η, which when η ≤ O(1),
may thus be seen as an analogue of density. Note that by Proposition 10 the embedding of
any dense graph is O(1)-randomizing.

I Proposition 12. Let Φ : Mn(C) → Mn(C) be a unital superoperator that is O(1)-
randomizing. Then, λ(Φ) ≤ O(ε(Φ)1/4).

To prove Proposition 12, we require the following lemma.

I Lemma 13. Let Φ : Mn(C)→Mn(C) be a superoperator and let C = ‖Φ‖S1→S∞ . Then

we have ‖Φ‖S2→S2 ≤
(
C3‖Φ‖S∞→S1

)1/4
.

Proof. Note that by definition of C we have |〈Q,Φ(P )〉| ≤ C‖Q‖S1‖P‖S1 . Let X,Y ∈Mn(C)
be such that 〈Y,Φ(X)〉 = ‖Φ‖S2→S2 with ‖X‖S2 = ‖Y ‖S2 = 1. Write X = 1

n

∑n
i=1 λiPi

and Y = 1
n

∑n
i=1 µiQi with Pi, Qi rank-1 matrices with ‖Qi‖S1 = ‖Pi‖S1 = 1. We have

‖λ‖L2 = ‖µ‖L2 = 1 and by applying Cauchy-Schwarz twice,

|〈Y,Φ(X)〉|4 =
∣∣∣E
ij
λiµj〈Qj ,Φ(Pi)〉

∣∣∣4
≤
(
E
i
λ2
i

)2 (
E
i

∣∣E
j
µj〈Qj ,Φ(Pi)〉

∣∣2)2

=
(

E
i,j,j′

µjµj′〈Qj ,Φ(Pi)〉〈Pi,Φ∗(Qj′)〉
)2

≤
(

E
j,j′

µ2
jµ

2
j′

)(
E
j,j′

∣∣∣E
i
〈Qj ,Φ(Pi)〉〈Pi,Φ∗(Qj′)〉

∣∣∣2)
= E
i,i′,j,j′

〈Qj ,Φ(Pi)〉〈Pi,Φ∗(Qj′)〉〈Qj′ ,Φ(Pi′)〉〈Pi′ ,Φ∗(Qj)〉,

where all indices are averaged from 1 to n. Now we see
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|〈Y,Φ(X)〉|4 ≤ E
i,j
〈Qj ,Φ(Pi)〉

〈
E
j′
〈Qj′ ,Φ(Pi)〉Qj′ ,Φ

(
E
i′
〈Pi′ ,Φ∗(Qj)〉Pi′

)〉
≤ E
i,j
|〈Qj ,Φ(Pi)〉| ‖Φ‖S∞→S1 ‖E

j′
〈Qj′ ,Φ(Pi)〉Qj′‖S∞ ‖E

i′
〈Pi′ ,Φ∗(Qj)〉Pi′‖S∞

≤ E
i,j
|〈Qj ,Φ(Pi)〉| ‖Φ‖S∞→S1 max

j′
|〈Qj′ ,Φ(Pi)〉| max

i′
|〈Qj ,Φ(Pi′)〉|

≤ C3‖Φ‖S∞→S1 . J

Proof of Proposition 12. Let Π(X) = 1
nTr[X]Id and E = Φ − Π, then ‖E‖cut ≤ ε by

assumption. Define C = ‖Φ‖S1→S∞ . We have ‖Π‖S1→S∞ = 1 so by the triangle inequality,
‖E‖S1→S∞ ≤ C + 1. Using Lemma 2 and Lemma 13 applied to E we find ‖E‖S2→S2 ≤
((C + 1)3π2ε)1/4. J

4 Optimality of constants

4.1 Commutative case
In this section we prove the fourth bullet point in our introduction. Theorem 4 shows
that KC

G bounds the ratio of the L2 → L2 and L∞ → L1 norms, and Lemma 2 (the matrix
version) shows that π2 bounds the ratio of the L∞ → L1 norm and the cut norm. We now
prove the optimality of the combined inequality.

Let Sm−1 = {x ∈ Cm : ‖x‖L2 = 1} denote the (m− 1)-dimensional unit sphere endowed
with its Haar probability measure µ.

I Theorem 14. For any ε > 0 there exist positive integers m, k and a transitive covariant
linear map M : C(Sm−1 × [k])→ C(Sm−1 × [k]) such that ‖M‖L2→L2 ≥ (π2KC

G − ε)‖M‖cut.

The optimality of π2 between the L∞ → L1 norm and the cut norm is already covered in
Lemma 2. We show that KC

G is optimal in the sense that Theorem 4 cannot be improved
(despite the fact that the exact value of the Grothendieck constant KC

G is unknown). We do
this in Lemma 15 below. Then in Lemma 16 we show that any map can be lifted to one
on a bigger space with appropriately bounded cut norm. The combination of these lemmas
proves our theorem.

In the introduction we also mentioned the optimal constant 4KG in the case where the
field is R instead of C. The proofs below still apply in this case, with only small modifications.

I Lemma 15. For any ε > 0 there exists a positive integer m and a transitive covariant
linear map B : C(Sm−1)→ C(Sm−1) such that ‖B‖L2→L2 ≥ (KC

G − ε)‖B‖L∞→L1 .

Proof. By definition of the Grothendieck constant, for any ε > 0 there exists an n ∈ N
and a linear map A ∈ Mn(C) such that ‖A‖G ≥ (KC

G − ε)‖A‖L∞→L1 . This map A might
not be transitive covariant, so from it we will now construct a transitive covariant linear
map B : C(S2n−1)→ C(S2n−1) such that ‖B‖L∞→L1 ≤ ‖A‖L∞→L1 and ‖B‖L2→L2 ≥ ‖A‖G.
This idea is based on a lemma found in [6].

Let xi, yj ∈ S2n−1 be the vectors that attain the Grothendieck norm for A, which can
always be assumed to be 2n-dimensional since there are only 2n of them, so

‖A‖G =
∣∣∣ 1
n

∑
i,j

Aij〈xi, yj〉
∣∣∣.
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Define the map B by

〈f,B(g)〉 = 1
n

∑
i,j

Aij

∫
U(2n)

f(Uxi)g(Uyj)dU.

To bound ‖B‖L∞→L1 we have to bound |〈f,B(g)〉| for f, g : S2n−1 → [−1, 1]. By the triangle
inequality,

|〈f,B(g)〉| ≤
∫
U(2n)

∣∣∣ 1
n

∑
i,j

Aijf(Uxi)g(Uyj)
∣∣∣dU ≤ ∫

U(2n)
‖A‖L∞→L1dU ≤ ‖A‖L∞→L1 .

Now for each i ∈ [2n] let fi ∈ C(S2n−1) be given by fi(x) = xi (i.e. the i-th coordinate).
Then,

1
2n

2n∑
i=1
〈fi, B(fi)〉 ≤

1
2n

2n∑
i=1
‖B‖L2→L2‖fi‖2L2

= ‖B‖L2→L2

∫
S2n−1

1
2n

2n∑
i=1

x2
i dµ(x)

= ‖B‖L2→L2 .

On the other hand,

1
2n

2n∑
i=1
〈fi, B(fi)〉 = 1

n

∑
i,j

Aij

∫
U(2n)

〈Uxi, Uyj〉dU = 1
n

∑
i,j

Aij〈xi, yj〉 = ‖A‖G,

so we conclude ‖B‖L2→L2 ≥ ‖A‖G. We will show B is transitive covariant with respect
to Γ = U(2n). To show B is invariant, we have to prove that for all V ∈ U(2n) we have
〈fV , B(gV )〉 = 〈f,B(g)〉. Indeed,

〈fV , B(gV )〉 = 1
n

∑
i,j

Aij

∫
U(2n)

f(V Uxi)g(V Uyj)dU

= 1
n

∑
i,j

Aij

∫
U(2n)

f(U ′xi)g(U ′yj)dU ′ = 〈f,B(g)〉,

which completes the proof. J

I Lemma 16. Let S be any compact set and let B : C(S)→ C(S) be a linear map. For any
ε > 0 there exists a k ∈ N and a linear map M : C(S × [k])→ C(S × [k]) such that

‖M‖cut

‖M‖L2→L2

≤
( 1
π2 + ε

)‖B‖L∞→L1

‖B‖L2→L2

and if B is transitive covariant then so is M .

Proof. We will choose k large enough, to be determined later. For any f, g ∈ C(S × [k])
define f i ∈ C(S) as f i(s) := f(s, i), and similar for gi. Define ω = e2πi/k. Define a linear
map M : C(S × [k])→ C(S × [k]) as

(
M(f)

)
(t, j) := 1

k

k∑
i=1

ωi−jB(f i)(t), for t ∈ S and j ∈ [k].
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We then have

〈g,M(f)〉S×[k] = 1
k2

〈∑
i

ωigi, B
(∑

j

ωjf j
)〉

S

where one factor of 1
k comes from our normalization of the inner product. This implies

∣∣〈g,M(f)〉S×[k]
∣∣ ≤ ‖B‖L∞→L1

∥∥∥1
k

k∑
i=1

ωigi
∥∥∥
L∞

∥∥∥1
k

k∑
j=1

ωjf j
∥∥∥
L∞

. (8)

If f, g ∈ C(S × [k]) are the [0, 1]-valued functions that attain the cut norm of M , then by (8)

‖M‖cut ≤
( 1
π2 + ε

)
‖B‖L∞→L1 ,

where we used Lemma 17 to bound
∥∥∥ 1
k

∑k
i=1 ω

igi
∥∥∥
L∞

.
Let u, v ∈ C(S) with ‖u‖L2 = ‖v‖L2 = 1 be such that ‖B‖L2→L2 = 〈v,B(u)〉S . Now

define f(u), g(v) ∈ C(S × [k]) as f(u)(s, i) := ω−iu(s) and g(v)(s, i) := ω−iv(s), which also
have L2-norm equal to 1. We then see

‖M‖L2→L2 ≥
〈
g(v),M(f(u))

〉
S×[k] = 〈v,B(u)〉S = ‖B‖L2→L2 .

The combination of these observations completes the first part of the proof. Now assume B
is transitive covariant with respect to Γ, so B(fπ)(π−1(s)) = B(f)(s) for all s ∈ S and π ∈ Γ.
Define a new group Γ′ as the cartesian product Γ′ = Γ × Zk. For (π,m) ∈ Γ′ define the
action (π,m) : S × [k]→ S × [k] as (π,m)(s, i) = (π(s), i+m). By entering f (π,m) into the
definition of M it follows that M (π,m) = M , so M is transitive covariant with respect to Γ′,
completing the proof. J

I Lemma 17. Let ε > 0, then there exists a k0 ∈ N such that for all k ≥ k0 and x ∈ [0, 1]k
we have∣∣∣1

k

k∑
j=1

e2πi j/kxj

∣∣∣ ≤ 1
π

+ ε.

Proof. First let k0 be arbitrary, to be determined later and k ≥ k0. Define y ∈ [−1, 1]k as
yi = 2xi − 1, then∣∣∣1

k

k∑
j=1

e2πi j/kxj

∣∣∣ = 1
2

∣∣∣1
k

k∑
j=1

e2πi j/kyj

∣∣∣ = 1
2e

2πiφ 1
k

k∑
j=1

e2πi j/kyj .

In the first equality we used that
∑k
j=1 e

2πi j/k = 0. In the second equality we used that there
exists a φ such that the full expression becomes real and positive. Since eiθ = cos(θ) + i sin(θ)
and the full expression is real, we know the sin component vanishes and therefore

1
2

1
k

k∑
j=1

e2πi(φ+j/k)yj = 1
2

1
k

k∑
j=1

cos(2π(φ+ j/k))yj .

Now note that cos(2π(φ+ j/k))yj ≤
∣∣ cos(2π(φ+ j/k))

∣∣ and hence

1
2

1
k

k∑
j=1

∣∣ cos(2π(φ+ j/k))
∣∣ k→∞−→ 1

2

∫ 1

0

∣∣ cos
(
2π(φ+ x)

)∣∣dx = 1
π
.

This completes the proof. J
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4.2 Non-commutative case
In the non-commutative case we show optimality of Theorem 6. By Lemma 2, the factor π2

between the cut-norm and S∞ → S1-norm is also optimal. In contrast with the commutative
case, our work leaves the optimality of the combined inequality in Corollary 7 as an open
problem. Straightforward analogues of the techniques employed in Lemma 16 did not follow
through in the non-commutative case.

I Proposition 18. For any ε > 0, there exists a positive integer n and an irreducibly covariant
superoperator Φ : Mn(C)→Mn(C) such that ‖Φ‖S2→S2 ≥ (2− ε)‖Φ‖S∞→S1 .

One of the forms of the non-commutative Grothendieck inequality, equivalent to Theorem 8,
is the following [29]. Let Φ : Mn(C) → Mn(C) be a linear map and xi, yj ∈ Mn(C) finite
sets of matrices. Then,∣∣∣∑

i

〈xi,Φ(yi)〉
∣∣∣ ≤ K′G‖Φ‖S∞→S1

(
‖
∑

i
x∗i xi‖+ ‖

∑
i
xix
∗
i ‖

2 ·
‖
∑

i
y∗i yi‖+ ‖

∑
i
yiy
∗
i ‖

2

)1/2

(9)

where K ′G ≤ 2 and the norms on the right hand side are operator norms ‖ · ‖S∞ . To show
tightness, i.e. K ′G ≥ 2, Haagerup and Itoh [16] (see [29] for a survey) gave an explicit family
of operators for which (9) gives a lower bound of K ′G approaching 2. We will show that slight
modifications of these operators are irreducibly covariant, which proves Proposition 18. It is
instructive to repeat their construction. The proof uses techniques familiar in the context of
the antisymmetric Fock space, but our proof is self contained.

I Lemma 19 ([16]). For each n ∈ N there exists a d ∈ N and a linear map Φ : Md(C) →
Md(C) with sets of matrices {xi}, {yi} such that (9) yields K ′G ≥ (2n+ 1)/(n+ 1).

Proof. Let H = C2n+1 and consider the antisymmetric k-fold tensor product H∧k which
is a linear subspace of the k-fold tensor product H⊗k. A basis of H∧k is formed by vectors
ei1 ∧ ei2 ∧ · · · ∧ eik with i1 < · · · < ik where the ei are standard basis vectors of H. Here
∧ is the wedge product or exterior product, which has the property x ∧ y = −y ∧ x and is
given by x ∧ y = x⊗ y − y ⊗ x, for x, y ∈ H. We will consider k = n and k = n+ 1 so that
the dimension of H∧k is d =

(2n+1
n

)
for both k = n and k = n+ 1.

For 1 ≤ i ≤ (2n+ 1), define ci : H∧n → H∧(n+1) as ci(x) := ei ∧ x, which physicists call
the fermionic creation operator. Its adjoint c∗i : H∧(n+1) → H∧n is known as the annihilation
operator. By the antisymmetric property, ci(x) = 0 whenever ei was present in x, i.e., when
x = ei ∧ x′. The operator cic∗i , also known as the number operator, is a projector onto the
space spanned by basis vectors in which ei is present. The operator c∗i ci is a projector onto
the space where ei is not present. Since there are always (n+ 1) vectors present in H∧(n+1)

and (n+ 1) vectors not present in H∧n, we have

2n+1∑
i=1

cic
∗
i = (n+ 1)IdH∧(n+1) and

2n+1∑
i=1

c∗i ci = (n+ 1)IdH∧n .

We will now argue that

〈ci, cj〉 := 1
d

Tr(c∗i cj) = δi,j
n+ 1
2n+ 1 , (10)

‖
2n+1∑
i=1

αici‖S1 = ‖α‖L2

n+ 1√
2n+ 1

for α ∈ C2n+1. (11)
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The δi,j in (10) follows because 〈x, c∗i cjx〉 = 0 for any x = ek1 ∧ · · · ∧ ekn when i 6= j. The
factor n+1

2n+1 follows by taking the trace of one of the sums above and noting that by symmetry
in i, every term of the sum must have the same trace. To prove (11), first note that for any
unitary U ∈ U(2n+ 1) we have

U⊗(n+1) · ci · (U⊗n)−1 =
∑
j

Ujicj , (12)

which can be shown by proving it for all basis states:

U⊗(n+1)ci(U⊗n)−1(ek1 ∧ ... ∧ ekn
) = U⊗(n+1)ci(U−1ek1 ∧ ... ∧ U−1ekn

)

= U⊗(n+1)(ei ∧ U−1ek1 ∧ ... ∧ U−1ekn
)

= (Uei ∧ ek1 ∧ ... ∧ ekn)

= (
∑
j

Ujiej ∧ ek1 ∧ ... ∧ ekn
)

=
∑
j

Ujicj(ek1 ∧ ... ∧ ekn).

The trace-norm is unitarily invariant, so (12) implies ‖ci‖S1 = ‖
∑
j Ujicj‖S1 . Since c∗i ci is

a projector, we have
√
c∗i ci = c∗i ci and hence ‖ci‖S1 = 1

d Tr(c∗i ci). Now let α ∈ C2n+1 with∑
i |αi|2 = 1, then there is a unitary U ∈ U(2n+ 1) such that the i-th row of U is α. Note

that ‖α‖L2 = 1/
√

2n+ 1 since we use normalized L2-norms, which implies (11).
Since the dimensions of H∧n and H∧(n+1) are equal, we can identify the space of linear

maps L(H∧n, H∧(n+1)) with Md(C) (by choosing bases for H∧n and H∧(n+1)), and define
the following operator Φ : Md(C)→Md(C),

Φ(x) =
2n+1∑
i=1
〈ci, x〉 ci.

Consider (9) for Φ with xi = yi = ci. For the left hand side, note that by (10) we have

∣∣∣ 2n+1∑
j=1
〈cj ,Φ(cj)〉

∣∣∣ =
∣∣∣ 2n+1∑
i,j=1
〈ci, cj〉 〈cj , ci〉

∣∣∣ = (n+ 1)2

2n+ 1 .

For the right-hand side of (9), we require ‖Φ‖S∞→S1 = sup‖x‖S∞=1 ‖Φ(x)‖S1 . For any
x ∈ Md(C), define v(x) ∈ C2n+1 as v(x)

i = 〈ci, x〉. Note that ‖v‖L2 = sup‖α‖L2 =1 |〈v, α〉|.
First apply (11) to obtain

‖Φ(x)‖S1 = ‖
2n+1∑
i=1
〈ci, x〉ci‖S1 = ‖v(x)‖L2

n+ 1√
2n+ 1

= sup
‖α‖L2 =1

|〈v(x), α〉| n+ 1√
2n+ 1

.

Using (11) again, we compute sup‖x‖S∞=1 |〈v(x), α〉| for arbitrary α with ‖α‖L2 = 1,

sup
‖x‖S∞=1

|〈v(x), α〉| = sup
‖x‖S∞=1

1
2n+ 1

∣∣〈x,∑
i

αici〉
∣∣ = 1

2n+ 1‖
∑
i

αici‖S1 = n+ 1
(2n+ 1)

√
2n+ 1

.

We obtain ‖Φ‖S∞→S1 = (n+ 1)2/(2n+ 1)2. Now (9) yields (n+1)2

2n+1 ≤ K ′G
(n+1)2

(2n+1)2 · (n+ 1)
and therefore 2n+1

n+1 ≤ K
′
G. J

We use the following fact from [12, Theorem 19.14], about the representations of the odd
dimensional complex special orthogonal groups on wedge products of complex vector spaces.
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I Lemma 20. Let n, k ∈ N, N := 2n+ 1 and let Rk : SO(N,C)→ GL((CN )∧k) be given by
A 7→ A⊗k. This representation is irreducible.

Below, we actually need that the real special orthogonal group SO(N,R) acts irreducibly on
the same anti-symmetric space. Fortunately, this is implied by Lemma 20; see [12, pp. 439].
We will also use the fact that Rk and RN−k are unitarily equivalent to each other. This is
the content of the following proposition [32, Proposition IX.10.4].

I Proposition 21. For positive integer n and N = 2n+ 1 and k ∈ {1, . . . , N}, let Rk be the
representation as in lemma 20. Then, there exists an isometry Vk : (CN )∧k → (CN )∧(N−k)

such that

VkRk(A) = RN−k(A)Vk, ∀A ∈ SO(N,R).

of Proposition 18. Let d be the dimension of (CN )∧n and let Φ : Md(C)→Md(C) be as in
the proof of Lemma 19. For each k ∈ N, let Rk : SO(N,R)→ GL(H∧k) be the representation
A 7→ A⊗k, which is irreducible by Lemma 20. Define, for notational convenience, π := Rn+1
and ρ := Rn. We first show that for all A ∈ SO(N,R), we have

Φ(π(A)xρ∗(A)) = π(A) Φ(x) ρ∗(A). (13)

For the left-hand side, note that

Φ(π(A)xρ∗(A)) =
∑
i

〈
ci, π(A)xρ∗(A)

〉
ci

=
∑
i

〈
π(A)∗ciρ(A), x〉 ci

=
∑
i

〈∑
j

Aijcj , x
〉
ci

=
∑
ij

Aij〈cj , x〉 ci,

where we used (12) from the proof of Lemma 19 and noting that SO(N,R) ⊂ U(N) is a
subgroup. Using (12) again for the right-hand side, we have

π(A) Φ(x) ρ∗(A) =
∑
i

〈ci, x〉π(A)ciρ∗(A)

=
∑
i

〈ci, x〉
∑
j

Ajicj

=
∑
ij

Aij〈cj , x〉 ci.

which proves (13).
Define a new superoperator Φ′ : Md(C)→Md(C) by

Φ′(x) = Φ(xV ∗)V,

where V := Vn+1 is the isometry as in Lemma 21 (we view V as a matrix in Md(C) by
choosing basis). We first note that this Φ′ might also be used in Lemma 19 to show that the
non-commutative Grothendieck constant is 2, since Schatten-norms are unitarily invariant.
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Hence, if we show that Φ′ is irreducibly covariant, we are done. This follows from the following
computation, where we use (13) and the fact that V π(A) = ρ(A)V for all A ∈ SO(N,R):

Φ′
(
π(A)xπ(A)∗

)
= Φ

(
π(A)xπ(A)∗V ∗

)
V

= Φ
(
π(A)xV ∗ρ(A)∗

)
V

(13)= π(A) Φ(xV ∗) ρ(A)∗V
= π(A) Φ(xV ∗) V π(A)∗

= π(A) Φ′(x) π∗(A),

where the second-last line follows since ρ(A)∗ = V π(A)∗V ∗. Hence, Φ′ is irreducibly covariant
with respect to the irreducible representation π of SO(N,R). J
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