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Preface

The 15th Conference on the Theory of Quantum Computation, Communication and Crypto-
graphy was hosted by the University of Latvia, and held online from June 9-12, 2020.

Quantum computation, quantum communication, and quantum cryptography are subfields
of quantum information processing, an interdisciplinary field of information science and
quantum mechanics. The TQC conference series focuses on theoretical aspects of these
subfields. The objective of the conference is to bring together researchers so that they can
interact with each other and share problems and recent discoveries.

A list of the previous editions of TQC follows:

TQC 2019, University of Maryland, USA

TQC 2018, University of Technology Sydney, Australia

TQC 2017, Université Pierre et Marie Curie, France

TQC 2016, Freie Universitdt Berlin, Germany

TQC 2015, Université libre de Bruxelles, Brussels, Belgium

TQC 2014, National University of Singapore, Singapore

TQC 2013, University of Guelph, Canada

TQC 2012, University of Tokyo, Japan

TQC 2011, Universidad Complutense de Madrid, Spain

TQC 2010, University of Leeds, UK

TQC 2009, Institute for Quantum Computing, University of Waterloo, Canada
TQC 2008, University of Tokyo, Japan

TQC 2007, Nara Institute of Science and Technology, Nara, Japan
TQC 2006, NTT R&D Center, Atsugi, Kanagawa, Japan

The conference consisted of invited talks, contributed talks, a poster session, a rump
session, and a business meeting. The invited talks were given by Elena Kirshanova (Immanuel
Kant Baltic Federal University), Thomas Monz (University of Innsbruck), Xin Wang (Baidu
Research), and Henry Yuen (University of Toronto).

The conference was possible thanks to financial support from the European Regional
Development Fund (project 1.1.1.5/18/1/016), Baidu, and the University of Latvia.

We wish to thank the members of the Program Committee and all subreviewers for their
precious help. Our warm thanks also go to the members of the Local Organizing Committee,
for their considerable efforts in organizing the conference. We would like to thank Michael
Wagner (Dagstuhl Publishing) for his technical help. Finally, we would like to thank the
members of the Steering Committee for giving us the opportunity to work for TQC. And, of
course, all contributors and participants!

April 2020
Steven T. Flammia
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Exponential Quantum Communication Reductions
from Generalizations of the Boolean Hidden
Matching Problem

Joao F. Doriguello!
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Ashley Montanaro
School of Mathematics, University of Bristol, United Kingdom
ashley.montanaro@bristol.ac.uk

—— Abstract

In this work we revisit the Boolean Hidden Matching communication problem, which was the first
communication problem in the one-way model to demonstrate an exponential classical-quantum
communication separation. In this problem, Alice’s bits are matched into pairs according to a
partition that Bob holds. These pairs are compressed using a Parity function and it is promised that
the final bit-string is equal either to another bit-string Bob holds, or its complement. The problem
is to decide which case is the correct one. Here we generalize the Boolean Hidden Matching problem
by replacing the parity function with an arbitrary function f. Efficient communication protocols are
presented depending on the sign-degree of f. If its sign-degree is less than or equal to 1, we show an
efficient classical protocol. If its sign-degree is less than or equal to 2, we show an efficient quantum
protocol. We then completely characterize the classical hardness of all symmetric functions f of
sign-degree greater than or equal to 2, except for one family of specific cases. We also prove, via
Fourier analysis, a classical lower bound for any function f whose pure high degree is greater than
or equal to 2. Similarly, we prove, also via Fourier analysis, a quantum lower bound for any function
f whose pure high degree is greater than or equal to 3. These results give a large family of new
exponential classical-quantum communication separations.
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Generalized Boolean Hidden Matching Problem

1 Introduction

One of the main aims of the field of quantum information and quantum computation is to
establish the superiority of quantum computers and quantum resources over their classical
counterparts. While in some areas this superiority is based on a belief in the impossibility of
classical computers or classical resources solving particular tasks, e.g. the efficiency of Shor’s
algorithm [25] coming from the belief that there is no efficient classical factoring algorithm,
in other areas like communication complexity one can establish unconditional exponential
separations between classical and quantum performances.

Communication complexity is a model of computation first introduced by Yao [28]. In
this model, two parties (normally called Alice and Bob) hold each a piece of data and want
to solve some computational task that jointly depends on their data. More specifically,
if Alice holds some information x and Bob holds some information y, they want to solve
some function f(z,y) or relational problem with several valid outputs for each  and y. In
order to do so, they will need to communicate between themselves, and their goal is to
solve the problem with minimal communication. The protocol that Alice and Bob employ
could be two-way, where they take turns sending messages to each other; one-way, where
Alice sends a single message to Bob who then outputs the answer; or simultaneous, where
Alice and Bob each pass one message to a third party (the referee) who outputs the answer.
Apart from these different types of communication settings, one is also interested in the
error of a protocol when solving a communication problem: the zero-error communication
complezity is the worst-case communication of the best protocol that gives a correct output
with probability 1 for every input (x,y); the bounded-error communication complexity is
the worst-case communication cost of the best protocol that gives a correct output with
probability 1 — ¢ for every input (z,y), with € € [0,1/2).

An interesting extension of the original communication model is the model of quantum
communication complexity [8], also introduced by Yao [29]. In this model, Alice and Bob
each has a quantum computer and they exchange qubits instead of bits and/or make use
of shared entanglement. The use of quantum resources can drastically reduce the amount
of communication in solving some problems in comparison to the classical communication
model.

Exponential quantum-classical separations are known in the two-way (e.g. [22]), one-
way (e.g. [4, 15]) and simultaneous (e.g. [9, 12]) models. Indeed, it is even known that
one-way quantum communication can be exponentially more efficient than two-way classical
communication [14, 23]. However, surprisingly few examples of such exponential separations
are known, compared (for example) with the model of query complexity in which Shor’s
algorithm operates.

The Hidden Matching problem [4] was the first problem to exhibit an exponential
separation between the bounded-error classical communication complexity and the bounded-
error quantum communication complexity in the one-way model. The problem can be
efficiently solved by one quantum message of logn qubits, while any classical one-way
protocol needs to send O(y/n) bits to solve it. The hardness of the problem is essentially
one-way: it could be efficiently solved by having Bob sent a classical message of log n bits
to Alice. The Hidden Matching problem is a relational problem. In the same paper [4] the
authors proposed a Boolean version of the problem, the Boolean Hidden Matching problem
(which is a partial Boolean function), and conjectured that the same quantum-classical gap
holds for it as well, which was later proven to be true by Gavinsky et al. [15]. Generalizing
this separation is the focus of this work.
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1.1 Hidden matching problems

Throughout the paper, [n] = {1,2,...,n} and given z,y € {—1,1}", we denote by x oy
the Hadamard (elementwise) product of x and y, and by Z the complement of z, such that
rzox = 1"

The Hidden Matching (HM;) and Boolean Hidden Matching (BHM;,) problems are
defined with respect to some a € (0,1]. Alice is given a string € {—1,1}"* and Bob is
given a sequence M € M, > of an/2 disjoint pairs (i1, j1), (i2, J2); - - - (fan/2: Jans2) € [0]?.
Such a sequence is called an a-matching, and M,,, /2 denotes the family of all a-matchings —
i.e. partial matchings of a fixed size in the complete graph on n vertices. Together x and M
induce a string z € {—1,1}*"/2? defined by the parities of the an/2 edges, i.e., zy = T, Tj,
for ¢ =1,...,an/2. Then the HM; and BHM;, problems are defined as follows.

» Definition 1 (The Hidden Matching problem (HM;)). Let n € N be even and o € (0, 1].
Alice receives x € {—1,1}" and Bob receives M € Mgy, 2. Their goal is to output a tuple
(i,7,b) such that (i,5) € M and b = z;z;.

» Definition 2 (The Boolean Hidden Matching problem (BHM;)). Let n € N be even and
a € (0,1]. Alice receives x € {—1,1}" and Bob receives M € Moy, 2 and w € {—1,1}07/2,
It is promised that z o w = b*™/? for some b € {=1,1}. Their goal is to output b.

Given inputs  and M, it is clear that there are many possible correct outputs for the HM?
problem (an/2 correct outputs, actually), making it a relational problem. On the other
hand, the BHM;, is a partial Boolean function due to the promise statement.

Bar-Yossef et al. [4] gave a simple quantum protocol to solve the HM}l problem with
just O(logn) qubits of communication®, while proving that any classical protocol needs to
communicate at least Q(y/n) bits in order to solve it. Similarly with the BHM, problem,
Gavinsky et al. [15] demonstrated the same exponential classical-quantum communication
gap for any o < 1/2 (note that the definition of « they use differs from ours by a factor of 2).
As HMY is at least as difficult as BHMY, their result implies the same lower bound for HM;,.
The approach taken by Gavinsky et al. in proving the classical lower bound is particularly
interesting in that it uses the Fourier coefficients inequality of Kahn, Kalai, and Linial [17],
which is proven via the Bonami-Beckner inequality [7, 5]. We also mention that Fourier
analysis had been previously used in communication complexity by Raz [21] and Klauck [18].

A slightly weaker separation (O(logn) vs. Q(n/19)) for a closely related problem was
shown in [19] using similar techniques. The BHM;, problem was generalized by Verbin and
Yu [26] to a problem that they named Boolean Hidden Hypermatching (BHHY). In this
problem, instead of having the bits from Alice matched in pairs, they are now matched in
tuples of ¢ elements. In other words, a bit from the final string z is obtained by XORing ¢
bits from Alice’s string. More precisely, Alice is given a string « € {—1,1}" and Bob is given
a sequence M € M, of n/t disjoint tuples (My1,..., M), ...,(Mpji1,--., Myyy) € [n]
called a hypermatching, where M,, ;; denotes the family of all hypermatchings. Both x and M
induce a string z € {—1,1}"/* defined by the parities of the n/t edges, i.e., zy = H;Zl Ty,
for £ =1,...,n/t. The BHH!, problem is defined as follows.

» Definition 3 (The Boolean Hidden Hypermatching problem (BHH!,)). Let n,t € N be
such that 2t|n. Alice receives x € {—1,1}" and Bob receives M € M,,;; and w € {—1,1}"/*.
It is promised that z o w = b/t for some b € {=1,1}. Their goal is to output b.

4 Throughout this paper we shall use {—1,1} instead of {0, 1} for convenience.
5 Their protocol extends easily to the more general HMS problem.

1:3
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Verbin and Yu proved a classical lower bound of Q(n'~1/*) communication for every bounded-
error one-way protocol, showing the increasing hardness of the problem with ¢, as one
should expect since the BHH; problem can be reduced from the BHM,, problem (we will
show how this is done in detail later). The authors subsequently used this problem to
prove various streaming lower bounds, i.e., lower bounds on the space required of streaming
algorithms (algorithms that read the input from left to right, use a small amount of space,
and approximate some function of the input). However, no efficient quantum protocol was
proposed for solving the BHH; problem for ¢ > 2. It was only later that Shi, Wu and
Yu [24] showed that such efficient quantum protocols do not exist. More specifically, they
proved a quantum lower bound of Q(n'~2/*) communication for every bounded-error one-way
protocol for the BHH!, problem. Their proof is similar to the ones used in the classical lower
bound, the difference lying in the use of Fourier analysis of matriz-valued functions and the
matrix-valued Hypercontractive Inequality of Ben-Aroya, Regev, and de Wolf [6].

Note that the lower bound of Verbin and Yu does not use an o parameter, unlike the
lower bound of [15]. However, their lower bound requires n/t to be even, otherwise Alice can
just send the parity of her bit-string. (The result of [15] can be extended to hold for any
a < 1 fairly straightforwardly, but achieving a strong lower bound for o« = 1 requires some
more work.)

1.2 Our Results

This paper focuses on the study of a broad generalization of the BHH; problem. In the
(Boolean) Hidden Matching and Boolean Hidden Hypermatching problems, the task Alice and
Bob want to solve can be viewed as rearranging Alice’s data according to some permutation
that Bob holds, and “compressing” the data to a final bit-string by applying some Boolean
function to the bits. Then Alice and Bob’s goal is to determine some information about this
final bit-string. The way this compression was originally done was via the Parity function, but,
apart from the obvious reason that Parity gives the desired classical-quantum communication
gap and, less obviously, leads to a clear proof, there is no particular need to restrict to this
function in order to arrive at the final bit-string. This observation leads to a generalization
of the Boolean Hidden Hypermatching problem, which we named the f-Boolean Hidden
Partition (f-BHP®") problem, where f: {—1,1}* — {—1,1} is the Boolean function used
to compress Alice’s bits.

Given y € {—1,1}", we define by 4y = (yi_1)i41, YG-1)e42:---»Yje) € {—1,1} the
j-th block of size t from y, with ¢tjn and j = 1,...,n/t. When the size of the block is clear
from the context, we shall simply write y(7).

The f-Boolean Hidden Partition problem is defined as follows. Alice is given a bit-string
z € {~1,1}", and Bob is given a permutation o € S, and a bit-string w € {—1,1}°"/%,
where a € (0,1] is fixed. Given a Boolean function f: {—1,1} — {—1,1}, we can define
the map By : {—1,1}" — {-1,1}*"/t by By(z) = (f(o(x)M),..., fo(z)@"/V)), where
o(x); = T5-1(;). Hence x and o induce a bit-string given by Bf(x), each of whose bits is
obtained by applying f to a block of the permuted bit-string o(z). The f-BHP®"' problem
can be defined as follows.

» Definition 4 (The f-Boolean Hidden Partition problem (f-HM®%")). Let n,t € N be
such that tjn and a € (0,1]. Alice receives x € {—1,1}" and Bob receives o € S,, and
w € {—1,1}*"/t. It is promised that there exists b € {—1,1} such that By(x) ow = b*"/t,
The problem is to output b.
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The adoption of the word “Partition” instead of “(Hyper)Matching” from previous works
comes from our decision to view the problem in terms of a hidden partition that Bob holds,
instead of an a-(Hyper)Matching. Bob shuffles Alice’s data according to some permutation,
and then just partitions the resulting data in adjacent blocks of size ¢ and uses f to get the
final bit-string. Obviously both views are equivalent, but we think that the permutation
approach eases the analysis of the problem.

Our aim is to study the f-Boolean Hidden Partition problem in terms of the function f.

It should be clear that for some functions the problem is hard to solve classically, e.g. when f
is the Parity function and we recover the usual Boolean Hidden Hypermatching problem. On
the other hand, for some functions it becomes easily solvable, e.g. when f is the AND function
(Alice needs only to send the position of any 0 in her string). We would like to characterize
for which functions the problem can be efficiently solved classically, i.e., with O(logn) bits of
communication, and for which functions it is hard to solve classically, i.e., requires 2(n%)
bits of communication for some a € (0,1]. And the same question applies to quantum
communication complexity: we would like to determine for which functions the problem
admits or not an efficient quantum communication protocol. Given this characterization, we
can check for which functions there is an exponential classical-quantum communication gap.

We partially prove that the whole f-BHP®" problem can be fully characterized by just
one quantity: the sign-degree of the function f. A polynomial p : {—1,1}' — R is said to
sign-represent f if f(x) = sgn(p(x)). If |p(x)] <1 for all z, we say that p is normalized. The
bias of a normalized polynomial p is defined as § = min, |p(z)|. The sign-degree (sdeg(f))
of f is the minimum degree of polynomials that sign-represent it. In Appendix A we prove
the following upper bounds on the classical and quantum communication complexity of the
f-Boolean Hidden Partition problem based on the sign-degree:

» Theorem 5. Let f : {—1,1}* — {—1,1} be a Boolean function. If sdeg(f) < 1, then

there exists a bounded-error classical protocol that solves the f—BHPf‘L’t problem with error

probability € and O ((O%B)2 log % log n) bits of communication, where B is the maximal bias

of a polynomial of degree sdeg(f) that sign-represents f.

» Theorem 6. Let f : {—1,1}t — {—1,1} be a Boolean function. If sdeg(f) < 2, then

there exists a bounded-error quantum protocol that solves the f—BHPz’t problem with error

probability € and O ((o%ﬁ)2 log % log n) qubits of communication, where 3 is the maximal bias

of a polynomial of degree sdeg(f) that sign-represents f.

Note that the bias 8 can be very small, but can also be lower-bounded in terms only of
t: indeed, it is shown in [10] that g is lower-bounded by =0 ™) 1 this work we will
usually assume that t = O(1), so = Q(1). We assume throughout that Alice and Bob
do not have access to shared randomness or entanglement. The classical complexity in the
above theorem can actually be improved to an additive dependence on logn via applying
Newman’s Theorem [20] to a protocol with shared randomness, but at the expense of making
the protocol less intuitive.

The classical upper bound stated above comes from the observation that, if f has a
sign-representing polynomial p of degree 1, it is possible to determine whether f(z) = 1 with
probability > 1/2 by only evaluating f on one uniformly random bit of z, by writing down a
probabilistic procedure whose expectation on z mimics p(z). So Alice sends a few uniformly
random bits to Bob, who matches them to blocks in his partition, and evaluates f on the
corresponding blocks with success probability > 1/2 for each block. Ounly a few repetitions
are required to determine whether f(x) = w or f(x) = w with high probability.

1:5
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On the other hand, to obtain the quantum upper bound we use the idea of block-multilinear
polynomials from [1, 2], and some auxiliary results also from [2]. The idea is that Alice sends
a superposition of her bits, and Bob, after collapsing the state onto one of the blocks from his
partition (say block j), applies a controlled unitary operator that describes a block-multilinear
polynomial p of degree 2, which is produced from a sign-representing polynomial p for f of
degree 2. A Hadamard test is used to return an output with probability depending (roughly
speaking) on p(o(x)Y), g(x)0)), which in turn is equal to p(c(x)V)) according to a theorem
from [2]. The Hadamard test then outputs 1 with probability greater than 1/2 if f(2)) =1
and 0 with probability greater than 1/2 if f(2)) = —1.

We remark that both of these protocols actually solve a natural generalization of the
Hidden Matching problem [4] (i.e. they output the result of evaluating f(x?)) for Bob’s block
j, where j is arbitrary), which is at least as hard as the f-Boolean Hidden Partition problem.
However, unlike the Hidden Matching problem, the output is not correct with certainty, but
only with probability strictly greater than 1/2.

In Section 2 we reduce the f-Boolean Hidden Partition problem from the Boolean
Hidden Matching problem and prove that for almost all symmetric Boolean function f with
sdeg(f) > 2 the f-BHP2 problem require at least Q(y/n) bits of communication. The only
functions for which the reduction does not work are the Not All Equal functions on an odd
number of bits, i.e., NAE : {—1,1} — {—1,1}, defined by NAE(z) = —1 if |z| € {0,¢} and
NAE(z) = 1 otherwise, with ¢ odd.

» Theorem 7. Let f: {—1,1}t — {—1,1} be a symmetric Boolean function with sdeg(f) > 2.
If f is not the NAE function on an odd number of bits, then any bounded-error classical
communication protocol for solving the f-BHP®" problem needs to communicate at least

Q(/n/(at)) bits.

Finally, we generalize the Fourier analysis methods from [15, 26, 24] to prove a partial
result on the hardness of the f —BHPg’t problem, both classically and quantumly. Ideally we
would like to prove that any bounded-error classical and quantum protocols would need to
communicate Q(n'~1/4) bits and Q(n'~2/?) qubits, respectively, where sdeg(f) = d. What
we obtained is this result but with d being the pure high degree of f. A Boolean function
f is said to have pure high degree (phdeg(f)) d if f(S) = 0 for all |S| = 0,1,...,d — 1,
where f(S) = (f, xs) = + > ze{—1,13» f(@)xs(@) is the Fourier transform of f and xs(z) =
[l;cg @i, with S C [n], is a character function. It is possible to prove that phdeg(f) < sdeg(f),
so our result is a step towards proving a lower bound for all functions with sign degree > 2.

» Theorem 8. Let f: {—1,1} — {—1,1} be a Boolean function. If phdeg(f) =d > 2,
then, for sufficiently small o > 0 that does not depend on n, any bounded-error classical

communication protocol for solving the f—BHP;’L"t problem needs to communicate at least
Q(n'=Y%) bits.

» Theorem 9. Let f : {—1,1} — {—1,1} be a Boolean function. If phdeg(f) = d > 3,
then, for sufficiently small o > 0 that does not depend on n, any bounded-error quantum
communication protocol for solving the f—BHPz"t problem needs to communicate at least
Q(n'=2/%) qubits.

The above lower bounds are proved in [11]. The classical proof follows the general idea
from [15, 26], but the technical execution was substantially changed by borrowing ideas
from [24]. First, we apply Yao’s minimax principle [27], which says that it suffices to prove a
lower bound for a deterministic protocol under a hard probability distribution on Alice and
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Bob’s inputs. We choose Alice’s input « and Bob’s input ¢ independently and uniformly over
{=1,1}" and S,, (the set of all permutations on [n]), respectively. The input distribution is
completed by choosing w = By(x) with probability 1/2 and w = By(x) with probability 1/2.

Alice sends a message to Bob. If the length of the message sent is ¢, then the inputs for

which Alice could have sent that specific message define a set A of about 2"~¢ z’s. From
Bob’s perspective, he knows that the random variable X corresponding to Alice’s bit-string
is uniformly distributed in a set A and he knows his permutation o, hence his knowledge of
the random variable By(X) is described by the distributions

o _HeeAB@=2) . {zeABx) =2}
pU()_ ‘A| dqd() |A‘ .

It is well known that the best success probability for distinguishing two distributions g;
and ¢ with one sample is 1/2 + ||¢g1 — g2|ltva/4. Therefore the bias of the protocol, i.e.,
the protocol’s successful probability minus a half, is equal to the total variation distance
between p, and ¢,. Differently from the approach of [15, 26], and following [24], we directly
upper bound the expectation of the bias over Bob’s permutation. By demanding a small
distributional error, we arrive at the desired communication lower bound. Upper bounding
the bias is done via Fourier analysis, using the inequality of Kahn, Kalai, and Linial [17].

The quantum proof follows the same idea from [24]. Yao’s minimax principle is still
applied and the “hard” input distribution is still uniform on Alice’s input = € {—1,1}",
Bob’s input o € S,, and the function value b € {—1,1}, which fixes Bob’s second input
w = Bf(z)o b/t The best strategy for Bob in determining b conditioned on his input
(o,w) is no more than the chance to distinguish between two subsets of Alice’s messages,
where a message corresponds to a quantum state p,, selected according to b. In other words,
no more than the chance to distinguish between the following pg™ and p]"", each appearing
with probability Pr[b = 0|c, w] and Pr[b = 1|0, w], respectively,

ZCDG{fl,l}" Pr[m, 1,0, w]pw
Pr[z, 1,0, w]

pa’{w _ er{fl,l}” PI‘[.’I},0,0’, ’LU]p$ and po,w _
0 Pr[z, 0,0, w] !

It is known that any protocol that tries to distinguish two quantum states pg and p; appearing
with probability p and 1 — p, respectively, by a POVM has bias at most ||ppo — (1 — p)p1ltx/2
[16]. The bias is then upper bounded by using Fourier analysis of matrix-valued functions,
in particular by the matrix-valued hypercontractive inequality of Ben-Aroya, Regev, and de
Wolf [6].

The difference between the classical and quantum lower bound proofs was considerably
reduced in our paper, e.g., the classical proof now relies less on the use of the Parseval’s
identity. Still some differences persist. Apart from the obvious generalization of Fourier
analysis to matrix-valued functions, the Fourier analysis in the quantum lower bound proof is
performed directly on the encoding messages and not on the pre-images of a fixed encoding
message, since there is no clear quantum analogue of conditioning on a message. The main
technical difficulty we faced compared to [15, 26] is that the Fourier coefficients of Bob’s
distributions p,(z) and ¢,(z) are not nicely related to just one Fourier coefficient of the
characteristic function of A any more, but instead to a more complicated sum of many
coefficients. This requires us to carefully bound various combinatorial terms occurring in the
proof and to use our freedom to choose « fairly small.

In Section 3 we analyse the limitations of our techniques and show that under the uniform
distribution, which was used as the “hard” distribution during the proof of Theorem 8, we
cannot obtain a lower bound depending on the sign degree instead of the pure high degree.

1:7
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We finally remark that the one-way communication complexity separations we found
can easily be used to obtain corresponding separations in the streaming model, similarly
to [15, 26].

2 Reductions from the Boolean Hidden Matching problem

As mentioned before, in [15] it was proved that the Boolean Hidden Partition problem using
PARITY on 2 bits (aka the BHM problem) is hard to solve, i.e., R1(BHM) = Q(y/n/a).
With this result alone it is possible to prove that the f-Boolean Hidden Partition problem for
almost any symmetric Boolean function with sdeg(f) > 2 is at least as hard to solve. This
can be achieved via a simple reduction from the BHM problem to the f —BHPg’t problem
with symmetric functions, which we shall show in this section.

For this section, in a slight abuse of notation we define |z| = |{i : ; = —1}| to be the
“Hamming weight” of x. Let s,t € N, with s < t. Consider a symmetric Boolean function
fs:{=1,1}t = {—=1,1} such that (without loss of generality) fs(1") =1 and

(1)

f( ) +1if0§|$|§9101" 92i<\x|§92i+1,i:1,2...,Ls/2J,
s\T) =
—1if 923'_1 < |QL‘| < sz,j: 1,2,..., I_(S—‘rl)/QJ,

where 0 e Nfork=1,...,s+1and 0<6; <--- <05 <0341 =t and 01 — 0, > 1 for all
k=1,...,s. The following result from [3] tells us that sdeg(fs) = s.

» Lemma 10. (Lemma 2.6 from [3]) If [ is a symmetric function, then sdeg(f) is equal to
the number of times f changes sign when expressed as a univariate function in 'y, x;.

In order to reduce f; —BHP?t from BHM we first need to reduce the function fs from
PARITY, i.e., we want that V' € {—1,1}%, 3z € {—1,1}! such that fi(z) = PARITY(2/).
The key combinatorial step to achieve this is shown in the next Lemma.

» Lemma 11. Let f, : {—1,1}t — {—1,1} be the symmetric Boolean function from Eq. 1
with s > 2 such that either 2|t or 03 — 01 < t — 1. Then there exists a,b € N such that
Vo' € {—1,1}2, 3z € {-1,1} such that fs(z) = PARITY (') and |z| = a|2’| + b.

Proof. The condition that V2’ € {—1,1}?, 3z € {—1,1}* such that fs(z) = PARITY(2')
and |z| = a|2’| + b is equivalent to

|2/ =0 = f5(b) =1,
|2’ =1 = fs(a+b) =—1, (2)
|2/ =2 = fs(2a+b) = 1.

We divide the proof into two cases: either there exists k* € {1,...,s—1} such that 0«41 — O~
is odd or there does not exist such a k*. Suppose first that such £* exists. Without loss of
generality we can assume that fs(z) = —1 for - < |x| < Og=11, otherwise we just flip the
values of f,. Then we set

a = (9k*+1 — gk* + ].)/27
b= 0Op~.

First, a,b € N. Second, a + b = (Og+y1 + O+ + 1)/2, hence O < a + b < Og+11, since
Op+11 — O+ > 1. And third, 2a + b = 041 + 1 < Og«1o. Therefore all conditions from Egs.
2 are satisfied.
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Now suppose that for all k = 1,...,s—1 we have 2|(0;41 —0). Define the bit 6 = [0; # 0]
and set

a:(92701+2)/2,
b=26; -4

First, a,b € N (note that 6 =1 = 6; > 0). Second, a +b = (02 + 61 + 2 — 25)/2, hence
01 < a4+ b <6, since O, — 61 > 2 by hypothesis. And third, 2a +b =0, +2 — § < t since
O —0; <t—1and s <t (sothat 0o =t—1 = 6 = 1). Therefore all conditions from
Eqgs. 2 are satisfied. <

If 21t and 63 — 0; =t — 1, then our conditions give us

b=0,
O<a<t,
2a =1,

and we see that the condition 2a = t cannot be fulfilled by a € N. This case corresponds to
the symmetric Boolean function Not All Equal (NAE), defined by NAE(x) = 1 if |z| € {0, ¢}
and NAE(x) = —1 otherwise, with ¢ odd.

Given the reduction above from PARITY to fs, we can construct our reduction from the
BHM problem to the f,-BHP®"' problem.

» Theorem 7. Let fs: {—1,1} — {—1,1} be the symmetric Boolean function from Eq. 1
with s > 2 such that either 2|t or 5 —0; <t — 1. Then R'(f,-BHP®") = Q(y/n/(at)).

Proof. Suppose by contradiction that R'(f,-BHP®") = o(y/n/(at)), i.e., there exists a
protocol II that solves f,-BHP®" with o(y/n/(at)) bits of communication. We are going to
show that such protocol would allow Alice and Bob to solve the BHM problem with o(y/n/«)
bits of communication, which leads to a contradiction.

Let a,b € N be the numbers used in reducing fs from PARITY in Lemma 11. Alice
increases her bit string € {—1,1}"™ as follows: she makes a copies of x, obtaining z* €
{—1,1}%", where 2% = zx - - -z represents x repeated a times. She then adds bn/2 times the
bit 1, obtaining £%1°*/2. Finally, she adds (t — 2a — b)n/2 times the bit —1, to finally obtain
xp = x210/2.1(=2a=0)n/2 Note that 2 € {—1,1}"/2.

Bob, on the other hand, increases his permutation o € S, to a new permutation oy € S,;/2.

In order to describe how he does this, we ease the notation by referring to the j-th block
(771 ((j — Dt +1),...,m1(jt)) of a given permutation 7 as (Bj1,...,B;+). With this
notation, the j-th block (B 1, Bj2) of the permutation ¢ is mapped to the j-th block

<Bj717 Bjyg,n + Bj71,’fl + Bj72, ey (afl)n + Bj71, (a — 1)71 + Bj72,

an+],an+j+2,...,an—|—j—|—(t—2a—1)2>

of the new permutation oy. Note that the new block has ¢ elements, as expected.

Consider the block strings of(zf)U®) € {~1,1} and o(x)U?) € {~1,1}?, with j =
1,...,n/2. By construction we have that |of(2 ;)| = a|o(x)?)| 4 b and, according to
Lemma 11, we get f(os(xs)¥")) = PARITY (0(x)"?) for all j = 1,...,n/2. Hence we see
that every instance of the problem BHM : {—1,1}" — {—1,1} is mapped to an instance of
the problem f,-BHP%: {—1,1}"/2 — {—1,1}. Therefore we could map the BHM problem
into the f,-BHP%' problem and use the protocol II in order to solve it with o(y/n/(at))
bits of communication, which is impossible. Thus R!(f,-BHP®*) = Q(y/n/(at)). <

1:9
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3 Limitations of proof technique

Theorem 8 guarantees the classical hardness of the f —BHPg’t problem if f has pure high
degree > 2, and not sign degree > 2, which would be a stronger result. To arrive at this
result, we used the uniform distribution as a “hard” distribution for Yao’s principle. In this
section we shall prove that under the uniform distribution we cannot obtain a better result.
More specifically, we shall prove that under the uniform distribution there is an efficient
bounded-error classical protocol for solving the f-BHP®' problem if phdeg(f) < 1.

» Theorem 12. Under the uniform distribution for Alice and Bob’s inputs, if phdeg(f) <1
then R'(f-BHP®!) = O (% 1ogn).

~

Proof. Let F = {i € [t] | f({i}) # 0}. Given that phdeg(f) < 1, this set is non-empty.
Consider the following protocol: Alice picks a subset I C [n] of indices uniformly at random
using shared randomness, where |I| will be determined later, and sends the indices and
corresponding bitvalues to Bob. Let {z;};cr be the bitvalues sent, and let j(i) = [o(4)/t]
and k(i) = 0(i) mod ¢t for all 4 € I, where o € S,, is Bob’s permutation. The probability
that none of the indices sent by Alice are matched to a non-zero Fourier coefficient according
to Bob’s permutation, within one of the an/t blocks he has, is

It
Pry k(i) & F, Vi € I] < <1 _ a“;') < eoltlFI/

which we can make almost arbitrarily small by choosing || to be sufficiently large. (Note that
the first inequality above would be an equality if we chose the elements of I with replacement,
and choosing them without replacement cannot make Pr[k(:) ¢ F, Vi € I] higher.) Hence
with high probability I N F N [an/t] # . Choose some £ € I N F N [an/t]. Bob computes
sen[f({k(O)})] - J(x),g(%)) -wj(ey: if it is 41, then he outputs that By(x) = w, and if it is —1,
then he outputs that By(z) = w.

To see why the protocol works, we calculate the probability that sgn[f({k‘(ﬁ)})] ~0(x)(j(e))

k(£)
is equal to f(a(x)(j(f))).

Pr [senlF({k(O o (@) = F(o(@)0@)] =

- % N 2t1+1 S senlf({kO Do () F(o (@) @)

ze{—1,1}*

1 1 ~ ~
= 5+ sl FEON] - FEOY)
1 1~
=+ -|f({k(¢
5 + 5 FAEOD,
which is greater than 1/2 and where we used in the first line that the distribution on Alice’s in-
puts is uniform. Therefore, by a union bound, for sufficiently large |I| = O (i log m),

the overall success probability of the protocol (i.e. I N F N [an/t] # § and Bob’s output
equals f) is strictly greater than 1/2. Since |f({k(¢)})| > 21! (as it is nonzero and is an
average of 2 41’s), this gives us the final overhead of O(t?/«). <
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4 Conclusions

We proposed a very broad generalization of the famous Boolean Hidden (Hyper)Matching
problem, which we called the f-Boolean Hidden Partition (f-BHP®") problem. Instead
of using the Parity function to arrive at the final bit-string that Alice and Bob wish to
explore, we use a generic Boolean function f. We partially characterize the communication
complexity of the whole problem in terms of one property of f: its sign degree. We proved
that if sdeg(f) < 1, then there exists an efficient bounded-error classical protocol that
solves the f-BHP%" with O(logn) bits. Similarly to the classical case, we proved that if
sdeg(f) < 2, then there exists an efficient bounded-error quantum protocol that solves the
f —BHP%J with O(logn) qubits. We then pursued a classical-quantum communication gap
by proving classical and quantum lower bounds for cases of the problem where sdeg(f) > 2.
First we noted that the f —BHPg’t problem is hard for almost all symmetric functions with
sdeg(f) > 2 via a simple reduction from the Boolean Hidden Matching problem. And second
we generalized previous communication complexity lower bounds based on Fourier analysis
to prove that functions with phdeg(f) = d > 2 lead to a classical Q(n'~/¢) communication
cost and functions with phdeg(f) = d > 3 lead to a quantum Q(n'~2/%)
for the f-BHP®' problem.

It is known that phdeg(f) < sdeg(f), but our lower bounds are probably not tight for all
functions with sign degree > 2. We proved that this is an inherent limitation of the chosen
distribution for Alice and Bob’s inputs during the proof, since under the uniform distribution
it is possible to solve the problem with O(logn) bits of communication if phdeg(f) < 1. We
then make the following conjectures.

communication cost

» Conjecture 13. R!(f-BHP') = Q(n'~Y?) if sdeg(f) = d > 2.
» Conjecture 14. Q!(f-BHPY") = Q(n'~2/9) if sdeg(f) = d > 3.

A proof of these results would require a non-uniform distribution on Alice and Bob’s inputs.
We hope that these conjectures help motivate the development of necessary quantum
lower bound techniques.
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A Proof of Upper Bounds

In this and the following appendices, denote by R!(P) and Q! (P) the classical and quantum
communication cost of the protocol P in bits and qubits, respectively, and denote by RL(f) =
minp R}(P) and QL(f) = minp QL (P) the minimum classical and quantum communication
cost, respectively, over all one-way protocols P without shared randomness that solve a
communication problem f with failure probability 0 < € < 1/2.

A.1 Classical Upper Bound

Consider the f-BHP2* problem for f : {—1,1}¢ — {—1,1} with sdeg(f) < 1. Now let
p:{-1,1} — [-1,1] be a normalized sign-representing polynomial for f. Hence we can
write

t
p(z) =ao + Z QT
i=1

with (a;)!_, € R. Let 8 = min, |p(z)| be the bias of p.

» Theorem 5. R!(f-BHP®') =0 ((ﬁ)“og%logn) if sdeg(f) < 1.

Proof. Consider the following protocol: Alice picks m = O((C%B)2 log 1) bits from z uniformly
at random (with replacement) and sends them to Bob, together with their indices. Let
I and {z;};c; be the indices and bitvalues sent, respectively. Let j(i) = [o(i)/t] and
k(i) = o(i) mod t for all i € I, where o € S,, is Bob’s permutation. Define the random
variable X (i) = (ag(;)Ti + ao/t)wjy if o(i) € [an/t] and X (i) = 0 if o(i) ¢ [an/t], where
ap and ay are the zeroth order and xy’s coefficients, respectively, from the sign-representing
polynomial p, and define X =, ; X (i). Bob then computes sgn(X). If the sign is 1, then

he outputs Bf(x) = w, and if the sign is —1, then he outputs By(z) = w.

To see why the protocol works, we calculate the expectation value of random variable X.

E[X] =m - E;[X(7)]
= am - EZ[(ak(l)sz + aO/t)wj(i)]

=am-E; []Ek[aka(x)gcj) + o /thw;]

_ om-E, {p(o(az)(i))wj]

t
ot e,
=22 Y pe@) = X ple@?)
Jrw;=1 Jrw;=—1

If f(o(z))) = wj, then w; =1 = p(o(x)?)) > B >0and w; = -1 = p(o(z)¥)) <
—B < 0. Therefore

BX] > S 5o Y 8] =amd
jrw;=0 Jrw;=1
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If, on the other hand, f(o(z))) = —wj, then w; =1 = p(o(z))) < -3 < 0 and
w; = -1 = p(o(x)?)) > B> 0. Therefore

By using a Chernoff bound [13] of the type Pr[X > E[X] + u], Pr[X < E[X] — u] < e~24*/m
with v > 0 and setting u = £E[X] > 0, we can make

Pr[X >0 | By(z) =w], Pr[X <0 | By(z) =w] <e

by taking m = O((i)Qlogl). Therefore Alice and Bob can decide if Bf(z) = w or

t

By(x) = w with error probability € and O((;5)? log ¢ logn) bits of communication. <

A.2 Quantum Upper Bound

Consider the f-BHP®* problem for f : {—1,1} — {—1,1} with sdeg(f) = 2. Let p :
{-1,1}* — [-1,1] be a normalized sign-representing polynomial for f. Let 8 = min, |p(z)]
be the bias of p.

We say that a polynomial ¢ of degree k is block-multilinear if its variables x1, ...,z can
be partitioned into k blocks Ry, ..., Rk, such that every monomial of ¢ contains exactly one
variable from each block. As a special case, a block-multilinear polynomial ¢ of degree 2 can
be written as

q(xla"'7xn,y1a"'7ym Z azg iYj
i€[n]
J€[m]
with variables in the first block labeled as 1, ..., z, and the variables in the second block
labeled as y1, ..., Ym. Defining the matrix A = (ai;)ic[n],je[m], then

q(z,y) =" Ay

for all z € R™ and y € R™. We say that ¢ is bounded if |g(z,y)| < 1forall z € {-1,1}",y €
{—=1,1}™. This translates to

<
sy | 2 | <1

m ’LG
ye{—1,1} je[m]
ie, [|Alloos1 < 1.
In order to prove the quantum upper bound, we will need the following results. In what
comes, define 7 = (1,21, ...,2¢)-

» Lemma 15 ([2]). Given a m x m complex matriz M, there exists a unitary U (on a

possibly larger space with basis |1),...,|k) for some k > m) such that, for any unit vector
ly) =30 agli), Uly) = ]|\|41\‘4y\| + |9), where |¢) consists of basis states |i), i > m only.

» Theorem 16 ([2]). Let p : {—1,1} — [—1,1] be a sign-representing polynomial for f
with sdeg(f) = 2. Then there is a block-multilinear polynomial p : R2¢+1) — R such that
P&, %) = pla) for any x € {=1,1}', and [p(y)| <3 for any y € {~1,1}0"+1).
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Let p : R2(+D 5 R be the block-multilinear polynomial of degree 2 obtained from the
sign-representing polynomial p of f according to Theorem 16. It can be written as

Pla,y) = Y ayziy; =" Ay, (3)
ijeli+1]

where A = (aij)i,je[t+1]-
With these in hands, we present our upper bound.

» Theorem 6. Q!(f-BHPY") =0 ((%B)Qlog%logn) if sdeg(f) < 2.
Proof. Consider the following protocol: Alice sends to Bob m = O((Of—ﬁ)2 log %) copies of
the quantum state of O(logn) qubits
1 n n/t

Ya) = —— i|8) + n+i

a) = e | ot + oot
Bob measures each of them by using the POVM

jt
n+i) g+ D e @) e ;
= j€lm/t]

where o € S, is his permutation, and attaches a qubit in the state |+) to each of the final
states. Let I C [n/t] be the sequence of indices from his measurements. Then his final state
is

ws) =) 1+,

JEI
where
() ! : S -1
W) = Z= | In+a) + i_(gl:)tﬂ%—mlff (i))
Let A be the (t + 1) x (¢ + 1) matrix from the representation of p according to Eq. 3.
Lemma 15 guarantees the existence of a unitary U; such that U;|1)0)) = A‘“ﬁﬂ)> + ¢},
with (¢)])())) = 0. Bob then applies a controlled U; gate onto each |+) ;1)) to obtain

1 . 1 .
cuslin) =@ ( 508 + ;1) )
Gl =GR+ R
and then performs a Hadamard gate on the first qubit of each of the subsystems I and
measures them. Let m; € {0,1} be the result of the measurement for block j € I. Define
the random variable X (j) = —(—1)"w; if j € [an/t] and X (j) =0if j ¢ [an/t], and define
X =3 ;c;X(j). Bob then computes sgn(X): if sgn(X) > 0, he outputs that By(z) = w,
and if sgn(X) < 0, he outputs that By(z) = w.
To see why the protocol works, first note that the probability of measuring 1 is

<¢(j)|A¢(j)>>

Pr[l] = (1+<w(”IUIW>)=;(” I1A]

N =

1 @9 o@) _1(  ple@)?)
2\ " ey ‘2(”||A||<t+1>>'
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The remainder of the argument is similar to the classical upper bound proof. Recalling that
m = |I|, the expectation value of X is

E[X] =m - E;[X ()]

am - Byl~(~1)"w]

= am% Z (Pr[m; = 1] — Pr[m; = 0]) w,
j=1

ol | 2@ po@©)
o 2 [[All(t+ 1) 2 [All(t+1)

Jrw;=1 Jwj=-1

If f(o(2))) = w;, then w; = 1 = p(o(x)¥)) > B >0and w; = —1 = p(o(z)¥)) <
—B < 0. Therefore

t 1 amf
E[X R - gl = oy
Xz emimer D | 207 2 7 T Tl D

If, on the other hand, f(o(z))) = —wj, then w; = 1 = p(o(z))) < -3 < 0 and
w; = -1 = p(o(x)¥)) > B > 0. Therefore

t 1 amf
EX] <am——r—— —B - = "Tar L
[ ]—O‘mnnAn(tH) j:g_l P jg_:_lﬁ [A[[(+1)

By using a Chernoff bound [13] of the type Pr[X > E[X] + u], Pr[X < E[X] — u] < e=24*/m
with v > 0 and setting u = £E[X] > 0, we can make

Pr[X >0 | By(z) =w], Pr[X <0 | By(z) =w] <e

by taking m = O((Z5)?logl), where we use that [|A| < [|Afcom1 < 3 according to

af
Theorem 16 (note that ”@T‘!? < |“|2ﬁ|‘1, and taking maximums over all  on both sides gives
Al < ||Allso—1). Therefore Alice and Bob can decide if By(z) = w or By(x) = W with error
probability € and O((Of—ﬁ)2 log % log n) qubits of communication. <
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—— Abstract

An open problem that is widely regarded as one of the most important in quantum query complexity
is to resolve the quantum query complexity of the k-distinctness function on inputs of size N. While
the case of k = 2 (also called Element Distinctness) is well-understood, there is a polynomial gap
between the known upper and lower bounds for all constants k > 2. Specifically, the best known

upper bound is O (N(3/4)71/< ) (Belovs, FOCS 2012), while the best known lower bound

for k> 2is Q (N2/3 + N<3/4>71/(2k>) (Aaronson and Shi, J. ACM 2004; Bun, Kothari, and Thaler,
STOC 2018).

For any constant k > 4, we improve the lower bound to (N<3/4>71/(4k>). This yields, for
example, the first proof that 4-distinctness is strictly harder than Element Distinctness. Our lower

2k +2_y)

bound applies more generally to approximate degree.
As a secondary result, we give a simple construction of an approximating polynomial of degree
O(N®/*) that applies whenever k < polylog(N).
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1 Introduction

In quantum query complexity, a quantum algorithm is given query access to the bits of an
unknown input z, and the goal is to compute some (known) function f of z while minimizing
the number of bits of x that are queried. In contrast to classical query complexity, quantum
query algorithms are allowed to make queries in superposition, and the algorithm is not
charged for performing unitary operations that are independent of x. Quantum query
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complexity is a rich model that allows for the design of highly sophisticated algorithms and
captures much of the power of quantum computing. Indeed, most quantum algorithms were
discovered in or can easily be described in the query setting.

An open problem that is widely regarded as one of the most important in quantum query
complexity [18] is to resolve the complexity of the k-distinctness function. For this function,
the input z specifies a list of N numbers from a given range of size R,' and the function
evaluates to TRUE? if there is any range item that appears k or more times in the list.
The case k = 2 corresponds to the complement of the widely-studied Flement Distinctness
function, whose complexity is known to be O(N?/3) [4, 1].

For general values of k, the best known upper bound on the quantum query complexity
of k-distinctness is O (N3/4’1/(2k+2*4)), due to a highly sophisticated algorithm of Belovs

[8]. For a long time, the best known lower bound on the quantum query complexity of
k-distinctness was Q(N?/3) for any k > 2, due to Aaronson and Shi [1], with refinements given
by Kutin [15] and Ambainis [2]. This lower bound is tight for £ = 2 (matching Ambainis’
upper bound [4]), but it is not known to be tight for any k > 2. Recently, Bun, Kothari,
and Thaler [11] proved a lower bound of Q(N3/4=1/(2k)) for constant k.*> This improved
over the prior lower bound of Q(N?/3) for any constant k > 7. Furthermore, combined with
Belovs’ upper bound, this established that for sufficiently large constants k, the exponent in
the quantum query complexity of k-distinctness approaches 3/4 from below. However, the
precise rate at which the quantum query complexity approaches N3/ remains open: there is
a polynomial gap between the upper and lower bounds for any constant k, and indeed there
is a qualitative difference between the inverse-exponential dependence on k in the exponent of
N3/4=1/(2F2—4) (the known upper bound), and the inverse-linear dependence in the known
lower bound of N3/4-1/(2k)

Main Result

This paper improves the lower bound from Q(N3/4=1/(k)) to Q(N3/4=1/(4k)) While this
bound is qualitatively similar to the lower bound of [11], it offers a polynomial improvement for
every constant k > 4. Perhaps more significantly, for k& € {4,5,6}, it is the first improvement
over Aaronson and Shi’s Q(N?/3) lower bound that has stood for nearly 20 years.

Approximate Degree

The e-error approximate degree of a Boolean function f: {—1,1}" — {—1, 1}, denoted &%e(f),
is the least degree of a real polynomial p such that |p(x) — f(x)| < e for all z € {—1,1}".
The standard setting of the error parameter is e = 1/3, and the (1/3)-approximate degree of
f is denoted a;-é( f) for brevity. As famously observed by Beals et al. [6], the quantum query
complexity of a function f is lower bounded by (one half times) the approximate degree of f.
Hence, any lower bound on the approximate degree of f implies that (up to a factor of 2) the
same lower bound holds for the quantum query complexity of f. As with prior lower bounds
for k-distinctness [1, 15, 2, 11], our k-distinctness lower bound is in fact an approximate

! For purposes of this introduction, N and R are assumed to be of the same order of magnitude (up to a
factor depending on k alone). For simplicity throughout this section, we state our bounds purely in
terms of N, leaving unstated the assumption that R and NN are of the same order of magnitude.

2 Throughout this manuscript, we associate —1 with logical TRUE and +1 with logical FALSE.

3 Throughout this manuscript, O, Q and © notations are used to hide factors that are polylogarithmic in
N.
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degree lower bound (on the natural Boolean function induced by k-distinctness on N [log, R]
bits, where R denotes the size of the range). Our analysis is a substantial refinement of the
lower bound analysis of Bun et al. [11].

» Theorem 1 (Informal version of Theorem 17 and Corollary 18). For any constant k > 2, the
approximate degree and quantum query complexity of the k-distinctness function with domain
size N and range size R > N is Q(N3/4-1/(4k)),

A Secondary Result: The Approximate Degree for Super-Constant Values of k

Recall that for constant k, the best known approximate degree upper bound for k-distinctness
is O (N 3/4-1/ (2k+2’4)> [8]. For non-constant values of k, the upper bound implied by Belovs’

algorithm grows exponentially with k. That is, the Big-Oh notation in the upper bound
hides a leading factor of at least 2°* for some positive constant c.* Consequently Belovs’
bound is N3/4t2(M) for any k > Q(log N). Furthermore, the bound becomes vacuous (i.e.,
linear in N) for k > clog N for a large enough constant ¢ > 0.

Our secondary result improves this state of affairs by giving a O(N3/4) approximate
degree upper bound that holds for any value of k£ that grows at most polylogarithmically
with N.

» Theorem 2 (Informal). For any k < polylog(N), the approzimate degree of k-distinctness
is O(N3/4).

We mention that for any k > 2, the approximating polynomials for k-distinctness that
follow from prior works [4, 8, 24] are quite complicated, and in our opinion there has not been
a genuinely simple construction of any O(N3/*)-degree approximating polynomials recorded
in the literature, even for the case of k = 2 (i.e., Element Distinctness). Accordingly, we
feel that Theorem 2 has didactic value even for constant values of k (though the O(N3/4)
approximate degree upper bound that it achieves is not tight for any constant k > 2).

To clarify, Theorem 2 does not yield a quantum query upper bound, only an approximate
degree upper bound. It remains an interesting open question whether the quantum query
complexity of k-distinctness is sublinear in N for all & = polylog(NN) (see Section 1.1 for
further discussion).

Our proof of Theorem 2 is a simple extension of a result of Sherstov [24, Theorem 1.3]
that yielded an O(N®/*) approximate degree upper bound for a different function called
Surjectivity.> A formal statement and proof can be found in the full version of this paper.

1.1 Discussion and Open Problems

The most obvious and important open question is to finish resolving the approximate degree
and quantum query complexity of k-distinctness for any k& > 2. Currently, the upper and
lower bounds qualitatively differ in their dependence on k, with the upper bound having
an exponent of the form 3/4 — exp(—O(k)) and the lower bound having an exponent of
the from 3/4 — Q(1/k). It seems very likely that major new techniques will be needed to

Belovs’ approximate degree upper bound was recently reproved by Sherstov [24], who made the
exponential dependence on k explicit (see, e.g., [24, Theorem 6.6]). To clarify, Belovs’ result is in fact a
quantum query upper bound, which in turn implies an approximate degree upper bound. Sherstov’s
proof avoids quantum algorithms, and hence does not yield a quantum query upper bound.
Surjectivity is the function that interprets its input as a list of N numbers from a given range of size R,
and evaluates to TRUE if and only if every range element appears at least once in the list.

2:3
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qualitatively change the form of either the upper or lower bound. In particular, on the lower
bounds side, our analysis is based on a variant of a technique called dual block composition
(see Section 1.2), and we suspect that we have reached the limit of what is provable for
k-distinctness using this technique and its variants.

We remark here that Liu and Zhandry [18] recently showed that the quantum query
complexity of a certain search version of k-distinctness (defined over randomly generated
inputs) is ©(n/2=1/("=D) This inverse-exponential dependence on k is tantalizingly
reminsicent of Belovs’ upper bound for k-distinctness. This may be construed as mild
evidence that 3/4 — exp(—O(k)) is the right qualitative bound for k-distinctness itself.

A very interesting intermediate goal is to establish any polynomial improvement over
the long-standing Q(n?/3) lower bound for 3-distinctness. This would finally establish that
3-distinctness is strictly harder than Element Distinctness (such a result is now known for all
k > 4 due to Theorem 1).

It would also be interesting to resolve the quantum query complexity of k-distinctness
for k = polylog(N). Although this question may appear to be of specialized interest, we
believe that resolving it could shed light on the relationship between approximate degree and
quantum query complexity. Indeed, while any quantum algorithm for a function f can be
turned into an approximating polynomial for f via the transformation of Beals et al. [6], no
transformation in the reverse direction is possible in general [3]. This can be seen, for example,
because the quantum query complexity of Surjectivity is known to be Q(N) [7, 25], but
its approximate degree is O(N3/%) [24, 11]. Nonetheless, approximate degree and quantum
query complexity turn out to coincide for most functions that arise naturally (Surjectivity
remains the only function that exhibits a separation, without having been specifically
constructed for that purpose). In our opinion, this phenomenon remains mysterious, and it
would be interesting to demystify it. For example, could one identify special properties of
approximating polynomials that would permit a reverse-Beals-et-al. transformation to turn
that polynomial into a quantum query algorithm?® Perhaps an O(N 3/ 4) upper bound for
(polylog(N))-distinctness could be derived in this manner. Such an upper bound (even for
(log N)-distinctness) would yield improved quantum query upper bounds for min-entropy
estimation [17]. On the other hand, due to our Theorem 2, any N3/4+2M) Jower bound for
(polylog(NV))-distinctness would require moving beyond the polynomial method.”

1.2 Overview of the Lower Bound

Throughout this subsection we assume that k > 2 is an arbitrary but fixed constant.

Let THR’fV denote the function on N-bit inputs that evaluates to —1 on inputs of Hamming
weight at least k, and evaluates to 1 otherwise. For N < n, let ({—1,1}")<" denote the
subset of {—1,1}" consisting of all inputs of Hamming weight at most N. For any function
fo: {=1,1}" — {—=1,1},8 let f=~ denote the partial function obtained by restricting the
domain of f to ({—1,1}")<V, and let agé(fnSN) denote the least degree of a real polynomial
p such that |p(z) — fn(z)| < 1/3 for all z € ({—1,1}")N.

There are works in this general direction, notably [5], which shows that a certain technical refinement of
approximate degree, called approximation by completely bounded forms, characterizes quantum query
complexity. But to our knowledge these works have not yielded any novel quantum query upper bounds
for any specific function.

We remark that the positive-weights adversary method is also incapable of proving such a result due to
the certificate complexity barrier.

Throughout, we use subscripts where appropriate to clarify the number of bits over which a function is
defined.
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Simplifying very slightly, prior work by Bun and Thaler [13] (building on an important
lemma of Ambainis [2]) implied that for k& > 2 the approximate degree of k-distinctness is
equivalent to &%( fl%vv) for f =ORRgo THR]fV. Here, g, o h,, denotes the function on n - m
bits obtained by block-composing g and h, i.e., g o h evaluates h on n disjoint inputs and
feeds the outputs of all n copies of h into g.

Bun et al. [11] proved their Q(N3/4-1/(2%)) lower bound for (ﬁ%(f%ﬁ) via the method of
dual polynomials. This is a technique for proving approximate degree lower bounds that works
by constructing an explicit solution to a certain linear program capturing the approximate
degree of any function. Specifically, a dual witness to the fact that agé( 1%}1\’\7 ) > d is a function
i {—1,1}N — R satisfying the following properties (this dual formulation is standard, and
can be found, for example, in [21]).

First, ¢» must be uncorrelated with all polynomials p of degree at most d, i.e., (¢),p) =0
for all such polynomials p, where (¢,p) = Za:e{—l,l}RN Y(x)p(x). Such a 1 is said to
have pure high degree at least d. Second, ¥ must be well-correlated with f, i.e., (¥, f) >

(1/3) - [¥[lr, where [[dfly == >Z ey 1ynn [¥(2)]. Finally, ¢ must equal 0 on inputs in
<N
(=L ({1,117
To simplify greatly, Bun et al. [11] constructed their dual witness for (ORR o THR%)

roughly as follows. They took a dual witness W for the fact that deg(ORg) = Q(R'/2)
[19, 28, 12] and a dual witness ¢ for the fact that THR’fV also has large approximate degree,
and they combined ¥ and ¢ in a certain manner (introduced in prior works [27, 23, 16]) to

<N

<N
get a dual witness for the composed function (ORR o THR?V) . The technique used to

combine ¥ and ¢ is often called dual block composition, and is denoted ¥ % ¢.? Dual block
composition is defined as follows (below, each x; € {—1,1}"V):

R

(V% @)(@1,. .., 2r) = 2% - W(sgn(g(x1)), .. ,sgn(d(zr))) - [ ] 16(zi)I/II8]l1-

i=1

Here, sgn(r) equals —1 if r < 0 and equals +1 if » > 0.19 To show that ¥ x ¢ is a dual

<N
witness for the fact that the approximate degree of (ORR o THR’]“V) is at least d, it is
necessary to show that W« ¢ has pure high degree at least d, and that U x ¢ is well-correlated

<N
with (ORR o THR’fV) . It is known that pure high degree increases multiplicatively under

the x operation, and hence the pure high degree calculation for ¥ x ¢ is straightforward.
In contrast, the correlation calculation is the key technical challenge and bottleneck in the
analysis of [11]. Our key improvement over their work is to modify the construction of the
dual witness in a manner that allows for an improved correlation bound.

At a high level, what we do is replace the dual block composition ¥ % ¢ from the
construction of [11] with a variant of dual block composition introduced by Sherstov [22].
Sherstov introduced this variant to address the correlation issues that arise when attempting

To clarify, this entire outline is a major simplification of the actual dual witness construction in [11].
The details provided in the outline of this introduction are chosen to highlight the key technical issues
that we must address in this work. Amongst other simplifications in this outline, the actual dual witness
from [11] is not W * ¢, but rather a “post-processed” version of ¥ x ¢, where the post-processing step is
used to ensure that the dual witness evaluates to 0 on all inputs of Hamming weight more than N.

107t is irrelevant how one defines sgn(0) because if ¢(z;) = 0 for any i, the product Hil lo(zi)|/ o]l

forces W x ¢ to 0. For this reason, the remainder of the discussion in this section implicitly assumes that
¢(z;) #0 for all 4 € {1,..., R}.
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to use dual block composition to prove approximate degree lower bounds for composed
functions, and he used it to prove direct sum and direct product theorems for approximate
degree.!'’ However, we have to modify even Sherstov’s variant of dual block composition in
significant ways to render it useful in our context. We now attempt to give an informal sense
of our modification and why it is necessary.

For block-composed functions g o h, the rough idea of any proof attempting to show that
(U % ¢, g o h) is large is to hope that the following approximate equality holds:

(Uxo,goh)~(V,g). (1)

If Equation (1) holds even approximately, then the correlation analysis of ¥ x ¢ is complete,
since the assumption that ¥ is a dual witness for the high approximate degree of g implies
that the right hand side is large.

Equation (1) in fact holds with ezact equality if ¢ agrees in sign with h at all inputs,
ie., if (¢, h) = ||#]|1 [23, 16]. Unfortunately, the fact that ¢ is a dual witness for the large
approximate degree of h implies only a much weaker lower bound on (¢, h), namely that

(@,h) = (1/3) - [|4]]1- (2)

In general, Equation (2) is not enough to ensure that Equation (1) holds even approximately.

A rough intuition for why Equation (1) may fail to hold is the following. The definition
of U x ¢ feeds (sgn(é(z1)),...,sgn(p(xr))) into ¥. One can think of sgn(¢p(x;)) as ¢’s
“prediction” about h(z;), and the fact that {(¢,h) > (1/3) - ||¢||1 means that for an x;
chosen at random from the probability distribution |¢|/||¢||1, this prediction is correct with
probability at least 2/3. Unfortunately, there are values of z; for which sgn(¢(z;)) # h(z;),
meaning that ¢’s predictions can sometimes be wrong. In this case, when feeding sgn(¢(x;))
into W, dual block composition is “feeding an error” into ¥, and this can cause ¥ x ¢ to
“make more errors” (i.e, output a value on an input that disagrees in sign with g o h on that
same input) than U itself.

That is, there are two reasons ¥ x ¢ may make an error: either ¥ itself may make an
error (let us call this Source 1 for errors), and/or one or more copies of ¢ may make an error
(let us call this Source 2 for errors).!? The first source of error is already fully accounted
for in the right hand side of Equation (1). The second source of error is not, and this is the
reason that Equation (1) may fail to hold even approximately.

Roughly speaking, while Equation (2) guarantees that sgn(¢(x;)) is not “an error” for
each i with good probability (i.e., probability at least 2/3), that still means that with very
high probability, sgn(¢(x;)) will be in error (i.e., not equal to h(z;)) for a constant fraction
of blocks i € {1,..., R}. Any one of these errors could be enough to cause a Source 2 error.

Fortunately for us, g = ORg has low (—1)-certificate complexity, meaning that on inputs
x in OREI(—I), to certify that indeed z € OR}_;CI(—l), it is sufficient to identify just one
coordinate of x that equals —1. This renders certain kinds of sign-errors made by ¢ benign.
Specifically, letting S = {z: ¢(x) < 0} and E~ = SN f~1(1) denote the false-negative errors
made by ¢, the low (—1)-certificate complexity of ORp means that it is okay if “a constant

" Variants of dual block composition related to the one introduced in [22] have played important roles in
other recent works on approximate degree lower bounds, e.g., [14, 26].

2 There may be inputs © = (z1, ..., %) to ¥ % ¢ that could be classified as both Source 1 and Source 2
errors. For purposes of this high-level introduction, it is not important whether such inputs get classified
as Source 1 or Source 2 errors for ¥ x ¢.
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fraction of the negative values output by ¢ are in error”. That is, so long as

(Z |¢>(w)l> / (Z |¢(:ﬂ)l> =1-9(1), (3)
e

TeS

the contribution of “false negative errors made by ¢” to actual Source 2 errors made by W x ¢
is low.

However, the situation is starkly different for “false positive errors” made by ¢; while
ORp has certificates of size 1 for inputs in OR'(—1), the certificate complexity of the
(unique) input in ORy' (+1) is n. That is, letting T = {: ¢(z) > 0} and ET = TN f~1(~1),
for Equation (1) to hold even approximately for g = ORp, it is essential that

(Z|¢($)|> / (Z |¢($)I> < 1/R. (4)
E+

xeT

Accordingly, Bun et al. [11] obtain their lower bound for k-distinctness by using a dual
witness ¢ for h = THRY, that satisfies Equation (4). Using a dual with such few false positive
errors causes [11] to lose an additive 1/(2k) term in the exponent of N in their final degree
bound, relative to what they would obtain if Equation (2) were sufficient to ensure that
Equation (1) approximately held.

As previously mentioned, Sherstov [22] introduced a variant of dual block composition

intended to handle Source 2 errors that might have otherwise rendered Equation (1) false.

Specifically, Sherstov proposed multiplying (¥ % ¢)(x) by a low-degree polynomial p, (z)
intended to “kill” any inputs x that may contribute Source 2 errors (here, 1 is a parameter,
and we will explain shortly how the value of 7 is ultimately chosen). Specifically, p,
“counts” the number of blocks z; of « such that sgn(¢(z;)) # h(z;), and p,, is defined
(through polynomial interpolation) to evaluate to 0 if this number is any integer between
1 and 7. This has the effect of eliminating all Source 2 errors made by ¥ *x ¢ on inputs
x for which at most 7 copies of ¢ make an error. That is, p, kills all inputs x in the set
Uy, = {z = (21,...,2r): sgn(é(x;)) # h(x;) for between 1 and 7 values of i}. Note that
multiplying ¥ x ¢ by p, has the additional, unfortunate effect of distorting the values that
U *x ¢ takes on other inputs; bounding the effect of this distortion is one challenge that
Sherstov’s analysis (as well as our own analysis in this work) has to address.

The intuition is that, so long as most Source 2 errors made by W * ¢ are caused by inputs
in the set U,), then multiplying ¥ x ¢ by p,, should eliminate the otherwise devastating effects
of most Source 2 errors. So the remaining challenge is to choose a dual witness ¢ for h
guaranteeing that indeed most Source 2 errors are caused by inputs in U,,. More precisely, ¢
must be chosen to ensure that, with respect to the product distribution Hf;l lo(z)|/lb]l1,
it is very unlikely that more than 7 copies of ¢ make an error on their input x;.

To this end, it is implicit in Sherstov’s analysis that Equation (1) approximately holds
with (U % ¢) - p, in place of ¥ % ¢ so long as

( > |¢(x)> /¢l <n/R. (5)

rzeE-UEt

Notice that this is exactly Equation (4), except that the right hand side has crucially increased
by a factor of n (also, Equation (5) counts both false-positive and false-negative errors, as
opposed to just false-positive errors, which is a key discrepancy that we address below). The
bigger that 7 is set, the less stringent is the requirement of Equation (5). However, it turns
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out that, in order to ensure that (¥ % ¢) - p, has pure high degree close to that of ¥ x ¢
itself, » must be set to a value that is noticeably smaller than the pure high degree of W.
Ultimately, to obtain the strongest possible results, n gets set to some constant C' < 1 times
the pure high degree of .

In order to bring Sherstov’s ideas to bear on k-distinctness, we have to modify his
construction as follows. The key issue (alluded to above) is that Sherstov’s construction is
not targeted at functions g o h where g has low (—1)-certificate complexity, and it is essential
that we exploit this low certificate complexity in the correlation analysis to improve on the
k-distinctness lower bound from [11]. Essentially, we modify Sherstov’s definition of p,, to
“ignore” all false negative errors (which as explained above are benign in our setting because
g = ORp has low (—1)-certificate complexity). Rather we have p, only “count” the false
positive errors and kill any inputs where this number is between 1 and 7.

We are able to show that with this modification, it is sufficient to choose a dual witness
¢ for THR’;V satisfying

(ZW@I) / (Z |¢(x)|> <1n/R. (6)

E+ zeT

We end up setting n =~ O(\/E) for our lower bound, hence the denominator on the right
hand side of this inequality represents a quadratic improvement compared to that on the
right hand side of Equation (4). This improvement ultimately enables us to improve the
lower bound from Q(N3/4=1/(2k)) to Q(N3/4-1/(4k)),

The actual calculations required to establish the sufficiency of Equation (6) are quite
involved, and we provide a more detailed proof overview in Section 3 to help the reader make
sense of them.

2 Preliminaries

Let N,n and m be positive integers, N < n. For z € {—1,1}", let |2| represent the Hamming
weight of z, i.e., the number of —1’s in 2. Define ({—1,1}")<V := {z € {-1,1}" : |z| < N}.
For any function f: {—1,1}" — R, denote by f<V the partial function that is defined on
({—1,1}")=N and agrees with f on all such inputs. Define sgn : R — {—1,1} by sgn(z) =1
for all non-negative x, and —1 otherwise. For any function f : {—1,1}" — R, define
[flly:=>"pe—1,13» |f(@)]. All logarithms in this paper are base 2 unless otherwise specified.
Let 1™ (respectively, —1™) denote the n-bit string (1, 1,...,1) (respectively, (—1,—1,...,—1)).
We use the notation [n] to denote the set {1,2,...,n}.

Define the function ORy : {—1,1}" — {=1,1} to equal 1 if z = 1V, and —1 otherwise.
Define the Threshold function THR%; : {—1,1}" — {—1,1} to equal 1 for inputs of Hamming
weight less than k, and —1 otherwise. Given any functions f, : {—1,1}" — {—1,1} and
gm : {—1,1}"" — {—1,1}, we define the function f,, 0 gy, : {—1,1}""" — {—1,1} as

fn Ogm(xlla ey TImy L2155 T2my e ooy Tnly - - - ;xnm) = fn(.gm(xl)agm(l?)a .. 7gm(xn))7

z; € {—1,1}" for all i € [n]. We drop subscripts when the arities of the constituent functions
are clear.

For any function ¢ : {—1,1}"" — R such that [|¢||, = 1, let uy be the distribution on
{=1,1}", defined by iy (x) = |1 (x)|. Any function f: {—1,1}" — R has a unique multilinear
representation f = ngn] £(S)xs, where for any S C [n], the function yg : {—1,1}" —
{—1,1} is defined by xs(z) = [[,cg . Hence, I171l: = > sCn] |£(S)|. It follows that for any
function ¢ : {—1,1}" — R, there exists a unique multilinear polynomial ¢ : R” — R such
that ¢(x) = ¢(x) for all z € {—1,1}".
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» Definition 3 (k-distinctness). For integers k,N,R with k < N, define the function
DIST]R[’R RN = {=1,1} by DIST’fV’R(sl,...,sN) = —1 iff there exists an r € [R] and
distinct indices i1, .. .,i such that s;; = --- =s;, =1r. When necessary, the domain of the
function can be viewed as {—1, 1}N1°gR.

» Definition 4 (Approximate degree). For any function f : {—1,1}" — R, any integer N < n,
and any € € [0,1], define the e-approzimate degree of f< to be

deg, (<) = deg(p).

min
pilp(z)—f(z)|<e
Vee{—1,1}",|z|<N
When the subscript is dropped, € is assumed to equal 1/3. When the superscript is dropped in
FSEN then N is assumed to equal n.

Note that this definition places no constraints on an approximating polynomial on inputs
outside the promise domain.

We require the following relation between approximate degree of k-distinctness and a
related Boolean function; this relationship follows from [10, Proposition 21 and Corollary 26].

> Claim 5 ([10]). Let N,R € N and 2 < k < N be any integer. Then for any € > 0,
deg, (DISTY, ;. v) = Q(deg, (ORp o THRR)=N). (7)
We also require the following error reduction theorem for approximate degree.

» Lemma 6 ([9]). Let f:{-1,1}" — {~1,1} be any (possibly partial) Boolean function and
let 0 < e < 1. Then, deg.(f) = deg(f) - O(log(1/e)).13

» Definition 7 (Correlation). Consider any function f: {—1,1}"" = R and ¢ : {-1,1}"" — R.
Define the correlation between f and 1) to be (f, 1) = er{fl’l}n f@)Y(x).

» Definition 8 (Pure high degree). For ¢: {—1,1}" — R, we say that the pure high degree
of ¢, which we denote by phd(¢), is d if d > 0 is the largest integer for which (¢,p) =0 for
any polynomial p : {—1,1}" — R of degree strictly less than d.

By linear programming duality, we have the following standard equivalence between lower
bounds on approximate degree and existence of “dual polynomials”. See, for example, [10].

» Lemma 9. Let f: {=1,1}" = {=1,1} be any function. For any integer 0 < j < n, we
have deg, (f<7) > d if and only if there exists a “dual polynomial” ¢ : {—1,1}" — R satisfying
the following properties: ¢(x) = 0 for all [x| > j, (f,¢) > € Y i 1.1y [9(2)] = 1, and
phd(¢) > d. We say that ¢ is a dual polynomial witnessing the fact that (ir—ée(ffj) >d. For
brevity, when € and d are clear from context, we say that ¢ is a dual polynomial for f<7.

Spalek [28] exhibited an explicit dual witness for OR (the existence of a dual witness for
OR was already implicit from the work of Nisan and Szegedy [19]).

> Claim 10 (Implicit in [19]). There exists a constant ¢ € (0,1] such that for any integer
n > 0, there exists a function 6 : {—1,1}" — R satisfying ||0||; = 1, phd(#) > c¢y/n, and
(6,0Rn) = 3/5.

13 The statement in [9] only deals with total functions. It can be seen that the proof works for partial
functions too.
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Towards proving approximate degree lower bounds for composed functions, one might
hope to combine dual polynomials of the constituent functions in some way to obtain a dual
polynomial for the composed function. A series of works [27, 16, 23] introduced the notion
of “dual block composition”, which is a powerful method of combining dual witnesses.

» Definition 11 (Dual block composition). Let 6 : {—1,1}" — R, ¢ : {—1,1}"" — R be any
functions satisfying ||0||1 = ||¢|li1 = 1 and phd(¢) > 1. Let x = (z1,...,2,) where each
x; € {—1,1}"". Define the dual block composition of 6 and ¢, denoted 6 x ¢, to be

n

0% p(a) = 2"0(sgn(d(x1)), - - ,sgn((wn))) [ ] ()]

i=1

We now define a simple but important function ¢ that we use in our construction of a dual
witness for DIST’fV’ r- This function was first used in the context of dual block composition
by Bun and Thaler [12].

> Claim 12 ([12]). Define ¢ : {—1,1}" — R as ¢(z) = —1/2 if z = —1", ¢(z) = 1/2 if
x = 1" and ¢(x) = 0 otherwise. Then, phd(¢) = 1.

Next we require a lemma, implicit in a result of Razborov and Sherstov [20] (also see [13]
for a formulation similar to the one we require).

» Lemma 13 (Implicit in [20]). Let N > R be positive integers, A € RY, and 0 : {—1,1}""N —
R be any polynomial such that

> 6(x)] < (2NR)™. (8)

e ({—1,1}N) =N

For any positive integer D < A, there exists a function v : {—1,1}RN — R such that
phd(v) > D, |lv||, £1/10, and |z| > N = v(z) = 0(x).

Lemma 13 helps us convert a dual polynomial 6 with little mass on large Hamming weight
inputs to a dual polynomial (8 — v)/||@ — v||; with no mass on large Hamming weight inputs
without affecting the pure high degree by much.

» Definition 14. For n; € [0,1], let TI(m1,...,n,) be the product distribution on {—1,1}"
where the ith bit of the string equals —1 with probability n;, and 1 with probability 1 — n;.

For any Boolean function f : {—1,1}"" — {—1,1} and function v : {-1,1}"" — R,
[9lly =1, let
o 1= PrLA V() < O0(r) > 0] €5, = PrLF@V(E) < 0(w) < 0] €10 = b7
9)
» Definition 15. For any functions f: {—1,1}" — {-=1,1} and ¢ : {-1,1}" = R, let
EY(f, ) = {z e {-1L,1}": f(2)y(z) < 0,¢(z) > 0},
E=(f,4) ={z e {-1,1}": f(2)i(z) < 0,9(x) < O}.

We define the false positive error between f and v to be 6;{11) =2 sem+(ry) [V(2)] and false
negative error to be 6, =3 cp— (.4 V().
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Given any function f : {-1,1}"" — {-1,1} and ¢ : {-1,1}"" = R, [[¢||, = 1, let
et =¢f, and e = ¢, as defined in Equation (9). Define the function ay . : {~1,1}" — R
as

1=:at if o(x)f(x) > 0, (x) >0
1—2e4+€e~ _ . — .
agy(z) = 1_+ = a Tfﬁf(ff)f(x) > 0,9(z) <0 o
- if ¢(z) f(z) < 0,%(z) >0
! if () () < 0,3(x) < 0.
For the remaining sections, for z; € {—1,1}, a® = aT if z; = 1, and a* = a~ if z; = —1.

» Lemma 16 ([22, Lemma 3.1]). For any 11,...,7, € [0,1), define v = II(7y,...,7,) and
T=max{Ti,...,Tp}. Foranyn=0,1,...,n—1, let p, : [-1,1]" = R be the unique degree-n
multilinear polynomial that satisfies

po(z) = (1" [ (1=l = i), V= € {~1,1}". (11)
i=1

Then,
py(1) =1, (12)
ot < (") (13)
n 7+l
()] < py 1M (L 4),wtere A= () T (1)

Furthermore, p,(z) >0 for all z € {—1,1}" provided that 1 is even.

3 Detailed Outline of Proof of Main Theorem

Our main theorem is as follows.

» Theorem 17. For R € N sufficiently large, 2 < k < %, and some N = O(kF/2R),

— , 1 1 3_ 1
k 3_ L

Ambainis [2] showed that the approximate degree'# of functions that are symmetric (both

with respect to range elements and with respect to domain elements) is the same for all
range sizes greater than or equal to N. As a corollary, we obtain the following.

» Corollary 18. For R € N sufficiently large, 2 < k < %, and some N = O(kF/2R),

— 1 1 a1
deg(DISTK, ) =Q( ——  ———— . Ri"F |, 16
eg( N,N) (4’%2 log5/2 7 1 4k> (16)

4 There are several different conventions used in the literature when defining the domain of functions
such as k-distinctness. The convention used by Ambainis [2] considers the input to be specified by
N - R variables y1,1,...,y~n,r, Where y; ; = —1 if and only if the ¢th list item in the input equals range
element j (i.e., it is promised that for each i, y;; = —1 for exactly one j). We use the convention
that the input is specified by N[log, R] bits. It is well-known (and not hard to show) that conversion
between the two conventions affects approximate degree by at most a factor of [log, R].
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~_To prove Theorem 17, Claim 5 implies that it suffices to prove a lower bound on
deg(ORp o THRE )=V,

» Theorem 19. For R € N sufficiently large, 2 < k < %, and some N = O(kF/2R),

— 1 1 3_1
deg((ORg o THRA)SN) = Q <4W R R k> . (17)

Note that the theorems above continue to yield non-trivial lower bounds for some values
of k = w(1). However for ease of exposition, we assume throughout this section that k > 2 is
an arbitrary but fixed constant.

Towards proving Theorem 19, we construct a dual witness I' satisfying the following four
conditions.

Normalization: ||T'||; =1,
Pure high degree: There exists a D = (R%_ﬁ) such that for every polynomial

p:{-1, I}RN — R of degree less than D, we have (p,I') =0,

Correlation: (T, (ORg o THRE)) > 1/3,

Exponentially little mass on inputs of large Hamming weight:
_Q(R%*i)

Yzg((-1,138m<n [D(@)] < (2NR) ~

Next, Lemma 13 implies existence of a function v that equals T' on z ¢ ({—1,1}*V)<N,
has pure high degree {2 (R%_ﬁ), and ||v||; < 1/10. The function W : {-1,1}"" = R

defined by W(z) := F\(le“)%l/y\l(f) places no mass on inputs of Hamming weight larger than N and

satisfies W], = 1, (W, (ORg o THRK,)) > 7/33, and phd(W) = O (R3*ﬁ>. Theorem 19
then follows by Lemma 9 and Lemma 6.

In the next subsection we provide a sketch of how we construct such a dual witness I
and where our approach differs from [11].

3.1 Our Construction of T

Our construction of I' is based on three dual witnesses 6,¢ and . The function 6 is
constructed as in Claim 10 with n = R/4*. The function ¢ is defined on 4* inputs, and is
defined as in Claim 12. Our % is a fairly straightforward modification of [10, Proposition
55], that has a larger pure high degree, at the cost of a worse false positive error. A little
more formally, our functions 6, ¢, 1) have £1-norm equal to 1, and additionally ¢ satisfies the
properties described in the following claim, with 7' = v/R.

> Claim 20 (Modification of [10, Proposition 55]). Let k,7, N € N with 2 <k <T < N, and
let wr be as constructed in Claim 27, with constants ¢, co. Define!® ¢ : {—1,1} — R by
Y(x) = WT(|$|)/(‘];|) for z € ({=1,1}"V)=T and ¢(x) = 0 otherwise. Then
hunt o € e
N T 48 . 4k/N log N
5= 1 2
THRE 4 — 9 4k

5 Note that we suppress the dependence of ¢ on T for convenience.
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Y[l =1 (20)
For any polynomial p: {—1, 1}N — R,

deg(p) < &1 \/4—’%—1TN—1/(2’§) log ' N = (4,p) =0 (21)

(2k)* exp (—czt/\/zl’fkTNl/(?k) log N)
12 '

For all ¢t € [n], Z [P(x)] <

|[=t

(22)

The false positive error between THRE, and 1 is O(1/v/N) (as compared to O(1/N)
n [11]). The pure high degree of 9 is Q(RY/*N—/(“F)) (as compared to Q(RY*N~1/(2k))
n [11]). ¢ satisfies a “weak decay condition”, viz. 3, _, [¥(z)| < o exp(—pt)/t? for some
constant o (for general k, the value of o only depends on k), and 3 = Q(R4N/ (k) (as
compared to 8 = Q(RYV4NY/(R) in [11]).

If we were to define T' = 0 x ¢ x ¢, all the analyses from [11] would work, except for
the correlation analysis, which fails. To fix this, our main technical contribution is to not

use dual block composition, but rather a variant of it inspired by a result of Sherstov [22].

Our function T' takes the form I' = 0 e (¢ x ), where o denotes our variant of dual block
composition. In a little more detail, I'(x1, ..., 7 4x) equals 0 e (¢ x 1) (), which equals

1
pn(1—2et,...,1—2¢et)

' (9* (¢*77[}))(x17 cee 7xR/4k) 'pn(@(l‘l), .- .,OL(IR/41«)),

et € =€,
¢*,OR,, oTHRE, ’ ¢*,OR 1, oTHRE,?
defined as in Lemma 16, and « in a function whose definition we elaborate on later in this

for et = 7 is a parameter that we set later, p, is
section.

We first give a very high-level idea of how we prove the required properties of I, and
then elaborate on the definitions of 7, p, and a.

Normalization: Following along similar lines as [22, Claim 6.2], we prove that ||T'||; =1
by modifying the proof that dual block composition preserves £1-norm, crucially exploiting
properties of p, and a (see Claim 33).

Pure high degree: Using our definition of p,, and «, one can show (Claim 34) that
the pure high degree of 6 e (¢ x 1) is at least (phd(6) — n)phd(¢ * ¢). The value of
1 is chosen to be phd(#)/2 so that this quantity is the same order of magnitude as
phd(0)phd(¢ * ) = phd(#)phd(¢)), which is Q(R3/4N~1/(4k)),

Exponentially little mass on inputs of large Hamming weight: Since v satisfies
Dol [¥(@)| < o exp(—pt)/t* for some constant ¢ and § = Q(RYANY/(4R))  Claim 29
implies that 0 x (¢ x1) = (0% ¢) x 1) places exponentially small (in R%_%k) mass on inputs
in {-1, 1}RN of Hamming weight larger than N. By the definition of T', it suffices to

pn(a(ml)wwsa(fﬁR/éﬂc))
pn(1—2et,...,1—-2¢t)
1

large in Ri~1x , for which we require Claim 30.

show that the maximum absolute value of is at most exponentially

Correlation: Conceptually, the function p, : {1, 1}R/4k — R can be viewed as one
that “corrects” 6 x (¢ *1)): it “counts” the number of false positives fed to it by ¢ v,
and changes the output of 6 x (¢ x 1) to 0 on inputs where this number is any integer
between 1 and 7. The function a : {—1, 1}N — R acts as the function that, in a sense,
indicates whether or not ¢ x v is making a false positive error.
Detecting errors: The function « takes three possible output values: it outputs
—1 for z € ET(ORyx o THRY,, ¢ x 1) and outputs either 1 or a value very close to 1
for © ¢ Et(ORyx o THRY,, ¢ « ). This definition of « is our biggest departure from
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Sherstov’s construction in [22]; Sherstov defined a to output —1 for both false-positive
and false-negative errors, whereas our « only outputs —1 for false-positive errors.
Zeroing out errors: Define the function p, to be (the unique multilinear extension
of) the function that outputs 0 if its input has Hamming weight between 1 and 7.
Recall that our construction considers the dual witness
1
pn(l—2et,...,1—2¢et)

’ (9* (¢*¢))($17 s 7]"R/4’“) 'py,(()é(lj), .- .,Oé(xR/41«)),

and the purpose of multiplying 6 x (¢ x 1) by p, is for p, to zero out most inputs in
which one or more false-positive errors are being fed by ¢+ into 6 (see Definition 11).
Unfortunately, p, is nonzero on inputs of Hamming weight more than 7. Hence, in
terms of the correlation analysis, a key question that must be addressed is: what
fraction of the ¢1-mass of 6 x (¢ x ) is placed on inputs where more than 5 copies
of ¢ x 1) make a false-positive error? We need this fraction to be very small, because
multiplying by p,, fails to zero out such inputs.
Note that under the distribution defined by |¢ * 9|, the ezpected number of false
positive errors fed into 6 is (R/4%) - €. Since we have set n = O(y/R/(4 - 4F)), it
suffices to have e™ < 1/(cn) for some large enough constant ¢ to conclude that with
high probability (over the distribution |¢ % v|), the number of false positive errors
fed into 6 is at most a small constant times 7. It turns out that this value of €™ is
indeed attained by ¢ x v, since the false positive error between THR]fV and 1 was set
to be O(1/v/N) = O(1/v/R) to begin with. Thus, with high probability, multiplying
6 (¢ 1)) by p,, successfully zeros out all but an exponentially small fraction of the
errors made by 6 % (¢ x 1) that can be attributed to false-positive errors made by ¢ x .
This intuitive proof outline is formalized in Claim 21, which in turn is a formalization
of Equation (1) that holds with the setting of parameters mentioned above.

The key technical lemma that we use for the correlation analysis is the following, and a

sketch of its proof is deferred to Appendix B.

> Claim 21. Let m,n be any positive integers, 7 < n be any even positive integer, and
f:{-1,1}"" — {—1,1} be any function. Let ¢ : {—1,1}" — R be such that (¢,OR,,) > ¢
and |||y = 1, and £ : {~1,1}"" — R be any function such that ||£||; = 1 and phd(¢) > 1.
Let p, : {—1,1}" — R be as defined in Lemma 16, let & = as ¢ : {—1,1}" — R be as defined
in Equation (10), and consider the distribution pe over {—1,1}"". Let " =€}, €™ = ¢/,

o _ o n (€+)n+1
6—6++6 ,andA— (n+1)m. IfA< 1, then,

(ORo f,((*x&)(pyoa)) > py(1 —2et,...,1—2¢")- (5— (2 - 211__;_(1 —A))) .
(23)

4 Proof of Theorem 19

Due to space constraints, we omit some proofs henceforth. The reader is referred to the full
version for complete proofs.

Towards proving Theorem 19, it suffices to exhibit a dual polynomial (see Lemma 9) that
has ¢1-norm 1, sufficiently large pure high degree, good correlation with (ORg o THR?V)SN ,
and places no mass outside ({—1,1}*V)<N_ We first define a function I’ (Definition 23) that
satisfies the first three properties above, and additionally satisfies a strong decay condition
as we described in Section 3.1. In Section 4.1 we use I" to construct a dual polynomial W,
via Lemma 13, satisfying all the requisite properties. We now set several key variables.
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2
where ¢ € (0,1] is the constant from Claim 10 (assume without loss of generality
that 7 is even), o = (2k)*, c1,ca € (0,1] are constants fixed in the next bullet point,

_ co _ BVoR _ R (2k)*k _
p= \/4kkTN1/(2k) logN’A T 4In2R T 4In?2 R\ 4kkTN1/(2F) logN’N - [20\/ERW

Let wr : [T] U {0} — R be a function that satisfies the conditions in Claim 27 and let
¢1,¢2 be the constants for which the claim holds. Let v : {—1, 1}N — R be defined by
W(x) = wT(|x\)/(‘JX|) if |z] < T, and 0 otherwise so that 1 satisfies the conditions in
Claim 20.

Let 6 : {—1,1}R/4k — R be any function satisfying the conditions in Claim 10 for
n = R/4* (note that R/4* > 0 since k < (log R)/2), and let ¢ : {—1, 1}4k — R be the
function defined in Claim 12 with n = L

Let p, : {—1,1}3/4' — R be as defined in Lemma 16 and o := @y, oR ,oTHRE,

{-1, 1}4kN — R be as defined in Equation (10).

+ .t - — ot -
Let € '_E,OR4koTHR’;\,,¢*w’€ .—e¢*w,ande.—e + €.

Let R be sufficiently large and fix k& < (logR)/4. Set T = VR, n = (9‘/%) -1

We first show that the function ¢ x 1) has large correlation with OR4x o THR]fV, via an
analysis that is essentially the same as in [10, Proposition 55].

> Claim 22.

1
+ - —4
€OR o THRE ,pp = 24V Rlog R’ €OR 4 o THRE, gy = €

We next define the function I'.
» Definition 23. Let T': {—1, 1} - R be defined by

(9* (¢*1/J))($1a s 7xR/4k) 'pn(a(xl)v s 70‘(3313/4’“))

r = 24
(mla ,.’173/4k) pn(172€+7~--7172€+) ) ( )

where each x; € {—1, 1}4kN.

> Claim 24.
ITf =1, (25)
1 1 3/4—1/(4k

phd(I') = Q (W NiTa: - R3/471/(R) ) (26)
(T, (ORg o THRY,)) > 1/3 (27)
> @) < @NR)THAVR), (28)

e ({~1,1}FN)=N

Sketch of Proof of Claim 24

We require certain properties of dual block composition, and of the functions p,, and a, which
are listed in Appendix A and Appendix B, respectively.
The fact that |T'||; = 1 follows from the definition of I' and Claim 33.
By the definition of I', we have phd(I") = phd((# * (¢ x ¢)(p, 0 ). By Claim 34, this is
at least (phd(0) —n) - (phd(¢ * ¢)). Next, using the facts that phd(y)) = 1 (Claim 12),
multiplicativity of pure high degree under dual block composition (Equation (45)), and

our choices of parameters, it can be shown that phd(T') = Q { 7z - —~— - R3/4-1/(4k) )

\/log R
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- : + 1 - —4

Recall from our choice of parameters and Claim 22 that e™ < VR R and e~ < e =,
k +yn+1

Define A = (};%_41 )% The above upper bounds on €™ and €™, and standard

computations reveal that A < 1/16. Hence the conditions of Claim 21 are satisfied with
the parameters fixed in the beginning of this section. Using Claim 21 with § > 3/5 and the
above upper bounds on et and €™, we are able to show that (I', (ORz o THRA)) > 1/3.
We first show, using Lemma 16 and Lemma 26, that p,(1 — 2¢*,...,1 —2¢t) > (1 —
e+)R/ 4k77!. Standard computations reveal that, for our choice of parameters, this quantity
is at least 1. Hence, it suffices to show that 37 o1 1yrvy<n [(B% (0 x0)) - (py 0 a)(z)| <

(2NR)’2(A*‘/E). Next we observe that, using Claim 29 with & = 6 x ¢ and associativity
of dual block composition (Equation (46)), that 3, o1 yavy<n [((0 % @) x ¥)(z)] <

(2NR)~22. Since a(y) € [-1,1] for all y € [-1, 1]4kN (Equation (10)), it suffices to show
a suitable bound on max, ;| /s |y ()|, which we are able to do using Claim 30.
4.1 Final Dual Polynomial

We now prove Theorem 19.

Proof of Theorem 19. We exhibit a function W : {—1,1}"*" — R satisfying

W(z) =0,Vz ¢ ({—1,1}FV)=N, (29)

W, =1 (30)

(W, (ORR o THRY,)) > 7/33, (31)
1 1 3_ 1

phd(W) = Q (W TR Ri ) . (32)

The theorem then follows by Lemma 9 and Lemma 6. Towards the construction of such a W,
first note that by Equation (28) and Lemma 13 there exists a function v : {—1,1}" — R
that satisfies the following properties.

|| > N = v(z) =T(z), (33)
phd(v) > 2(A — VR) — 1, (34)
[v]l, < 1/10. (35)

Define W : {—1,1}" = R by

I'(z) —v(z)
W(z) i= —————. (36)
It = vl
Clearly Equation (29) and Equation (30) are satisfied. We show in Appendix C that the
function W also satisfies Equation (31), and Equation (32). <
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A Preliminaries

» Definition 25. For any integer n > 0, any function ¢ : {—1,1}" — R such that |||, = 1,
and any w € {—1,1}, let p,, be the probability distribution py conditioned on the event that
sgn(¢(x)) = w. For any z € {—1,1}", let p, denote the probability distribution (i, )®™
conditioned on the event that sgn(y(z;)) = 2 for alli € [n].

We omit the dependence of u, on 1 since 1 will typically be clear from context. Note
that p, as defined above is a product distribution given by

paoresan) = [ e 2. (37)

» Lemma 26. Let n be any positive integer, p : {—1,1}" — R be a multilinear polynomial,
andny,...,nn € [0,1]. Forx = (x1,...,2,) drawn from the product distribution IL(ny, ..., n)
defined in Definition 14, we have

Ergmy o) (@1, 20)] = (1 = 2n1,..., 1 = 215,). (38)

A.1 Dual Polynomials and Dual Block Composition

Bun et al. [11] exhibited a dual witness for the approximate degree of the k-threshold function.
Their dual witness additionally satisfies a decay condition, meaning that it places very little
mass on inputs of large Hamming weight. The following claim is a mild modification of [10,
Proposition 54].

> Claim 27 (Modification of [10, Proposition 54]). Let k,T, N € N with 2 < k < T. There
exist constants ¢, ¢ € (0, 1] and a function wr : [T] U {0} — R such that all of the following
hold.

1
wr<< — 30
wr(t§ t>k| o= 48 - 4k\/N log N (39)

> s (3- %) (40)

wr(t)<0,t<k
T

lorlly =) lor(t)] = 1. (41)

=0
For all polynomials ¢ : R — R,
T
deg(q) < 1 \/4*kk*1TN*1/(2k) log ! N = ZwT(t)q(t) =0. (42)
=0

for o = (2k)*, B = co/\/AFKT N/ (k) log N.
(43)

o exp(=ft)

For all ¢t € [T], |wr(t)] < 2
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Sherstov [23] showed that dual block composition (see Definition 11) preserves ¢;-norm
and that pure high degree is multiplicative (also see [16]). Bun and Thaler [13] observed that
dual block composition is associative.

» Lemma 28. Let ¢: {—1,1}""* = R, 0:{-1,1}""" — R be any functions. Then,
Preservation of £1-norm: If |0||, = 1,||¢||; =1 and (¢,1) =0, then

6% 6ll, = 1. (44)
Multiplicativity of pure high degree:

phd(6#) > D,phd(¢) > d => phd(0 x ¢) > Dd. (45)
Associativity: For every ¢ : {—1,1}""" — R, we have

(6%0) % = % (0% ). (46)

It was shown in [10] that for any dual polynomial ®, and 1 as constructed in Claim 20,
the dual block composed function ® x v satisfies a “strong dual decay” condition.'6

> Claim 29 ([10, Proposition 31]). Let R be sufficiently large and k¥ < T < R be any positive
integer. Fix o = (2k)* and let N = [20,/GR]. Let ® : {—1,1}"* — R be any function with
@, =1 and ¢ : {—1,1}" — R as defined in Claim 20. Then

> 1@x¢)(2)| < (2NR)A (47)

w¢({~1,1} )N

for some A > fl‘g}; for 8 = cy/\/4FKT N1/ (k) Jog N.

B Properties of Auxiliary Functions

It is easy to show that any multilinear polynomial p : R" — R satisfies maxye[—1,1p» [p(y)| <
|A]]1. When applied to the function in Lemma 16, we obtain
> Claim 30. For p, defined as in Lemma 16, max,c[—1,1j» |py(y)] < 77!(";’]'").

We now state the setting for our next few claims.

Assumptions for Claim 31, Claim 32, Claim 33: Let m,n be any positive integers,
n < n be any even positive integer, and f : {—1,1}"" — {—1,1} be any function. Let
¢ :{-1,1}" — R be such that (¢(,OR,) > d and |¢|; = 1, and € : {-1,1}"" — R be
any function such that |||l = 1 and phd(£) > 1. Let p, : {—1,1}" — R be as defined in
Lemma 16, let o = ap¢ : {—1,1}" — R be as defined in Equation (10), and consider the

distribution g over {—1,1}""™. Let et = e?@ € =€ e=c +e ,and A= (nil)%
> Claim 31.
CA™")Egmpiyn [pn(a(z1), . .. a(zs))OR(f(21), - - -, f2n))]
>py(1—2¢7,...,1=2¢7) (C(1™) — [¢(1)[24). (48)

16 They in fact showed that W« ¢ satisfies this strong decay condition for any v satisfying a corresponding
“weak decay” condition. However for this paper, we only require this statement for 1) as constructed in
Claim 20.
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> Claim 32.
> CEE[py((@r), ., (@) OR(f (1), - -, f(wn))]
ZF#£1"
+ + l—e¢
>p,(1—26eF,...,1—2¢T) (Z ¢(2)OR(z) — (221_6+(1A)> > |C(z)) .
ZF#1" z#1n

(49)

Due to space constraints we do not prove Claim 31 and Claim 32 here, and refer the reader
to the full version for these proofs. We now prove Claim 21 using Claim 31 and Claim 32.

Proof of Claim 21.

(ORo f,(¢x&)(pyoa)) = > (ORo f)(@)(¢*E)(pyoa)()

ze{-1,1}m"
= Y OR(f(z1),.... f(zn))
ze{-1,1}"
22" ¢ (sgn(&(x1)), - - - sgn(&(xn))) py(a(zy), ..., axy)) H |€(z;)] by Definition 11
= Z C(Z) ( Z 2npn(a(xl)a"'7a(xn))
ze{—-1,1}" z:sgn(€(x;))=2;Vi€[n]
i=1

= Y ((Eulp(a(zr),...,alz.)OR(f(21),. ... f(z0))]
ze{-1,1}"
by Definition 25 and Pry,~,, [sgn(z;) = 1] = Pry, . [sgn(x;) = —1] = 1/2 since phd(§) > 1

> py(1—2¢7,...,1 - 2¢) (((1")OR("™) — 2¢(17)]A

+ ¥ CaORE) - (2- 2050 - ) T |<<z>|)

g oy
by Claim 31, 32 and OR(1") =1

> py(1—2eT,...,1—2¢) (5—max{2A,2—211_€+(1—A)}>
— €
since ||| =1 and (¢,OR) > §

1—c¢
+ +
>pp(l—2€",...,1—2¢ )<5—<2—21_6+(1—A)>>,

where the last inequality holds as (2 —24=c (1~ A)) —2A=(1-4) (2 -2 11_’61) >0,

1—et
since 11:61 <1l,and A< 1. <

Finally, we require a closed form expression for |[(¢ x &) (py, o @)||1.

> Claim 33.

I(C* &)y oa)ll, =py(1—2eF,... 1 —2eT). (50)

The proof of the claim follows along the lines as that of [22, Claim 6.2].
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> Claim 34, Let ¥ : {-1,1}" — R, A : {-1,1}"" - R, and f : {-1,1}"" — R be
any functions. For any positive integer 7, let & = s : {—1,1}"" — R be as defined in
Equation (10), and p,, : {—1,1}" — R defined in Lemma 16. Then

phd((¥ x A) - (p, 0 @)) > (phd(¥) —7) - phd(A). (51)

The proof follows along the same lines as that of [22, Equation (6.7)] and we omit it.

C Main Theorem

Recall from the proof of Theorem 19 in Section 4.1 that it remains to show (W, (ORp o

THRK,)) > 7/33 and phd(W) = Q (ﬁ S cr R R%*i).

Remaining proof of Theorem 19. To justify Equation (31), we have

1 .
(W,0Rp o THRY,) = TR (<r, ORp o THRY) — (1, ORp 0 THR’;V>)
— Vi
by Equation (36)
1
> T (1/3 — (1,0Rp o THR’;V>) by Claim 24
1
1
> L o
HF o V”l { / | 1}
1 7 .
> =], 30 by Equation (35)
1
> % since ||T' — v||; < 13 by triangle inequality
We have from Equation (36) that
T'(z) —v(x)
hd =phd | ———F—+ 2
phd() = ph (~ =1 52)
= phd(I'(z) — v(x)) (53)
> min{phd(T"), phd(v)}. (54)

From Equation (34) we have

phd(v) > 2(A —VR) —1 (55)

R 2k)k
@ (2F) \/ﬁ) -1 substituting the value of A

— 2 —
(4 %R \/4kkTN1/(2k) log N

k/2 3/4
Co 1 k 1 R
4 () W'M‘VR>‘1

taking 7 = vR and In R < log R

4 llogQR\/logN. 2

—9 C2 1 k k/2 1 R3/4 \/E 1
—“\ log? Ry/Elog R “\2 k1/2  90l/(4k)91/8L1/8 RI/(4k) N
substituting the value of N and using klog R > log N for sufficiently large R

k/2
2 1 k 1 3/4—1/(4k)
=2 <225/24 log’R-VIogR <2> w75 aouan B ~VR| -1

(56)
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22<C2 1 1

3 log5/2R " 99/8 . 901/ (4k)

L R3/A-1/(4k) _ \/E) 1
since (5)"* Lg > 1< for all k > 2
C2 . R3/4-1/(ak) _

1
= @ ’ 10g5/2R

since £ L

5 e R R3/4=1/(4k) > 9\/R for k > 2, for sufficiently large R
( 1 _R3/4—1/(4k)> .
log5/2 R

1
aFE2

(57)
Therefore by Claim 24 and Equation (54), we have phd(W) = 2 (
justifying Equation (32) and finishing the proof.

1 3L
o R )

<
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1 Introduction

Out of the many properties featured by quantum physics, the impossibility to perfectly
determine an unknown state [8] is specially interesting. This property is at the heart of
quantum cryptography protocols such as quantum key distribution [3]. On the other hand, it
makes certification of the correct functioning of quantum devices a challenge, since the output
of such devices can only be determined approximately, through repeated measurements
over numerous copies of the output states. With rapidly developing quantum technologies
for communication, simulation, computation and sensing, the ability to assess the correct
functioning of quantum devices is of major importance, for near-term systems, the so-called
Noisy Intermediate-Scale Quantum (NISQ) devices [23], and for the more sophisticated
devices.

Depending on the desired level of trust, various methods are available for certifying the
output of quantum devices. In the following, the task of checking the output state of a
quantum device is denoted tomography for state independent methods, when i.i.d. behaviour
is assumed, certification for a given a target state, when i.i.d. behaviour is assumed, and
verification for a given target state, with no assumption whatsoever, and in particular without
the i.i.d. assumption.

Quantum state tomography [9] is an important technique which aims at reconstructing a
good approximation of the output state of a quantum device by performing multiple rounds
of measurements on several copies of said output states. Given an ensemble of identically
prepared systems, with measurement outcomes from the same observable, one can build
up a histogram, from which a probability density can be estimated. According to Born’s
rule, this probability density is the square modulus of the state coefficients, taken in the
basis corresponding to the measurement. However, a single measurement setting cannot
yield the full state information since the phase of its coefficients are then lost. Many sets of
measurements on many subensembles must be performed and combined to reconstruct the
density matrix of the state. The data do not yield the state directly, but rather indirectly
through data analysis. Quantum state tomography assumes an independent and identically
distributed (i.i.d.) behaviour for the device, i.e., that the density matrix of the output state
considered is the same at each round of measurement. This assumption may be relaxed with
a tradeoff in the efficiency of the protocol [7].

A certification task corresponds to a setting where one wants to benchmark an industrial
quantum device, or check the output of a physical experiment. On the other hand, a
verification task corresponds to a cryptographic scenario, where the device to be tested is
untrusted, or the quantum data is given by a potentially malicious party, for example in the
context of delegated quantum computing. In the latter case, the task of quantum verification
is to ensure that either the device behaved properly, or the computation aborts with high
probability. While delegated computing is a natural platform for the emerging NISQ devices,
one can provide a physical interpretation to this adversarial setting by emphasising that
we aim for deriving verification schemes that make no assumptions whatsoever about the
noise model of the underlying systems. Various methods for verification of quantum devices
have been investigated, in particular for discrete variable quantum information [14], and
they provide different efficiencies and security parameters depending on the computational
power of the verifier. The common feature for all of these approaches is to utilise some basic
obfuscation scheme that allows to reduce the problem of dealing with a fully general noise
model, or a fully general adversarial deviation of the device, to a simple error detection
scheme [27].
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In this work, we consider the setting of quantum information with continuous variables [18],
in which quantum states live in an infinite-dimensional Hilbert space. Using continuous
variable systems for quantum computation and more general quantum information processing
is a powerful alternative to the discrete variable case. Firstly, it is compatible with standard
network optics technology, where more efficient measurements are available. Secondly, it
allows for unprecedented scaling in entanglement, with entangled states of up to tens of
thousands of subsystems reported [30] generated deterministically.

A continuous variable quantum process or state can be described by a quasi-probability
distribution in phase space, often the Wigner function [28], but also the Husimi @ function or
the Glauber—Sudarshan P function [5]. This allows for a simple and experimentally relevant
classification of quantum states: those with a Gaussian quasiprobability distibutions are
called Gaussian states, and the others non-Gaussian states. By extension, operations mapping
Gaussian states to Gaussian states are also called Gaussian. These Gaussian operations and
states are the ones implementable with linear optics and quadratic non-linearities [4], and are
hence relatively easy to construct experimentally. However, it is well known that for many
important applications, Gaussian operations and Gaussian states are not sufficient. This
takes the forms of no-go theorems for distillation and error correction [10, 12, 20], and the fact
that all Gaussian computations can be simulated efficiently classically [2]. Furthermore, it is
not possible to demonstrate non-locality or contextuality — which are increasingly understood
to be important resources in quantum information — in the Gaussian regime.

For continuous variable quantum devices, checking that the output state is close to a
target state may be done with linear optics using optical homodyne tomography [19]. This
method allows to reconstruct the Wigner function of a generic state using only Gaussian
measurements, namely homodyne detection. Because of the continuous character of its
outcomes, one must proceed to a discrete binning of the sample space, in order to build
probability histograms. Then, the state representation in phase space is determined by a
mathematical reconstruction.

For cases where we have a specific target state, more efficient options are possible. For
multimode Gaussian states, more efficient certification methods have been derived with
Gaussian measurements [1]. These methods involve the computation of a fidelity witness, i.e.,
a lower bound on the fidelity, from the measured samples. The cubic phase state certification
protocol of [17] also introduces a fidelity witness and is an example of certification of a specific
non-Gaussian state with Gaussian measurements, which assumes an i.i.d. state preparation.
The verification protocol for Gaussian continuous variable weighted hypergraph states of [25]
removes this assumption, again for this specific family of states.

2 Results

In this work we address two main issues. Firstly, existing continuous variable state tomography
methods are not reliable in the sense of [7], because errors coming from the reconstruction
procedure are indistinguishable from errors coming from the data. Secondly, to the best of
our knowledge there is no Gaussian verification protocol for non-Gaussian states without i.i.d.
assumption (a possible route using Serfling’s bound was mentioned in Ref. [17] for removing
the i.i.d. assumption for their protocol).

We thus introduce a general receive-and-measure protocol for building trust for continuous
variable quantum states, using solely Gaussian measurements, namely heterodyne detec-
tion [11, 26]. This protocol allows to perform reliable continuous variable quantum state
tomography based on heterodyne detection, with analytical confidence intervals, which we
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Figure 1 A schematic representation of heterodyne measurement of a state p. The dashed red
lines represent balanced beamsplitters. LO stands for local oscillator, i.e., strong coherent state, and
vac for vacuum state. The blue circles are photodiode detectors.

refer to as heterodyne tomography in what follows. This tomography technique only requires
a single fixed measurement setting, compared to homodyne tomography. This protocol also
provides a means for certifying continuous variable quantum states with an energy test,
under the i.i.d. assumption. Finally, the same protocol also allows to verify continuous
variable states, without the i.i.d. assumption. For these three applications, the measurements
performed are the same. It is only the number of subsystems to be measured and the classical
post-processing performed that differ from one application to another.

We detail the structure of the protocol in the following. We give an estimator for the
expected value of any operator acting on a state with bounded support over the Fock basis
(Theorem 1) by deriving an approximate version of the optical equivalence theorem for
antinormal ordering [5]. The estimate is expressed as an expected value under heterodyne
detection. Similar estimates have been obtained in the context of imperfect heterodyne
detection [21, 22]. We go beyond these works in different respects: using this result,
we introduce a reliable heterodyne tomography method and compute analytical bounds
on its efficiency (Theorem 3). We then derive a receive-and-measure certification protocol
(against i.i.d. adversary) for continuous variable quantum states, with Gaussian measurements
(Theorem 4). We further promote this certification technique to a verification protocol against
fully malicious adversary (Theorem 5), using a de Finetti reduction for infinite-dimensional
systems [24].

3 Description of the protocol

Continuous variable quantum states live in an infinite-dimensional Hilbert space H, spanned
by the Fock basis {|n)},en, and are equivalently represented in phase space by their Husimi
@ function [5], a smoother relative of the Wigner function. Given a single-mode state p, its
Q@ function is defined as:

Qul0) = = Tr(|a)al p) = Tr (Tap) 1)
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Figure 2 A schematic representation of the protocol. The tester (within the dashed rectangle)
receives a continuous variable quantum state p™ over n subsystems. This state could be for example
the outcome of n successive runs of a physical experiment, the output of a commercial quantum
device, or directly sent by some untrusted quantum server. The tester measures with heterodyne
detection some of the subsystems of p", and uses the samples and efficient classical post-processing
to deduce information about the remaining subsystems.

for all a € C, where |a) is a coherent state and where {Il,}acc = {2 |a>(a\}aec is the
Positive Operator Valued Measure for heterodyne detection.

This detection, also called double homodyne or eight-port homodyne [11], consists in
splitting the measured state with a beamsplitter, and measuring both ends with homodyne

detection (Fig. 1). This corresponds to a joint noisy measurement of quadratures ¢ and p.

This is a Gaussian measurement, which yields two real outcomes, corresponding to the real
and imaginary parts of «. The @Q function of a single-mode state thus is a probability density
function over C and measuring a state with heterodyne detection amounts to sampling from
its @ function.

Using this detection, one may acquire knowledge about an unknown continuous variable
quantum state. More precisely, we define the following receive-and-measure protocol, depicted
in Fig. 2: given a quantum state p™ over n subsystems, measure some of the subsystems with
heterodyne detection. Then, post-process the samples obtained to retrieve information about
the remaining subsystems. The number subsystems to be measured and the post-processing
performed depend on the application considered.

We show in the following sections how this protocol may be used to perform reliable
tomography, certification and verification of continuous variable quantum states, and we

detail the corresponding choices of subsystems and the classical post-processing for each task.

4 Heterodyne estimator

This section contains our main technical result, an estimator for the expected value of
an operator acting on a state with bounded support over the Fock basis, from samples
of heterodyne detection of the state. From this result, we derive various protocols in the
following sections, ranging from tomography to state verification.

We denote by QED[ f(a)] the expected value of a function f for samples drawn from a

distribution D. Let us introduce for k,1 > 0 the polynomials

. (_1>k+l 8k+l

NV @)

Ek,l(z) =e

for z € C, which are, up to a normalisation, the Laguerre 2D polynomials, appearing in
particular in the expressions of Wigner function of Fock states [29]. For any operator
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A= E;?io At |E)(l] and all E € N, we define with these polynomials the function

L g _Aw (=) 3
fa(z,m) 776 k,lZ:O\/W k.l i) (3)

for all z € C, and all 0 < < 1. We omit the dependency in F for brevity. The function
z +— fa(z,n), being a polynomial multiplied by a converging Gaussian function, is bounded
over C. With the same notations, we also define the following constant:

E

Ka= Y [Aulv/G+ D0+ D). (4)

k,1=0

The optical equivalence theorem for antinormal ordering [5] gives an equivalence between
the expectation value of an operator in Hilbert space and the expectation value of its
Glauber-Sudarshan P function. The P function is however highly singular in general and
our results are based instead on the following approximate version of this equivalence when
the P function is replaced by the bounded function f:

» Theorem 1. Let E € N and let 0 <n < %. Let also A= ZZ}?O A |k)(1] be an operator
and let p = Eﬁlzo pri k) (1| be a density operator with bounded support. Then,

Tr (Ap) — QEQ[fA(Oé, M| < nka, (5)

where the function f and the constant K are defined in Eqgs. (3) and (4).

For all theorems, the proof techniques are given in appendix A and the detailed proofs may be
found in [6]. This result provides an estimator for the expected value of any operator A acting
on a continuous variable state p with bounded support over the Fock basis. This estimator
is the expected value of a bounded function f4 over samples drawn from the probability
density corresponding to a Gaussian measurement of p, namely heterodyne detection. The
optical equivalence theorem for antinormal ordering corresponds to the limit  — 0. The
right hand side of Eq. (5) is an energy bound, which depends on the operator A, the value E
and the precision parameter 7.

When the operator A is the density matrix of a continuous variable pure state |¥), the
previous estimator approximates the fidelity F(¥, p) = (¥|p|¥) between |¥)(¥| and p. With
the same notations:

» Corollary 2. Let E € N and let 0 <n < %. Let also |[¥)(¥| = Z;:,(l)io i kY be a

normalised pure state and let p = ZkE,l:O pri |k) (1] be a density operator with bounded support.
Then,

P

N3

(E+1)(E+2), (6)

where the function fa and the constant K 4 are defined in Eqgs. (3) and (4), for A =|U)(¥|.

This result provides an estimator for the fidelity between any target pure state |¥) and any
continuous variable (mixed) state p with bounded support over the Fock basis. This estimator
is the expected value of a bounded function fg over samples drawn from the probability
density corresponding to a Gaussian measurement of p, namely heterodyne detection. The
right hand side of Eq. (6) is an energy bound, which may be refined depending on the
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expression of |¥). In particular, the second bound is independent of the target state |U).
The assumption of bounded support makes sense for tomography, but not necessarily in an
adversarial setting. We will relax this condition for the certification and verification protocols
in the following, and indeed estimate the energy bound from the heterodyne measurements.
Errors in this estimation are taken into account in the confidence statements.

Given these results, one may choose a target pure state |¥), and measure with heterodyne
detection various copies of the output (mixed) state p of a quantum device with bounded
support over the Fock basis. Then, using the samples obtained, one may estimate the
expected value of fy, thus obtaining an estimate of the fidelity between the states |¥) (U]
and p. Using this result, we introduce a reliable method for performing continuous variable
quantum state tomography using heterodyne detection.

5 Reliable continuous variable state tomography

Continuous variable quantum state tomography methods usually make two assumptions:
firstly that the measured states are independent identical copies (i.i.d. assumption, for
independently and identically distributed), and secondly that the measured states have a
bounded support over the Fock basis [19]. With the same assumptions, we present a reliable
method for state tomography with heterodyne detection which has the advantage of providing
analytical confidence intervals. Our method directly provides estimates of the elements of the
state density matrix, phase included. As such, neither mathematical reconstruction of the
phase, nor binning of the sample space is needed, since the samples are used only to compute
expected values of bounded functions. Moreover, only a single fixed Gaussian measurement
setting is needed, namely heterodyne detection (Fig. 1).

For tomographic application, all copies of the state are measured. For n > 1, let
i, ..., a, € C be samples from heterodyne detection of n copies of a quantum state p. For
€ >0 and k,l € N, we define

€ 1 -
Pa =~ fiouw (0 €/ Ky, (7)
=1

where the function f4 and the constant K4 are defined in Eqgs. (3) and (4), for A = |I)(k|,
and where € > 0 is a free parameter. The quantity pj, is the average of the function fj;y
over the samples aq, ..., a,. The next result shows that this estimator approximates the
matrix element k,[ of this state with high probability. We use the notations of Theorem 1.

» Theorem 3 (Reliable heterodyne tomography). Lete, e’ > 0,n > 1 and o, . .., o, be samples
obtained by measuring with heterodyne detection n copies of a state p = ZkEJ:O ol kY (| with
bounded support, for E € N. Then

okt — pal S e+ €, (8)
for all 0 < k,1 < E, with probability greater than
ne2 it 2
1—4) exp [—] , 9
ogiél:gE 4Ch o

where the estimate pf,; is defined in Eq. (7) and where

max (k, l))

min (k,1) (10)

Cu=[k+1)(+ 1)}1+# oll—k| (

is a constant independent of p.
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In light of this result, the principle for performing reliable heterodyne tomography is straight-
forward and as follows: n identical copies p®" of the output quantum state of a physical
experiment or quantum device are measured with heterodyne detection, yielding the values
ai,...,an. These values are used to compute the estimates p5;, defined in Eq. (7), for all
k,l in the range of energy of the experiment. Then, Theorem 3 directly provides confidence
intervals for all these estimates of py;, the matrix elements of the density operator p, without
the need for a binning of the sample space or any additional data reconstruction, using a
single measurement setting. For a desired precision € and a failure probability J, the number
of samples needed scales as n = poly(1/¢,log(1/9)).

Both homodyne and heterodyne quantum state tomography assume a bounded support
over the Fock basis for the output state considered, i.e., that all matrix elements are equal
to zero beyond a certain value, and that the output quantum states are i.i.d., i.e., that all
measured output states are independent and identical. While these assumptions are natural
when looking at the output of a physical experiment, corresponding to a noisy partially
trusted quantum device with bounded energy, they may be questionable in the context of
untrusted devices. We remove these assumptions in what follows: we first drop the bounded
support assumption, deriving a certification protocol for continuous variable quantum states
of an i.i.d. device with heterodyne detection ; then, we drop both assumptions, deriving a
general verification protocol for continuous variable quantum states against an adversary
who can potentially be fully malicious.

6 State certification with Gaussian measurements

Given an untrusted source of quantum states, the purpose of state certification and state
verification protocols is to check whether if its output state is close to a given target state, or
far from it. To achieve this, a verifier tests the output state of the source. Ideally, one would
like to obtain an upper bound on the probability that the state is not close from the target
state, given that it passed a test. However, this is known to be impossible without prior
knowledge of the tested state distribution [14]. Indeed, writing this conditional probability

Prli tN t
Pr[incorrect|accept] = rlincorrect N accept]

Pr[accept] ’ (11)
in a situation where the device always produces a bad output state, it is rejected by the
verifier’s test most of the time, so the acceptance probability is very small and the conditional
probability is equal to 1. Therefore, the quantity that will always be bounded in certification
and verification protocols, in which one does not have prior knowledge of the device, is the
joint probability that the tested state is not close to the target state and that it passes the
test. Equivalently, we obtain lower bounds on the probability that the tested state is close to
the target state or that it fails the test.

We first consider the certification of the output of an i.i.d. quantum device, i.e., which
output state is the same at each round. However, we do not assume that the output states
of the device have bounded support over the Fock basis anymore. This is instead ensured
probabilistically using the samples from heterodyne detection.

Our continuous variable quantum state certification protocol is then as follows: let |¥)
be a target pure state, of which one wants to certify m copies. The values s and F are free
parameters of the protocol. One instructs the i.i.d. device to prepare n+m copies of |¥), and
the device outputs an i.i.d. (mixed) state p®("*+™) . One keeps m copies p®”, and measures
the n others with heterodyne detection, obtaining the samples aq, ..., a,. One records the
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number 7 of samples such that |a;|? > E. We refer to this step as support estimation. For a
given € > 0, one also computes with the same samples the estimate

m

Fa(p) = |23 fu (ase/ma))| (12)

where the function f4 and the constant K 4 are defined in Eqs. (3) and (4), for A = |U)(¥],
and where € > 0 is a free parameter. The next result quantifies how close this estimate is
from the fidelity between the remaining m copies of the output state p®™ of the tested device
and m copies of the target state |W)(®|®™.

» Theorem 4 (Gaussian certification of continuous variable quantum states). Let €,¢' > 0,
let s < n, and let aq,...,a, be samples obtained by measuring with heterodyne detection n
copies of a state p. Let E in N, and let v be the number of samples such that |o;|* > E. Let
also |¥) be a pure state. Then for all m € N*,

|[F(U®™ p®™) — Fy(p)| < e+ ¢, (13)

orr > s, with probability greater than

1- (Pg'i;ipport + P};}geﬁding) ’ (14)
where
i (s +1)%2 (s +1)
PSJ;Jport = exXp ntl |’ (15)
- ne2+2E 12
P“ge ing 2exp |:_ :| ’ (16)
Hoeffding 2mA+2EC?
where the estimate Fy(p) is defined in Eq. (12), and where
. E € E—%KH_% oll—k| max (k,l) 17
e () (om0 "

is a constant independent of p, with the constant K defined in Eq. (4).

This results implies that the quantity Fiy(p) is a good estimate of the fidelity F'(¥®™, p@™),
or the score at the support estimation step is higher than s, with high probability. The
values of the energy parameters F and s should be chosen to guarantee completeness, i.e.,
that if the correct state |¥) is sent, then r < s with high probability.

This theorem is valid for all continuous variable target pure states |¥), and the failure
probability may be greatly reduced depending on the expression of |¥). The number of
samples needed for certifying a given number of copies m with a precision € and a failure
probability d scales as n = poly(m, 1/¢,1/8). Note that the same protocol may be used to
obtain reliable estimates of Tr(Ap) for any operator A under the i.i.d. assumption, by setting
m =1 and replacing ¥ by A in Eq. (12).

This certification protocol is promoted to a verification protocol in the following section,
by removing the i.i.d. assumption.

3:9

TQC 2020



3:10

Building Trust for Continuous Variable Quantum States

7 State verification with Gaussian measurements

We now consider an adversarial setting, where a verifier delegates the preparation of a
continuous variable quantum state to a potentially malicious party, called the prover. One
could see the verifier as the experimentalist in the laboratory and the prover as the noisy
device, where we aim not to make any assumptions about its correct functionality or noise
model. Given the absence of any direct error correction mechanism that permits a fault
tolerant run of the device, the aim of verification is to ensure that a wrong outcome is not
being accepted. In the context of state verification, this amounts to making sure that the
output state of the tested device is close to an ideal target state.

The prover is not supposed to have i.i.d. behaviour. In particular, when asked for various
copies of the same state, the prover may actually send a large state entangled over all
subsystems, possibly also entangled with a quantum system on his side. In that case, the
certification protocol derived in the previous section is not reliable. With usual tomography
measurements, the number of samples needed for a given precision of the fidelity estimate
scales exponentially in the number of copies to verify. This is an essential limitation of
quantum tomography techniques, because they check all possible correlations between the
different subsystems.

However we prove that, because of the symmetry of the protocol, the verifier can assume
that the prover is sending permutation-invariant states, i.e., states that are invariant under
any permutation of their subsystems. With a specific support estimation step, reduced states
of permutation-invariant states are close to mixture almost-i.i.d. states, i.e., states that are
i.i.d. on almost all subsystems. At the heart of this reduction is the de Finetti theorem for
infinite-dimensional systems of [24], which allows restricting to an almost-i.i.d. prover.

Our verification protocol is then as follows: the verifier wants to verify m copies of a
target pure state |¥). The values n, k, ¢, s and E are free parameters of the protocol. The
prover is instructed to prepare n + k copies of |¥) and send them to the verifier. The verifier
picks k subsystems at random and measures them with heterodyne detection, obtaining the
samples 31, ..., Bk, and records the number 7 of values |3;|> > E. The verifier discards 4q
subsystems at random and measures all the others but m chosen at random with heterodyne
detection, obtaining the samples a1, ..., n—4g—m. Finally, the verifier computes with these
samples the estimate

n—4aqg—m m

Zf‘ll (aive/(mK‘P)) ’ (18>

i=1

where the function f4 and the constant K 4 are defined in Eqgs. (3) and (4), for A = |U)(¥|
and where € > 0 is a free parameter. Note that this estimate is identical to the one defined
in Eq. (12), replacing n by n — 4¢ — m.

1

Fy(p) = P

» Theorem 5 (Gaussian verification of continuous variable quantum states). Let n > 1, let
s < k, and let p"tF be a state over n + k subsystems. Let By, .., B be samples obtained by
measuring k subsystems at random with heterodyne detection and let p™ be the remaining
state after the measurement. Let E in N, and let r be the number of samples such that
|Bi|> > E. Let also ¢ > m, and let p™ be the state remaining after discarding 4q subsystems

of p™ at random, and measuring n — 4q — m other subsystems at random with heterodyne

m(4q+m—1)  Let

detection, yielding the samples aq, . .., n—ag—m- Let €,¢' >0 and let €’ = e

|T) be a target pure state. Then,

|F (\I/®m, pm) —Fy (p)| <e+ € +e+ PyeFinettis (19)
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or r > s, with probability greater than

1- (Psupport + PdeFinetti + PHoeﬁding) ) (20)
where
k(q 2s 2
PsupPOTt = 8k3/2 exp l_g <n B k) ] ’ (21)
2 1
Pycrinetti = Q(E+1)2/2 exp {_q(q—’_)] ' (22)
n
2
n —4q n—8q [etFe 8qm?tF
PHoeﬁding = 2( 4(] ) €xp [_ YmAt2E < C\IJ - n— 4(] “m ) (23)

where the estimate Fy(p) is defined in Eq. (18), and where Cy is a constant independent of
p defined in Eq. (17).

This result implies that the quantity Fy(p) is a good estimate of the fidelity F'(¥®™, p™), or
the score at the support estimation step is higher than s, with high probability. Like for the
certification protocol, the values of the energy parameters E and s should be chosen by the
verifier to guarantee completeness, i.e., that if the prover sends the correct state |¥), then
r < s with high probability.

For specific choices of the free parameters of the protocol either the estimate Fy(p) is
polynomially precise in m, or r > s, with exponential probability in m, with n, k, ¢ = poly(m).
In particular, the efficiency of the protocol may be greatly refined by taking into account the
expression of |¥) in the Fock basis, and optimizing over the free parameters.

This verification protocol let the verifier gain confidence about the precision of the
estimate of the fidelity in Eq. (18). If the value of the estimate is close enough to 1, the
verifier may decide to use the state to run a computation. Indeed, statements on the fidelity
of a state allow inferring the correctness of any trusted computation done afterwards using
this state. Let 8 > 0, and let O be the observable corresponding to the result of the trusted
computation performed on p™, the reduced state over m subsystems instead of |\I')®m, m
copies of the target state |¥). In other words, O encodes the resources which the verifier can
perform perfectly (ancillary states, evolution and measurements), the imperfections being
encoded in p. Then, F (I®™ p™) > 1 — 3 implies the following bound on the total variation
distance between the probability densities of the computation output of the actual and the
target computations:

HP\I(?Q?"L - Pp(:')n tvd S D(\Il®m7pm) S \/Ba (24)

by standard properties of the trace distance D [13]. What this means is that the distribution of
outcomes for the state p™ sent by the prover is almost indistinguishable from the distribution
of outcomes for m copies of the ideal state |¥), when the fidelity is close enough to one.

8 Discussion

Determining an unknown continuous variable quantum state is especially difficult since
it is described by possibly infinitely many complex parameters. Existing methods like
homodyne quantum state tomography require many different measurement settings, and
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heavy classical post-processing. For that purpose, we have introduced a reliable method
for heterodyne quantum state tomography, which uses heterodyne detection as a single
Gaussian measurement setting, and allows the retrieval of the density matrix of an unknown
quantum state without the need for data reconstruction nor binning of the sample space. For
data reconstruction methods such as Maximum Likelihood, errors from the reconstruction
procedure are usually indistinguishable from errors coming from the tested quantum device.
For that reason, such methods do not extend well to the task of verification, unlike our
method.

Building on these tomography techniques, and with the addition of cryptographic tech-
niques such as the de Finetti theorem, we have derived a protocol for verifying various
copies of a continuous variable quantum state, without i.i.d. assumption, with Gaussian
measurements. This protocol is robust, as it directly gives a confidence interval on an
estimate of the fidelity between the tested state and the target pure state. We emphasize
that, while the target state is pure, the tested state is not required to be pure.

Our verification protocol is complementary to the approach of [25], in which a measure-
ment-only verifier performs continuous variable quantum computing by delegating the
preparation of Gaussian cluster states to a prover, and has to perform non-Gaussian mea-
surements. In our approach, the measurement-only verifier may perform continuous variable
quantum computing by delegating the preparation of non-Gaussian states to the prover, and
has to perform Gaussian measurement, which are much easier to perform experimentally.

Our protocol may be tailored to different uses and assumptions, from tomography to
verification, simply by changing the classical post-processing. We expect this protocol to be
useful for the validation of continuous variable quantum devices in the NISQ [23] era and
onwards.

In particular, an interesting perspective would be fine-tuning the various parameters
of the protocol for specific target states in order to optimise its efficiency, thus reducing
the number of samples needed for a given confidence interval. Another interesting prospect
would be extending our main technical result, Theorem 1, which applies to operators, to
quantum maps. Also, in the case where the operator is the density matrix of a target pure
state, our result provide an estimate for the fidelity, and it would be interesting to extend
this to target mixed states.
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A  Proof techniques

This section details the primary mathematical tools used in the proofs of the theorems, along
with some intuition. The full technical proofs can be found in [6].

The function z — fa(z,n) defined in Eq. (3) for n > 0 is a bounded approximation of the
Glauber-Sudarshan function P4 of the operator A. This approximation is parametrised by a
precision 7, and a cutoff value E. The optical equivalence theorem for antinormal ordering [5]
reads

Ti(4p) = [ Qule)Pa(a)ea. (25)
Given that
E U] = [ @u@)fatamida, (26)

EQ[fA (o, m)] is an approximation of Tr(Ap) parametrised by n and E.
—&p
Theorem 1 formalises this statement.

we can expect that
«

The proof of Theorem 3 combines Theorem 1 with Hoeffding inequality [15], which quantifies
the speed of convergence of the sample mean towards the expected value of a bounded i.i.d.
random variable:

» Lemma 6 (Hoeffding). Let A\ > 0, let n > 1, let z1,...,2, be i.i.d. complex random
variables from a probability density D over R, and let f : C+— R such that |f(2)| < M, for
M >0 and all z € C. Then

|

The proof then follows by applying this inequality for D = Q,, and f = firy, for all values
of k,l between 0 and F, together with the union bound.

n\2 ]

BYYel (27)

1 n
DRIOENAD)

2)\] < 2exp [

Theorem 4 removes the bounded support assumption and its proof is similar to the one of
Theorem 3, with the addition of a support estimation step, using samples from heterodyne
detection. The main result utilised here is the fact that for all E [16]

+oo
1-Hep =Y [n)inl < 2 [ ool (28)

n=E+1 la]2>E
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where Il< g is the projector onto the space of states of support bounded by E. This result
allows to bound the probability of having a large support and obtaining a low score at the
support estimation step.

The proof of Theorem 5 is the most technical. This proof combines three main ingredients:

a support estimation step for permutation-invariant states using samples from heterodyne
detection, the de Finetti reduction from [24] and a refined version of Hoeffding inequality
for superpositions of almost-i.i.d. states under a product measurement. The three terms
appearing in the expression of the probability in the theorem correspond to these three
ingredients, respectively.
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—— Abstract

Quantum information is well known to achieve cryptographic feats that are unattainable using
classical information alone. Here, we add to this repertoire by introducing a new cryptographic
functionality called uncloneable encryption. This functionality allows the encryption of a classical
message such that two collaborating but isolated adversaries are prevented from simultaneously
recovering the message, even when the encryption key is revealed. Clearly, such functionality is
unattainable using classical information alone.

We formally define uncloneable encryption, and show how to achieve it using Wiesner’s conjugate
coding, combined with a quantum-secure pseudorandom function (qPRF). Modelling the gPRF as
an oracle, we show security by adapting techniques from the quantum one-way-to-hiding lemma, as
well as using bounds from quantum monogamy-of-entanglement games.

2012 ACM Subject Classification Theory of computation — Quantum computation theory; Theory
of computation — Cryptographic primitives; Security and privacy — Symmetric cryptography and
hash functions

Keywords and phrases Quantum Cryptography, Symmetric Key, Monogamy-of-Entanglement
Digital Object Identifier 10.4230/LIPIcs. TQC.2020.4
Related Version A full version of the paper is available at https://arxiv.org/abs/1903.00130.

Funding This material is based upon work supported by the U.S. Air Force Office of Scientific
Research under award number FA9550-17-1-0083, Canada’s NSERC, an Ontario ERA, and the

University of Ottawa’s Research Chairs program.

1 Introduction

A key distinction between classical and quantum information is given by the no-cloning
principle: unlike bits, arbitrary qubits cannot be perfectly copied [11, 18, 26]. This principle
is the basis of many of the feats of quantum cryptography, including quantum money [25]
and quantum key distribution (QKD) [6] (for a survey on quantum cryptography, see [9]).

In QKD, two parties establish a shared secret key, using public quantum communication
combined with an authentic classical channel. The quantum communication allows to detect
eavesdropping: when the parties detect only a small amount of eavesdropping, they can
produce a shared string that is essentially guaranteed to be private. Gottesman [15] studied
quantum tamper-detection in the case of encryption schemes: in this work, a classical message
is encrypted into a quantum ciphertext such that, at decryption time, the receiver will detect
if an adversary could have information about the plaintext when the key is revealed. We
note that classical information alone cannot produce such encryption schemes, since it is
always possible to perfectly copy ciphertexts.

Notably, Gottesman left open the question of an encryption scheme that would prevent
the splitting of a ciphertext. In other words, would it be possible to encrypt a classical
message into a quantum ciphertext, such that no attack at the ciphertext level would be
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significantly successful in producing two quantum registers, each of which, when combined
with the decryption key, could be used to reconstruct the plaintext?

In this work, we define, construct and prove security for a scheme that answers Gottesman'’s
question in the positive. We call this uncloneable encryption. The core technical aspects of
this work were first presented in one of the author’s M.Sc. thesis [16].

1.1 Summary of Contributions

We consider encryption schemes that encode classical plaintexts into quantum ciphertexts,
which we formalize in Definition 4. For simplicity, in this work, we consider only the one-time,
symmetric-key case. Next, we define uncloneable encryption (Definition 8). Informally, this
can be thought of as a game, played between the honest sender (Alice) and two malicious
recipients (Bob and Charlie). First, Alice picks a message m € {0,1}" and a key k € {0, 1}V
(k is a polynomial in some security parameter, A). She encrypts her message into a quantum
ciphertext register R. Initially, Bob and Charlie are physically together, and they receive R.
They apply a quantum map to produce two registers: Bob keeps register B and Charlie
keeps register C'. Bob and Charlie are then isolated. In the next phase, Alice reveals k to
both parties. Using k and their quantum register, Bob and Charlie produce mpg and mg¢
respectively. Bob and Charlie win if and only if mp = m¢c = m. The scheme is t-uncloneable
secure if their winning probability is upper bounded by 27" 4+ n()) for a negligible 7.

Assuming that Alice picks her message uniformly at random, our results are summarized in
Figure 1, where we plot upper bounds for the winning probability of Bob and Charlie against
various types of encodings, according to the length of m. First of all, if the encoding is classical,
then Bob and Charlie can each keep a copy of the ciphertext. Combined with the key k, each
party decrypts to obtain m. This gives the horizontal line at Pr[Adversaries win] = 1. Next,
a lower bound on the winning probability for any encryption scheme is QL
the parties coordinating a random guess). This is the ideal curve. Our goal is therefore to
produce an encryption scheme that matches the ideal curve as close as possible.

(corresponding to

It may seem that asking that Alice sample her message uniformly at random would be
particularly restrictive, but this is not the case — we show in Theorem 9 that security in the
case of uniformly sampled messages implies security in the case of non-uniformly sampled
messages, if the message size does not grow with the security parameter. Specifically, if Bob
and Charlie can win with probability at most 27 "¢ + 7()\) when the message is sampled
uniformly at random, for some ¢ and some negligible function 7, then they can win with
probability at most 27"+ 4 5/()) if the message m is sampled from a distribution with a
min-entropy of h where 7’ is a negligible function which is larger than 7.

Our first attempt at realizing uncloneable encryption (Appendix A) shows that the
well-known Wiesner conjugate coding [25] already achieves a security bound that is better
than any classical scheme. For any two bit strings z,6 € {0,1}", define the Wiesner state
|2%) = H% [21)®...® H’" |2,,). The encryption uses a random key r,6 € {0,1}" and maps a
classical message m into the quantum state p = ’(m or)'X(mar) |; given (r,#), decryption
consists in measuring in the basis determined by 6 to obtain x and then computing x & r. We
sketch a proof that this satisfies a notion of security for encryption schemes. The question
of uncloneability then boils down to: “How well can an adversary split p into two registers,
each of which, combined with (6, r) can reconstruct m?” This question is answered in prior

work on monogamy-of-entanglement games [20]: an optimal strategy wins with probability
n

(% + ﬁ) . This is again illustrated in Figure 1.
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Figure 1 Upper-bounds on winning probabilities for various types of encodings (up to negligible
functions of A) for messages sampled uniformly at random.

In order to improve this bound, we use a quantum-secure pseudorandom function (qPRF,
see Definition 3) fy : {0,1}* x {0,1}* — {0,1}". The encryption (see Section 4.1) consists
of a quantum state p = |r9 ><r9| for random 7,0 € {0,1}*, together with a classical string
c=m® fi(s,r) for a random s. The key k consists in 6 and s. Once again, it can be shown
that this is an encryption scheme in a more usual sense and we sketch this argument in
Section 4.1. Intuitively, the use of f) affords us a gain in uncloneable security, because an
adversary who wants to output m would need to know the pre-image of m under f)(s,-).
Reaching a formal proof along these lines, however, is tricky. First, we model the PRF using
a quantum random oracle [8]; this limits the adversaries’ interaction with the qPRF to be
black-box quantum queries (we refer to Section 4.3 for further details on this modelling). Next,
the quantum random oracle model is notoriously tricky to use and many of the techniques in
the classical literature are not directly applicable. Fortunately, we can adapt techniques from
Unruh’s quantum one-way-to-hiding lemma [22] to the two-player setting, which enables us
to recover a precise statement along the lines of the intuition above. We thus complete the
proof of our main Theorem 16, obtaining the bound 9 - 2% + negl(A). This is the fourth and
final curve in Figure 1.

In addition to the above, we formally define a different type of uncloneable security:
inspired by more standard security definitions of indistinguishability, we define uncloneable-
indistinguishability (Definition 11). This security definition bounds the advantage that
the adversaries have at simultaneously distinguishing between an encryption of 0™ and an
encryption of a plaintext of length n, as prepared by the adversaries. In a series of results
(Theorems 12 and 17 and Corollary 18), we show that our main protocol achieves this security
notion against adversaries that use unentangled strategies and as long as the message size
does not grow with A. As discussed in Section 1.2, there are interesting uses cases where we
can assume that the adversaries do not share entanglement.

We note that our protocols (both Definition 19 and Definition 13) have the desirable
property of being prepare-and-measure schemes. This means that the quantum technology for
the honest users is limited to the preparation of single-qubit pure states, as well as to single-
qubit measurements; these quantum technologies are mature and commercially available.
(Note, however, that quantum storage remains a major challenge at the implementation
level).
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1.2 Applications

While our focus is on the conceptual contribution of defining and proving a new primitive,
we believe that uncloneable encryption could have many applications. We give two such
examples.

1.2.1 Quantum Money

As it captures the idea of “uncloneable classical information” in a very generic manner,
uncloneable encryption can be used as a tool to build other primitives which leverage the
uncloneability of quantum states. Such constructions help us understand the landscape of
quantum cryptography. As an example, any uncloneable secure encryption scheme naturally
yields a private-key quantum money scheme [2, 25].

To obtain quantum money from an uncloneable encryption scheme, we identify the
notion of “simultaneously passing the bank’s verification” with the notion of “simultaneously
obtaining the correct plaintext”. To generate a banknote, the bank samples a message m,
a key k, a serial number s and produces as output (s, Enc(k,m)), where Enc(k, m) is the
uncloneable encryption of m with the key k. When the bank is asked to verify a banknote, it
verifies the serial number in its database to retrieve k, decrypts the ciphertext and verifies if
the message obtained is indeed m.

The uncloneable security guarantee implies that the probability of a malicious party
producing two banknotes which pass this test is negligible. If this were not the case, we
could use the attack which counterfeits the banknote to essentially copy the ciphertext in
the underlying uncloneable encryption scheme. The adversaries tasked with obtaining the
message once the key is revealed then simply decrypt as if they were the honest receivers.

1.2.2 Preventing Storage Attacks by Classical Adversaries

Indistinguishable-uncloneable encryption prevents a single eavesdropping adversary with no
quantum memory from collecting ciphertexts exchanged by two honest parties in the hope of
later learning the key. We sketch an argument for this fact.

Suppose such an adversary obtains a ciphertext from an uncloneable-indistinguishable
encryption scheme. We claim that they cannot correctly determine if the ciphertext corres-
ponds to the encryption of 0™ or of some known message m with non-negligible advantage,
even if the decryption key becomes known after their measurement of the ciphertext. If such
an adversary existed, it could be used to break the uncloneable-indistinguishable security of
the encryption scheme. Indeed, the almost-classical eavesdropper could create two copies of
their classical memory and distribute it to the two adversaries who attempt to obtain the
message once the key is revealed.!

Note that the adversaries in this attack do not share any entanglement and so we can
apply Corollary 18 which states that our encryption scheme is uncloneable-indistinguishable
secure under this condition.

Our work is currently in the private-key setting, but can be extended in a straightforward
way to the public-key setting. In this scenario, we can still guarantee the secrecy of the
message even if the eavesdropper is later able to determine the decryption key from the
publicly-known encryption key. In other words, an eavesdropping adversary with no quantum
memory would need to attack the ciphertext during transmission. This is known as long-term
security or everlasting security [21].

1 We thank an anonymous reviewer for this suggestion.
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1.3 More on Related Work

Starting with the foundational work of Wiesner [25], a rich body of literature has considered
the encoding of classical information into quantum states in order to take advantage of
quantum properties for cryptography.

Quantum Key Recycling. The concept of quantum key recycling is a precursor to the
QKD protocol, developed by Bennett, Brassard, and Breidbart [7] (the manuscript was
prepared in 1982 but only published recently). According to this protocol, it is possible to
encrypt a classical message into a quantum state, such that information-theoretic security
is assured, but in addition, a tamper detection mechanism would allow the one-time pad
key to be re-used in the case that no eavesdropping is detected. Quantum key recycling
has been the object of recent related work [10, 13].

Tamper-Evident Encryption. We referred above to tamper-detection in the case of
encryption, which we will also call tamper-evident encryption. However, we emphasize
that the author originally called this contribution uncloneable encryption [15]. We justify
this choice of re-labelling in quoting the conclusion of the work:

One difficulty with such generalizations is that it is unclear to what extent the
name “uncloneable encryption” is really deserved. I have not shown that a message
protected by uncloneable encryption cannot be copied — only that Eve cannot copy
it without being detected. Is it possible for Eve to create two states, (...), which
can each be used (in conjunction with the secret key) to extract a good deal of
information about the message? Or can one instead prove bounds, for instance, on
the sum of the information content of the various purported copies? [15]

Since our work addresses this question, we have appropriately re-labeled prior work
according to a seemingly more accurate name. To the best of our knowledge, the precise
relationship between quantum key-recycling, tamper-evident encryption, and uncloneable
encryption is unknown (see Section 1.4).

Quantum Copy-Protection. Further related work includes the study of quantum
copy-protection, as initiated by Aaronson [1]. Informally, this is a means to encode a
function (from a given family of functions) into a quantum program state, such that an
honest party can evaluate the function given the program state, but it would be impossible
to somehow split the quantum program state so as to enable two parties to simultaneously
evaluate the function. Aaronson gave protocols for quantum copy-protection in an oracle

model, but left wide open the question of quantum copy-protection in the plain model.

In a way, uncloneable encryption is a first step towards quantum copy-protection, since it
prevents copying of data, which can be seen as a unit of information that is even simpler
than a function.

1.4 OQutlook and Future Work

In this work, we challenge one of the tacit assumptions of encryptions, namely that adversaries
can always copy ciphertexts. We believe that this has the potential to significantly change

the landscape of cryptography, for instance in terms of techniques for key management [5].

Furthermore, our techniques could become building blocks for a theory of uncloneable
cryptography.

Our work leads to many follow-up questions, broadly classified according to the following
themes:
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Improvements. There are many possible improvements to the current work. For
instance: Could our scheme be made resilient to errors? Can we remove the reliance
on the oracle, and/or on the qPRF? Could an encryption scheme simultaneously be
uncloneable and provide tamper detection? Would achieving uncloneable-indistinguishable
security be possible, without any restrictions on the adversary’s strategy?

Links with related work. What are the links, if any, between uncloneable encryption,
tamper-evident encryption [15], and quantum encryption with key recycling [7, 10, 13]?
We note that both uncloneable encryption and quantum encryption with key recycling [13]
make use of theorems developed in the context of one-sided device-independent QKD [20].
Can we make more formal links between these primitives?

More uncloneability. Finally, our work paves the way for the study of more complex
unclonable primitives. Could this lead to uncloneable programs [1]7 What about in
complexity theory, could we define and realize uncloneable proofs [1]?

1.5 Outline

The remainder of the paper is structured as follows. In Section 2, we introduce some basic
notation and useful results from the literature. In Section 3, we formally define uncloneable
encryption schemes and their security. Our main scheme is described in Section 4 (with a
toy scheme based on Wiesner conjugate coding being described in Appendix A). Due to lack
of space, most proofs are relegated to Appendix B and the remainder can be found in the
full version.

2 Preliminaries

In this section, we present our notation and techniques from prior works used in this paper.

2.1 Notation and Basics of Quantum Information

We denote the set of all functions of the form f : {0,1}" — {0,1}™ by Bool(n,m). We
denote the set of strictly positive natural numbers by NT. All Hilbert spaces are finite
dimensional. We overload the expectation symbol E in the following way: If X is a finite
set, X a random variable on X, and f : X — R some function, we define E,. y f(z) to be
> zex PrlX = z] f(z). If we omit the random variable then we assume a uniform distribution,
ie: E; f(z) = ﬁ Y wex f(x). If X is a random variable distributed over a finite set X,
then its min-entropy is given by — max,cx Pr[X = z]|. A function n: N — R is said to be
negligible if for all n € N there exists an z,, > 0 such that « > x,, implies that |n(z)| < z~".

A comprehensive introduction to quantum information and quantum computing may be
found in [17, 24]. We fix some notation in the following paragraphs.

Let Q = C? be the state space of a single qubit. In particular, Q is a two-dimensional
complex Hilbert space spanned by the orthonormal set {|0),|1)}. For any n € N*, we write
Q(n) = Q" and note that {|s) = [s1) ®|s2) ®...® |sy) }seq0,1}» forms an orthonormal basis
of Q(n).

Let H be a Hilbert space. The set of all unitary and density operators on H are denoted,
respectively, by U(H) and D(H). We recall that the operator norm of a linear operator
A :H — H' between finite dimensional Hilbert spaces is given by [|A| = max,ez jo|=1 [|AV]]
and satisfies the property that ||Av| < ||A] - ||v]|. If A is either a projector or a unitary
operator, then ||A|| = 1.



A. Broadbent and S. Lord

We use the term “quantum state” to refer to both unit vectors |¢) € H and to density
operators p € D(H) on some Hilbert space.

Let H € U(Q) be the Hadamard operator defined by |0) — % and [1) — %. For
any strings z,6 € {0,1}", we define the state [2) = H% |z1) ® H? |22) ® ... @ H" |z,).
Note that the set {|59>}S€{0 1y forms an orthonormal basis of Q(n). Following their

use in [25], we call states of the form ‘x9> Wiesner states and we call {’59>}S€{0’1}n a

Wiesner basis. For any n € NT, the Einstein-Podolski-Rosen (EPR) [12] state is given by
[EPR;) = \/% Zze{o,l}n ) @ |z) .

A positive operator-valued measurement (POVM) on a Hilbert space # is a finite collection
of positive semidefinite operators {F;};c; on H which sum to the identity. A projective
measurement is a POVM composed of projectors.

We also recall that physically permissible transformation of a quantum system precisely
coincide with the set of completely positive trace preserving (CPTP) maps. In particular,
CPTP map will map density operators to density operators.

A polynomial-time uniform family of circuits C = {Cy} en+ is a collection of quantum
circuits indexed by NT such that there exists a polynomial-time deterministic Turing machine
T which, on input 1%, produces a description of Cy. We refer to such families as efficient circuits.
Each circuit Cy defines and implements a certain CPTP map Cy : D(Hm,x) = D(Hout,\)
where the Hilbert spaces H, x and Hout,» are implicitly defined by the circuit. Note that we
consider general, i.e.: possibly non-unitary, circuits. These were introduced in [3]. It is worth
noting that a universal gate set for general quantum circuits exists which is composed of only
unitary gates, implementing maps of the form p — UpU" for some unitary operator U, and
two non-unitary maps which are the single qubit partial trace map Tr : D(Q) — D(C) and
the state preparation map Aux : D(C) — D(Q) defined by 1 +— |0)0|. Further information
on this circuit model can be found in [23].

2.2 Monogamy-of-Entanglement Games

Monogamy-of-entanglement games were introduced and studied in [20]. In short, such a game
is played by Alice against cooperating Bob and Charlie. Alice describes to Bob and Charlie a
collection of different POVMs which she could use to measure a quantum state on a Hilbert
space H 4. These POVMs are indexed by a finite set © and each reports a measurement
result taken from a finite set X. Bob and Charlie then produce a tripartite quantum state
p € D(Ha®Hp ® He), giving the A register to Alice, the B register to Bob and the C
register to Charlie. Alice then picks a 6 € ©, measures her subsystem with the corresponding
POVM and obtains some result € X. She then announces 6 to Bob and Charlie who are
now isolated. Bob and Charlie win if and only if they can both simultaneously guess the
result z.

Upper bounds on the winning probability of Bob and Charlie in such games was the
primary subject of study in [20]. One of their main results, corresponding to a game where
Alice measures in a random Wiesner basis, is as follows.

» Theorem 1 ([20]). Let A € NT. For any Hilbert spaces Hp and Hc, any collections of
POVMs

0 0
{{BI}£E{O’1}>\}0€{O,1}“/ and {{Cx}ze{o,l}k}ee{o’l}n (1)
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on these Hilbert spaces, and any state p € D(Q(N) @ Hp @ Hc), we have that

A
E Y T [(|efNa’| @ B @ CY) p] < (;4-2$§) : (2)

ze{0,1}*

Using standard techniques, we recast this theorem in a context where Alice sends to Bob
and Charlie a random Wiesner state and they split this state among themselves via a CPTP
map P.

» Corollary 2. Let A € Nt. For any Hilbert spaces Hp and Hc, any collections of POVMs

6 6
(B comr b @ {8 uctonn ocanys )

on these Hilbert spaces, and any CPTP map ® : D(Q(N\)) — D(Hp ® He), we have that

0 0 0N/, .0 1 1
EETr[(B] 0 %) @ (|a")a"])] < (2 + NQ) . (1)

The proof can be found in the full version, but conceptually follows from a two-step
argument. First, we only consider states of the form (1 ® ®) |EPR)}EPR,| for some CPTP
map ® and where Alice keeps the intact subsytems from the EPR pairs. Then, we apply the
correspondence between Alice measuring her half of an EPR pair in a random Wiesner basis
and her sending a random Wiesner state. This correspondence is similar to the one used in
the Shor-Preskill proof of security for the BB84 QKD protocol [19].

Corollary 2 can be seen as the source of “uncloneability” for our upcoming protocols.
When Alice sends a state |x9><:c9|, picked uniformly at random, to Bob and Charlie, she
has a guarantee that it is unlikely for both of them to learn x even if she later divulges 6.
It is worth noting that Theorem 1 and Corollary 2 have no computational or hardness
assumptions.

2.3 Oracles and Quantum-Secure Pseudorandom Functions

A quantum-secure pseudorandom function is a keyed function which appears random to an
efficient quantum adversary who only sees its input/output behaviour and is ignorant of the
particular key being used. We formally define this notion with the help of oracles. Quantum
accessible oracles have been previously studied in the literature, for example in [8, 22].

For a function H € Bool(n,m), a circuit C is said to have oracle access to H, denoted C,
if we add to its gate set a gate implementing the unitary operator O% € U(Q(n)q ® Q(m)r)
defined on computational basis states by

)@ ly)r = l2)q@ly® H(z))p - ()

Colloquially, we are giving C a “black box” which computes the function H. Note that for
any two functions H, H' € Bool(n, m), we can obtain the circuit ¢ from ¢ by replacing
every instance of the O gate by the O gate.

Our definition of a quantum-secure pseudorandom function, inspired by [27], is as follows.

» Definition 3 (Quantum-Secure Pseudorandom Function). A quantum-secure pseudorandom
function F is a collection of functions

F={H: {00 < 0.1} 5 o)/ (6)

where Lry,, Lous - NT — Nt and such that:
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1. There is an efficient quantum circuit F = {F\} en+ such that F\ implements the CPTP
map Fy given by p — UxpU] where Uy € U(QX + £1n(N) + Lowr(N))) is defined by

Ur(|k) @ |a) @ [b) ) = [k) @ |a) @ |b & fa(k,a)). (7)

2. For all efficient quantum circuits D = {D}\cn+ having oracle access to a function
of the form H € Bool({1,(N),Lout(N)), each implementing a CPTP map of the form
D . D(C) — D(Q), there is a negligible function n such that:

ETr [ Jo)o| D™ (1)] — ETr [Jo)0| DY ()] | < n(A). (8)

We should think of D as a circuit which attempts to distinguish two different cases: was
it given oracle access to the pseudorandom function f(k,-) : {0, 1} — {0, 1}¢0u(N) for a
randomly sampled k € {0,1}*? Or to a function H € Bool(¢1,(\), £out())) sampled truly at
random? The circuit takes no input and produces a single bit of output, via measuring a
single qubit in the computational basis. The bound given in the definition ensures that the
probability distribution of the output does not change by much in both scenarios.

In his work on quantum-secure pseudorandom functions [27], Zhandry showed that certain
common constructions of pseudorandom functions are secure against quantum adversaries.

3 Uncloneable Encryption

The encryption of classical plaintexts into classical ciphertexts has been extensively studied.

The study of encrypting quantum plaintexts into quantum ciphertexts has also received
some attention, for example in [4]. Uncloneable encryption is a security notion for classical

plaintexts which is impossible to achieve in any meaningful way with classical ciphertexts.

Thus, we formally define a notion of quantum encryptions for classical messages in Section 3.1
and then give our security definitions in Section 3.2.

3.1 Quantum Encryptions of Classical Messages

A quantum encryption of classical messages scheme is a procedure which takes as input a
plaintext and a key, in the form of classical bit strings, and produces a ciphertext in the form
of a quantum state. We model these schemes as efficient quantum circuits and CPTP maps
where classical bit strings are identified with computational basis states: s «+ |s)(s|. Our
schemes are parametrized by a security parameter A. In general, the message size n = n(\),
the key size k = k(\), and the size of the ciphertext £ = £(\) may depend on A. This is
formalized in Definition 4.

» Definition 4 (Quantum Encryption of Classical Messages). A quantum encryption of classical
messages (QECM) scheme is a triplet of efficient quantum circuits S = (Key, Enc, Dec)
implementing CPTP maps of the form

KeyA : 'D((C) — 'D('HKV)\),

Ency : 'D('HK,)\ ® HM,)\) — 'D(HT,)\), and

Decy : 'D('HK’)\ ® HT)\) — D(HM,)\)
where, for functions n, ¢, : Nt — Nt the plaintext space is given by Hyrx = Q(n(N)), the
ciphertext space is given by Hr x = Q(L(N)), and the keyspace is given by Hi x = Q(k(N)).

For all A € Nt k€ {0,1}*N | and m € {0,1}*N) | the maps must satisfy

Tr[|kXk| Key(1)] > 0 = Tr[|m)Xm| Decy o Enci(Jm)m|)] =1 9)

where X is implicit, Ency, is the CPTP map defined by p — Enc(|k)Xk| ® p), and we define
Decy, analogously.

4:9
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A short discussion on the key generation circuit, Key, is in order. First, note that Key
takes no input. Indeed, the domain of Key, is D(C) and C is the state space of zero qubits.
In particular, there is a single valid quantum state on C: D(C) = {1}. To generate a classical
key to be used by the encryption and decryption circuits Ency and Dec), a party runs the
circuit Key, and obtains the quantum state Keyy(1). This quantum state is then measured
in the computational basis and the result of this measurement is used as the key. We then
see that Equation (9) is a correctness condition which imposes that, for all keys that may be
generated, a valid ciphertext is always correctly decrypted.

3.2 Security Notions

Now that we have formal definition for QECM schemes, we can define security notions for

these schemes. We define three such notions:

1. Indistinguishable security. Conceptually inspired by the original security notion of indis-
tinguishable encryptions [14], which considers classical plaintexts and classical ciphertexts,
and similar in details to an analogue definition in [4] which considers quantum plaintexts
and quantum ciphertexts, this security notion considers classical plaintexts and quantum
ciphertexts. It is formally stated in Definition 6.

2. Uncloneable security. This security notion is novel to this work and captures, in the
broadest sense, what we mean by an “uncloneable encryption scheme”. This security
notion is defined in Definition 8 and is paramatrized by a real value 0 < ¢ < n, where n
is the message size. The case where t = 0 is ideal and ¢t = n is trivial. In particular, no
encryption scheme with classical ciphertexts may achieve t-uncloneable security for ¢t < n.

3. Uncloneable-indistinguishable security. This security notion is also novel to this work. It
can be seen as a combination of indistinguishable and uncloneable security. It is formally
defined in Definition 11.

Each of these security notions is defined in two steps. First, we define a type of attack
(Definitions 5, 7 and 10). Then, we say that the QECM scheme achieves the given security
notion if all admissible attacks have their winning probability appropriately bounded (Defini-
tions 6, 8 and 11). The definitions for uncloneable security and uncloneable-indistinguishable
security will formalize the games which we described in Section 1.1.

Note that many classical encryption schemes which are secure against quantum adversaries,
such as the one-time pad, are indistinguishable secure but satisfy neither uncloneable security
notions as their ciphertexts can alway be perfectly copied. We also discuss in Appendix A
a scheme which offers non-trivial uncloneable security but is not in any way uncloneable-
indistinguishable secure.

We first define our notion of indistinguishable security.

» Definition 5 (Distinguishing Attack). Let S be a QECM scheme. A distinguishing attack
against S is a pair of efficient quantum circuits A = (G, 4) implementing CPTP maps of the
form

Gy :D(C) — 'D('HS,A & /HM,)\) and

Ax:D(Hsx @ Hra) — D(Q)
where Hg x = Q(s(N\)) for a function s : Nt — Nt and Hpsn and Hr x are as defined by S.

» Definition 6 (Indistinguishable Security). Let S be a QECM scheme. For a fixed and
implicit value of X\, we define the CPTP map Enc}. : D(H,x) — D(Hr\) by

prr Y Tr[lm)m|p] - Ency(|m)ml) (10)
me{0,1}n
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and the CPTP map Enc) : D(Hu ) — D(Hr\) by
p — Enc(|0")0™]) (11)

where 0™ € {0,1}™ is the all zero bit string.
Then, we say that S is indistinguishable secure if for all distinguishing attacks A against S,
there exists a negligible function n such that

1
b

< —
E E_Te ()bl Ay (Ls © Enc}) o G(1)] < & + () (12)
where X\ is implicit on the left-hand side, b € {0,1}, and Ky is the random variable distributed
on the set {0, 1} such that Pr [y = k] = Tr [|k)(k| Keyx(1)].

In Definition 6, the map Encg should be seen as discarding whatever plaintext was given
and producing the encryption of the all zero bit string. On the other hand, Enci is the map
which first measures the state given in the computational basis, to ensure that the plaintext
is indeed a classical message, and then encrypts this message. We say that a QECM scheme
has indistinguishable security if no efficient adversary can distinguish between both of these
scenarios (by trying to determine the value of b) with more then a negligible advantage. This
security notion allows us to show that the schemes we define do offer a level of security as
encryption schemes.

Next, we formalize the intuitive definition for uncloneable security as given by the game
described in Section 1.1. In Figure 2, we sketch out the relation between the various CPTP
maps and the underlying Hilbert spaces considered in this definition.

» Definition 7 (Cloning Attack). Let S be a QECM scheme. A cloning attack against S is a
triplet of efficient quantum circuits A = (4, B, C) implementing CPTP maps of the form

Ay :D(Hr)) = D(HpA @ Hen),

B, : D(HK,A ® Hpa) — D(’HM,A), and

Cxr:DHxrr®@Hen) = D(Harn)
where Hp x = Q(B(N)) and Heox = Q(y(N)) for some functions 8,7 : Nt — Nt and Hg »,
Harx, and Hr n are as defined by S.

» Definition 8 (Uncloneable Security). A QECM scheme S is t(A)-uncloneable secure if for
all cloning attacks A against S there exists a negligible function n such that

E E_Tr[(mm| @ [m)m]) (By @ Cy) o Ao Ency (jmjm|)] <270 4900)  (13)

where X is implicit on the left-hand side, KCy is a random variable distributed on {0, 1}"’()‘) such
that Pr[KCx = k] = Tr [|k)}k| Keyx(1)] and By, is the CPTP map defined by p — B(|k)Xk| ® p)
and similarly for C.

If § is 0-uncloneable secure, we simply say that it is uncloneable secure.

The left-hand side of Equation (13) is the probability, averaged over all messages and all
keys, that both adversaries can correctly output the encrypted message.

We note that any encryption which produces classical ciphertexts cannot be ¢-uncloneable
secure for any ¢ < n. Indeed, an attack A where A copies the classical ciphertext and where
B = C = Dec succeeds with probability 1.

Our definition of uncloneable security is with respect to messages sampled uniformly
at random. However, if the length of the message is fixed, t-uncloneable security implies a
similar security notion for messages sampled according to other distributions. We formalize
this in the next theorem whose proof can be found in Appendix B.1.
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Ency, A
M Hr o

Figure 2 Schematic representation of the maps considered in a cloning attack (Definition 7). The
k subscript indicates which maps have access to the encryption key.

» Theorem 9. Let S be a QECM scheme which is t-uncloneable secure and whose message
size is constant, i.e.: n(\) =n. Let M be a random variable distributed over {0,1}" with
min-entropy h. Then, for any cloning attack A on S there is a negligible function n such
that

AE B T [(Im)m| @ [m)m]) (B ® Ck) 0 Ao Ency [m)m|] < 27PN Lp(h) (14)

where X\ is implicit on the left-hand side.

Finally, we formalize the notion of uncloneable-indistinguishable security (see Section 1.1
for a description in terms of a game, and Figure 3 for the relation between the various CPTP
maps and the underlying Hilbert spaces).

» Definition 10 (Cloning-Distinguishing Attack). Let S be a QECM scheme. A cloning-
distinguishing attack against S is a tuple A = (G, 4,B,C) of efficient quantum circuits
tmplementing CPTP maps of the form

Gy :D(C) = D(Hsr @ Hmn)s

Ay :D(HsA@Hrn) = D(Hpr® Hen),

By : D(Higx®Hpr) — D(Q), and

Cy: D(’HK,A & ’HC’)\) — 'D(Q)
where Hg x = Q(s(N)), Hpx = Q(B(N)), and Hen = Q(y(N)) for s, 8,7 : Nt — N* and all
other Hilbert spaces are as defined by S.

» Definition 11 (Uncloneable-Indistinguishable Security). Let S be a QECM scheme and define
Enc) and Enc} as in Definition 6.

We say that S is uncloneable-indistinguishable secure if for all cloning-distinguishing
attacks A there exists a negligible function n such that

E E_Tr [(|50] © b)bl) (B @ Ci) o Ao (15 ® Enck) 0 G(1)] < 3 +n(A) (15)

where A is implicit on the left-hand side, KCx is the random wvariable distributed on {0, 1}“(/\)
such that Pr[K = k] = Tr[|k)Xk| K(1)], By is the CPTP map defined by p — B(|k)k| ® p),
and similarly for C.

The left-hand side of Equation (15) is the probability, averaged all keys, that both
adversaries can correctly determine if their submitted message (generated by G) or the all 0
bit string was encrypted.

It is trivial to see, but worth noting, that uncloneable-indistinguishable security implies
indistinguishable security. Indeed, if a scheme is not indistinguishable secure, then an ad-
versary can determine which message was encrypted (with non-negligible advantage) without
having to wait for the key to be divulged. Thus, instead of trying to split the ciphertext,
the A circuit in an uncloneable-indistinguishable attack should attempt to determine which
message was encrypted and simply pass on the result to the B and C circuits.
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Figure 3 Schematic representation of the maps considered in a cloning-distinguishing attack
(Definition 10). The k subscript indicates which maps have access to the encryption key.

Finally, it can also be shown that any 0-uncloneable secure QECM scheme S with constant
message length is uncloneable-indistinguishable secure. The proof can be found in the full
version and proceeds by using any cloning-distinguishing attack to construct a cloning attack.
We then show that security against the constructed cloning attack implies security against
the original distinguishing-cloning attack.

» Theorem 12. Let S be an 0-uncloneable secure QECM with constant message size, i.e.:
n(\) is the constant function n(\) = n, then S is also uncloneable-indistinguishable secure.

4 An Uncloneable Encryption Scheme

A first scheme which attempts to achieve a notion of uncloneable encryption is presented in
Appendix A. It is based on a simple use of Wiesner states and illustrates the basic principle,
but it is in many respects insufficient.

In Section 4.1, we present a refinement of the Appendix A protocol which uses quantum
secure pseudorandom functions. The proof of the uncloneable security of this protocol relies
on technical lemmas presented in Section 4.2. We give our final main results in Section 4.3.

4.1 Our gPRF Scheme

As discussed in Section 1.1, the motivation for this scheme is to use quantum-secure pseudo-
random functions to attempt to “distill” the uncloneability found in the Wiesner state.

» Definition 13 (F-Conjugate Encryption). Let F = { fx:{0,1}* x {0,1}* — {0,1}"M} .
be a quantum-secure pseudorandom function for a function n : Nt — NT. We define the
F-conjugate encryption QECM scheme by the circuits implementing the following algorithms
which are implicitly parametrized by A\. Note that the message size is the output size of the
gPRF, n(X), the key size is k(X) = 2X, and the ciphertext size is £L(A) = X+ n(A).

Algorithm 1 Key generation circuit, Key.

Input :None.

Output: A state p € D(Q(k(N))).
1 Sample s < {0, 1}* uniformly at random.
2 Sample 6 < {0,1}* uniformly at random.
3 Output p = |s)s| ® [0)0).
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Algorithm 2 Encryption circuit, Enc.
Input :A plaintext m € {0,1}" and a key (s,6) € {0,1}".
Output: A ciphertext p € D(Q(4(N))).

1 Sample z < {0,1}* uniformly at random.

2 Compute ¢ = m @ fi(s,z).

3 Output p = |c){c| @ |27} z?].

Algorithm 3 Decryption circuit, Dec.
Input :A ciphertext |c)c| ® p € D(Q(¢)) and a key (s,0) € {0,1}".
Output: A plaintert m € {0,1}™.

1 Compute p' = H pH?.

2 Measure p' in the computational basis. Call the result r.

3 Output m = c® fr(s,r).

It is trivial to see that this scheme is correct. It is also straightforward to see that
this scheme is indistinguishable secure (Definition 6). Indeed, if we replace the qPRF with
a function chosen uniformly a random from Bool(A,n()\)), then the ciphertext, averaged
over all keys, is independent of the plaintext. Security then follows from the fact that
efficient adversaries cannot distinguish with non-negligible advantage between the qPRF and
a function chosen randomly from Bool(A, n(\)).

4.2 Technical Lemmas

The following two lemmas form the core of the upcoming proofs of uncloneable security and
they can be seen as extending Unruh’s one-way-to-hiding lemma [22] to a two player setting.
They are interpreted as follows.

We consider two adversaries who have oracle access to a function H € Bool(\, n) which
is chosen uniformly at random. Their goal is to simultaneously guess the value H(z) for
some value of x. The adversaries share a quantum state representing all the information
they initially have on x. The lemmas relate the probability of both parties simultaneously
guessing H () to their probability of being able to both simultaneously guess x.

The first of these lemmas, Lemma 14, considers this problem in a setting where the
adversaries do not share any entanglement. The second, Lemma 15, imposes no such
restriction.

We show that the probability that both adversaries correctly guess H(z) is upper bounded
by 2% 4+ Q-G or 2% + Q' - G’ where Q and @’ are polynomial functions of the number of
queries the adversaries make to the oracle and G and G’ quantify their probability of guessing
x with a particular strategy. The factor of 9 is present only if we allow the adversaries to
share entanglement.

We can interpret G and G’ in a manner very similar to its analogous quantity in Unruh’s
one-way-to-hiding lemma [22]. The adversaries, instead of continuing until the end of their
computation, will stop immediately before a certain (randomly chosen) query to the oracle
and measure their query register in the computational basis. Then, G is related to the
probability that this procedure succeeds at letting both adversaries simultaneously obtain x,
averaged over the possible stopping points and possible functions implemented by the oracle.

The key idea in the proof of these lemmas is that we can decompose the unitary operator
representing each of the adversaries’ computations into two “parts” (see Equation (26)). One
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of these “parts” will never query the oracle on x and the other could query the oracle on .
This idea was present in the proof of Unruh’s one-way-to-hiding lemma [22].

Recall from Section 2.3 that we model queries to an oracle implementing a function H as
a unitary operator O acting on a query and a response register with Hilbert spaces Ho
and H g respectively. The action of this unitary operator on the computational basis states
is given by [z), ® [y) g = 7)o ® |y @ H(x)) . A party having access to an oracle may also
have some other register with Hilbert space Hg with which they perform other computations.
In general, their computation can then be modeled by an operator of the form (UOH )q
where U is a unitary operator on Hg ® Hr ® Hg and ¢ is the number of queries made to
the oracle [8, 22].

The proof of Lemma 15 can be found in Appendix B.2. The proof of Lemma 14, which
uses very similar ideas to those found in the proof of Lemma 15, can be found in the full
version.

» Lemma 14. Let \,n € N*. For L € {B,C}, we let sp,qp € N*, Hp, = Q()),
Hip, = Qn), Hrs = Q(sz), U € U(Hry ® Hiy @ Hig), and {7} }yecqo,13n be a pro-
Jjective measurement on Hr, @ Hy, @ Hrg.

Finally, let |¥) = [¢B) ® |Yc) be a separable unit vector with |r) € Q(n+ A+ s1,) for
L€ {B,C} and z € {0,1}*. Then, we have

E |07 (U506)" @ (Uc0#)™) |¢>H2 < 21 + (3 +2)gV/M (16)

where TTH () = ﬂg(x) ® ﬂ’g(m), q=qB +qc and

2

M=EEERE
k ¢ HH

(12¥els, @ okele, ) ((WROH)" ® (ve0t) ) o

with k € {0,...,q5 — 1}, £ € {0,...,qc — 1}, and H, H' € Bool(A,n).

» Lemma 15. Let \,n € N*. For L € {B,C}, we let sp,qr € NT, Hr, = Q(N),
Hr, = Q(n), Hry = Q(sz), U € U(HLQ ® Hr, @ Hrg), and {W%}y€{071}'rt be a pro-
Jjective measurement on Hy, @ Hr, @ Hrg-

Finally, let |¢) € Q(2(A\+n)+sp +sc) be a unit vector and x € {0,1}*. Then, we have

& [0 (Us08)" @ (Ue0f)™ ) 10} < 5 + Bapac +2JanacV/ T (18)
where TTH @) = 77 @ 7 0@ 4ng
M =BEE ||(1e)el g, © e)elc, ) (Us08)" @ We0f)”) )| (19)

with k € {0,...,qg — 1}, £ € {0,...,9c — 1}, and H € Bool(\,n).

4.3 Main Results
We now have all the necessary tools to state our main results.

» Theorem 16. Let S be the QECM scheme defined in Definition 13. If the gPRF is modeled
by a quantum oracle, then S is log,(9)-uncloneable secure.

Our main results (Theorem 16) holds under the following assumptions:

1. The family of functions used in the encryption is indistinguishable from truly random
functions for efficient adversaries (i.e.: it satisfies the indistinguishable property of a
pseudorandom function).
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2. The adversarial circuit A (the one which attempts to split the ciphertext) does not know
precisely which function was used. This models the idea that the A circuit does not know
the encryption key.

3. The adversarial circuits B and C (the ones attempting to guess the plaintext) may only
interact with the function as a “black box”.

One way to model these assumptions is to use the quantum random oracle model, where in

addition we specify that the A circuit cannot query the oracle. This captures the idea that

all circuits, except the A circuit, are given the encryption key.

The above explains our design choice of presenting the scheme with a qPRF, which is
modelled as an oracle in the proof. This allows us to assume that the B and C circuits only use
the key k to query f(k,-) as a black box. By definition of a qPRF, and since all adversaries
are efficient, this scenario is indistinguishable from the random oracle scenario discussed
above.

The proof of Theorem 16 can be found in Appendix B.2. It essentially argues that

A
Lemma 15 can be applied with a bound of M < (% + ﬁ) , which is negligible in A, due
to Corollary 2.
We can strengthen this result if the adversaries do not share any entanglement (see

Section 1.2 for an application).

» Theorem 17. Let S be the QECM scheme given in Definition 13. If the ¢PRF is modeled by
a quantum oracle and the adversaries cannot share any entanglement, then S is 0-uncloneable
secure.

Proof (Sketch). Follow the proof of Theorem 16 using Lemma 14 instead of Lemma 15. <«

» Corollary 18. Let S be the QECM scheme given in Definition 13 with constant message
size, i.e.: n(\) = n. If the ¢PRF is modeled by a quantum oracle and the adversaries cannot
share any entanglement, then S is indistinguishable-uncloneable secure.

Proof (Sketch). Use Theorem 17 with Theorem 12. <

—— References

1  Scott Aaronson. Quantum copy-protection and quantum money. In 2/th Annual Conference
on Computational Complexity—CCC 2009, pages 229-242, 2009. doi:10.1109/CCC.2009.42.

2 Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In /4th
Annual ACM Symposium on Theory of Computing—STOC 2012, pages 41-60, 2012. doi:
10.1145/2213977.2213983.

3 Dorit Aharonov, Alexei Kitaev, and Noam Nisan. Quantum circuits with mixed states. In
30th Annual ACM Symposium on Theory of Computing—STOC 1998, pages 20-30, 1998.
doi:10.1145/276698.276708.

4  Gorjan Alagic, Anne Broadbent, Bill Fefferman, Tommaso Gagliardoni, Christian Schaffner,
and Michael St. Jules. Computational security of quantum encryption. In Information
Theoretic Security: 9th International Conference—ICITS 2016, pages 47-71, 2016. doi:
10.1007/978-3-319-49175-2_3.

5 Elaine Barker. Recommendation for key management part 1: General (revision 4). Technical
Report SP 800-57, National Institute of Standards and Technology, 2016. doi:10.6028/NIST.
SP.800-57ptir4.

6  Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and
coin tossing. In International Conference on Computers, Systems and Signal Processing, pages
175-179, 1984. arXiv:2003.06557.


https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.1145/2213977.2213983
https://doi.org/10.1145/2213977.2213983
https://doi.org/10.1145/276698.276708
https://doi.org/10.1007/978-3-319-49175-2_3
https://doi.org/10.1007/978-3-319-49175-2_3
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.6028/NIST.SP.800-57pt1r4
http://arxiv.org/abs/2003.06557

A. Broadbent and S. Lord

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Charles H. Bennett, Gilles Brassard, and Seth Breidbart. Quantum cryptography II: How
to re-use a one-time pad safely even if P=NP. Natural Computing, 13(4):453-458, 2014.
d0i:10.1007/s11047-014-9453-6.

Dan Boneh, Ozgiir Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In Advances in Cryptology—ASIACRYPT
2011, pages 41-69, 2011. doi:10.1007/978-3-642-25385-0_3.

Anne Broadbent and Christian Schaffner. Quantum cryptography beyond quantum key
distribution.  Designs, Codes and Cryptography, 78(1):351-382, 2016. doi:10.1007/
s10623-015-0157-4.

Ivan Damgard, Thomas Brochmann Pedersen, and Louis Salvail. A quantum cipher with
near optimal key-recycling. In Advances in Cryptology—CRYPTO 2005, pages 494-510, 2005.
d0i:10.1007/11535218_30.

D. Dieks. Communication by EPR devices. Physics Letters A, 92(6):271-272, 1982. doi:
10.1016/0375-9601 (82)90084-6.

A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical
reality be considered complete? Physical Review Letters, 47(10):777-780, 1935. doi:10.1103/
physrev.47.777.

Serge Fehr and Louis Salvail. Quantum authentication and encryption with key recycling.
In Advances in Cryptology—FEUROCRYPT 2017, volume 3, pages 311-338, 2017. doi:
10.1007/978-3-319-56617-7_11.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270-299, 1984. doi:10.1016/0022-0000(84)90070-9.

Daniel Gottesman. Uncloneable encryption. Quantum Information & Computation, 3(6):581—
602, 2003. arXiv:quant-ph/0210062.

Sébastien Lord. Uncloneable quantum encryption via random oracles. Master’s thesis,
University of Ottawa, 2019. doi:10.20381/ruor-23107.

Michael A. Nielsen and Issac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

James L. Park. The concept of transition in quantum mechanics. Foundations of Physics,
1(1):23—33, 1970. doi:10.1007/BF00708652.

Peter W. Shor and John Preskill. Simple proof of security of the BB84 quantum key distribution
protocol. Physical Review Letters, 85(2):441-444, 2000. doi:10.1103/physrevlett.85.441.
Marco Tomamichel, Serge Fehr, Jedrzej Kaniewski, and Stephanie Wehner. A monogamy-
of-entanglement game with applications to device-independent quantum cryptography. New
Journal of Physics, 15(10):103002, 2013. doi:10.1088/1367-2630/15/10/103002.
Dominique Unruh. Everlasting multi-party computation. In Advances in Cryptology—CRYPTO
2013, volume 2, pages 380-397, 2013. doi:10.1007/978-3-642-40084-1_22.

Dominique Unruh. Revocable quantum timed-release encryption. Journal of the ACM, 62(6):49,
2015. doi:10.1145/2817206.

John Watrous. Quantum computational complexity. In Encyclopedia of complexity and systems
science, pages 7174-7201. Springer, 2009. doi:10.1007/978-3-642-27737-5_428-3.

John Watrous. The Theory of Quantum Information. Cambridge University Press, 15 edition,
2018.

Stephen Wiesner. Conjugate coding. ACM SIGACT News, 15(1):78-88, 1983. doi:10.1145/
1008908.1008920.

W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299:802-803,
1982. doi:10.1038/299802a0.

Mark Zhandry. How to construct quantum random functions. In 53rd Annual Symposium

on Foundations of Computer Science—FOCS 2012, pages 679-687, 2012. doi:10.1109/F0CS.

2012.37.

4:17

TQC 2020


https://doi.org/10.1007/s11047-014-9453-6
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/s10623-015-0157-4
https://doi.org/10.1007/s10623-015-0157-4
https://doi.org/10.1007/11535218_30
https://doi.org/10.1016/0375-9601(82)90084-6
https://doi.org/10.1016/0375-9601(82)90084-6
https://doi.org/10.1103/physrev.47.777
https://doi.org/10.1103/physrev.47.777
https://doi.org/10.1007/978-3-319-56617-7_11
https://doi.org/10.1007/978-3-319-56617-7_11
https://doi.org/10.1016/0022-0000(84)90070-9
http://arxiv.org/abs/quant-ph/0210062
https://doi.org/10.20381/ruor-23107
https://doi.org/10.1007/BF00708652
https://doi.org/10.1103/physrevlett.85.441
https://doi.org/10.1088/1367-2630/15/10/103002
https://doi.org/10.1007/978-3-642-40084-1_22
https://doi.org/10.1145/2817206
https://doi.org/10.1007/978-3-642-27737-5_428-3
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1038/299802a0
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37

4:18

Uncloneable Quantum Encryption via Oracles

A Conjugate Encryption

Our first QECM scheme is a one-time pad encoded into Wiesner states. We emphasize that
this scheme will not offer much in terms of uncloneable security but it remains an instructive
example.

» Definition 19 (Conjugate Encryption). We define the conjugate encryption QECM scheme
by the circuits implementing the following algorithms, each implicitly parametrized by .
Note that the message size is n(\) = A, the key size is k(\) = 2\ and the ciphertext size is
) = A

Algorithm 4 The key generation circuit Key.

Input :None.

Output: A state p € D(Q(k)).
1 Sample r + {0,1}" uniformly at random.
2 Sample 6 < {0,1}"™ uniformly at random.
3 Output p = |r)(r| @ |0)0).

Algorithm 5 The encryption circuit Enc.
Input :A plaintext m € {0,1}" and a key (r,0) € {0,1}".
Output : A ciphertext p € D(Q(n)).

1 Output p = [(m @)’ (mar)?|.

Algorithm 6 The decryption circuit Dec.
Input :A ciphertext p € D(Q(n)) and a key (r,0) € {0,1}*.
Output : A plaintext m € {0,1}".

1 Compute p' = HpH?.

2 Measure p’ in the computational basis. Call the result c¢. Output ¢ & r.

The correctness of this scheme is trivial to verify and it is indistinguishable secure. The
indistinguishable security follows from the fact that if Encgﬂ and Enc},ﬂ9 are as defined in
Definition 6, then for any state p € D(Hg ® Q(n)) we have that

EE (15 ® Enc%r’9)> (o) =EE (115 ® Enc?w)> (p). (20)

We will need one small technical lemma before proceeding to the proof of uncloneable
security for this scheme.

» Lemma 20. Let n € Nt, f:{0,1}" x {0,1}" — R be a function and s € {0,1}" be a
string. Then, E, f(x,2 ® s) =K, f(x ® s, ).

The proof of Lemma 20 may be found in the full version.

» Theorem