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Preface

The 15th Conference on the Theory of Quantum Computation, Communication and Crypto-
graphy was hosted by the University of Latvia, and held online from June 9–12, 2020.

Quantum computation, quantum communication, and quantum cryptography are subfields
of quantum information processing, an interdisciplinary field of information science and
quantum mechanics. The TQC conference series focuses on theoretical aspects of these
subfields. The objective of the conference is to bring together researchers so that they can
interact with each other and share problems and recent discoveries.

A list of the previous editions of TQC follows:

TQC 2019, University of Maryland, USA
TQC 2018, University of Technology Sydney, Australia
TQC 2017, Université Pierre et Marie Curie, France
TQC 2016, Freie Universität Berlin, Germany
TQC 2015, Université libre de Bruxelles, Brussels, Belgium
TQC 2014, National University of Singapore, Singapore
TQC 2013, University of Guelph, Canada
TQC 2012, University of Tokyo, Japan
TQC 2011, Universidad Complutense de Madrid, Spain
TQC 2010, University of Leeds, UK
TQC 2009, Institute for Quantum Computing, University of Waterloo, Canada
TQC 2008, University of Tokyo, Japan
TQC 2007, Nara Institute of Science and Technology, Nara, Japan
TQC 2006, NTT R&D Center, Atsugi, Kanagawa, Japan

The conference consisted of invited talks, contributed talks, a poster session, a rump
session, and a business meeting. The invited talks were given by Elena Kirshanova (Immanuel
Kant Baltic Federal University), Thomas Monz (University of Innsbruck), Xin Wang (Baidu
Research), and Henry Yuen (University of Toronto).

The conference was possible thanks to financial support from the European Regional
Development Fund (project 1.1.1.5/18/I/016), Baidu, and the University of Latvia.

We wish to thank the members of the Program Committee and all subreviewers for their
precious help. Our warm thanks also go to the members of the Local Organizing Committee,
for their considerable efforts in organizing the conference. We would like to thank Michael
Wagner (Dagstuhl Publishing) for his technical help. Finally, we would like to thank the
members of the Steering Committee for giving us the opportunity to work for TQC. And, of
course, all contributors and participants!

April 2020
Steven T. Flammia
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Exponential Quantum Communication Reductions
from Generalizations of the Boolean Hidden
Matching Problem
João F. Doriguello1
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Abstract
In this work we revisit the Boolean Hidden Matching communication problem, which was the first
communication problem in the one-way model to demonstrate an exponential classical-quantum
communication separation. In this problem, Alice’s bits are matched into pairs according to a
partition that Bob holds. These pairs are compressed using a Parity function and it is promised that
the final bit-string is equal either to another bit-string Bob holds, or its complement. The problem
is to decide which case is the correct one. Here we generalize the Boolean Hidden Matching problem
by replacing the parity function with an arbitrary function f . Efficient communication protocols are
presented depending on the sign-degree of f . If its sign-degree is less than or equal to 1, we show an
efficient classical protocol. If its sign-degree is less than or equal to 2, we show an efficient quantum
protocol. We then completely characterize the classical hardness of all symmetric functions f of
sign-degree greater than or equal to 2, except for one family of specific cases. We also prove, via
Fourier analysis, a classical lower bound for any function f whose pure high degree is greater than
or equal to 2. Similarly, we prove, also via Fourier analysis, a quantum lower bound for any function
f whose pure high degree is greater than or equal to 3. These results give a large family of new
exponential classical-quantum communication separations.
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1:2 Generalized Boolean Hidden Matching Problem

1 Introduction

One of the main aims of the field of quantum information and quantum computation is to
establish the superiority of quantum computers and quantum resources over their classical
counterparts. While in some areas this superiority is based on a belief in the impossibility of
classical computers or classical resources solving particular tasks, e.g. the efficiency of Shor’s
algorithm [25] coming from the belief that there is no efficient classical factoring algorithm,
in other areas like communication complexity one can establish unconditional exponential
separations between classical and quantum performances.

Communication complexity is a model of computation first introduced by Yao [28]. In
this model, two parties (normally called Alice and Bob) hold each a piece of data and want
to solve some computational task that jointly depends on their data. More specifically,
if Alice holds some information x and Bob holds some information y, they want to solve
some function f(x, y) or relational problem with several valid outputs for each x and y. In
order to do so, they will need to communicate between themselves, and their goal is to
solve the problem with minimal communication. The protocol that Alice and Bob employ
could be two-way, where they take turns sending messages to each other; one-way, where
Alice sends a single message to Bob who then outputs the answer; or simultaneous, where
Alice and Bob each pass one message to a third party (the referee) who outputs the answer.
Apart from these different types of communication settings, one is also interested in the
error of a protocol when solving a communication problem: the zero-error communication
complexity is the worst-case communication of the best protocol that gives a correct output
with probability 1 for every input (x, y); the bounded-error communication complexity is
the worst-case communication cost of the best protocol that gives a correct output with
probability 1− ε for every input (x, y), with ε ∈ [0, 1/2).

An interesting extension of the original communication model is the model of quantum
communication complexity [8], also introduced by Yao [29]. In this model, Alice and Bob
each has a quantum computer and they exchange qubits instead of bits and/or make use
of shared entanglement. The use of quantum resources can drastically reduce the amount
of communication in solving some problems in comparison to the classical communication
model.

Exponential quantum-classical separations are known in the two-way (e.g. [22]), one-
way (e.g. [4, 15]) and simultaneous (e.g. [9, 12]) models. Indeed, it is even known that
one-way quantum communication can be exponentially more efficient than two-way classical
communication [14, 23]. However, surprisingly few examples of such exponential separations
are known, compared (for example) with the model of query complexity in which Shor’s
algorithm operates.

The Hidden Matching problem [4] was the first problem to exhibit an exponential
separation between the bounded-error classical communication complexity and the bounded-
error quantum communication complexity in the one-way model. The problem can be
efficiently solved by one quantum message of logn qubits, while any classical one-way
protocol needs to send O(

√
n) bits to solve it. The hardness of the problem is essentially

one-way: it could be efficiently solved by having Bob sent a classical message of logn bits
to Alice. The Hidden Matching problem is a relational problem. In the same paper [4] the
authors proposed a Boolean version of the problem, the Boolean Hidden Matching problem
(which is a partial Boolean function), and conjectured that the same quantum-classical gap
holds for it as well, which was later proven to be true by Gavinsky et al. [15]. Generalizing
this separation is the focus of this work.
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1.1 Hidden matching problems
Throughout the paper, [n] = {1, 2, . . . , n} and given x, y ∈ {−1, 1}n, we denote by x ◦ y
the Hadamard (elementwise) product of x and y, and by x the complement of x, such that
x ◦ x = 1n.

The Hidden Matching (HMα
n) and Boolean Hidden Matching (BHMα

n) problems are
defined with respect to some α ∈ (0, 1]. Alice is given a string x ∈ {−1, 1}n4 and Bob is
given a sequence M ∈Mαn/2 of αn/2 disjoint pairs (i1, j1), (i2, j2), . . . , (iαn/2, jαn/2) ∈ [n]2.
Such a sequence is called an α-matching, andMαn/2 denotes the family of all α-matchings –
i.e. partial matchings of a fixed size in the complete graph on n vertices. Together x and M
induce a string z ∈ {−1, 1}αn/2 defined by the parities of the αn/2 edges, i.e., z` = xi`xj`

for ` = 1, . . . , αn/2. Then the HMα
n and BHMα

n problems are defined as follows.

I Definition 1 (The Hidden Matching problem (HMα
n)). Let n ∈ N be even and α ∈ (0, 1].

Alice receives x ∈ {−1, 1}n and Bob receives M ∈ Mαn/2. Their goal is to output a tuple
〈i, j, b〉 such that (i, j) ∈M and b = xixj.

I Definition 2 (The Boolean Hidden Matching problem (BHMα
n)). Let n ∈ N be even and

α ∈ (0, 1]. Alice receives x ∈ {−1, 1}n and Bob receives M ∈ Mαn/2 and w ∈ {−1, 1}αn/2.
It is promised that z ◦ w = bαn/2 for some b ∈ {−1, 1}. Their goal is to output b.

Given inputs x and M , it is clear that there are many possible correct outputs for the HMα
n

problem (αn/2 correct outputs, actually), making it a relational problem. On the other
hand, the BHMα

n is a partial Boolean function due to the promise statement.
Bar-Yossef et al. [4] gave a simple quantum protocol to solve the HM1

n problem with
just O(logn) qubits of communication5, while proving that any classical protocol needs to
communicate at least Ω(

√
n) bits in order to solve it. Similarly with the BHMα

n problem,
Gavinsky et al. [15] demonstrated the same exponential classical-quantum communication
gap for any α ≤ 1/2 (note that the definition of α they use differs from ours by a factor of 2).
As HMα

n is at least as difficult as BHMα
n, their result implies the same lower bound for HMα

n.
The approach taken by Gavinsky et al. in proving the classical lower bound is particularly
interesting in that it uses the Fourier coefficients inequality of Kahn, Kalai, and Linial [17],
which is proven via the Bonami-Beckner inequality [7, 5]. We also mention that Fourier
analysis had been previously used in communication complexity by Raz [21] and Klauck [18].

A slightly weaker separation (O(logn) vs. Ω(n7/16)) for a closely related problem was
shown in [19] using similar techniques. The BHMα

n problem was generalized by Verbin and
Yu [26] to a problem that they named Boolean Hidden Hypermatching (BHHt

n). In this
problem, instead of having the bits from Alice matched in pairs, they are now matched in
tuples of t elements. In other words, a bit from the final string z is obtained by XORing t
bits from Alice’s string. More precisely, Alice is given a string x ∈ {−1, 1}n and Bob is given
a sequence M ∈Mn/t of n/t disjoint tuples (M1,1, . . . ,M1,t), . . . , (Mn/t,1, . . . ,Mn/t,t) ∈ [n]t
called a hypermatching, whereMn/t denotes the family of all hypermatchings. Both x andM
induce a string z ∈ {−1, 1}n/t defined by the parities of the n/t edges, i.e., z` =

∏t
j=1 xM`,j

for ` = 1, . . . , n/t. The BHHt
n problem is defined as follows.

I Definition 3 (The Boolean Hidden Hypermatching problem (BHHt
n)). Let n, t ∈ N be

such that 2t|n. Alice receives x ∈ {−1, 1}n and Bob receives M ∈Mn/t and w ∈ {−1, 1}n/t.
It is promised that z ◦ w = bn/t for some b ∈ {−1, 1}. Their goal is to output b.

4 Throughout this paper we shall use {−1, 1} instead of {0, 1} for convenience.
5 Their protocol extends easily to the more general HMα

n problem.

TQC 2020
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Verbin and Yu proved a classical lower bound of Ω(n1−1/t) communication for every bounded-
error one-way protocol, showing the increasing hardness of the problem with t, as one
should expect since the BHHt

n problem can be reduced from the BHMn problem (we will
show how this is done in detail later). The authors subsequently used this problem to
prove various streaming lower bounds, i.e., lower bounds on the space required of streaming
algorithms (algorithms that read the input from left to right, use a small amount of space,
and approximate some function of the input). However, no efficient quantum protocol was
proposed for solving the BHHt

n problem for t > 2. It was only later that Shi, Wu and
Yu [24] showed that such efficient quantum protocols do not exist. More specifically, they
proved a quantum lower bound of Ω(n1−2/t) communication for every bounded-error one-way
protocol for the BHHt

n problem. Their proof is similar to the ones used in the classical lower
bound, the difference lying in the use of Fourier analysis of matrix-valued functions and the
matrix-valued Hypercontractive Inequality of Ben-Aroya, Regev, and de Wolf [6].

Note that the lower bound of Verbin and Yu does not use an α parameter, unlike the
lower bound of [15]. However, their lower bound requires n/t to be even, otherwise Alice can
just send the parity of her bit-string. (The result of [15] can be extended to hold for any
α < 1 fairly straightforwardly, but achieving a strong lower bound for α = 1 requires some
more work.)

1.2 Our Results
This paper focuses on the study of a broad generalization of the BHHt

n problem. In the
(Boolean) Hidden Matching and Boolean Hidden Hypermatching problems, the task Alice and
Bob want to solve can be viewed as rearranging Alice’s data according to some permutation
that Bob holds, and “compressing” the data to a final bit-string by applying some Boolean
function to the bits. Then Alice and Bob’s goal is to determine some information about this
final bit-string. The way this compression was originally done was via the Parity function, but,
apart from the obvious reason that Parity gives the desired classical-quantum communication
gap and, less obviously, leads to a clear proof, there is no particular need to restrict to this
function in order to arrive at the final bit-string. This observation leads to a generalization
of the Boolean Hidden Hypermatching problem, which we named the f -Boolean Hidden
Partition (f -BHPα,tn ) problem, where f : {−1, 1}t → {−1, 1} is the Boolean function used
to compress Alice’s bits.

Given y ∈ {−1, 1}n, we define by y(j;t) = (y(j−1)t+1, y(j−1)t+2, . . . , yjt) ∈ {−1, 1}t the
j-th block of size t from y, with t|n and j = 1, . . . , n/t. When the size of the block is clear
from the context, we shall simply write y(j).

The f -Boolean Hidden Partition problem is defined as follows. Alice is given a bit-string
x ∈ {−1, 1}n, and Bob is given a permutation σ ∈ Sn and a bit-string w ∈ {−1, 1}αn/t,
where α ∈ (0, 1] is fixed. Given a Boolean function f : {−1, 1}t → {−1, 1}, we can define
the map Bf : {−1, 1}n → {−1, 1}αn/t by Bf (x) =

(
f(σ(x)(1)), . . . , f(σ(x)(αn/t))

)
, where

σ(x)i = xσ−1(i). Hence x and σ induce a bit-string given by Bf (x), each of whose bits is
obtained by applying f to a block of the permuted bit-string σ(x). The f -BHPα,tn problem
can be defined as follows.

I Definition 4 (The f -Boolean Hidden Partition problem (f -HMα,t
n )). Let n, t ∈ N be

such that t|n and α ∈ (0, 1]. Alice receives x ∈ {−1, 1}n and Bob receives σ ∈ Sn and
w ∈ {−1, 1}αn/t. It is promised that there exists b ∈ {−1, 1} such that Bf (x) ◦ w = bαn/t.
The problem is to output b.
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The adoption of the word “Partition” instead of “(Hyper)Matching” from previous works
comes from our decision to view the problem in terms of a hidden partition that Bob holds,
instead of an α-(Hyper)Matching. Bob shuffles Alice’s data according to some permutation,
and then just partitions the resulting data in adjacent blocks of size t and uses f to get the
final bit-string. Obviously both views are equivalent, but we think that the permutation
approach eases the analysis of the problem.

Our aim is to study the f -Boolean Hidden Partition problem in terms of the function f .
It should be clear that for some functions the problem is hard to solve classically, e.g. when f
is the Parity function and we recover the usual Boolean Hidden Hypermatching problem. On
the other hand, for some functions it becomes easily solvable, e.g. when f is the AND function
(Alice needs only to send the position of any 0 in her string). We would like to characterize
for which functions the problem can be efficiently solved classically, i.e., with O(logn) bits of
communication, and for which functions it is hard to solve classically, i.e., requires Ω(na)
bits of communication for some a ∈ (0, 1]. And the same question applies to quantum
communication complexity: we would like to determine for which functions the problem
admits or not an efficient quantum communication protocol. Given this characterization, we
can check for which functions there is an exponential classical-quantum communication gap.

We partially prove that the whole f -BHPα,tn problem can be fully characterized by just
one quantity: the sign-degree of the function f . A polynomial p : {−1, 1}t → R is said to
sign-represent f if f(x) = sgn(p(x)). If |p(x)| ≤ 1 for all x, we say that p is normalized. The
bias of a normalized polynomial p is defined as β = minx |p(x)|. The sign-degree (sdeg(f))
of f is the minimum degree of polynomials that sign-represent it. In Appendix A we prove
the following upper bounds on the classical and quantum communication complexity of the
f -Boolean Hidden Partition problem based on the sign-degree:

I Theorem 5. Let f : {−1, 1}t → {−1, 1} be a Boolean function. If sdeg(f) ≤ 1, then
there exists a bounded-error classical protocol that solves the f -BHPα,tn problem with error
probability ε and O

(
( t
αβ )2 log 1

ε logn
)
bits of communication, where β is the maximal bias

of a polynomial of degree sdeg(f) that sign-represents f .

I Theorem 6. Let f : {−1, 1}t → {−1, 1} be a Boolean function. If sdeg(f) ≤ 2, then
there exists a bounded-error quantum protocol that solves the f -BHPα,tn problem with error
probability ε and O

(
( t
αβ )2 log 1

ε logn
)
qubits of communication, where β is the maximal bias

of a polynomial of degree sdeg(f) that sign-represents f .

Note that the bias β can be very small, but can also be lower-bounded in terms only of
t: indeed, it is shown in [10] that β is lower-bounded by t−O(tsdeg(f)). In this work we will
usually assume that t = O(1), so β = Ω(1). We assume throughout that Alice and Bob
do not have access to shared randomness or entanglement. The classical complexity in the
above theorem can actually be improved to an additive dependence on logn via applying
Newman’s Theorem [20] to a protocol with shared randomness, but at the expense of making
the protocol less intuitive.

The classical upper bound stated above comes from the observation that, if f has a
sign-representing polynomial p of degree 1, it is possible to determine whether f(z) = 1 with
probability > 1/2 by only evaluating f on one uniformly random bit of z, by writing down a
probabilistic procedure whose expectation on z mimics p(z). So Alice sends a few uniformly
random bits to Bob, who matches them to blocks in his partition, and evaluates f on the
corresponding blocks with success probability > 1/2 for each block. Only a few repetitions
are required to determine whether f(x) = w or f(x) = w with high probability.

TQC 2020



1:6 Generalized Boolean Hidden Matching Problem

On the other hand, to obtain the quantum upper bound we use the idea of block-multilinear
polynomials from [1, 2], and some auxiliary results also from [2]. The idea is that Alice sends
a superposition of her bits, and Bob, after collapsing the state onto one of the blocks from his
partition (say block j), applies a controlled unitary operator that describes a block-multilinear
polynomial p̃ of degree 2, which is produced from a sign-representing polynomial p for f of
degree 2. A Hadamard test is used to return an output with probability depending (roughly
speaking) on p̃(σ(x)(j), σ(x)(j)), which in turn is equal to p(σ(x)(j)) according to a theorem
from [2]. The Hadamard test then outputs 1 with probability greater than 1/2 if f(x(j)) = 1
and 0 with probability greater than 1/2 if f(x(j)) = −1.

We remark that both of these protocols actually solve a natural generalization of the
Hidden Matching problem [4] (i.e. they output the result of evaluating f(x(j)) for Bob’s block
j, where j is arbitrary), which is at least as hard as the f -Boolean Hidden Partition problem.
However, unlike the Hidden Matching problem, the output is not correct with certainty, but
only with probability strictly greater than 1/2.

In Section 2 we reduce the f -Boolean Hidden Partition problem from the Boolean
Hidden Matching problem and prove that for almost all symmetric Boolean function f with
sdeg(f) ≥ 2 the f -BHPα,tn problem require at least Ω(

√
n) bits of communication. The only

functions for which the reduction does not work are the Not All Equal functions on an odd
number of bits, i.e., NAE : {−1, 1}t → {−1, 1}, defined by NAE(x) = −1 if |x| ∈ {0, t} and
NAE(x) = 1 otherwise, with t odd.

I Theorem 7. Let f : {−1, 1}t → {−1, 1} be a symmetric Boolean function with sdeg(f) ≥ 2.
If f is not the NAE function on an odd number of bits, then any bounded-error classical
communication protocol for solving the f -BHPα,tn problem needs to communicate at least
Ω(
√
n/(αt)) bits.

Finally, we generalize the Fourier analysis methods from [15, 26, 24] to prove a partial
result on the hardness of the f -BHPα,tn problem, both classically and quantumly. Ideally we
would like to prove that any bounded-error classical and quantum protocols would need to
communicate Ω(n1−1/d) bits and Ω(n1−2/d) qubits, respectively, where sdeg(f) = d. What
we obtained is this result but with d being the pure high degree of f . A Boolean function
f is said to have pure high degree (phdeg(f)) d if f̂(S) = 0 for all |S| = 0, 1, . . . , d − 1,
where f̂(S) = 〈f, χS〉 = 1

2n

∑
x∈{−1,1}n f(x)χS(x) is the Fourier transform of f and χS(x) =∏

i∈S xi, with S ⊆ [n], is a character function. It is possible to prove that phdeg(f) ≤ sdeg(f),
so our result is a step towards proving a lower bound for all functions with sign degree ≥ 2.

I Theorem 8. Let f : {−1, 1}t → {−1, 1} be a Boolean function. If phdeg(f) = d ≥ 2,
then, for sufficiently small α > 0 that does not depend on n, any bounded-error classical
communication protocol for solving the f -BHPα,tn problem needs to communicate at least
Ω(n1−1/d) bits.

I Theorem 9. Let f : {−1, 1}t → {−1, 1} be a Boolean function. If phdeg(f) = d ≥ 3,
then, for sufficiently small α > 0 that does not depend on n, any bounded-error quantum
communication protocol for solving the f -BHPα,tn problem needs to communicate at least
Ω(n1−2/d) qubits.

The above lower bounds are proved in [11]. The classical proof follows the general idea
from [15, 26], but the technical execution was substantially changed by borrowing ideas
from [24]. First, we apply Yao’s minimax principle [27], which says that it suffices to prove a
lower bound for a deterministic protocol under a hard probability distribution on Alice and
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Bob’s inputs. We choose Alice’s input x and Bob’s input σ independently and uniformly over
{−1, 1}n and Sn (the set of all permutations on [n]), respectively. The input distribution is
completed by choosing w = Bf (x) with probability 1/2 and w = Bf (x) with probability 1/2.

Alice sends a message to Bob. If the length of the message sent is c, then the inputs for
which Alice could have sent that specific message define a set A of about 2n−c x’s. From
Bob’s perspective, he knows that the random variable X corresponding to Alice’s bit-string
is uniformly distributed in a set A and he knows his permutation σ, hence his knowledge of
the random variable Bf (X) is described by the distributions

pσ(z) = |{x ∈ A|Bf (x) = z}|
|A|

and qσ(z) = |{x ∈ A|Bf (x) = z}|
|A|

.

It is well known that the best success probability for distinguishing two distributions q1
and q2 with one sample is 1/2 + ‖q1 − q2‖tvd/4. Therefore the bias of the protocol, i.e.,
the protocol’s successful probability minus a half, is equal to the total variation distance
between pσ and qσ. Differently from the approach of [15, 26], and following [24], we directly
upper bound the expectation of the bias over Bob’s permutation. By demanding a small
distributional error, we arrive at the desired communication lower bound. Upper bounding
the bias is done via Fourier analysis, using the inequality of Kahn, Kalai, and Linial [17].

The quantum proof follows the same idea from [24]. Yao’s minimax principle is still
applied and the “hard” input distribution is still uniform on Alice’s input x ∈ {−1, 1}n,
Bob’s input σ ∈ Sn and the function value b ∈ {−1, 1}, which fixes Bob’s second input
w = Bf (x) ◦ bαn/t. The best strategy for Bob in determining b conditioned on his input
(σ,w) is no more than the chance to distinguish between two subsets of Alice’s messages,
where a message corresponds to a quantum state ρx, selected according to b. In other words,
no more than the chance to distinguish between the following ρσ,w0 and ρσ,w1 , each appearing
with probability Pr[b = 0|σ,w] and Pr[b = 1|σ,w], respectively,

ρσ,w0 =
∑
x∈{−1,1}n Pr[x, 0, σ, w]ρx

Pr[x, 0, σ, w] and ρσ,w1 =
∑
x∈{−1,1}n Pr[x, 1, σ, w]ρx

Pr[x, 1, σ, w] .

It is known that any protocol that tries to distinguish two quantum states ρ0 and ρ1 appearing
with probability p and 1− p, respectively, by a POVM has bias at most ‖pρ0− (1− p)ρ1‖tr/2
[16]. The bias is then upper bounded by using Fourier analysis of matrix-valued functions,
in particular by the matrix-valued hypercontractive inequality of Ben-Aroya, Regev, and de
Wolf [6].

The difference between the classical and quantum lower bound proofs was considerably
reduced in our paper, e.g., the classical proof now relies less on the use of the Parseval’s
identity. Still some differences persist. Apart from the obvious generalization of Fourier
analysis to matrix-valued functions, the Fourier analysis in the quantum lower bound proof is
performed directly on the encoding messages and not on the pre-images of a fixed encoding
message, since there is no clear quantum analogue of conditioning on a message. The main
technical difficulty we faced compared to [15, 26] is that the Fourier coefficients of Bob’s
distributions pσ(z) and qσ(z) are not nicely related to just one Fourier coefficient of the
characteristic function of A any more, but instead to a more complicated sum of many
coefficients. This requires us to carefully bound various combinatorial terms occurring in the
proof and to use our freedom to choose α fairly small.

In Section 3 we analyse the limitations of our techniques and show that under the uniform
distribution, which was used as the “hard” distribution during the proof of Theorem 8, we
cannot obtain a lower bound depending on the sign degree instead of the pure high degree.
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We finally remark that the one-way communication complexity separations we found
can easily be used to obtain corresponding separations in the streaming model, similarly
to [15, 26].

2 Reductions from the Boolean Hidden Matching problem

As mentioned before, in [15] it was proved that the Boolean Hidden Partition problem using
PARITY on 2 bits (aka the BHM problem) is hard to solve, i.e., R1(BHM) = Ω(

√
n/α).

With this result alone it is possible to prove that the f -Boolean Hidden Partition problem for
almost any symmetric Boolean function with sdeg(f) ≥ 2 is at least as hard to solve. This
can be achieved via a simple reduction from the BHM problem to the f -BHPα,tn problem
with symmetric functions, which we shall show in this section.

For this section, in a slight abuse of notation we define |x| = |{i : xi = −1}| to be the
“Hamming weight” of x. Let s, t ∈ N, with s ≤ t. Consider a symmetric Boolean function
fs : {−1, 1}t → {−1, 1} such that (without loss of generality) fs(1n) = 1 and

fs(x) =
{

+1 if 0 ≤ |x| ≤ θ1 or θ2i < |x| ≤ θ2i+1, i = 1, 2 . . . , bs/2c,
−1 if θ2j−1 < |x| ≤ θ2j , j = 1, 2, . . . , b(s+ 1)/2c,

(1)

where θk ∈ N for k = 1, . . . , s+ 1 and 0 ≤ θ1 < · · · < θs < θs+1 = t and θk+1 − θk ≥ 1 for all
k = 1, . . . , s. The following result from [3] tells us that sdeg(fs) = s.

I Lemma 10. (Lemma 2.6 from [3]) If f is a symmetric function, then sdeg(f) is equal to
the number of times f changes sign when expressed as a univariate function in

∑
i xi.

In order to reduce fs -BHPα,tn from BHM we first need to reduce the function fs from
PARITY, i.e., we want that ∀x′ ∈ {−1, 1}2, ∃x ∈ {−1, 1}t such that fs(x) = PARITY(x′).
The key combinatorial step to achieve this is shown in the next Lemma.

I Lemma 11. Let fs : {−1, 1}t → {−1, 1} be the symmetric Boolean function from Eq. 1
with s ≥ 2 such that either 2|t or θ2 − θ1 < t − 1. Then there exists a, b ∈ N such that
∀x′ ∈ {−1, 1}2, ∃x ∈ {−1, 1}t such that fs(x) = PARITY(x′) and |x| = a|x′|+ b.

Proof. The condition that ∀x′ ∈ {−1, 1}2, ∃x ∈ {−1, 1}t such that fs(x) = PARITY(x′)
and |x| = a|x′|+ b is equivalent to

|x′| = 0 =⇒ fs(b) = 1,
|x′| = 1 =⇒ fs(a+ b) = −1,
|x′| = 2 =⇒ fs(2a+ b) = 1.

(2)

We divide the proof into two cases: either there exists k∗ ∈ {1, . . . , s−1} such that θk∗+1−θk∗
is odd or there does not exist such a k∗. Suppose first that such k∗ exists. Without loss of
generality we can assume that fs(x) = −1 for θk∗ < |x| ≤ θk∗+1, otherwise we just flip the
values of fs. Then we set{

a = (θk∗+1 − θk∗ + 1)/2,
b = θk∗ .

First, a, b ∈ N. Second, a + b = (θk∗+1 + θk∗ + 1)/2, hence θk∗ < a + b ≤ θk∗+1, since
θk∗+1 − θk∗ ≥ 1. And third, 2a+ b = θk∗+1 + 1 ≤ θk∗+2. Therefore all conditions from Eqs.
2 are satisfied.
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Now suppose that for all k = 1, . . . , s−1 we have 2|(θk+1−θk). Define the bit δ = [θ1 6= 0]
and set{

a = (θ2 − θ1 + 2)/2,
b = θ1 − δ.

First, a, b ∈ N (note that δ = 1 =⇒ θ1 > 0). Second, a+ b = (θ2 + θ1 + 2− 2δ)/2, hence
θ1 < a+ b ≤ θ2, since θ2 − θ1 ≥ 2 by hypothesis. And third, 2a+ b = θ2 + 2− δ ≤ t since
θ2 − θ1 < t − 1 and θ2 < t (so that θ2 = t − 1 =⇒ δ = 1). Therefore all conditions from
Eqs. 2 are satisfied. J

If 2 - t and θ2 − θ1 = t− 1, then our conditions give us
b = 0,
0 < a < t,

2a = t,

and we see that the condition 2a = t cannot be fulfilled by a ∈ N. This case corresponds to
the symmetric Boolean function Not All Equal (NAE), defined by NAE(x) = 1 if |x| ∈ {0, t}
and NAE(x) = −1 otherwise, with t odd.

Given the reduction above from PARITY to fs, we can construct our reduction from the
BHM problem to the fs -BHPα,tn problem.

I Theorem 7. Let fs : {−1, 1}t → {−1, 1} be the symmetric Boolean function from Eq. 1
with s ≥ 2 such that either 2|t or θ2 − θ1 < t− 1. Then R1(fs -BHPα,tn ) = Ω(

√
n/(αt)).

Proof. Suppose by contradiction that R1(fs -BHPα,tn ) = o(
√
n/(αt)), i.e., there exists a

protocol Π that solves fs -BHPα,tn with o(
√
n/(αt)) bits of communication. We are going to

show that such protocol would allow Alice and Bob to solve the BHM problem with o(
√
n/α)

bits of communication, which leads to a contradiction.
Let a, b ∈ N be the numbers used in reducing fs from PARITY in Lemma 11. Alice

increases her bit string x ∈ {−1, 1}n as follows: she makes a copies of x, obtaining xa ∈
{−1, 1}an, where xa = xx · · ·x represents x repeated a times. She then adds bn/2 times the
bit 1, obtaining xa1bn/2. Finally, she adds (t− 2a− b)n/2 times the bit −1, to finally obtain
xf = xa1bn/2-1(t−2a−b)n/2. Note that xf ∈ {−1, 1}nt/2.

Bob, on the other hand, increases his permutation σ ∈ Sn to a new permutation σf ∈ Snt/2.
In order to describe how he does this, we ease the notation by referring to the j-th block
(π−1((j − 1)t + 1), . . . , π−1(jt)) of a given permutation π as (Bj,1, . . . , Bj,t). With this
notation, the j-th block (Bj,1, Bj,2) of the permutation σ is mapped to the j-th block(

Bj,1, Bj,2, n+Bj,1, n+Bj,2, . . . , (a−1)n+Bj,1, (a− 1)n+Bj,2,

an+ j, an+ j + n

2 , . . . , an+ j + (t− 2a− 1)n2

)
of the new permutation σf . Note that the new block has t elements, as expected.

Consider the block strings σf (xf )(j;t) ∈ {−1, 1}t and σ(x)(j;2) ∈ {−1, 1}2, with j =
1, . . . , n/2. By construction we have that |σf (xf )(j;t)| = a|σ(x)(j;2)| + b and, according to
Lemma 11, we get fs(σf (xf )(j;t)) = PARITY(σ(x)(j;2)) for all j = 1, . . . , n/2. Hence we see
that every instance of the problem BHM : {−1, 1}n → {−1, 1} is mapped to an instance of
the problem fs-BHPα,tn : {−1, 1}nt/2 → {−1, 1}. Therefore we could map the BHM problem
into the fs -BHPα,tn problem and use the protocol Π in order to solve it with o(

√
n/(αt))

bits of communication, which is impossible. Thus R1(fs -BHPα,tn ) = Ω(
√
n/(αt)). J
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3 Limitations of proof technique

Theorem 8 guarantees the classical hardness of the f -BHPα,tn problem if f has pure high
degree ≥ 2, and not sign degree ≥ 2, which would be a stronger result. To arrive at this
result, we used the uniform distribution as a “hard” distribution for Yao’s principle. In this
section we shall prove that under the uniform distribution we cannot obtain a better result.
More specifically, we shall prove that under the uniform distribution there is an efficient
bounded-error classical protocol for solving the f -BHPα,tn problem if phdeg(f) ≤ 1.

I Theorem 12. Under the uniform distribution for Alice and Bob’s inputs, if phdeg(f) ≤ 1
then R1(f -BHPα,tn ) = O

(
t2

α logn
)
.

Proof. Let F = {i ∈ [t] | f̂({i}) 6= 0}. Given that phdeg(f) ≤ 1, this set is non-empty.
Consider the following protocol: Alice picks a subset I ⊆ [n] of indices uniformly at random
using shared randomness, where |I| will be determined later, and sends the indices and
corresponding bitvalues to Bob. Let {xi}i∈I be the bitvalues sent, and let j(i) = dσ(i)/te
and k(i) ≡ σ(i) mod t for all i ∈ I, where σ ∈ Sn is Bob’s permutation. The probability
that none of the indices sent by Alice are matched to a non-zero Fourier coefficient according
to Bob’s permutation, within one of the αn/t blocks he has, is

Prσ[k(i) /∈ F, ∀i ∈ I] ≤
(

1− α |F |
t

)|I|
≤ e−α|I||F |/t

which we can make almost arbitrarily small by choosing |I| to be sufficiently large. (Note that
the first inequality above would be an equality if we chose the elements of I with replacement,
and choosing them without replacement cannot make Pr[k(i) /∈ F, ∀i ∈ I] higher.) Hence
with high probability I ∩ F ∩ [αn/t] 6= ∅. Choose some ` ∈ I ∩ F ∩ [αn/t]. Bob computes
sgn[f̂({k(`)})] · σ(x)(j(`))

k(`) · wj(`): if it is +1, then he outputs that Bf (x) = w, and if it is −1,
then he outputs that Bf (x) = w.

To see why the protocol works, we calculate the probability that sgn[f̂({k(`)})] ·σ(x)(j(`))
k(`)

is equal to f(σ(x)(j(`))).

Pr
x

[
sgn[f̂({k(`)})]σ(x)(j(`))

k(`) = f(σ(x)(j(`)))
]

=

= 1
2 + 1

2t+1

∑
x∈{−1,1}t

sgn[f̂({k(`)})]σ(x)(j(`))
k(`) f(σ(x)(j(`)))

= 1
2 + 1

2 sgn[f̂({k(`)})] · f̂({k(`)})

= 1
2 + 1

2 |f̂({k(`)})|,

which is greater than 1/2 and where we used in the first line that the distribution on Alice’s in-

puts is uniform. Therefore, by a union bound, for sufficiently large |I| = O

(
t
α log 1

|f̂({k(`)})|

)
,

the overall success probability of the protocol (i.e. I ∩ F ∩ [αn/t] 6= ∅ and Bob’s output
equals f) is strictly greater than 1/2. Since |f̂({k(`)})| ≥ 21−t (as it is nonzero and is an
average of 2t ±1’s), this gives us the final overhead of O(t2/α). J
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4 Conclusions

We proposed a very broad generalization of the famous Boolean Hidden (Hyper)Matching
problem, which we called the f -Boolean Hidden Partition (f -BHPα,tn ) problem. Instead
of using the Parity function to arrive at the final bit-string that Alice and Bob wish to
explore, we use a generic Boolean function f . We partially characterize the communication
complexity of the whole problem in terms of one property of f : its sign degree. We proved
that if sdeg(f) ≤ 1, then there exists an efficient bounded-error classical protocol that
solves the f -BHPα,tn with O(logn) bits. Similarly to the classical case, we proved that if
sdeg(f) ≤ 2, then there exists an efficient bounded-error quantum protocol that solves the
f -BHPα,tn with O(logn) qubits. We then pursued a classical-quantum communication gap
by proving classical and quantum lower bounds for cases of the problem where sdeg(f) ≥ 2.
First we noted that the f -BHPα,tn problem is hard for almost all symmetric functions with
sdeg(f) ≥ 2 via a simple reduction from the Boolean Hidden Matching problem. And second
we generalized previous communication complexity lower bounds based on Fourier analysis
to prove that functions with phdeg(f) = d ≥ 2 lead to a classical Ω(n1−1/d) communication
cost and functions with phdeg(f) = d ≥ 3 lead to a quantum Ω(n1−2/d) communication cost
for the f -BHPα,tn problem.

It is known that phdeg(f) ≤ sdeg(f), but our lower bounds are probably not tight for all
functions with sign degree ≥ 2. We proved that this is an inherent limitation of the chosen
distribution for Alice and Bob’s inputs during the proof, since under the uniform distribution
it is possible to solve the problem with O(logn) bits of communication if phdeg(f) ≤ 1. We
then make the following conjectures.

I Conjecture 13. R1
ε (f -BHPα,tn ) = Ω(n1−1/d) if sdeg(f) = d ≥ 2.

I Conjecture 14. Q1
ε(f -BHPα,tn ) = Ω(n1−2/d) if sdeg(f) = d ≥ 3.

A proof of these results would require a non-uniform distribution on Alice and Bob’s inputs.
We hope that these conjectures help motivate the development of necessary quantum

lower bound techniques.
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A Proof of Upper Bounds

In this and the following appendices, denote by R1
ε (P) and Q1

ε (P) the classical and quantum
communication cost of the protocol P in bits and qubits, respectively, and denote by R1

ε (f) =
minP R1

ε (P) and Q1
ε(f) = minP Q1

ε(P) the minimum classical and quantum communication
cost, respectively, over all one-way protocols P without shared randomness that solve a
communication problem f with failure probability 0 < ε < 1/2.

A.1 Classical Upper Bound
Consider the f -BHPα,tn problem for f : {−1, 1}t → {−1, 1} with sdeg(f) ≤ 1. Now let
p : {−1, 1}t → [−1, 1] be a normalized sign-representing polynomial for f . Hence we can
write

p(x) = α0 +
t∑
i=1

αixi

with (αi)ti=0 ∈ R. Let β = minx |p(x)| be the bias of p.

I Theorem 5. R1
ε (f -BHPα,tn ) = O

(
( t
αβ )2 log 1

ε logn
)
if sdeg(f) ≤ 1.

Proof. Consider the following protocol: Alice picksm = O
(
( t
αβ )2 log 1

ε

)
bits from x uniformly

at random (with replacement) and sends them to Bob, together with their indices. Let
I and {xi}i∈I be the indices and bitvalues sent, respectively. Let j(i) = dσ(i)/te and
k(i) ≡ σ(i) mod t for all i ∈ I, where σ ∈ Sn is Bob’s permutation. Define the random
variable X(i) = (αk(i)xi + α0/t)wj(i) if σ(i) ∈ [αn/t] and X(i) = 0 if σ(i) /∈ [αn/t], where
α0 and αk are the zeroth order and xk’s coefficients, respectively, from the sign-representing
polynomial p, and define X =

∑
i∈I X(i). Bob then computes sgn(X). If the sign is 1, then

he outputs Bf (x) = w, and if the sign is −1, then he outputs Bf (x) = w.
To see why the protocol works, we calculate the expectation value of random variable X.

E[X] = m · Ei[X(i)]
= αm · Ei[(αk(i)xi + α0/t)wj(i)]

= αm · Ej
[
Ek[αkσ(x)(j)

k + α0/t]wj
]

= αm · Ej
[
p(σ(x)(j))

t
wj

]

= αm
t

n

n/t∑
j=1

p(σ(x)(j))
t

wj

= αm

n

 ∑
j:wj=1

p(σ(x)(j))−
∑

j:wj=−1
p(σ(x)(j))

 .
If f(σ(x)(j)) = wj , then wj = 1 =⇒ p(σ(x)(j)) ≥ β > 0 and wj = −1 =⇒ p(σ(x)(j)) ≤
−β < 0. Therefore

E[X] ≥ αm

n

 ∑
j:wj=0

β −
∑

j:wj=1
−β

 = αm
β

t
.
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1:14 Generalized Boolean Hidden Matching Problem

If, on the other hand, f(σ(x)(j)) = −wj , then wj = 1 =⇒ p(σ(x)(j)) ≤ −β < 0 and
wj = −1 =⇒ p(σ(x)(j)) ≥ β > 0. Therefore

E[X] ≤ αm

n

 ∑
j:wj=0

−β −
∑

j:wj=1
β

 = −αmβ

t
.

By using a Chernoff bound [13] of the type Pr[X > E[X] + u],Pr[X < E[X]− u] ≤ e−2u2/m

with u > 0 and setting u = ±E[X] > 0, we can make

Pr[X > 0 | Bf (x) = w], Pr[X < 0 | Bf (x) = w] ≤ ε

by taking m = O
(
( t
αβ )2 log 1

ε

)
. Therefore Alice and Bob can decide if Bf (x) = w or

Bf (x) = w with error probability ε and O
(
( t
αβ )2 log 1

ε logn
)
bits of communication. J

A.2 Quantum Upper Bound
Consider the f -BHPα,tn problem for f : {−1, 1}t → {−1, 1} with sdeg(f) = 2. Let p :
{−1, 1}t → [−1, 1] be a normalized sign-representing polynomial for f . Let β = minx |p(x)|
be the bias of p.

We say that a polynomial q of degree k is block-multilinear if its variables x1, . . . , xN can
be partitioned into k blocks R1, . . . , Rk, such that every monomial of q contains exactly one
variable from each block. As a special case, a block-multilinear polynomial q of degree 2 can
be written as

q(x1, . . . , xn, y1, . . . , ym) =
∑
i∈[n]
j∈[m]

aijxiyj

with variables in the first block labeled as x1, . . . , xn and the variables in the second block
labeled as y1, . . . , ym. Defining the matrix A = (aij)i∈[n],j∈[m], then

q(x, y) = xTAy

for all x ∈ Rn and y ∈ Rm. We say that q is bounded if |q(x, y)| ≤ 1 for all x ∈ {−1, 1}n, y ∈
{−1, 1}m. This translates to

max
x∈{−1,1}n

y∈{−1,1}m

∣∣∣∣∣∣∣∣
∑
i∈[n]
j∈[m]

aijxiyj

∣∣∣∣∣∣∣∣ ≤ 1,

i.e., ‖A‖∞→1 ≤ 1.
In order to prove the quantum upper bound, we will need the following results. In what

comes, define x̃ = (1, x1, . . . , xt).

I Lemma 15 ([2]). Given a m × m complex matrix M , there exists a unitary U (on a
possibly larger space with basis |1〉, . . . , |k〉 for some k ≥ m) such that, for any unit vector
|y〉 =

∑m
i=1 αi|i〉, U |y〉 = M |y〉

‖M‖ + |φ〉, where |φ〉 consists of basis states |i〉, i > m only.

I Theorem 16 ([2]). Let p : {−1, 1}t → [−1, 1] be a sign-representing polynomial for f
with sdeg(f) = 2. Then there is a block-multilinear polynomial p̃ : R2(t+1) → R such that
p̃(x̃, x̃) = p(x) for any x ∈ {−1, 1}t, and |p̃(y)| ≤ 3 for any y ∈ {−1, 1}2(t+1).
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Let p̃ : R2(t+1) → R be the block-multilinear polynomial of degree 2 obtained from the
sign-representing polynomial p of f according to Theorem 16. It can be written as

p̃(x, y) =
∑

i,j∈[t+1]

aijxiyj = xTAy, (3)

where A = (aij)i,j∈[t+1].
With these in hands, we present our upper bound.

I Theorem 6. Q1
ε(f -BHPα,tn ) = O

(
( t
αβ )2 log 1

ε logn
)
if sdeg(f) ≤ 2.

Proof. Consider the following protocol: Alice sends to Bob m = O
(
( t
αβ )2 log 1

ε

)
copies of

the quantum state of O(logn) qubits

|ψA〉 = 1√
n+ n/t

 n∑
i=1

xi|i〉+
n/t∑
i=1
|n+ i〉

 .

Bob measures each of them by using the POVM|n+ j〉〈n+ j|+
jt∑

i=(j−1)t+1

|σ−1(i)〉〈σ−1(i)|


j∈[n/t]

,

where σ ∈ Sn is his permutation, and attaches a qubit in the state |+〉 to each of the final
states. Let I ⊆ [n/t] be the sequence of indices from his measurements. Then his final state
is

|ψB〉 =
⊗
j∈I
|+〉|ψ(j)〉,

where

|ψ(j)〉 = 1√
t+ 1

|n+ j〉+
jt∑

i=(j−1)t+1

xσ−1(i)|σ−1(i)〉

 .

Let A be the (t + 1) × (t + 1) matrix from the representation of p̃ according to Eq. 3.
Lemma 15 guarantees the existence of a unitary Uj such that Uj |ψ(j)〉 = A|ψ(j)〉

‖A‖ + |φ(j)〉,
with 〈φ(j)|ψ(j)〉 = 0. Bob then applies a controlled Uj gate onto each |+〉j |ψ(j)〉 to obtain⊗

j∈I
CUj |ψB〉 =

⊗
j∈I

(
1√
2
|0〉|ψ(j)〉+ 1√

2
|1〉Uj |ψ(j)〉

)
and then performs a Hadamard gate on the first qubit of each of the subsystems I and
measures them. Let mj ∈ {0, 1} be the result of the measurement for block j ∈ I. Define
the random variable X(j) = −(−1)mjwj if j ∈ [αn/t] and X(j) = 0 if j /∈ [αn/t], and define
X =

∑
j∈I X(j). Bob then computes sgn(X): if sgn(X) > 0, he outputs that Bf (x) = w,

and if sgn(X) < 0, he outputs that Bf (x) = w.
To see why the protocol works, first note that the probability of measuring 1 is

Pr[1] = 1
2

(
1 + 〈ψ(j)|U |ψ(j)〉

)
= 1

2

(
1 + 〈ψ

(j)|A|ψ(j)〉
‖A‖

)

= 1
2

1 + p̃(σ̃(x)(j), σ̃(x)(j))
‖A‖(t+ 1)

 = 1
2

(
1 + p(σ(x)(j))
‖A‖(t+ 1)

)
.
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The remainder of the argument is similar to the classical upper bound proof. Recalling that
m = |I|, the expectation value of X is

E[X] = m · Ej [X(j)]
= αm · Ej [−(−1)mjwj ]

= αm
t

n

n/t∑
j=1

(Pr[mj = 1]− Pr[mj = 0])wj

= αm
t

n

 ∑
j:wj=1

p(σ(x)(j))
‖A‖(t+ 1) −

∑
j:wj=−1

p(σ(x)(j))
‖A‖(t+ 1)

 .
If f(σ(x)(j)) = wj , then wj = 1 =⇒ p(σ(x)(j)) ≥ β > 0 and wj = −1 =⇒ p(σ(x)(j)) ≤
−β < 0. Therefore

E[X] ≥ αm t

n

1
‖A‖(t+ 1)

 ∑
j:wj=1

β −
∑

j:wj=−1
−β

 = αmβ

‖A‖(t+ 1) .

If, on the other hand, f(σ(x)(j)) = −wj , then wj = 1 =⇒ p(σ(x)(j)) ≤ −β < 0 and
wj = −1 =⇒ p(σ(x)(j)) ≥ β > 0. Therefore

E[X] ≤ αm t

n

1
‖A‖(t+ 1)

 ∑
j:wj=1

−β −
∑

j:wj=−1
β

 = − αmβ

‖A‖(t+ 1) .

By using a Chernoff bound [13] of the type Pr[X > E[X] + u],Pr[X < E[X]− u] ≤ e−2u2/m

with u > 0 and setting u = ±E[X] > 0, we can make

Pr[X > 0 | Bf (x) = w], Pr[X < 0 | Bf (x) = w] ≤ ε

by taking m = O
(
( t
αβ )2 log 1

ε

)
, where we use that ‖A‖ ≤ ‖A‖∞→1 ≤ 3 according to

Theorem 16 (note that ‖Ax‖2
‖x‖2

≤ ‖Ax‖1
‖x‖∞ , and taking maximums over all x on both sides gives

‖A‖ ≤ ‖A‖∞→1). Therefore Alice and Bob can decide if Bf (x) = w or Bf (x) = w with error
probability ε and O

(
( t
αβ )2 log 1

ε logn
)
qubits of communication. J
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Abstract
An open problem that is widely regarded as one of the most important in quantum query complexity
is to resolve the quantum query complexity of the k-distinctness function on inputs of size N . While
the case of k = 2 (also called Element Distinctness) is well-understood, there is a polynomial gap
between the known upper and lower bounds for all constants k > 2. Specifically, the best known
upper bound is O
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(Belovs, FOCS 2012), while the best known lower bound
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STOC 2018).
For any constant k ≥ 4, we improve the lower bound to Ω̃

(
N (3/4)−1/(4k)). This yields, for

example, the first proof that 4-distinctness is strictly harder than Element Distinctness. Our lower
bound applies more generally to approximate degree.

As a secondary result, we give a simple construction of an approximating polynomial of degree
Õ(N3/4) that applies whenever k ≤ polylog(N).
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complexity is a rich model that allows for the design of highly sophisticated algorithms and
captures much of the power of quantum computing. Indeed, most quantum algorithms were
discovered in or can easily be described in the query setting.

An open problem that is widely regarded as one of the most important in quantum query
complexity [18] is to resolve the complexity of the k-distinctness function. For this function,
the input x specifies a list of N numbers from a given range of size R,1 and the function
evaluates to TRUE2 if there is any range item that appears k or more times in the list.
The case k = 2 corresponds to the complement of the widely-studied Element Distinctness
function, whose complexity is known to be Θ(N2/3) [4, 1].

For general values of k, the best known upper bound on the quantum query complexity
of k-distinctness is O

(
N3/4−1/(2k+2−4)

)
, due to a highly sophisticated algorithm of Belovs

[8]. For a long time, the best known lower bound on the quantum query complexity of
k-distinctness was Ω(N2/3) for any k ≥ 2, due to Aaronson and Shi [1], with refinements given
by Kutin [15] and Ambainis [2]. This lower bound is tight for k = 2 (matching Ambainis’
upper bound [4]), but it is not known to be tight for any k > 2. Recently, Bun, Kothari,
and Thaler [11] proved a lower bound of Ω̃(N3/4−1/(2k)) for constant k.3 This improved
over the prior lower bound of Ω(N2/3) for any constant k ≥ 7. Furthermore, combined with
Belovs’ upper bound, this established that for sufficiently large constants k, the exponent in
the quantum query complexity of k-distinctness approaches 3/4 from below. However, the
precise rate at which the quantum query complexity approaches N3/4 remains open: there is
a polynomial gap between the upper and lower bounds for any constant k, and indeed there
is a qualitative difference between the inverse-exponential dependence on k in the exponent of
N3/4−1/(2k+2−4) (the known upper bound), and the inverse-linear dependence in the known
lower bound of N3/4−1/(2k).

Main Result

This paper improves the lower bound from Ω̃(N3/4−1/(2k)) to Ω̃(N3/4−1/(4k)). While this
bound is qualitatively similar to the lower bound of [11], it offers a polynomial improvement for
every constant k ≥ 4. Perhaps more significantly, for k ∈ {4, 5, 6}, it is the first improvement
over Aaronson and Shi’s Ω(N2/3) lower bound that has stood for nearly 20 years.

Approximate Degree

The ε-error approximate degree of a Boolean function f : {−1, 1}n → {−1, 1}, denoted d̃egε(f),
is the least degree of a real polynomial p such that |p(x) − f(x)| ≤ ε for all x ∈ {−1, 1}n.
The standard setting of the error parameter is ε = 1/3, and the (1/3)-approximate degree of
f is denoted d̃eg(f) for brevity. As famously observed by Beals et al. [6], the quantum query
complexity of a function f is lower bounded by (one half times) the approximate degree of f .
Hence, any lower bound on the approximate degree of f implies that (up to a factor of 2) the
same lower bound holds for the quantum query complexity of f . As with prior lower bounds
for k-distinctness [1, 15, 2, 11], our k-distinctness lower bound is in fact an approximate

1 For purposes of this introduction, N and R are assumed to be of the same order of magnitude (up to a
factor depending on k alone). For simplicity throughout this section, we state our bounds purely in
terms of N , leaving unstated the assumption that R and N are of the same order of magnitude.

2 Throughout this manuscript, we associate −1 with logical TRUE and +1 with logical FALSE.
3 Throughout this manuscript, Õ, Ω̃ and Θ̃ notations are used to hide factors that are polylogarithmic in
N .
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degree lower bound (on the natural Boolean function induced by k-distinctness on Ndlog2Re
bits, where R denotes the size of the range). Our analysis is a substantial refinement of the
lower bound analysis of Bun et al. [11].

I Theorem 1 (Informal version of Theorem 17 and Corollary 18). For any constant k ≥ 2, the
approximate degree and quantum query complexity of the k-distinctness function with domain
size N and range size R ≥ N is Ω̃(N3/4−1/(4k)).

A Secondary Result: The Approximate Degree for Super-Constant Values of k

Recall that for constant k, the best known approximate degree upper bound for k-distinctness
is O

(
N3/4−1/(2k+2−4)

)
[8]. For non-constant values of k, the upper bound implied by Belovs’

algorithm grows exponentially with k. That is, the Big-Oh notation in the upper bound
hides a leading factor of at least 2ck for some positive constant c.4 Consequently Belovs’
bound is N3/4+Ω(1) for any k ≥ Ω(logN). Furthermore, the bound becomes vacuous (i.e.,
linear in N) for k ≥ c logN for a large enough constant c > 0.

Our secondary result improves this state of affairs by giving a Õ(N3/4) approximate
degree upper bound that holds for any value of k that grows at most polylogarithmically
with N .

I Theorem 2 (Informal). For any k ≤ polylog(N), the approximate degree of k-distinctness
is Õ(N3/4).

We mention that for any k ≥ 2, the approximating polynomials for k-distinctness that
follow from prior works [4, 8, 24] are quite complicated, and in our opinion there has not been
a genuinely simple construction of any O(N3/4)-degree approximating polynomials recorded
in the literature, even for the case of k = 2 (i.e., Element Distinctness). Accordingly, we
feel that Theorem 2 has didactic value even for constant values of k (though the Õ(N3/4)
approximate degree upper bound that it achieves is not tight for any constant k ≥ 2).

To clarify, Theorem 2 does not yield a quantum query upper bound, only an approximate
degree upper bound. It remains an interesting open question whether the quantum query
complexity of k-distinctness is sublinear in N for all k = polylog(N) (see Section 1.1 for
further discussion).

Our proof of Theorem 2 is a simple extension of a result of Sherstov [24, Theorem 1.3]
that yielded an O(N3/4) approximate degree upper bound for a different function called
Surjectivity.5 A formal statement and proof can be found in the full version of this paper.

1.1 Discussion and Open Problems
The most obvious and important open question is to finish resolving the approximate degree
and quantum query complexity of k-distinctness for any k > 2. Currently, the upper and
lower bounds qualitatively differ in their dependence on k, with the upper bound having
an exponent of the form 3/4 − exp(−O(k)) and the lower bound having an exponent of
the from 3/4 − Ω(1/k). It seems very likely that major new techniques will be needed to

4 Belovs’ approximate degree upper bound was recently reproved by Sherstov [24], who made the
exponential dependence on k explicit (see, e.g., [24, Theorem 6.6]). To clarify, Belovs’ result is in fact a
quantum query upper bound, which in turn implies an approximate degree upper bound. Sherstov’s
proof avoids quantum algorithms, and hence does not yield a quantum query upper bound.

5 Surjectivity is the function that interprets its input as a list of N numbers from a given range of size R,
and evaluates to TRUE if and only if every range element appears at least once in the list.
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qualitatively change the form of either the upper or lower bound. In particular, on the lower
bounds side, our analysis is based on a variant of a technique called dual block composition
(see Section 1.2), and we suspect that we have reached the limit of what is provable for
k-distinctness using this technique and its variants.

We remark here that Liu and Zhandry [18] recently showed that the quantum query
complexity of a certain search version of k-distinctness (defined over randomly generated
inputs) is Θ(n1/2−1/(2k−1)). This inverse-exponential dependence on k is tantalizingly
reminsicent of Belovs’ upper bound for k-distinctness. This may be construed as mild
evidence that 3/4− exp(−O(k)) is the right qualitative bound for k-distinctness itself.

A very interesting intermediate goal is to establish any polynomial improvement over
the long-standing Ω(n2/3) lower bound for 3-distinctness. This would finally establish that
3-distinctness is strictly harder than Element Distinctness (such a result is now known for all
k ≥ 4 due to Theorem 1).

It would also be interesting to resolve the quantum query complexity of k-distinctness
for k = polylog(N). Although this question may appear to be of specialized interest, we
believe that resolving it could shed light on the relationship between approximate degree and
quantum query complexity. Indeed, while any quantum algorithm for a function f can be
turned into an approximating polynomial for f via the transformation of Beals et al. [6], no
transformation in the reverse direction is possible in general [3]. This can be seen, for example,
because the quantum query complexity of Surjectivity is known to be Ω(N) [7, 25], but
its approximate degree is O(N3/4) [24, 11]. Nonetheless, approximate degree and quantum
query complexity turn out to coincide for most functions that arise naturally (Surjectivity
remains the only function that exhibits a separation, without having been specifically
constructed for that purpose). In our opinion, this phenomenon remains mysterious, and it
would be interesting to demystify it. For example, could one identify special properties of
approximating polynomials that would permit a reverse-Beals-et-al. transformation to turn
that polynomial into a quantum query algorithm?6 Perhaps an Õ(N3/4) upper bound for
(polylog(N))-distinctness could be derived in this manner. Such an upper bound (even for
(logN)-distinctness) would yield improved quantum query upper bounds for min-entropy
estimation [17]. On the other hand, due to our Theorem 2, any N3/4+Ω(1) lower bound for
(polylog(N))-distinctness would require moving beyond the polynomial method.7

1.2 Overview of the Lower Bound
Throughout this subsection we assume that k ≥ 2 is an arbitrary but fixed constant.

Let THRkN denote the function onN -bit inputs that evaluates to −1 on inputs of Hamming
weight at least k, and evaluates to 1 otherwise. For N ≤ n, let ({−1, 1}n)≤N denote the
subset of {−1, 1}n consisting of all inputs of Hamming weight at most N . For any function
fn : {−1, 1}n → {−1, 1},8 let f≤Nn denote the partial function obtained by restricting the
domain of f to ({−1, 1}n)≤N , and let d̃eg(f≤Nn ) denote the least degree of a real polynomial
p such that |p(x)− fn(x)| ≤ 1/3 for all x ∈ ({−1, 1}n)≤N .

6 There are works in this general direction, notably [5], which shows that a certain technical refinement of
approximate degree, called approximation by completely bounded forms, characterizes quantum query
complexity. But to our knowledge these works have not yielded any novel quantum query upper bounds
for any specific function.

7 We remark that the positive-weights adversary method is also incapable of proving such a result due to
the certificate complexity barrier.

8 Throughout, we use subscripts where appropriate to clarify the number of bits over which a function is
defined.
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Simplifying very slightly, prior work by Bun and Thaler [13] (building on an important
lemma of Ambainis [2]) implied that for k ≥ 2 the approximate degree of k-distinctness is
equivalent to d̃eg(f≤NRN ) for f = ORR ◦ THRkN . Here, gn ◦ hm denotes the function on n ·m
bits obtained by block-composing g and h, i.e., g ◦ h evaluates h on n disjoint inputs and
feeds the outputs of all n copies of h into g.

Bun et al. [11] proved their Ω̃(N3/4−1/(2k)) lower bound for d̃eg(f≤NRN ) via the method of
dual polynomials. This is a technique for proving approximate degree lower bounds that works
by constructing an explicit solution to a certain linear program capturing the approximate
degree of any function. Specifically, a dual witness to the fact that d̃eg(f≤NRN ) ≥ d is a function
ψ : {−1, 1}RN → R satisfying the following properties (this dual formulation is standard, and
can be found, for example, in [21]).

First, ψ must be uncorrelated with all polynomials p of degree at most d, i.e., 〈ψ, p〉 = 0
for all such polynomials p, where 〈ψ, p〉 =

∑
x∈{−1,1}RN ψ(x)p(x). Such a ψ is said to

have pure high degree at least d. Second, ψ must be well-correlated with f , i.e., 〈ψ, f〉 ≥
(1/3) · ‖ψ‖1, where ‖ψ‖1 :=

∑
x∈{−1,1}RN |ψ(x)|. Finally, ψ must equal 0 on inputs in

{−1, 1}RN \
(
{−1, 1}RN

)≤N
.

To simplify greatly, Bun et al. [11] constructed their dual witness for
(
ORR ◦ THRkN

)≤N
roughly as follows. They took a dual witness Ψ for the fact that d̃eg(ORR) = Ω(R1/2)
[19, 28, 12] and a dual witness φ for the fact that THRkN also has large approximate degree,
and they combined Ψ and φ in a certain manner (introduced in prior works [27, 23, 16]) to

get a dual witness for the composed function
(
ORR ◦ THRkN

)≤N
. The technique used to

combine Ψ and φ is often called dual block composition, and is denoted Ψ ? φ.9 Dual block
composition is defined as follows (below, each xi ∈ {−1, 1}N ):

(Ψ ? φ)(x1, . . . , xR) = 2R ·Ψ(sgn(φ(x1)), . . . , sgn(φ(xR))) ·
R∏
i=1
|φ(xi)|/‖φ‖1.

Here, sgn(r) equals −1 if r < 0 and equals +1 if r > 0.10 To show that Ψ ? φ is a dual

witness for the fact that the approximate degree of
(
ORR ◦ THRkN

)≤N
is at least d, it is

necessary to show that Ψ ?φ has pure high degree at least d, and that Ψ ?φ is well-correlated
with

(
ORR ◦ THRkN

)≤N
. It is known that pure high degree increases multiplicatively under

the ? operation, and hence the pure high degree calculation for Ψ ? φ is straightforward.
In contrast, the correlation calculation is the key technical challenge and bottleneck in the
analysis of [11]. Our key improvement over their work is to modify the construction of the
dual witness in a manner that allows for an improved correlation bound.

At a high level, what we do is replace the dual block composition Ψ ? φ from the
construction of [11] with a variant of dual block composition introduced by Sherstov [22].
Sherstov introduced this variant to address the correlation issues that arise when attempting

9 To clarify, this entire outline is a major simplification of the actual dual witness construction in [11].
The details provided in the outline of this introduction are chosen to highlight the key technical issues
that we must address in this work. Amongst other simplifications in this outline, the actual dual witness
from [11] is not Ψ ? φ, but rather a “post-processed” version of Ψ ? φ, where the post-processing step is
used to ensure that the dual witness evaluates to 0 on all inputs of Hamming weight more than N .

10 It is irrelevant how one defines sgn(0) because if φ(xi) = 0 for any i, the product
∏R

i=1 |φ(xi)|/‖φ‖1
forces Ψ ? φ to 0. For this reason, the remainder of the discussion in this section implicitly assumes that
φ(xi) 6= 0 for all i ∈ {1, . . . , R}.
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to use dual block composition to prove approximate degree lower bounds for composed
functions, and he used it to prove direct sum and direct product theorems for approximate
degree.11 However, we have to modify even Sherstov’s variant of dual block composition in
significant ways to render it useful in our context. We now attempt to give an informal sense
of our modification and why it is necessary.

For block-composed functions g ◦ h, the rough idea of any proof attempting to show that
〈Ψ ? φ, g ◦ h〉 is large is to hope that the following approximate equality holds:

〈Ψ ? φ, g ◦ h〉 ≈ 〈Ψ, g〉. (1)

If Equation (1) holds even approximately, then the correlation analysis of Ψ ? φ is complete,
since the assumption that Ψ is a dual witness for the high approximate degree of g implies
that the right hand side is large.

Equation (1) in fact holds with exact equality if φ agrees in sign with h at all inputs,
i.e., if 〈φ, h〉 = ‖φ‖1 [23, 16]. Unfortunately, the fact that φ is a dual witness for the large
approximate degree of h implies only a much weaker lower bound on 〈φ, h〉, namely that

〈φ, h〉 ≥ (1/3) · ‖φ‖1. (2)

In general, Equation (2) is not enough to ensure that Equation (1) holds even approximately.
A rough intuition for why Equation (1) may fail to hold is the following. The definition

of Ψ ? φ feeds (sgn(φ(x1)), . . . , sgn(φ(xR))) into Ψ. One can think of sgn(φ(xi)) as φ’s
“prediction” about h(xi), and the fact that 〈φ, h〉 ≥ (1/3) · ‖φ‖1 means that for an xi
chosen at random from the probability distribution |φ|/‖φ‖1, this prediction is correct with
probability at least 2/3. Unfortunately, there are values of xi for which sgn(φ(xi)) 6= h(xi),
meaning that φ’s predictions can sometimes be wrong. In this case, when feeding sgn(φ(xi))
into Ψ, dual block composition is “feeding an error” into Ψ, and this can cause Ψ ? φ to
“make more errors” (i.e, output a value on an input that disagrees in sign with g ◦ h on that
same input) than Ψ itself.

That is, there are two reasons Ψ ? φ may make an error: either Ψ itself may make an
error (let us call this Source 1 for errors), and/or one or more copies of φ may make an error
(let us call this Source 2 for errors).12 The first source of error is already fully accounted
for in the right hand side of Equation (1). The second source of error is not, and this is the
reason that Equation (1) may fail to hold even approximately.

Roughly speaking, while Equation (2) guarantees that sgn(φ(xi)) is not “an error” for
each i with good probability (i.e., probability at least 2/3), that still means that with very
high probability, sgn(φ(xi)) will be in error (i.e., not equal to h(xi)) for a constant fraction
of blocks i ∈ {1, . . . , R}. Any one of these errors could be enough to cause a Source 2 error.

Fortunately for us, g = ORR has low (−1)-certificate complexity, meaning that on inputs
x in OR−1

R (−1), to certify that indeed x ∈ OR−1
R (−1), it is sufficient to identify just one

coordinate of x that equals −1. This renders certain kinds of sign-errors made by φ benign.
Specifically, letting S = {x : φ(x) < 0} and E− = S ∩ f−1(1) denote the false-negative errors
made by φ, the low (−1)-certificate complexity of ORR means that it is okay if “a constant

11Variants of dual block composition related to the one introduced in [22] have played important roles in
other recent works on approximate degree lower bounds, e.g., [14, 26].

12There may be inputs x = (x1, . . . , xn) to Ψ ? φ that could be classified as both Source 1 and Source 2
errors. For purposes of this high-level introduction, it is not important whether such inputs get classified
as Source 1 or Source 2 errors for Ψ ? φ.
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fraction of the negative values output by φ are in error”. That is, so long as(∑
E−

|φ(x)|
)
/

(∑
x∈S
|φ(x)|

)
= 1− Ω(1), (3)

the contribution of “false negative errors made by φ” to actual Source 2 errors made by Ψ ? φ

is low.
However, the situation is starkly different for “false positive errors” made by φ; while

ORR has certificates of size 1 for inputs in OR−1
R (−1), the certificate complexity of the

(unique) input in OR−1
R (+1) is n. That is, letting T = {x : φ(x) > 0} and E+ = T ∩f−1(−1),

for Equation (1) to hold even approximately for g = ORR, it is essential that(∑
E+

|φ(x)|
)
/

(∑
x∈T
|φ(x)|

)
� 1/R. (4)

Accordingly, Bun et al. [11] obtain their lower bound for k-distinctness by using a dual
witness φ for h = THRkN that satisfies Equation (4). Using a dual with such few false positive
errors causes [11] to lose an additive 1/(2k) term in the exponent of N in their final degree
bound, relative to what they would obtain if Equation (2) were sufficient to ensure that
Equation (1) approximately held.

As previously mentioned, Sherstov [22] introduced a variant of dual block composition
intended to handle Source 2 errors that might have otherwise rendered Equation (1) false.
Specifically, Sherstov proposed multiplying (Ψ ? φ)(x) by a low-degree polynomial pη(x)
intended to “kill” any inputs x that may contribute Source 2 errors (here, η is a parameter,
and we will explain shortly how the value of η is ultimately chosen). Specifically, pη
“counts” the number of blocks xi of x such that sgn(φ(xi)) 6= h(xi), and pη is defined
(through polynomial interpolation) to evaluate to 0 if this number is any integer between
1 and η. This has the effect of eliminating all Source 2 errors made by Ψ ? φ on inputs
x for which at most η copies of φ make an error. That is, pη kills all inputs x in the set
Uη := {x = (x1, . . . , xR) : sgn(φ(xi)) 6= h(xi) for between 1 and η values of i}. Note that
multiplying Ψ ? φ by pη has the additional, unfortunate effect of distorting the values that
Ψ ? φ takes on other inputs; bounding the effect of this distortion is one challenge that
Sherstov’s analysis (as well as our own analysis in this work) has to address.

The intuition is that, so long as most Source 2 errors made by Ψ ? φ are caused by inputs
in the set Uη, then multiplying Ψ ? φ by pη should eliminate the otherwise devastating effects
of most Source 2 errors. So the remaining challenge is to choose a dual witness φ for h
guaranteeing that indeed most Source 2 errors are caused by inputs in Uη. More precisely, φ
must be chosen to ensure that, with respect to the product distribution

∏R
i=1 |φ(xi)|/‖φ‖1,

it is very unlikely that more than η copies of φ make an error on their input xi.
To this end, it is implicit in Sherstov’s analysis that Equation (1) approximately holds

with (Ψ ? φ) · pη in place of Ψ ? φ so long as( ∑
x∈E−∪E+

|φ(x)|
)
/‖φ‖1 � η/R. (5)

Notice that this is exactly Equation (4), except that the right hand side has crucially increased
by a factor of η (also, Equation (5) counts both false-positive and false-negative errors, as
opposed to just false-positive errors, which is a key discrepancy that we address below). The
bigger that η is set, the less stringent is the requirement of Equation (5). However, it turns
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2:8 Improved Approximate Degree Bounds for k-Distinctness

out that, in order to ensure that (Ψ ? φ) · pη has pure high degree close to that of Ψ ? φ

itself, η must be set to a value that is noticeably smaller than the pure high degree of Ψ.
Ultimately, to obtain the strongest possible results, η gets set to some constant C < 1 times
the pure high degree of Ψ.

In order to bring Sherstov’s ideas to bear on k-distinctness, we have to modify his
construction as follows. The key issue (alluded to above) is that Sherstov’s construction is
not targeted at functions g ◦ h where g has low (−1)-certificate complexity, and it is essential
that we exploit this low certificate complexity in the correlation analysis to improve on the
k-distinctness lower bound from [11]. Essentially, we modify Sherstov’s definition of pη to
“ignore” all false negative errors (which as explained above are benign in our setting because
g = ORR has low (−1)-certificate complexity). Rather we have pη only “count” the false
positive errors and kill any inputs where this number is between 1 and η.

We are able to show that with this modification, it is sufficient to choose a dual witness
φ for THRkN satisfying(∑

E+

|φ(x)|
)
/

(∑
x∈T
|φ(x)|

)
� η/R. (6)

We end up setting η ≈ O(
√
R) for our lower bound, hence the denominator on the right

hand side of this inequality represents a quadratic improvement compared to that on the
right hand side of Equation (4). This improvement ultimately enables us to improve the
lower bound from Ω̃(N3/4−1/(2k)) to Ω̃(N3/4−1/(4k)).

The actual calculations required to establish the sufficiency of Equation (6) are quite
involved, and we provide a more detailed proof overview in Section 3 to help the reader make
sense of them.

2 Preliminaries

Let N,n and m be positive integers, N ≤ n. For z ∈ {−1, 1}n, let |z| represent the Hamming
weight of z, i.e., the number of −1’s in z. Define ({−1, 1}n)≤N := {x ∈ {−1, 1}n : |x| ≤ N}.
For any function f : {−1, 1}n → R, denote by f≤N the partial function that is defined on
({−1, 1}n)≤N and agrees with f on all such inputs. Define sgn : R→ {−1, 1} by sgn(x) = 1
for all non-negative x, and −1 otherwise. For any function f : {−1, 1}n → R, define
‖f‖1 :=

∑
x∈{−1,1}n |f(x)|. All logarithms in this paper are base 2 unless otherwise specified.

Let 1n (respectively, −1n) denote the n-bit string (1, 1, . . . , 1) (respectively, (−1,−1, . . . ,−1)).
We use the notation [n] to denote the set {1, 2, . . . , n}.

Define the function ORN : {−1, 1}N → {−1, 1} to equal 1 if x = 1N , and −1 otherwise.
Define the Threshold function THRkN : {−1, 1}N → {−1, 1} to equal 1 for inputs of Hamming
weight less than k, and −1 otherwise. Given any functions fn : {−1, 1}n → {−1, 1} and
gm : {−1, 1}m → {−1, 1}, we define the function fn ◦ gm : {−1, 1}mn → {−1, 1} as

fn ◦ gm(x11, . . . , x1m, x21, . . . , x2m, . . . , xn1, . . . , xnm) = fn(gm(x1), gm(x2), . . . , gm(xn)),

xi ∈ {−1, 1}m for all i ∈ [n]. We drop subscripts when the arities of the constituent functions
are clear.

For any function ψ : {−1, 1}m → R such that ‖ψ‖1 = 1, let µψ be the distribution on
{−1, 1}m, defined by µψ(x) = |ψ(x)|. Any function f : {−1, 1}n → R has a unique multilinear
representation f =

∑
S⊆[n] f̂(S)χS , where for any S ⊆ [n], the function χS : {−1, 1}n →

{−1, 1} is defined by χS(x) =
∏
i∈S xi. Hence, ‖f̂‖1 =

∑
S⊆[n] |f̂(S)|. It follows that for any

function φ : {−1, 1}n → R, there exists a unique multilinear polynomial φ̃ : Rn → R such
that φ̃(x) = φ(x) for all x ∈ {−1, 1}n.
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I Definition 3 (k-distinctness). For integers k,N,R with k ≤ N , define the function
DISTkN,R : [R]N → {−1, 1} by DISTkN,R(s1, . . . , sN ) = −1 iff there exists an r ∈ [R] and
distinct indices i1, . . . , ik such that si1 = · · · = sik = r. When necessary, the domain of the
function can be viewed as {−1, 1}N logR.

I Definition 4 (Approximate degree). For any function f : {−1, 1}n → R, any integer N ≤ n,
and any ε ∈ [0, 1], define the ε-approximate degree of f≤N to be

d̃egε(f≤N ) = min
p:|p(x)−f(x)|≤ε
∀x∈{−1,1}n,|x|≤N

deg(p).

When the subscript is dropped, ε is assumed to equal 1/3. When the superscript is dropped in
f≤N , then N is assumed to equal n.

Note that this definition places no constraints on an approximating polynomial on inputs
outside the promise domain.

We require the following relation between approximate degree of k-distinctness and a
related Boolean function; this relationship follows from [10, Proposition 21 and Corollary 26].

B Claim 5 ([10]). Let N,R ∈ N and 2 ≤ k ≤ N be any integer. Then for any ε > 0,

d̃egε(DISTkN,R+N ) = Ω̃(d̃egε(ORR ◦ THRkN )≤N ). (7)

We also require the following error reduction theorem for approximate degree.

I Lemma 6 ([9]). Let f : {−1, 1}n → {−1, 1} be any (possibly partial) Boolean function and
let 0 < ε < 1. Then, d̃egε(f) = d̃eg(f) ·O(log(1/ε)).13

I Definition 7 (Correlation). Consider any function f : {−1, 1}n → R and ψ : {−1, 1}n → R.
Define the correlation between f and ψ to be 〈f, ψ〉 =

∑
x∈{−1,1}n f(x)ψ(x).

I Definition 8 (Pure high degree). For φ : {−1, 1}n → R, we say that the pure high degree
of φ, which we denote by phd(φ), is d if d ≥ 0 is the largest integer for which 〈φ, p〉 = 0 for
any polynomial p : {−1, 1}n → R of degree strictly less than d.

By linear programming duality, we have the following standard equivalence between lower
bounds on approximate degree and existence of “dual polynomials”. See, for example, [10].

I Lemma 9. Let f : {−1, 1}n → {−1, 1} be any function. For any integer 0 ≤ j ≤ n, we
have d̃egε(f≤j) ≥ d if and only if there exists a “dual polynomial” φ : {−1, 1}n → R satisfying
the following properties: φ(x) = 0 for all |x| > j, 〈f, φ〉 > ε,

∑
x∈{−1,1}n |φ(x)| = 1, and

phd(φ) ≥ d. We say that φ is a dual polynomial witnessing the fact that d̃egε(f≤j) ≥ d. For
brevity, when ε and d are clear from context, we say that φ is a dual polynomial for f≤j.

Špalek [28] exhibited an explicit dual witness for OR (the existence of a dual witness for
OR was already implicit from the work of Nisan and Szegedy [19]).

B Claim 10 (Implicit in [19]). There exists a constant c ∈ (0, 1] such that for any integer
n ≥ 0, there exists a function θ : {−1, 1}n → R satisfying ‖θ‖1 = 1, phd(θ) ≥ c

√
n, and

〈θ,ORn〉 ≥ 3/5.

13The statement in [9] only deals with total functions. It can be seen that the proof works for partial
functions too.
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Towards proving approximate degree lower bounds for composed functions, one might
hope to combine dual polynomials of the constituent functions in some way to obtain a dual
polynomial for the composed function. A series of works [27, 16, 23] introduced the notion
of “dual block composition”, which is a powerful method of combining dual witnesses.

I Definition 11 (Dual block composition). Let θ : {−1, 1}n → R, φ : {−1, 1}m → R be any
functions satisfying ‖θ‖1 = ‖φ‖1 = 1 and phd(φ) ≥ 1. Let x = (x1, . . . , xn) where each
xi ∈ {−1, 1}m. Define the dual block composition of θ and φ, denoted θ ? φ, to be

θ ? φ(x) = 2nθ(sgn(φ(x1)), . . . , sgn(φ(xn)))
n∏
i=1
|φ(xi)|.

We now define a simple but important function φ that we use in our construction of a dual
witness for DISTkN,R. This function was first used in the context of dual block composition
by Bun and Thaler [12].

B Claim 12 ([12]). Define φ : {−1, 1}n → R as φ(x) = −1/2 if x = −1n, φ(x) = 1/2 if
x = 1n and φ(x) = 0 otherwise. Then, phd(φ) = 1.

Next we require a lemma, implicit in a result of Razborov and Sherstov [20] (also see [13]
for a formulation similar to the one we require).

I Lemma 13 (Implicit in [20]). Let N ≥ R be positive integers, ∆ ∈ R+, and θ : {−1, 1}RN →
R be any polynomial such that∑

x/∈({−1,1}RN )≤N

|θ(x)| ≤ (2NR)−∆. (8)

For any positive integer D < ∆, there exists a function ν : {−1, 1}RN → R such that
phd(ν) > D, ‖ν‖1 ≤ 1/10, and |x| > N ⇒ ν(x) = θ(x).

Lemma 13 helps us convert a dual polynomial θ with little mass on large Hamming weight
inputs to a dual polynomial (θ − ν)/‖θ − ν‖1 with no mass on large Hamming weight inputs
without affecting the pure high degree by much.

I Definition 14. For ηi ∈ [0, 1], let Π(η1, . . . , ηn) be the product distribution on {−1, 1}n

where the ith bit of the string equals −1 with probability ηi, and 1 with probability 1− ηi.

For any Boolean function f : {−1, 1}m → {−1, 1} and function ψ : {−1, 1}m → R,
‖ψ‖1 = 1, let

ε+f,ψ := Pr
µψ

[f(x)ψ(x) < 0|ψ(x) > 0], ε−f,ψ := Pr
µψ

[f(x)ψ(x) < 0|ψ(x) < 0], εf,ψ = ε+f,ψ + ε−f,ψ.

(9)

I Definition 15. For any functions f : {−1, 1}n → {−1, 1} and ψ : {−1, 1}n → R, let

E+(f, ψ) := {x ∈ {−1, 1}n : f(x)ψ(x) < 0, ψ(x) > 0},
E−(f, ψ) := {x ∈ {−1, 1}n : f(x)ψ(x) < 0, ψ(x) < 0}.

We define the false positive error between f and ψ to be δ+
f,ψ :=

∑
x∈E+(f,ψ) |ψ(x)| and false

negative error to be δ−f,ψ :=
∑
x∈E−(f,ψ) |ψ(x)|.
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Given any function f : {−1, 1}m → {−1, 1} and ψ : {−1, 1}m → R, ‖ψ‖1 = 1, let
ε+ = ε+f,ψ and ε− = ε−f,ψ as defined in Equation (9). Define the function αf,ψ : {−1, 1}m → R
as

αf,ψ(x) :=


1 =: a+ if ψ(x)f(x) > 0, ψ(x) > 0
1−2ε+ε−

1−ε− =: a− if ψ(x)f(x) > 0, ψ(x) < 0
−1 if ψ(x)f(x) < 0, ψ(x) > 0
1 if ψ(x)f(x) < 0, ψ(x) < 0.

(10)

For the remaining sections, for zi ∈ {−1, 1}, azi = a+ if zi = 1, and azi = a− if zi = −1.

I Lemma 16 ([22, Lemma 3.1]). For any τ1, . . . , τn ∈ [0, 1), define ν = Π(τ1, . . . , τn) and
τ = max{τ1, . . . , τn}. For any η = 0, 1, . . . , n−1, let pη : [−1, 1]n → R be the unique degree-η
multilinear polynomial that satisfies

pη(z) = (−1)η
η∏
i=1

(|z| − i),∀z ∈ {−1, 1}n . (11)

Then,

pη(1n) = η!, (12)

‖p̂‖1 ≤ η!
(
n+ η

η

)
, (13)

Eν [|pη(z)|] ≤ pη(1n)ν(1n) (1 +A) , where A :=
(

n

η + 1

)
τη+1

(1− τ)n . (14)

Furthermore, pη(z) ≥ 0 for all z ∈ {−1, 1}n provided that η is even.

3 Detailed Outline of Proof of Main Theorem

Our main theorem is as follows.

I Theorem 17. For R ∈ N sufficiently large, 2 ≤ k ≤ logR
4 , and some N = Θ(kk/2R),

d̃eg(DISTkN,R+N ) = Ω
(

1
4kk2 ·

1
log5/2R

·R 3
4−

1
4k

)
. (15)

Ambainis [2] showed that the approximate degree14 of functions that are symmetric (both
with respect to range elements and with respect to domain elements) is the same for all
range sizes greater than or equal to N . As a corollary, we obtain the following.

I Corollary 18. For R ∈ N sufficiently large, 2 ≤ k ≤ logR
4 , and some N = Θ(kk/2R),

d̃eg(DISTkN,N ) = Ω
(

1
4kk2 ·

1
log5/2R

·R 3
4−

1
4k

)
. (16)

14There are several different conventions used in the literature when defining the domain of functions
such as k-distinctness. The convention used by Ambainis [2] considers the input to be specified by
N ·R variables y1,1, . . . , yN,R, where yi,j = −1 if and only if the ith list item in the input equals range
element j (i.e., it is promised that for each i, yi,j = −1 for exactly one j). We use the convention
that the input is specified by Ndlog2 Re bits. It is well-known (and not hard to show) that conversion
between the two conventions affects approximate degree by at most a factor of dlog2 Re.
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To prove Theorem 17, Claim 5 implies that it suffices to prove a lower bound on
d̃eg(ORR ◦ THRkN )≤N .

I Theorem 19. For R ∈ N sufficiently large, 2 ≤ k ≤ logR
4 , and some N = Θ(kk/2R),

d̃eg((ORR ◦ THRkN )≤N ) = Ω
(

1
4kk2 ·

1
log5/2R

·R 3
4−

1
4k

)
. (17)

Note that the theorems above continue to yield non-trivial lower bounds for some values
of k = ω(1). However for ease of exposition, we assume throughout this section that k ≥ 2 is
an arbitrary but fixed constant.

Towards proving Theorem 19, we construct a dual witness Γ satisfying the following four
conditions.

Normalization: ‖Γ‖1 = 1,
Pure high degree: There exists a D = Ω̃

(
R

3
4−

1
4k

)
such that for every polynomial

p : {−1, 1}RN → R of degree less than D, we have 〈p,Γ〉 = 0,
Correlation: 〈Γ, (ORR ◦ THRkN )〉 > 1/3,
Exponentially little mass on inputs of large Hamming weight:∑
x/∈({−1,1}RN )≤N |Γ(x)| ≤ (2NR)

−Ω̃
(
R

3
4 − 1

4k

)
.

Next, Lemma 13 implies existence of a function ν that equals Γ on x /∈ ({−1, 1}RN )≤N ,
has pure high degree Ω̃

(
R

3
4−

1
4k

)
, and ‖ν‖1 ≤ 1/10. The function W : {−1, 1}RN → R

defined byW(x) := Γ(x)−ν(x)
‖Γ−ν‖1

places no mass on inputs of Hamming weight larger than N and

satisfies ‖W‖1 = 1, 〈W, (ORR ◦ THRkN )〉 > 7/33, and phd(W) = Ω̃
(
R

3
4−

1
4k

)
. Theorem 19

then follows by Lemma 9 and Lemma 6.
In the next subsection we provide a sketch of how we construct such a dual witness Γ

and where our approach differs from [11].

3.1 Our Construction of Γ
Our construction of Γ is based on three dual witnesses θ, φ and ψ. The function θ is
constructed as in Claim 10 with n = R/4k. The function φ is defined on 4k inputs, and is
defined as in Claim 12. Our ψ is a fairly straightforward modification of [10, Proposition
55], that has a larger pure high degree, at the cost of a worse false positive error. A little
more formally, our functions θ, φ, ψ have `1-norm equal to 1, and additionally ψ satisfies the
properties described in the following claim, with T =

√
R.

B Claim 20 (Modification of [10, Proposition 55]). Let k, T,N ∈ N with 2 ≤ k ≤ T ≤ N , and
let ωT be as constructed in Claim 27, with constants c1, c2. Define15 ψ : {−1, 1}N → R by
ψ(x) = ωT (|x|)/

(
N
|x|
)
for x ∈ ({−1, 1}N )≤T and ψ(x) = 0 otherwise. Then

δ+
THRk

N
,ψ
≤ 1

48 · 4k
√
N logN

(18)

δ−THRk
N
,ψ
≤ 1

2 −
2
4k (19)

15Note that we suppress the dependence of ψ on T for convenience.
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‖ψ‖1 = 1 (20)

For any polynomial p : {−1, 1}N → R,

deg(p) < c1

√
4−kk−1TN−1/(2k) log−1N =⇒ 〈ψ, p〉 = 0 (21)

For all t ∈ [n],
∑
|x|=t

|ψ(x)| ≤
(2k)k exp

(
−c2t/

√
4kkTN1/(2k) logN

)
t2

. (22)

The false positive error between THRkN and ψ is Õ(1/
√
N) (as compared to O(1/N)

in [11]). The pure high degree of ψ is Ω̃(R1/4N−1/(4k)) (as compared to Ω̃(R1/4N−1/(2k))
in [11]). ψ satisfies a “weak decay condition”, viz.

∑
|x|=t |ψ(x)| ≤ σ exp(−βt)/t2 for some

constant σ (for general k, the value of σ only depends on k), and β = Ω̃(R1/4N1/(4k)) (as
compared to β = Ω̃(R1/4N1/(2k)) in [11]).

If we were to define Γ = θ ? φ ? ψ, all the analyses from [11] would work, except for
the correlation analysis, which fails. To fix this, our main technical contribution is to not
use dual block composition, but rather a variant of it inspired by a result of Sherstov [22].
Our function Γ takes the form Γ = θ • (φ ? ψ), where • denotes our variant of dual block
composition. In a little more detail, Γ(x1, . . . , xR/4k) equals θ • (φ ? ψ)(x), which equals

1
pη(1− 2ε+, . . . , 1− 2ε+) · (θ ? (φ ? ψ))(x1, . . . , xR/4k) · pη(α(x1), . . . , α(xR/4k)),

for ε+ = ε+
φ?ψ,OR4k◦THR

k
N

, ε− = ε−
φ?ψ,OR4k◦THR

k
N

, η is a parameter that we set later, pη is
defined as in Lemma 16, and α in a function whose definition we elaborate on later in this
section.

We first give a very high-level idea of how we prove the required properties of Γ, and
then elaborate on the definitions of η, pη and α.

Normalization: Following along similar lines as [22, Claim 6.2], we prove that ‖Γ‖1 = 1
by modifying the proof that dual block composition preserves `1-norm, crucially exploiting
properties of pη and α (see Claim 33).
Pure high degree: Using our definition of pη, and α, one can show (Claim 34) that
the pure high degree of θ • (φ ? ψ) is at least (phd(θ) − η)phd(φ ? ψ). The value of
η is chosen to be phd(θ)/2 so that this quantity is the same order of magnitude as
phd(θ)phd(φ ? ψ) = phd(θ)phd(ψ), which is Ω̃(R3/4N−1/(4k)).
Exponentially little mass on inputs of large Hamming weight: Since ψ satisfies∑
|x|=t |ψ(x)| ≤ σ exp(−βt)/t2 for some constant σ and β = Ω̃(R1/4N1/(4k)), Claim 29

implies that θ ? (φ?ψ) = (θ ?φ) ?ψ places exponentially small (in R 3
4−

1
4k ) mass on inputs

in {−1, 1}RN of Hamming weight larger than N . By the definition of Γ, it suffices to
show that the maximum absolute value of pη(α(x1),...,α(x

R/4k ))
pη(1−2ε+,...,1−2ε+) is at most exponentially

large in R 3
4−

1
4k , for which we require Claim 30.

Correlation: Conceptually, the function pη : {−1, 1}R/4
k

→ R can be viewed as one
that “corrects” θ ? (φ ? ψ): it “counts” the number of false positives fed to it by φ ? ψ,
and changes the output of θ ? (φ ? ψ) to 0 on inputs where this number is any integer
between 1 and η. The function α : {−1, 1}N → R acts as the function that, in a sense,
indicates whether or not φ ? ψ is making a false positive error.

Detecting errors: The function α takes three possible output values: it outputs
−1 for x ∈ E+(OR4k ◦ THRkN , φ ? ψ) and outputs either 1 or a value very close to 1
for x /∈ E+(OR4k ◦ THRkN , φ ? ψ). This definition of α is our biggest departure from
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Sherstov’s construction in [22]; Sherstov defined α to output −1 for both false-positive
and false-negative errors, whereas our α only outputs −1 for false-positive errors.
Zeroing out errors: Define the function pη to be (the unique multilinear extension
of) the function that outputs 0 if its input has Hamming weight between 1 and η.
Recall that our construction considers the dual witness

1
pη(1− 2ε+, . . . , 1− 2ε+) · (θ ? (φ ? ψ))(x1, . . . , xR/4k) · pη(α(x1), . . . , α(xR/4k)),

and the purpose of multiplying θ ? (φ ? ψ) by pη is for pη to zero out most inputs in
which one or more false-positive errors are being fed by φ ? ψ into θ (see Definition 11).
Unfortunately, pη is nonzero on inputs of Hamming weight more than η. Hence, in
terms of the correlation analysis, a key question that must be addressed is: what
fraction of the `1-mass of θ ? (φ ? ψ) is placed on inputs where more than η copies
of φ ? ψ make a false-positive error? We need this fraction to be very small, because
multiplying by pη fails to zero out such inputs.
Note that under the distribution defined by |φ ? ψ|, the expected number of false
positive errors fed into θ is (R/4k) · ε+. Since we have set η = O(

√
R/(4 · 4k)), it

suffices to have ε+ � 1/(cη) for some large enough constant c to conclude that with
high probability (over the distribution |φ ? ψ|), the number of false positive errors
fed into θ is at most a small constant times η. It turns out that this value of ε+ is
indeed attained by φ ? ψ, since the false positive error between THRkN and ψ was set
to be Õ(1/

√
N) = Õ(1/

√
R) to begin with. Thus, with high probability, multiplying

θ ? (φ ? ψ) by pη successfully zeros out all but an exponentially small fraction of the
errors made by θ ? (φ ? ψ) that can be attributed to false-positive errors made by φ ? ψ.
This intuitive proof outline is formalized in Claim 21, which in turn is a formalization
of Equation (1) that holds with the setting of parameters mentioned above.

The key technical lemma that we use for the correlation analysis is the following, and a
sketch of its proof is deferred to Appendix B.

B Claim 21. Let m,n be any positive integers, η < n be any even positive integer, and
f : {−1, 1}m → {−1, 1} be any function. Let ζ : {−1, 1}n → R be such that 〈ζ,ORn〉 > δ

and ‖ζ‖1 = 1, and ξ : {−1, 1}m → R be any function such that ‖ξ‖1 = 1 and phd(ξ) ≥ 1.
Let pη : {−1, 1}n → R be as defined in Lemma 16, let α = αf,ξ : {−1, 1}m → R be as defined
in Equation (10), and consider the distribution µξ over {−1, 1}nm. Let ε+ = ε+f,ξ, ε− = ε−f,ξ,
ε = ε+ + ε−, and A =

(
n
η+1
) (ε+)η+1

(1−ε+)n . If A < 1, then,

〈OR ◦ f, (ζ ? ξ)(pη ◦ α)〉 ≥ pη(1− 2ε+, . . . , 1− 2ε+) ·
(
δ −

(
2− 2 1− ε

1− ε+ (1−A)
))

.

(23)

4 Proof of Theorem 19

Due to space constraints, we omit some proofs henceforth. The reader is referred to the full
version for complete proofs.

Towards proving Theorem 19, it suffices to exhibit a dual polynomial (see Lemma 9) that
has `1-norm 1, sufficiently large pure high degree, good correlation with (ORR ◦ THRkN )≤N ,
and places no mass outside ({−1, 1}RN )≤N . We first define a function Γ (Definition 23) that
satisfies the first three properties above, and additionally satisfies a strong decay condition
as we described in Section 3.1. In Section 4.1 we use Γ to construct a dual polynomial W,
via Lemma 13, satisfying all the requisite properties. We now set several key variables.
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Let R be sufficiently large and fix k ≤ (logR)/4. Set T =
√
R, η =

(
c
2

√
R
4k

)
− 1

where c ∈ (0, 1] is the constant from Claim 10 (assume without loss of generality
that η is even), σ = (2k)k, c1, c2 ∈ (0, 1] are constants fixed in the next bullet point,
β = c2√

4kkTN1/(2k) logN
,∆ = β

√
σR

4 ln2 R
= c2R

4 ln2 R

√
(2k)k

4kkTN1/(2k) logN , N = d20
√
σRe.

Let ωT : [T ] ∪ {0} → R be a function that satisfies the conditions in Claim 27 and let
c1, c2 be the constants for which the claim holds. Let ψ : {−1, 1}N → R be defined by
ψ(x) = ωT (|x|)/

(
N
|x|
)
if |x| ≤ T , and 0 otherwise so that ψ satisfies the conditions in

Claim 20.
Let θ : {−1, 1}R/4

k

→ R be any function satisfying the conditions in Claim 10 for
n = R/4k (note that R/4k > 0 since k < (logR)/2), and let φ : {−1, 1}4

k

→ R be the
function defined in Claim 12 with n = 4k.
Let pη : {−1, 1}R/4

k

→ R be as defined in Lemma 16 and α := αφ?ψ,OR4k◦THR
k
N

:

{−1, 1}4
kN → R be as defined in Equation (10).

Let ε+ := ε+
,OR4k◦THR

k
N
,φ?ψ

, ε− := ε−φ?ψ, and ε := ε+ + ε−.

We first show that the function φ ? ψ has large correlation with OR4k ◦ THRkN , via an
analysis that is essentially the same as in [10, Proposition 55].

B Claim 22.

ε+OR4k◦THR
k
N
,φ?ψ

≤ 1
24
√
R logR

, ε−OR4k◦THR
k
N
,φ?ψ

≤ e−4.

We next define the function Γ.

I Definition 23. Let Γ : {−1, 1}NR → R be defined by

Γ(x1, . . . , xR/4k) :=
(θ ? (φ ? ψ))(x1, . . . , xR/4k) · pη(α(x1), . . . , α(xR/4k))

pη(1− 2ε+, . . . , 1− 2ε+) , (24)

where each xi ∈ {−1, 1}4
kN .

B Claim 24.

‖Γ‖1 = 1, (25)

phd(Γ) = Ω
(

1
4kk2 ·

1√
logR

·R3/4−1/(4k)
)
, (26)

〈Γ, (ORR ◦ THRkN )〉 > 1/3 (27)∑
x/∈({−1,1}RN )≤N

|Γ(x)| ≤ (2NR)−2(∆−
√
R). (28)

Sketch of Proof of Claim 24

We require certain properties of dual block composition, and of the functions pη and α, which
are listed in Appendix A and Appendix B, respectively.

The fact that ‖Γ‖1 = 1 follows from the definition of Γ and Claim 33.
By the definition of Γ, we have phd(Γ) = phd((θ ? (φ ? ψ)(pη ◦ α)). By Claim 34, this is
at least (phd(θ)− η) · (phd(φ ? ψ)). Next, using the facts that phd(ψ) = 1 (Claim 12),
multiplicativity of pure high degree under dual block composition (Equation (45)), and

our choices of parameters, it can be shown that phd(Γ) = Ω
(

1
4kk2 · 1√

logR
·R3/4−1/(4k)

)
.
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Recall from our choice of parameters and Claim 22 that ε+ ≤ 1
24
√
R logR and ε− ≤ e−4.

Define A =
(
R/4k
η+1

) (ε+)η+1

(1−ε+)R/4k . The above upper bounds on ε+ and ε−, and standard
computations reveal that A < 1/16. Hence the conditions of Claim 21 are satisfied with
the parameters fixed in the beginning of this section. Using Claim 21 with δ > 3/5 and the
above upper bounds on ε+ and ε−, we are able to show that 〈Γ, (ORR ◦ THRkN )〉 > 1/3.
We first show, using Lemma 16 and Lemma 26, that pη(1 − 2ε+, . . . , 1 − 2ε+) ≥ (1 −
ε+)R/4kη!. Standard computations reveal that, for our choice of parameters, this quantity
is at least 1. Hence, it suffices to show that

∑
x/∈({−1,1}RN )≤N |(θ ? (φ ?ψ)) · (pη ◦α)(x)| ≤

(2NR)−2(∆−
√
R). Next we observe that, using Claim 29 with Φ = θ ? φ and associativity

of dual block composition (Equation (46)), that
∑
x/∈({−1,1}RN )≤N |((θ ? φ) ? ψ)(x)| ≤

(2NR)−2∆. Since α(y) ∈ [−1, 1] for all y ∈ [−1, 1]4kN (Equation (10)), it suffices to show
a suitable bound on max

y∈[−1,1]R/4k |pη(y)|, which we are able to do using Claim 30.

4.1 Final Dual Polynomial
We now prove Theorem 19.

Proof of Theorem 19. We exhibit a function W : {−1, 1}RN → R satisfying

W(x) = 0,∀x /∈ ({−1, 1}RN )≤N , (29)
‖W‖1 = 1 (30)

〈W, (ORR ◦ THRkN )〉 > 7/33, (31)

phd(W) = Ω
(

1
4kk2 ·

1
log5/2R

·R 3
4−

1
4k

)
. (32)

The theorem then follows by Lemma 9 and Lemma 6. Towards the construction of such a W ,
first note that by Equation (28) and Lemma 13 there exists a function ν : {−1, 1}RN → R
that satisfies the following properties.

|x| > N ⇒ ν(x) = Γ(x), (33)

phd(ν) ≥ 2(∆−
√
R)− 1, (34)

‖ν‖1 ≤ 1/10. (35)

Define W : {−1, 1}RN → R by

W(x) := Γ(x)− ν(x)
‖Γ− ν‖1

. (36)

Clearly Equation (29) and Equation (30) are satisfied. We show in Appendix C that the
function W also satisfies Equation (31), and Equation (32). J
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A Preliminaries

I Definition 25. For any integer n > 0, any function ψ : {−1, 1}m → R such that ‖ψ‖1 = 1,
and any w ∈ {−1, 1}, let µw be the probability distribution µψ conditioned on the event that
sgn(ψ(x)) = w. For any z ∈ {−1, 1}n, let µz denote the probability distribution (µψ)⊗n
conditioned on the event that sgn(ψ(xi)) = zi for all i ∈ [n].

We omit the dependence of µz on ψ since ψ will typically be clear from context. Note
that µz as defined above is a product distribution given by

µz(x1, . . . , xn) =
n∏
i=1

µzi(xi). (37)

I Lemma 26. Let n be any positive integer, p : {−1, 1}n → R be a multilinear polynomial,
and η1, . . . , ηn ∈ [0, 1]. For x = (x1, . . . , xn) drawn from the product distribution Π(η1, . . . , ηn)
defined in Definition 14, we have

EΠ(η1,...,ηn)[p(x1, . . . , xn)] = p(1− 2η1, . . . , 1− 2ηn). (38)

A.1 Dual Polynomials and Dual Block Composition
Bun et al. [11] exhibited a dual witness for the approximate degree of the k-threshold function.
Their dual witness additionally satisfies a decay condition, meaning that it places very little
mass on inputs of large Hamming weight. The following claim is a mild modification of [10,
Proposition 54].

B Claim 27 (Modification of [10, Proposition 54]). Let k, T,N ∈ N with 2 ≤ k ≤ T . There
exist constants c1, c2 ∈ (0, 1] and a function ωT : [T ] ∪ {0} → R such that all of the following
hold. ∑

ωT (t)>0,t≥k

|ωT (t)| ≤ 1
48 · 4k

√
N logN

. (39)

∑
ωT (t)<0,t<k

|ωT (t)| ≤
(

1
2 −

2
4k

)
. (40)

‖ωT ‖1 :=
T∑
t=0
|ωT (t)| = 1. (41)

For all polynomials q : R→ R,

deg(q) < c1

√
4−kk−1TN−1/(2k) log−1N =⇒

T∑
t=0

ωT (t)q(t) = 0. (42)

For all t ∈ [T ], |ωT (t)| ≤ σ exp(−βt)
t2

for σ = (2k)k, β = c2/
√

4kkTN1/(2k) logN.
(43)
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Sherstov [23] showed that dual block composition (see Definition 11) preserves `1-norm
and that pure high degree is multiplicative (also see [16]). Bun and Thaler [13] observed that
dual block composition is associative.

I Lemma 28. Let φ : {−1, 1}mφ → R, θ : {−1, 1}mθ → R be any functions. Then,
Preservation of `1-norm: If ‖θ‖1 = 1, ‖φ‖1 = 1 and 〈φ, 1〉 = 0, then

‖θ ? φ‖1 = 1. (44)

Multiplicativity of pure high degree:

phd(θ) > D,phd(φ) > d =⇒ phd(θ ? φ) > Dd. (45)

Associativity: For every ψ : {−1, 1}mψ → R, we have

(φ ? θ) ? ψ = φ ? (θ ? ψ). (46)

It was shown in [10] that for any dual polynomial Φ, and ψ as constructed in Claim 20,
the dual block composed function Φ ? ψ satisfies a “strong dual decay” condition.16

B Claim 29 ([10, Proposition 31]). Let R be sufficiently large and k ≤ T ≤ R be any positive
integer. Fix σ = (2k)k and let N = d20

√
σRe. Let Φ : {−1, 1}R → R be any function with

‖Φ‖1 = 1 and ψ : {−1, 1}N → R as defined in Claim 20. Then∑
x/∈({−1,1}RN )≤N

|(Φ ? ψ)(x)| ≤ (2NR)−2∆ (47)

for some ∆ ≥ β
√
σR

4 ln2 R
for β = c2/

√
4kkTN1/(2k) logN .

B Properties of Auxiliary Functions

It is easy to show that any multilinear polynomial p : Rn → R satisfies maxy∈[−1,1]n |p(y)| ≤
‖p̂‖1. When applied to the function in Lemma 16, we obtain

B Claim 30. For pη defined as in Lemma 16, maxy∈[−1,1]n |pη(y)| ≤ η!
(
n+η
η

)
.

We now state the setting for our next few claims.
Assumptions for Claim 31, Claim 32, Claim 33: Let m,n be any positive integers,

η < n be any even positive integer, and f : {−1, 1}m → {−1, 1} be any function. Let
ζ : {−1, 1}n → R be such that 〈ζ,ORn〉 > δ and ‖ζ‖1 = 1, and ξ : {−1, 1}m → R be
any function such that ‖ξ‖1 = 1 and phd(ξ) ≥ 1. Let pη : {−1, 1}n → R be as defined in
Lemma 16, let α = αf,ξ : {−1, 1}m → R be as defined in Equation (10), and consider the
distribution µξ over {−1, 1}nm. Let ε+ = ε+f,ξ, ε− = ε−f,ξ, ε = ε+ + ε−, and A =

(
n
η+1
) (ε+)η+1

(1−ε+)n .

B Claim 31.

ζ(1n)Ex∼µ1n [pη(α(x1), . . . , α(xn))OR(f(x1), . . . , f(xn))]
≥pη(1− 2ε+, . . . , 1− 2ε+) (ζ(1n)− |ζ(1n)|2A) . (48)

16They in fact showed that Ψ ? ψ satisfies this strong decay condition for any ψ satisfying a corresponding
“weak decay” condition. However for this paper, we only require this statement for ψ as constructed in
Claim 20.
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B Claim 32.∑
z 6=1n

ζ(z)Eµz [pη(α(x1), . . . , α(xn))OR(f(x1), . . . , f(xn))]

≥pη(1− 2ε+, . . . , 1− 2ε+)

∑
z 6=1n

ζ(z)OR(z)−
(

2− 2 1− ε
1− ε+ (1−A)

) ∑
z 6=1n

|ζ(z)|

 .

(49)

Due to space constraints we do not prove Claim 31 and Claim 32 here, and refer the reader
to the full version for these proofs. We now prove Claim 21 using Claim 31 and Claim 32.

Proof of Claim 21.

〈OR ◦ f, (ζ ? ξ)(pη ◦ α)〉 =
∑

x∈{−1,1}mn
(OR ◦ f)(x)(ζ ? ξ)(pη ◦ α)(x)

=
∑

x∈{−1,1}mn
OR(f(x1), . . . , f(xn))

· 2nζ (sgn(ξ(x1)), . . . , sgn(ξ(xn))) pη(α(x1), . . . , α(xn))
n∏
i=1
|ξ(xi)| by Definition 11

=
∑

z∈{−1,1}n
ζ(z)

 ∑
x:sgn(ξ(xi))=zi∀i∈[n]

2npη(α(x1), . . . , α(xn))

OR(f(x1), . . . , f(xn))
n∏
i=1
|ξ(xi)|

)
=

∑
z∈{−1,1}n

ζ(z)Eµz [pη(α(x1), . . . , α(xn))OR(f(x1), . . . , f(xn))]

by Definition 25 and Prxi∼µξ [sgn(xi) = 1] = Prxi∼µξ [sgn(xi) = −1] = 1/2 since phd(ξ) ≥ 1
≥ pη(1− 2ε+, . . . , 1− 2ε+) (ζ(1n)OR(1n)− 2|ζ(1n)|A

+
∑
z 6=1n

ζ(z)OR(z)−
(

2− 2 1− ε
1− ε+ (1−A)

) ∑
z 6=1n

|ζ(z)|


by Claim 31, 32 and OR(1n) = 1

≥ pη(1− 2ε+, . . . , 1− 2ε+)
(
δ −max

{
2A, 2− 2 1− ε

1− ε+ (1−A)
})

since ‖ζ‖1 = 1 and 〈ζ,OR〉 > δ

≥ pη(1− 2ε+, . . . , 1− 2ε+)
(
δ −

(
2− 2 1− ε

1− ε+ (1−A)
))

,

where the last inequality holds as
(

2− 2 1−ε
1−ε+ (1−A)

)
− 2A = (1−A)

(
2− 2 1−ε

1−ε+

)
> 0,

since 1−ε
1−ε+ < 1, and A < 1. C

Finally, we require a closed form expression for ‖(ζ ? ξ)(pη ◦ α)‖1.

B Claim 33.

‖(ζ ? ξ)(pη ◦ α)‖1 = pη(1− 2ε+, . . . , 1− 2ε+). (50)

The proof of the claim follows along the lines as that of [22, Claim 6.2].
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B Claim 34. Let Ψ : {−1, 1}n → R, Λ : {−1, 1}m → R, and f : {−1, 1}m → R be
any functions. For any positive integer η, let α = αf,Λ : {−1, 1}m → R be as defined in
Equation (10), and pη : {−1, 1}n → R defined in Lemma 16. Then

phd((Ψ ? Λ) · (pη ◦ α)) > (phd(Ψ)− η) · phd(Λ). (51)

The proof follows along the same lines as that of [22, Equation (6.7)] and we omit it.

C Main Theorem

Recall from the proof of Theorem 19 in Section 4.1 that it remains to show 〈W, (ORR ◦
THRkN )〉 > 7/33 and phd(W) = Ω

(
1

4kk2 · 1
log5/2 R

·R 3
4−

1
4k

)
.

Remaining proof of Theorem 19. To justify Equation (31), we have

〈W,ORR ◦ THRkN 〉 = 1
‖Γ− ν‖1

(
〈Γ,ORR ◦ THRkN 〉 − 〈ν,ORR ◦ THRkN 〉

)
by Equation (36)

≥ 1
‖Γ− ν‖1

(
1/3− 〈ν,ORR ◦ THRkN 〉

)
by Claim 24

≥ 1
‖Γ− ν‖1

{1/3− ‖ν‖1}

≥ 1
‖Γ− ν‖1

7
30 by Equation (35)

≥ 7
33 . since ‖Γ− ν‖1 ≤

11
10 by triangle inequality

We have from Equation (36) that

phd(W) = phd
(

Γ(x)− ν(x)
‖Γ− ν‖1

)
(52)

= phd(Γ(x)− ν(x)) (53)
≥ min{phd(Γ),phd(ν)}. (54)

From Equation (34) we have

phd(ν) ≥ 2(∆−
√
R)− 1 (55)

= 2
(

c2R

4 ln2R

√
(2k)k

4kkTN1/(2k) logN
−
√
R

)
− 1 substituting the value of ∆

≥ 2
(
c2
4 ·

1
log2R

√
logN

·
(
k

2

)k/2 1
k1/2 ·

R3/4

N1/(4k) −
√
R

)
− 1

taking T =
√
R and lnR < logR

= 2
(
c2
4 ·

1
log2R

√
k logR

·
(
k

2

)k/2 1
k1/2 ·

R3/4

201/(4k)21/8k1/8R1/(4k) −
√
R

)
− 1

substituting the value of N and using k logR > logN for sufficiently large R

≥ 2
(

c2
225/24 ·

1
log2R ·

√
logR

·
(
k

2

)k/2 1
k9/8 · 201/(4k) ·R

3/4−1/(4k) −
√
R

)
− 1

(56)
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≥ 2
(
c2
3 ·

1
log5/2R

· 1
29/8 · 201/(4k) ·R

3/4−1/(4k) −
√
R

)
− 1

since
(
k
2
)k/2 1

k9/8 ≥ 1
29/8 for all k ≥ 2

≥ c2
180 ·

1
log5/2R

·R3/4−1/(4k) − 1

since c2
3 ·

1
log5/2 R

·R3/4−1/(4k) > 2
√
R for k ≥ 2, for sufficiently large R

= Ω
(

1
log5/2R

·R3/4−1/(4k)
)
. (57)

Therefore by Claim 24 and Equation (54), we have phd(W) = Ω
(

1
4kk2 · 1

log5/2 R
·R 3

4−
1

4k

)
,

justifying Equation (32) and finishing the proof. J
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3:2 Building Trust for Continuous Variable Quantum States

1 Introduction

Out of the many properties featured by quantum physics, the impossibility to perfectly
determine an unknown state [8] is specially interesting. This property is at the heart of
quantum cryptography protocols such as quantum key distribution [3]. On the other hand, it
makes certification of the correct functioning of quantum devices a challenge, since the output
of such devices can only be determined approximately, through repeated measurements
over numerous copies of the output states. With rapidly developing quantum technologies
for communication, simulation, computation and sensing, the ability to assess the correct
functioning of quantum devices is of major importance, for near-term systems, the so-called
Noisy Intermediate-Scale Quantum (NISQ) devices [23], and for the more sophisticated
devices.

Depending on the desired level of trust, various methods are available for certifying the
output of quantum devices. In the following, the task of checking the output state of a
quantum device is denoted tomography for state independent methods, when i.i.d. behaviour
is assumed, certification for a given a target state, when i.i.d. behaviour is assumed, and
verification for a given target state, with no assumption whatsoever, and in particular without
the i.i.d. assumption.

Quantum state tomography [9] is an important technique which aims at reconstructing a
good approximation of the output state of a quantum device by performing multiple rounds
of measurements on several copies of said output states. Given an ensemble of identically
prepared systems, with measurement outcomes from the same observable, one can build
up a histogram, from which a probability density can be estimated. According to Born’s
rule, this probability density is the square modulus of the state coefficients, taken in the
basis corresponding to the measurement. However, a single measurement setting cannot
yield the full state information since the phase of its coefficients are then lost. Many sets of
measurements on many subensembles must be performed and combined to reconstruct the
density matrix of the state. The data do not yield the state directly, but rather indirectly
through data analysis. Quantum state tomography assumes an independent and identically
distributed (i.i.d.) behaviour for the device, i.e., that the density matrix of the output state
considered is the same at each round of measurement. This assumption may be relaxed with
a tradeoff in the efficiency of the protocol [7].

A certification task corresponds to a setting where one wants to benchmark an industrial
quantum device, or check the output of a physical experiment. On the other hand, a
verification task corresponds to a cryptographic scenario, where the device to be tested is
untrusted, or the quantum data is given by a potentially malicious party, for example in the
context of delegated quantum computing. In the latter case, the task of quantum verification
is to ensure that either the device behaved properly, or the computation aborts with high
probability. While delegated computing is a natural platform for the emerging NISQ devices,
one can provide a physical interpretation to this adversarial setting by emphasising that
we aim for deriving verification schemes that make no assumptions whatsoever about the
noise model of the underlying systems. Various methods for verification of quantum devices
have been investigated, in particular for discrete variable quantum information [14], and
they provide different efficiencies and security parameters depending on the computational
power of the verifier. The common feature for all of these approaches is to utilise some basic
obfuscation scheme that allows to reduce the problem of dealing with a fully general noise
model, or a fully general adversarial deviation of the device, to a simple error detection
scheme [27].
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In this work, we consider the setting of quantum information with continuous variables [18],
in which quantum states live in an infinite-dimensional Hilbert space. Using continuous
variable systems for quantum computation and more general quantum information processing
is a powerful alternative to the discrete variable case. Firstly, it is compatible with standard
network optics technology, where more efficient measurements are available. Secondly, it
allows for unprecedented scaling in entanglement, with entangled states of up to tens of
thousands of subsystems reported [30] generated deterministically.

A continuous variable quantum process or state can be described by a quasi-probability
distribution in phase space, often the Wigner function [28], but also the Husimi Q function or
the Glauber–Sudarshan P function [5]. This allows for a simple and experimentally relevant
classification of quantum states: those with a Gaussian quasiprobability distibutions are
called Gaussian states, and the others non-Gaussian states. By extension, operations mapping
Gaussian states to Gaussian states are also called Gaussian. These Gaussian operations and
states are the ones implementable with linear optics and quadratic non-linearities [4], and are
hence relatively easy to construct experimentally. However, it is well known that for many
important applications, Gaussian operations and Gaussian states are not sufficient. This
takes the forms of no-go theorems for distillation and error correction [10, 12, 20], and the fact
that all Gaussian computations can be simulated efficiently classically [2]. Furthermore, it is
not possible to demonstrate non-locality or contextuality – which are increasingly understood
to be important resources in quantum information – in the Gaussian regime.

For continuous variable quantum devices, checking that the output state is close to a
target state may be done with linear optics using optical homodyne tomography [19]. This
method allows to reconstruct the Wigner function of a generic state using only Gaussian
measurements, namely homodyne detection. Because of the continuous character of its
outcomes, one must proceed to a discrete binning of the sample space, in order to build
probability histograms. Then, the state representation in phase space is determined by a
mathematical reconstruction.

For cases where we have a specific target state, more efficient options are possible. For
multimode Gaussian states, more efficient certification methods have been derived with
Gaussian measurements [1]. These methods involve the computation of a fidelity witness, i.e.,
a lower bound on the fidelity, from the measured samples. The cubic phase state certification
protocol of [17] also introduces a fidelity witness and is an example of certification of a specific
non-Gaussian state with Gaussian measurements, which assumes an i.i.d. state preparation.
The verification protocol for Gaussian continuous variable weighted hypergraph states of [25]
removes this assumption, again for this specific family of states.

2 Results

In this work we address two main issues. Firstly, existing continuous variable state tomography
methods are not reliable in the sense of [7], because errors coming from the reconstruction
procedure are indistinguishable from errors coming from the data. Secondly, to the best of
our knowledge there is no Gaussian verification protocol for non-Gaussian states without i.i.d.
assumption (a possible route using Serfling’s bound was mentioned in Ref. [17] for removing
the i.i.d. assumption for their protocol).

We thus introduce a general receive-and-measure protocol for building trust for continuous
variable quantum states, using solely Gaussian measurements, namely heterodyne detec-
tion [11, 26]. This protocol allows to perform reliable continuous variable quantum state
tomography based on heterodyne detection, with analytical confidence intervals, which we

TQC 2020
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-
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⇢
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Figure 1 A schematic representation of heterodyne measurement of a state ρ. The dashed red
lines represent balanced beamsplitters. LO stands for local oscillator, i.e., strong coherent state, and
vac for vacuum state. The blue circles are photodiode detectors.

refer to as heterodyne tomography in what follows. This tomography technique only requires
a single fixed measurement setting, compared to homodyne tomography. This protocol also
provides a means for certifying continuous variable quantum states with an energy test,
under the i.i.d. assumption. Finally, the same protocol also allows to verify continuous
variable states, without the i.i.d. assumption. For these three applications, the measurements
performed are the same. It is only the number of subsystems to be measured and the classical
post-processing performed that differ from one application to another.

We detail the structure of the protocol in the following. We give an estimator for the
expected value of any operator acting on a state with bounded support over the Fock basis
(Theorem 1) by deriving an approximate version of the optical equivalence theorem for
antinormal ordering [5]. The estimate is expressed as an expected value under heterodyne
detection. Similar estimates have been obtained in the context of imperfect heterodyne
detection [21, 22]. We go beyond these works in different respects: using this result,
we introduce a reliable heterodyne tomography method and compute analytical bounds
on its efficiency (Theorem 3). We then derive a receive-and-measure certification protocol
(against i.i.d. adversary) for continuous variable quantum states, with Gaussian measurements
(Theorem 4). We further promote this certification technique to a verification protocol against
fully malicious adversary (Theorem 5), using a de Finetti reduction for infinite-dimensional
systems [24].

3 Description of the protocol

Continuous variable quantum states live in an infinite-dimensional Hilbert space H, spanned
by the Fock basis {|n〉}n∈N, and are equivalently represented in phase space by their Husimi
Q function [5], a smoother relative of the Wigner function. Given a single-mode state ρ, its
Q function is defined as:

Qρ(α) = 1
π

Tr (|α〉〈α| ρ) = Tr (Παρ) , (1)
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Het

Figure 2 A schematic representation of the protocol. The tester (within the dashed rectangle)
receives a continuous variable quantum state ρn over n subsystems. This state could be for example
the outcome of n successive runs of a physical experiment, the output of a commercial quantum
device, or directly sent by some untrusted quantum server. The tester measures with heterodyne
detection some of the subsystems of ρn, and uses the samples and efficient classical post-processing
to deduce information about the remaining subsystems.

for all α ∈ C, where |α〉 is a coherent state and where {Πα}α∈C =
{ 1
π |α〉〈α|

}
α∈C

is the
Positive Operator Valued Measure for heterodyne detection.

This detection, also called double homodyne or eight-port homodyne [11], consists in
splitting the measured state with a beamsplitter, and measuring both ends with homodyne
detection (Fig. 1). This corresponds to a joint noisy measurement of quadratures q and p.
This is a Gaussian measurement, which yields two real outcomes, corresponding to the real
and imaginary parts of α. The Q function of a single-mode state thus is a probability density
function over C and measuring a state with heterodyne detection amounts to sampling from
its Q function.

Using this detection, one may acquire knowledge about an unknown continuous variable
quantum state. More precisely, we define the following receive-and-measure protocol, depicted
in Fig. 2: given a quantum state ρn over n subsystems, measure some of the subsystems with
heterodyne detection. Then, post-process the samples obtained to retrieve information about
the remaining subsystems. The number subsystems to be measured and the post-processing
performed depend on the application considered.

We show in the following sections how this protocol may be used to perform reliable
tomography, certification and verification of continuous variable quantum states, and we
detail the corresponding choices of subsystems and the classical post-processing for each task.

4 Heterodyne estimator

This section contains our main technical result, an estimator for the expected value of
an operator acting on a state with bounded support over the Fock basis, from samples
of heterodyne detection of the state. From this result, we derive various protocols in the
following sections, ranging from tomography to state verification.

We denote by E
α←D

[f(α)] the expected value of a function f for samples drawn from a
distribution D. Let us introduce for k, l ≥ 0 the polynomials

Lk,l(z) = ezz
∗ (−1)k+l
√
k!
√
l!

∂k+l

∂zk∂z∗l
e−zz

∗
, (2)

for z ∈ C, which are, up to a normalisation, the Laguerre 2D polynomials, appearing in
particular in the expressions of Wigner function of Fock states [29]. For any operator
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A =
∑+∞
k,l=0Akl |k〉〈l| and all E ∈ N, we define with these polynomials the function

fA(z, η) = 1
η
e(1− 1

η )zz∗
E∑

k,l=0

Akl√
ηk+l

Lk,l
(
z
√
η

)
, (3)

for all z ∈ C, and all 0 < η < 1. We omit the dependency in E for brevity. The function
z 7→ fA(z, η), being a polynomial multiplied by a converging Gaussian function, is bounded
over C. With the same notations, we also define the following constant:

KA =
E∑

k,l=0
|Akl|

√
(k + 1)(l + 1). (4)

The optical equivalence theorem for antinormal ordering [5] gives an equivalence between
the expectation value of an operator in Hilbert space and the expectation value of its
Glauber-Sudarshan P function. The P function is however highly singular in general and
our results are based instead on the following approximate version of this equivalence when
the P function is replaced by the bounded function f :

I Theorem 1. Let E ∈ N and let 0 < η < 2
E . Let also A =

∑+∞
k,l=0Akl |k〉〈l| be an operator

and let ρ =
∑E
k,l=0 ρkl |k〉〈l| be a density operator with bounded support. Then,∣∣∣∣Tr (Aρ)− E
α←Qρ

[fA(α, η)]
∣∣∣∣ ≤ ηKA, (5)

where the function f and the constant K are defined in Eqs. (3) and (4).

For all theorems, the proof techniques are given in appendix A and the detailed proofs may be
found in [6]. This result provides an estimator for the expected value of any operator A acting
on a continuous variable state ρ with bounded support over the Fock basis. This estimator
is the expected value of a bounded function fA over samples drawn from the probability
density corresponding to a Gaussian measurement of ρ, namely heterodyne detection. The
optical equivalence theorem for antinormal ordering corresponds to the limit η → 0. The
right hand side of Eq. (5) is an energy bound, which depends on the operator A, the value E
and the precision parameter η.

When the operator A is the density matrix of a continuous variable pure state |Ψ〉, the
previous estimator approximates the fidelity F (Ψ, ρ) = 〈Ψ|ρ|Ψ〉 between |Ψ〉〈Ψ| and ρ. With
the same notations:

I Corollary 2. Let E ∈ N and let 0 < η < 2
E . Let also |Ψ〉〈Ψ| =

∑+∞
k,l=0 ψkψ

∗
l |k〉〈l| be a

normalised pure state and let ρ =
∑E
k,l=0 ρkl |k〉〈l| be a density operator with bounded support.

Then,∣∣∣∣F (Ψ, ρ)− E
α←Qρ

[fΨ(α, η)]
∣∣∣∣ ≤ ηKΨ ≤

η

2 (E + 1)(E + 2), (6)

where the function fA and the constant KA are defined in Eqs. (3) and (4), for A = |Ψ〉〈Ψ|.

This result provides an estimator for the fidelity between any target pure state |Ψ〉 and any
continuous variable (mixed) state ρ with bounded support over the Fock basis. This estimator
is the expected value of a bounded function fΨ over samples drawn from the probability
density corresponding to a Gaussian measurement of ρ, namely heterodyne detection. The
right hand side of Eq. (6) is an energy bound, which may be refined depending on the
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expression of |Ψ〉. In particular, the second bound is independent of the target state |Ψ〉.
The assumption of bounded support makes sense for tomography, but not necessarily in an
adversarial setting. We will relax this condition for the certification and verification protocols
in the following, and indeed estimate the energy bound from the heterodyne measurements.
Errors in this estimation are taken into account in the confidence statements.

Given these results, one may choose a target pure state |Ψ〉, and measure with heterodyne
detection various copies of the output (mixed) state ρ of a quantum device with bounded
support over the Fock basis. Then, using the samples obtained, one may estimate the
expected value of fΨ, thus obtaining an estimate of the fidelity between the states |Ψ〉〈Ψ|
and ρ. Using this result, we introduce a reliable method for performing continuous variable
quantum state tomography using heterodyne detection.

5 Reliable continuous variable state tomography

Continuous variable quantum state tomography methods usually make two assumptions:
firstly that the measured states are independent identical copies (i.i.d. assumption, for
independently and identically distributed), and secondly that the measured states have a
bounded support over the Fock basis [19]. With the same assumptions, we present a reliable
method for state tomography with heterodyne detection which has the advantage of providing
analytical confidence intervals. Our method directly provides estimates of the elements of the
state density matrix, phase included. As such, neither mathematical reconstruction of the
phase, nor binning of the sample space is needed, since the samples are used only to compute
expected values of bounded functions. Moreover, only a single fixed Gaussian measurement
setting is needed, namely heterodyne detection (Fig. 1).

For tomographic application, all copies of the state are measured. For n ≥ 1, let
α1, . . . , αn ∈ C be samples from heterodyne detection of n copies of a quantum state ρ. For
ε > 0 and k, l ∈ N, we define

ρεkl = 1
n

n∑
i=1

f|l〉〈k|
(
αi, ε/K|l〉〈k|

)
, (7)

where the function fA and the constant KA are defined in Eqs. (3) and (4), for A = |l〉〈k|,
and where ε > 0 is a free parameter. The quantity ρεkl is the average of the function f|l〉〈k|
over the samples α1, . . . , αn. The next result shows that this estimator approximates the
matrix element k, l of this state with high probability. We use the notations of Theorem 1.

I Theorem 3 (Reliable heterodyne tomography). Let ε, ε′ > 0, n ≥ 1 and α1, . . . , αn be samples
obtained by measuring with heterodyne detection n copies of a state ρ =

∑E
k,l=0 ρkl |k〉〈l| with

bounded support, for E ∈ N. Then

|ρkl − ρεkl| ≤ ε+ ε′, (8)

for all 0 ≤ k, l ≤ E, with probability greater than

1− 4
∑

0≤k≤l≤E
exp

[
−nε

2+k+lε′2

4Ckl

]
, (9)

where the estimate ρεkl is defined in Eq. (7) and where

Ckl = [(k + 1)(l + 1)]1+ k+l
2 2|l−k|

(
max (k, l)
min (k, l)

)
(10)

is a constant independent of ρ.
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In light of this result, the principle for performing reliable heterodyne tomography is straight-
forward and as follows: n identical copies ρ⊗n of the output quantum state of a physical
experiment or quantum device are measured with heterodyne detection, yielding the values
α1, . . . , αn. These values are used to compute the estimates ρεkl, defined in Eq. (7), for all
k, l in the range of energy of the experiment. Then, Theorem 3 directly provides confidence
intervals for all these estimates of ρkl, the matrix elements of the density operator ρ, without
the need for a binning of the sample space or any additional data reconstruction, using a
single measurement setting. For a desired precision ε and a failure probability δ, the number
of samples needed scales as n = poly(1/ε, log(1/δ)).

Both homodyne and heterodyne quantum state tomography assume a bounded support
over the Fock basis for the output state considered, i.e., that all matrix elements are equal
to zero beyond a certain value, and that the output quantum states are i.i.d., i.e., that all
measured output states are independent and identical. While these assumptions are natural
when looking at the output of a physical experiment, corresponding to a noisy partially
trusted quantum device with bounded energy, they may be questionable in the context of
untrusted devices. We remove these assumptions in what follows: we first drop the bounded
support assumption, deriving a certification protocol for continuous variable quantum states
of an i.i.d. device with heterodyne detection ; then, we drop both assumptions, deriving a
general verification protocol for continuous variable quantum states against an adversary
who can potentially be fully malicious.

6 State certification with Gaussian measurements

Given an untrusted source of quantum states, the purpose of state certification and state
verification protocols is to check whether if its output state is close to a given target state, or
far from it. To achieve this, a verifier tests the output state of the source. Ideally, one would
like to obtain an upper bound on the probability that the state is not close from the target
state, given that it passed a test. However, this is known to be impossible without prior
knowledge of the tested state distribution [14]. Indeed, writing this conditional probability

Pr[incorrect|accept] = Pr[incorrect ∩ accept]
Pr[accept] , (11)

in a situation where the device always produces a bad output state, it is rejected by the
verifier’s test most of the time, so the acceptance probability is very small and the conditional
probability is equal to 1. Therefore, the quantity that will always be bounded in certification
and verification protocols, in which one does not have prior knowledge of the device, is the
joint probability that the tested state is not close to the target state and that it passes the
test. Equivalently, we obtain lower bounds on the probability that the tested state is close to
the target state or that it fails the test.

We first consider the certification of the output of an i.i.d. quantum device, i.e., which
output state is the same at each round. However, we do not assume that the output states
of the device have bounded support over the Fock basis anymore. This is instead ensured
probabilistically using the samples from heterodyne detection.

Our continuous variable quantum state certification protocol is then as follows: let |Ψ〉
be a target pure state, of which one wants to certify m copies. The values s and E are free
parameters of the protocol. One instructs the i.i.d. device to prepare n+m copies of |Ψ〉, and
the device outputs an i.i.d. (mixed) state ρ⊗(n+m). One keeps m copies ρ⊗m, and measures
the n others with heterodyne detection, obtaining the samples α1, . . . , αn. One records the
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number r of samples such that |αi|2 > E. We refer to this step as support estimation. For a
given ε > 0, one also computes with the same samples the estimate

FΨ(ρ) =
[

1
n

n∑
i=1

fΨ (αi, ε/(mKΨ))
]m

, (12)

where the function fA and the constant KA are defined in Eqs. (3) and (4), for A = |Ψ〉〈Ψ|,
and where ε > 0 is a free parameter. The next result quantifies how close this estimate is
from the fidelity between the remaining m copies of the output state ρ⊗m of the tested device
and m copies of the target state |Ψ〉〈Ψ|⊗m.

I Theorem 4 (Gaussian certification of continuous variable quantum states). Let ε, ε′ > 0,
let s ≤ n, and let α1, . . . , αn be samples obtained by measuring with heterodyne detection n
copies of a state ρ. Let E in N, and let r be the number of samples such that |αi|2 > E. Let
also |Ψ〉 be a pure state. Then for all m ∈ N∗,∣∣F (Ψ⊗m, ρ⊗m)− FΨ(ρ)

∣∣ ≤ ε+ ε′, (13)

or r > s, with probability greater than

1−
(
P iidSupport + P iidHoeffding

)
, (14)

where

P iidSupport = (s+ 1)3/2

n
exp

[
(s+ 1)2

n+ 1

]
, (15)

P iidHoeffding = 2 exp
[
− nε2+2Eε′2

2m4+2EC2
Ψ

]
, (16)

where the estimate FΨ(ρ) is defined in Eq. (12), and where

CΨ =
E∑

k,l=0
|ψkψl|

( ε
m

)E− k+l
2
K

1+ k+l
2

ψ

√
2|l−k|

(
max (k, l)
min (k, l)

)
(17)

is a constant independent of ρ, with the constant K defined in Eq. (4).

This results implies that the quantity FΨ(ρ) is a good estimate of the fidelity F (Ψ⊗m, ρ⊗m),
or the score at the support estimation step is higher than s, with high probability. The
values of the energy parameters E and s should be chosen to guarantee completeness, i.e.,
that if the correct state |Ψ〉 is sent, then r ≤ s with high probability.

This theorem is valid for all continuous variable target pure states |Ψ〉, and the failure
probability may be greatly reduced depending on the expression of |Ψ〉. The number of
samples needed for certifying a given number of copies m with a precision ε and a failure
probability δ scales as n = poly(m, 1/ε, 1/δ). Note that the same protocol may be used to
obtain reliable estimates of Tr(Aρ) for any operator A under the i.i.d. assumption, by setting
m = 1 and replacing Ψ by A in Eq. (12).

This certification protocol is promoted to a verification protocol in the following section,
by removing the i.i.d. assumption.
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7 State verification with Gaussian measurements

We now consider an adversarial setting, where a verifier delegates the preparation of a
continuous variable quantum state to a potentially malicious party, called the prover. One
could see the verifier as the experimentalist in the laboratory and the prover as the noisy
device, where we aim not to make any assumptions about its correct functionality or noise
model. Given the absence of any direct error correction mechanism that permits a fault
tolerant run of the device, the aim of verification is to ensure that a wrong outcome is not
being accepted. In the context of state verification, this amounts to making sure that the
output state of the tested device is close to an ideal target state.

The prover is not supposed to have i.i.d. behaviour. In particular, when asked for various
copies of the same state, the prover may actually send a large state entangled over all
subsystems, possibly also entangled with a quantum system on his side. In that case, the
certification protocol derived in the previous section is not reliable. With usual tomography
measurements, the number of samples needed for a given precision of the fidelity estimate
scales exponentially in the number of copies to verify. This is an essential limitation of
quantum tomography techniques, because they check all possible correlations between the
different subsystems.

However we prove that, because of the symmetry of the protocol, the verifier can assume
that the prover is sending permutation-invariant states, i.e., states that are invariant under
any permutation of their subsystems. With a specific support estimation step, reduced states
of permutation-invariant states are close to mixture almost-i.i.d. states, i.e., states that are
i.i.d. on almost all subsystems. At the heart of this reduction is the de Finetti theorem for
infinite-dimensional systems of [24], which allows restricting to an almost-i.i.d. prover.

Our verification protocol is then as follows: the verifier wants to verify m copies of a
target pure state |Ψ〉. The values n, k, q, s and E are free parameters of the protocol. The
prover is instructed to prepare n+ k copies of |Ψ〉 and send them to the verifier. The verifier
picks k subsystems at random and measures them with heterodyne detection, obtaining the
samples β1, . . . , βk, and records the number r of values |βi|2 > E. The verifier discards 4q
subsystems at random and measures all the others but m chosen at random with heterodyne
detection, obtaining the samples α1, . . . , αn−4q−m. Finally, the verifier computes with these
samples the estimate

FΨ(ρ) =
[

1
n− 4q −m

n−4q−m∑
i=1

fΨ (αi, ε/(mKΨ))
]m

, (18)

where the function fA and the constant KA are defined in Eqs. (3) and (4), for A = |Ψ〉〈Ψ|
and where ε > 0 is a free parameter. Note that this estimate is identical to the one defined
in Eq. (12), replacing n by n− 4q −m.

I Theorem 5 (Gaussian verification of continuous variable quantum states). Let n ≥ 1, let
s ≤ k, and let ρn+k be a state over n+ k subsystems. Let β1, . . . , βk be samples obtained by
measuring k subsystems at random with heterodyne detection and let ρn be the remaining
state after the measurement. Let E in N, and let r be the number of samples such that
|βi|2 > E. Let also q ≥ m, and let ρm be the state remaining after discarding 4q subsystems
of ρn at random, and measuring n − 4q −m other subsystems at random with heterodyne
detection, yielding the samples α1, . . . , αn−4q−m. Let ε, ε′ > 0 and let ε′′ =

√
m(4q+m−1)

n−4q . Let
|Ψ〉 be a target pure state. Then,∣∣F (Ψ⊗m, ρm)− FΨ(ρ)

∣∣ ≤ ε+ ε′ + ε′′ + PdeFinetti, (19)



U. Chabaud, T. Douce, F. Grosshans, E. Kashefi, and D. Markham 3:11

or r > s, with probability greater than

1− (Psupport + PdeFinetti + PHoeffding) , (20)

where

Psupport = 8k3/2 exp
[
−k9

(
q

n
− 2s

k

)2
]
, (21)

PdeFinetti = q(E+1)2/2 exp
[
−2q(q + 1)

n

]
, (22)

PHoeffding = 2
(
n− 4q

4q

)
exp

[
− n− 8q

2m4+2E

(
ε1+Eε′

CΨ
− 8qm2+E

n− 4q −m

)2]
, (23)

where the estimate FΨ(ρ) is defined in Eq. (18), and where CΨ is a constant independent of
ρ defined in Eq. (17).

This result implies that the quantity FΨ(ρ) is a good estimate of the fidelity F (Ψ⊗m, ρm), or
the score at the support estimation step is higher than s, with high probability. Like for the
certification protocol, the values of the energy parameters E and s should be chosen by the
verifier to guarantee completeness, i.e., that if the prover sends the correct state |Ψ〉, then
r ≤ s with high probability.

For specific choices of the free parameters of the protocol either the estimate FΨ(ρ) is
polynomially precise inm, or r > s, with exponential probability inm, with n, k, q = poly(m).
In particular, the efficiency of the protocol may be greatly refined by taking into account the
expression of |Ψ〉 in the Fock basis, and optimizing over the free parameters.

This verification protocol let the verifier gain confidence about the precision of the
estimate of the fidelity in Eq. (18). If the value of the estimate is close enough to 1, the
verifier may decide to use the state to run a computation. Indeed, statements on the fidelity
of a state allow inferring the correctness of any trusted computation done afterwards using
this state. Let β > 0, and let O be the observable corresponding to the result of the trusted
computation performed on ρm, the reduced state over m subsystems instead of |Ψ〉⊗m, m
copies of the target state |Ψ〉. In other words, O encodes the resources which the verifier can
perform perfectly (ancillary states, evolution and measurements), the imperfections being
encoded in ρ. Then, F (Ψ⊗m, ρm) ≥ 1− β implies the following bound on the total variation
distance between the probability densities of the computation output of the actual and the
target computations:

‖POΨ⊗m − POρm‖tvd ≤ D(Ψ⊗m, ρm) ≤
√
β, (24)

by standard properties of the trace distanceD [13]. What this means is that the distribution of
outcomes for the state ρm sent by the prover is almost indistinguishable from the distribution
of outcomes for m copies of the ideal state |Ψ〉, when the fidelity is close enough to one.

8 Discussion

Determining an unknown continuous variable quantum state is especially difficult since
it is described by possibly infinitely many complex parameters. Existing methods like
homodyne quantum state tomography require many different measurement settings, and
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heavy classical post-processing. For that purpose, we have introduced a reliable method
for heterodyne quantum state tomography, which uses heterodyne detection as a single
Gaussian measurement setting, and allows the retrieval of the density matrix of an unknown
quantum state without the need for data reconstruction nor binning of the sample space. For
data reconstruction methods such as Maximum Likelihood, errors from the reconstruction
procedure are usually indistinguishable from errors coming from the tested quantum device.
For that reason, such methods do not extend well to the task of verification, unlike our
method.

Building on these tomography techniques, and with the addition of cryptographic tech-
niques such as the de Finetti theorem, we have derived a protocol for verifying various
copies of a continuous variable quantum state, without i.i.d. assumption, with Gaussian
measurements. This protocol is robust, as it directly gives a confidence interval on an
estimate of the fidelity between the tested state and the target pure state. We emphasize
that, while the target state is pure, the tested state is not required to be pure.

Our verification protocol is complementary to the approach of [25], in which a measure-
ment-only verifier performs continuous variable quantum computing by delegating the
preparation of Gaussian cluster states to a prover, and has to perform non-Gaussian mea-
surements. In our approach, the measurement-only verifier may perform continuous variable
quantum computing by delegating the preparation of non-Gaussian states to the prover, and
has to perform Gaussian measurement, which are much easier to perform experimentally.

Our protocol may be tailored to different uses and assumptions, from tomography to
verification, simply by changing the classical post-processing. We expect this protocol to be
useful for the validation of continuous variable quantum devices in the NISQ [23] era and
onwards.

In particular, an interesting perspective would be fine-tuning the various parameters
of the protocol for specific target states in order to optimise its efficiency, thus reducing
the number of samples needed for a given confidence interval. Another interesting prospect
would be extending our main technical result, Theorem 1, which applies to operators, to
quantum maps. Also, in the case where the operator is the density matrix of a target pure
state, our result provide an estimate for the fidelity, and it would be interesting to extend
this to target mixed states.
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A Proof techniques

This section details the primary mathematical tools used in the proofs of the theorems, along
with some intuition. The full technical proofs can be found in [6].

The function z 7→ fA(z, η) defined in Eq. (3) for η > 0 is a bounded approximation of the
Glauber-Sudarshan function PA of the operator A. This approximation is parametrised by a
precision η, and a cutoff value E. The optical equivalence theorem for antinormal ordering [5]
reads

Tr(Aρ) =
∫
Qρ(α)PA(α)d2α. (25)

Given that

E
α←Qρ

[fA(α, η)] =
∫
Qρ(α)fA(α, η)d2α, (26)

we can expect that E
α←Qρ

[fA(α, η)] is an approximation of Tr(Aρ) parametrised by η and E.

Theorem 1 formalises this statement.

The proof of Theorem 3 combines Theorem 1 with Hoeffding inequality [15], which quantifies
the speed of convergence of the sample mean towards the expected value of a bounded i.i.d.
random variable:

I Lemma 6 (Hoeffding). Let λ > 0, let n ≥ 1, let z1, . . . , zn be i.i.d. complex random
variables from a probability density D over R, and let f : C 7→ R such that |f(z)| ≤M , for
M > 0 and all z ∈ C. Then

Pr
[∣∣∣∣∣ 1n

n∑
i=1

f(zi)− E
z←D

[f(z)]

∣∣∣∣∣ ≥ λ
]
≤ 2 exp

[
− nλ2

2M2

]
. (27)

The proof then follows by applying this inequality for D = Qρ, and f = f|k〉〈l|, for all values
of k, l between 0 and E, together with the union bound.

Theorem 4 removes the bounded support assumption and its proof is similar to the one of
Theorem 3, with the addition of a support estimation step, using samples from heterodyne
detection. The main result utilised here is the fact that for all E [16]

1−Π≤E =
+∞∑

n=E+1
|n〉〈n| ≤ 2

π

∫
|α|2≥E

|α〉〈α| d2α, (28)
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where Π≤E is the projector onto the space of states of support bounded by E. This result
allows to bound the probability of having a large support and obtaining a low score at the
support estimation step.

The proof of Theorem 5 is the most technical. This proof combines three main ingredients:
a support estimation step for permutation-invariant states using samples from heterodyne
detection, the de Finetti reduction from [24] and a refined version of Hoeffding inequality
for superpositions of almost-i.i.d. states under a product measurement. The three terms
appearing in the expression of the probability in the theorem correspond to these three
ingredients, respectively.
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Abstract
Quantum information is well known to achieve cryptographic feats that are unattainable using
classical information alone. Here, we add to this repertoire by introducing a new cryptographic
functionality called uncloneable encryption. This functionality allows the encryption of a classical
message such that two collaborating but isolated adversaries are prevented from simultaneously
recovering the message, even when the encryption key is revealed. Clearly, such functionality is
unattainable using classical information alone.

We formally define uncloneable encryption, and show how to achieve it using Wiesner’s conjugate
coding, combined with a quantum-secure pseudorandom function (qPRF). Modelling the qPRF as
an oracle, we show security by adapting techniques from the quantum one-way-to-hiding lemma, as
well as using bounds from quantum monogamy-of-entanglement games.
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1 Introduction

A key distinction between classical and quantum information is given by the no-cloning
principle: unlike bits, arbitrary qubits cannot be perfectly copied [11, 18, 26]. This principle
is the basis of many of the feats of quantum cryptography, including quantum money [25]
and quantum key distribution (QKD) [6] (for a survey on quantum cryptography, see [9]).

In QKD, two parties establish a shared secret key, using public quantum communication
combined with an authentic classical channel. The quantum communication allows to detect
eavesdropping: when the parties detect only a small amount of eavesdropping, they can
produce a shared string that is essentially guaranteed to be private. Gottesman [15] studied
quantum tamper-detection in the case of encryption schemes: in this work, a classical message
is encrypted into a quantum ciphertext such that, at decryption time, the receiver will detect
if an adversary could have information about the plaintext when the key is revealed. We
note that classical information alone cannot produce such encryption schemes, since it is
always possible to perfectly copy ciphertexts.

Notably, Gottesman left open the question of an encryption scheme that would prevent
the splitting of a ciphertext. In other words, would it be possible to encrypt a classical
message into a quantum ciphertext, such that no attack at the ciphertext level would be
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significantly successful in producing two quantum registers, each of which, when combined
with the decryption key, could be used to reconstruct the plaintext?

In this work, we define, construct and prove security for a scheme that answers Gottesman’s
question in the positive. We call this uncloneable encryption. The core technical aspects of
this work were first presented in one of the author’s M.Sc. thesis [16].

1.1 Summary of Contributions

We consider encryption schemes that encode classical plaintexts into quantum ciphertexts,
which we formalize in Definition 4. For simplicity, in this work, we consider only the one-time,
symmetric-key case. Next, we define uncloneable encryption (Definition 8). Informally, this
can be thought of as a game, played between the honest sender (Alice) and two malicious
recipients (Bob and Charlie). First, Alice picks a messagem ∈ {0, 1}n and a key k ∈ {0, 1}κ(λ)

(κ is a polynomial in some security parameter, λ). She encrypts her message into a quantum
ciphertext register R. Initially, Bob and Charlie are physically together, and they receive R.
They apply a quantum map to produce two registers: Bob keeps register B and Charlie
keeps register C. Bob and Charlie are then isolated. In the next phase, Alice reveals k to
both parties. Using k and their quantum register, Bob and Charlie produce mB and mC

respectively. Bob and Charlie win if and only if mB = mC = m. The scheme is t-uncloneable
secure if their winning probability is upper bounded by 2−n+t + η(λ) for a negligible η.

Assuming that Alice picks her message uniformly at random, our results are summarized in
Figure 1, where we plot upper bounds for the winning probability of Bob and Charlie against
various types of encodings, according to the length ofm. First of all, if the encoding is classical,
then Bob and Charlie can each keep a copy of the ciphertext. Combined with the key k, each
party decrypts to obtain m. This gives the horizontal line at Pr[Adversaries win] = 1. Next,
a lower bound on the winning probability for any encryption scheme is 1

2n (corresponding to
the parties coordinating a random guess). This is the ideal curve. Our goal is therefore to
produce an encryption scheme that matches the ideal curve as close as possible.

It may seem that asking that Alice sample her message uniformly at random would be
particularly restrictive, but this is not the case – we show in Theorem 9 that security in the
case of uniformly sampled messages implies security in the case of non-uniformly sampled
messages, if the message size does not grow with the security parameter. Specifically, if Bob
and Charlie can win with probability at most 2−n+t + η(λ) when the message is sampled
uniformly at random, for some t and some negligible function η, then they can win with
probability at most 2−h+t + η′(λ) if the message m is sampled from a distribution with a
min-entropy of h where η′ is a negligible function which is larger than η.

Our first attempt at realizing uncloneable encryption (Appendix A) shows that the
well-known Wiesner conjugate coding [25] already achieves a security bound that is better
than any classical scheme. For any two bit strings x, θ ∈ {0, 1}n, define the Wiesner state∣∣xθ〉 = Hθ1 |x1〉⊗ . . .⊗Hθn |xn〉. The encryption uses a random key r, θ ∈ {0, 1}n and maps a
classical message m into the quantum state ρ =

∣∣(m⊕ r)θ〉〈(m⊕ r)θ∣∣; given (r, θ), decryption
consists in measuring in the basis determined by θ to obtain x and then computing x⊕ r. We
sketch a proof that this satisfies a notion of security for encryption schemes. The question
of uncloneability then boils down to: “How well can an adversary split ρ into two registers,
each of which, combined with (θ, r) can reconstruct m?” This question is answered in prior
work on monogamy-of-entanglement games [20]: an optimal strategy wins with probability(

1
2 + 1

2
√

2

)n
. This is again illustrated in Figure 1.
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Figure 1 Upper-bounds on winning probabilities for various types of encodings (up to negligible
functions of λ) for messages sampled uniformly at random.

In order to improve this bound, we use a quantum-secure pseudorandom function (qPRF,
see Definition 3) fλ : {0, 1}λ × {0, 1}λ → {0, 1}n. The encryption (see Section 4.1) consists
of a quantum state ρ =

∣∣rθ〉〈rθ∣∣ for random r, θ ∈ {0, 1}λ, together with a classical string
c = m⊕ fλ(s, r) for a random s. The key k consists in θ and s. Once again, it can be shown
that this is an encryption scheme in a more usual sense and we sketch this argument in
Section 4.1. Intuitively, the use of fλ affords us a gain in uncloneable security, because an
adversary who wants to output m would need to know the pre-image of m under fλ(s, ·).
Reaching a formal proof along these lines, however, is tricky. First, we model the qPRF using
a quantum random oracle [8]; this limits the adversaries’ interaction with the qPRF to be
black-box quantum queries (we refer to Section 4.3 for further details on this modelling). Next,
the quantum random oracle model is notoriously tricky to use and many of the techniques in
the classical literature are not directly applicable. Fortunately, we can adapt techniques from
Unruh’s quantum one-way-to-hiding lemma [22] to the two-player setting, which enables us
to recover a precise statement along the lines of the intuition above. We thus complete the
proof of our main Theorem 16, obtaining the bound 9 · 1

2n + negl(λ). This is the fourth and
final curve in Figure 1.

In addition to the above, we formally define a different type of uncloneable security:
inspired by more standard security definitions of indistinguishability, we define uncloneable-
indistinguishability (Definition 11). This security definition bounds the advantage that
the adversaries have at simultaneously distinguishing between an encryption of 0n and an
encryption of a plaintext of length n, as prepared by the adversaries. In a series of results
(Theorems 12 and 17 and Corollary 18), we show that our main protocol achieves this security
notion against adversaries that use unentangled strategies and as long as the message size
does not grow with λ. As discussed in Section 1.2, there are interesting uses cases where we
can assume that the adversaries do not share entanglement.

We note that our protocols (both Definition 19 and Definition 13) have the desirable
property of being prepare-and-measure schemes. This means that the quantum technology for
the honest users is limited to the preparation of single-qubit pure states, as well as to single-
qubit measurements; these quantum technologies are mature and commercially available.
(Note, however, that quantum storage remains a major challenge at the implementation
level).
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1.2 Applications
While our focus is on the conceptual contribution of defining and proving a new primitive,
we believe that uncloneable encryption could have many applications. We give two such
examples.

1.2.1 Quantum Money
As it captures the idea of “uncloneable classical information” in a very generic manner,
uncloneable encryption can be used as a tool to build other primitives which leverage the
uncloneability of quantum states. Such constructions help us understand the landscape of
quantum cryptography. As an example, any uncloneable secure encryption scheme naturally
yields a private-key quantum money scheme [2, 25].

To obtain quantum money from an uncloneable encryption scheme, we identify the
notion of “simultaneously passing the bank’s verification” with the notion of “simultaneously
obtaining the correct plaintext”. To generate a banknote, the bank samples a message m,
a key k, a serial number s and produces as output (s, Enc(k,m)), where Enc(k,m) is the
uncloneable encryption of m with the key k. When the bank is asked to verify a banknote, it
verifies the serial number in its database to retrieve k, decrypts the ciphertext and verifies if
the message obtained is indeed m.

The uncloneable security guarantee implies that the probability of a malicious party
producing two banknotes which pass this test is negligible. If this were not the case, we
could use the attack which counterfeits the banknote to essentially copy the ciphertext in
the underlying uncloneable encryption scheme. The adversaries tasked with obtaining the
message once the key is revealed then simply decrypt as if they were the honest receivers.

1.2.2 Preventing Storage Attacks by Classical Adversaries
Indistinguishable-uncloneable encryption prevents a single eavesdropping adversary with no
quantum memory from collecting ciphertexts exchanged by two honest parties in the hope of
later learning the key. We sketch an argument for this fact.

Suppose such an adversary obtains a ciphertext from an uncloneable-indistinguishable
encryption scheme. We claim that they cannot correctly determine if the ciphertext corres-
ponds to the encryption of 0n or of some known message m with non-negligible advantage,
even if the decryption key becomes known after their measurement of the ciphertext. If such
an adversary existed, it could be used to break the uncloneable-indistinguishable security of
the encryption scheme. Indeed, the almost-classical eavesdropper could create two copies of
their classical memory and distribute it to the two adversaries who attempt to obtain the
message once the key is revealed.1

Note that the adversaries in this attack do not share any entanglement and so we can
apply Corollary 18 which states that our encryption scheme is uncloneable-indistinguishable
secure under this condition.

Our work is currently in the private-key setting, but can be extended in a straightforward
way to the public-key setting. In this scenario, we can still guarantee the secrecy of the
message even if the eavesdropper is later able to determine the decryption key from the
publicly-known encryption key. In other words, an eavesdropping adversary with no quantum
memory would need to attack the ciphertext during transmission. This is known as long-term
security or everlasting security [21].

1 We thank an anonymous reviewer for this suggestion.
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1.3 More on Related Work
Starting with the foundational work of Wiesner [25], a rich body of literature has considered
the encoding of classical information into quantum states in order to take advantage of
quantum properties for cryptography.

Quantum Key Recycling. The concept of quantum key recycling is a precursor to the
QKD protocol, developed by Bennett, Brassard, and Breidbart [7] (the manuscript was
prepared in 1982 but only published recently). According to this protocol, it is possible to
encrypt a classical message into a quantum state, such that information-theoretic security
is assured, but in addition, a tamper detection mechanism would allow the one-time pad
key to be re-used in the case that no eavesdropping is detected. Quantum key recycling
has been the object of recent related work [10, 13].
Tamper-Evident Encryption. We referred above to tamper-detection in the case of
encryption, which we will also call tamper-evident encryption. However, we emphasize
that the author originally called this contribution uncloneable encryption [15]. We justify
this choice of re-labelling in quoting the conclusion of the work:

One difficulty with such generalizations is that it is unclear to what extent the
name “uncloneable encryption” is really deserved. I have not shown that a message
protected by uncloneable encryption cannot be copied – only that Eve cannot copy
it without being detected. Is it possible for Eve to create two states, (...), which
can each be used (in conjunction with the secret key) to extract a good deal of
information about the message? Or can one instead prove bounds, for instance, on
the sum of the information content of the various purported copies? [15]

Since our work addresses this question, we have appropriately re-labeled prior work
according to a seemingly more accurate name. To the best of our knowledge, the precise
relationship between quantum key-recycling, tamper-evident encryption, and uncloneable
encryption is unknown (see Section 1.4).
Quantum Copy-Protection. Further related work includes the study of quantum
copy-protection, as initiated by Aaronson [1]. Informally, this is a means to encode a
function (from a given family of functions) into a quantum program state, such that an
honest party can evaluate the function given the program state, but it would be impossible
to somehow split the quantum program state so as to enable two parties to simultaneously
evaluate the function. Aaronson gave protocols for quantum copy-protection in an oracle
model, but left wide open the question of quantum copy-protection in the plain model.
In a way, uncloneable encryption is a first step towards quantum copy-protection, since it
prevents copying of data, which can be seen as a unit of information that is even simpler
than a function.

1.4 Outlook and Future Work
In this work, we challenge one of the tacit assumptions of encryptions, namely that adversaries
can always copy ciphertexts. We believe that this has the potential to significantly change
the landscape of cryptography, for instance in terms of techniques for key management [5].
Furthermore, our techniques could become building blocks for a theory of uncloneable
cryptography.

Our work leads to many follow-up questions, broadly classified according to the following
themes:
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Improvements. There are many possible improvements to the current work. For
instance: Could our scheme be made resilient to errors? Can we remove the reliance
on the oracle, and/or on the qPRF? Could an encryption scheme simultaneously be
uncloneable and provide tamper detection? Would achieving uncloneable-indistinguishable
security be possible, without any restrictions on the adversary’s strategy?
Links with related work. What are the links, if any, between uncloneable encryption,
tamper-evident encryption [15], and quantum encryption with key recycling [7, 10, 13]?
We note that both uncloneable encryption and quantum encryption with key recycling [13]
make use of theorems developed in the context of one-sided device-independent QKD [20].
Can we make more formal links between these primitives?
More uncloneability. Finally, our work paves the way for the study of more complex
unclonable primitives. Could this lead to uncloneable programs [1]? What about in
complexity theory, could we define and realize uncloneable proofs [1]?

1.5 Outline
The remainder of the paper is structured as follows. In Section 2, we introduce some basic
notation and useful results from the literature. In Section 3, we formally define uncloneable
encryption schemes and their security. Our main scheme is described in Section 4 (with a
toy scheme based on Wiesner conjugate coding being described in Appendix A). Due to lack
of space, most proofs are relegated to Appendix B and the remainder can be found in the
full version.

2 Preliminaries

In this section, we present our notation and techniques from prior works used in this paper.

2.1 Notation and Basics of Quantum Information
We denote the set of all functions of the form f : {0, 1}n → {0, 1}m by Bool(n,m). We
denote the set of strictly positive natural numbers by N+. All Hilbert spaces are finite
dimensional. We overload the expectation symbol E in the following way: If X is a finite
set, X a random variable on X, and f : X → R some function, we define Ex←X f(x) to be∑
x∈X Pr [X = x] f(x). If we omit the random variable then we assume a uniform distribution,

i.e.: Ex f(x) = 1
|X|
∑
x∈X f(x). If X is a random variable distributed over a finite set X,

then its min-entropy is given by −maxx∈X Pr [X = x]. A function η : N→ R is said to be
negligible if for all n ∈ N there exists an xn > 0 such that x > xn implies that |η(x)| < x−n.

A comprehensive introduction to quantum information and quantum computing may be
found in [17, 24]. We fix some notation in the following paragraphs.

Let Q = C2 be the state space of a single qubit. In particular, Q is a two-dimensional
complex Hilbert space spanned by the orthonormal set {|0〉 , |1〉}. For any n ∈ N+, we write
Q(n) = Q⊗n and note that {|s〉 = |s1〉⊗ |s2〉⊗ . . .⊗|sn〉}s∈{0,1}n forms an orthonormal basis
of Q(n).

Let H be a Hilbert space. The set of all unitary and density operators on H are denoted,
respectively, by U(H) and D(H). We recall that the operator norm of a linear operator
A : H → H′ between finite dimensional Hilbert spaces is given by ‖A‖ = maxv∈H,‖v‖=1 ‖Av‖
and satisfies the property that ‖Av‖ ≤ ‖A‖ · ‖v‖. If A is either a projector or a unitary
operator, then ‖A‖ = 1.
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We use the term “quantum state” to refer to both unit vectors |ψ〉 ∈ H and to density
operators ρ ∈ D(H) on some Hilbert space.

Let H ∈ U(Q) be the Hadamard operator defined by |0〉 7→ |0〉+|1〉√
2 and |1〉 7→ |0〉−|1〉√

2 . For
any strings x, θ ∈ {0, 1}n, we define the state

∣∣xθ〉 = Hθ1 |x1〉 ⊗Hθ2 |x2〉 ⊗ . . . ⊗Hθn |xn〉.
Note that the set

{∣∣sθ〉}
s∈{0,1}n forms an orthonormal basis of Q(n). Following their

use in [25], we call states of the form
∣∣xθ〉 Wiesner states and we call

{∣∣sθ〉}
s∈{0,1}n a

Wiesner basis. For any n ∈ N+, the Einstein-Podolski-Rosen (EPR) [12] state is given by
|EPRn〉 = 1√

2n
∑
x∈{0,1}n |x〉 ⊗ |x〉 .

A positive operator-valued measurement (POVM) on a Hilbert spaceH is a finite collection
of positive semidefinite operators {Ei}i∈I on H which sum to the identity. A projective
measurement is a POVM composed of projectors.

We also recall that physically permissible transformation of a quantum system precisely
coincide with the set of completely positive trace preserving (CPTP) maps. In particular,
CPTP map will map density operators to density operators.

A polynomial-time uniform family of circuits C = {Cλ}λ∈N+ is a collection of quantum
circuits indexed by N+ such that there exists a polynomial-time deterministic Turing machine
T which, on input 1λ, produces a description of Cλ. We refer to such families as efficient circuits.
Each circuit Cλ defines and implements a certain CPTP map Cλ : D(HIn,λ) → D(HOut,λ)
where the Hilbert spaces HIn,λ and HOut,λ are implicitly defined by the circuit. Note that we
consider general, i.e.: possibly non-unitary, circuits. These were introduced in [3]. It is worth
noting that a universal gate set for general quantum circuits exists which is composed of only
unitary gates, implementing maps of the form ρ 7→ UρU† for some unitary operator U , and
two non-unitary maps which are the single qubit partial trace map Tr : D(Q)→ D(C) and
the state preparation map Aux : D(C)→ D(Q) defined by 1 7→ |0〉〈0|. Further information
on this circuit model can be found in [23].

2.2 Monogamy-of-Entanglement Games

Monogamy-of-entanglement games were introduced and studied in [20]. In short, such a game
is played by Alice against cooperating Bob and Charlie. Alice describes to Bob and Charlie a
collection of different POVMs which she could use to measure a quantum state on a Hilbert
space HA. These POVMs are indexed by a finite set Θ and each reports a measurement
result taken from a finite set X. Bob and Charlie then produce a tripartite quantum state
ρ ∈ D(HA ⊗ HB ⊗ HC), giving the A register to Alice, the B register to Bob and the C
register to Charlie. Alice then picks a θ ∈ Θ, measures her subsystem with the corresponding
POVM and obtains some result x ∈ X. She then announces θ to Bob and Charlie who are
now isolated. Bob and Charlie win if and only if they can both simultaneously guess the
result x.

Upper bounds on the winning probability of Bob and Charlie in such games was the
primary subject of study in [20]. One of their main results, corresponding to a game where
Alice measures in a random Wiesner basis, is as follows.

I Theorem 1 ([20]). Let λ ∈ N+. For any Hilbert spaces HB and HC , any collections of
POVMs{{

Bθx
}
x∈{0,1}λ

}
θ∈{0,1}n

and
{{
Cθx
}
x∈{0,1}λ

}
θ∈{0,1}n

(1)
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on these Hilbert spaces, and any state ρ ∈ D(Q(λ)⊗HB ⊗HC), we have that

E
θ

∑
x∈{0,1}λ

Tr
[(∣∣xθ〉〈xθ∣∣⊗Bθx ⊗ Cθx) ρ] ≤ (1

2 + 1
2
√

2

)λ
. (2)

Using standard techniques, we recast this theorem in a context where Alice sends to Bob
and Charlie a random Wiesner state and they split this state among themselves via a CPTP
map Φ.

I Corollary 2. Let λ ∈ N+. For any Hilbert spaces HB and HC , any collections of POVMs{{
Bθx
}
x∈{0,1}λ

}
θ∈{0,1}λ

and
{{
Cθx
}
x∈{0,1}λ

}
θ∈{0,1}λ

(3)

on these Hilbert spaces, and any CPTP map Φ : D(Q(λ))→ D(HB ⊗HC), we have that

E
θ
E
x

Tr
[(
Bθx ⊗ Cθx

)
Φ
(∣∣xθ〉〈xθ∣∣)] ≤ (1

2 + 1
2
√

2

)λ
. (4)

The proof can be found in the full version, but conceptually follows from a two-step
argument. First, we only consider states of the form (1⊗ Φ) |EPRλ〉〈EPRλ| for some CPTP
map Φ and where Alice keeps the intact subsytems from the EPR pairs. Then, we apply the
correspondence between Alice measuring her half of an EPR pair in a random Wiesner basis
and her sending a random Wiesner state. This correspondence is similar to the one used in
the Shor-Preskill proof of security for the BB84 QKD protocol [19].

Corollary 2 can be seen as the source of “uncloneability” for our upcoming protocols.
When Alice sends a state

∣∣xθ〉〈xθ∣∣, picked uniformly at random, to Bob and Charlie, she
has a guarantee that it is unlikely for both of them to learn x even if she later divulges θ.
It is worth noting that Theorem 1 and Corollary 2 have no computational or hardness
assumptions.

2.3 Oracles and Quantum-Secure Pseudorandom Functions
A quantum-secure pseudorandom function is a keyed function which appears random to an
efficient quantum adversary who only sees its input/output behaviour and is ignorant of the
particular key being used. We formally define this notion with the help of oracles. Quantum
accessible oracles have been previously studied in the literature, for example in [8, 22].

For a function H ∈ Bool(n,m), a circuit C is said to have oracle access to H, denoted CH ,
if we add to its gate set a gate implementing the unitary operator OH ∈ U(Q(n)Q ⊗Q(m)R)
defined on computational basis states by

|x〉Q ⊗ |y〉R 7→ |x〉Q ⊗ |y ⊕H(x)〉R . (5)

Colloquially, we are giving C a “black box” which computes the function H. Note that for
any two functions H,H ′ ∈ Bool(n,m), we can obtain the circuit CH

′ from CH by replacing
every instance of the OH gate by the OH′ gate.

Our definition of a quantum-secure pseudorandom function, inspired by [27], is as follows.

I Definition 3 (Quantum-Secure Pseudorandom Function). A quantum-secure pseudorandom
function F is a collection of functions

F =
{
fλ : {0, 1}λ × {0, 1}`In(λ) → {0, 1}`Out(λ)

}
λ∈N+

(6)

where `In, `Out : N+ → N+ and such that:
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1. There is an efficient quantum circuit F = {Fλ}λ∈N+ such that Fλ implements the CPTP
map Fλ given by ρ 7→ UλρU

†
λ where Uλ ∈ U(Q(λ+ `In(λ) + `Out(λ))) is defined by

Uλ
(
|k〉 ⊗ |a〉 ⊗ |b〉

)
= |k〉 ⊗ |a〉 ⊗ |b⊕ fλ(k, a)〉 . (7)

2. For all efficient quantum circuits D = {DHλ }λ∈N+ having oracle access to a function
of the form H ∈ Bool(`In(λ), `Out(λ)), each implementing a CPTP map of the form
DH
λ : D(C)→ D(Q), there is a negligible function η such that:∣∣∣∣Ek Tr

[
|0〉〈0|Dfλ(k,·)

λ (1)
]
− E
H

Tr
[
|0〉〈0|DH

λ (1)
]∣∣∣∣ ≤ η(λ) . (8)

We should think of D as a circuit which attempts to distinguish two different cases: was
it given oracle access to the pseudorandom function f(k, ·) : {0, 1}`In(λ) → {0, 1}`Out(λ) for a
randomly sampled k ∈ {0, 1}λ? Or to a function H ∈ Bool(`In(λ), `Out(λ)) sampled truly at
random? The circuit takes no input and produces a single bit of output, via measuring a
single qubit in the computational basis. The bound given in the definition ensures that the
probability distribution of the output does not change by much in both scenarios.

In his work on quantum-secure pseudorandom functions [27], Zhandry showed that certain
common constructions of pseudorandom functions are secure against quantum adversaries.

3 Uncloneable Encryption

The encryption of classical plaintexts into classical ciphertexts has been extensively studied.
The study of encrypting quantum plaintexts into quantum ciphertexts has also received
some attention, for example in [4]. Uncloneable encryption is a security notion for classical
plaintexts which is impossible to achieve in any meaningful way with classical ciphertexts.
Thus, we formally define a notion of quantum encryptions for classical messages in Section 3.1
and then give our security definitions in Section 3.2.

3.1 Quantum Encryptions of Classical Messages
A quantum encryption of classical messages scheme is a procedure which takes as input a
plaintext and a key, in the form of classical bit strings, and produces a ciphertext in the form
of a quantum state. We model these schemes as efficient quantum circuits and CPTP maps
where classical bit strings are identified with computational basis states: s ↔ |s〉〈s|. Our
schemes are parametrized by a security parameter λ. In general, the message size n = n(λ),
the key size κ = κ(λ), and the size of the ciphertext ` = `(λ) may depend on λ. This is
formalized in Definition 4.

I Definition 4 (Quantum Encryption of Classical Messages). A quantum encryption of classical
messages (QECM) scheme is a triplet of efficient quantum circuits S = (Key, Enc, Dec)
implementing CPTP maps of the form

Keyλ : D(C)→ D(HK,λ),
Encλ : D(HK,λ ⊗HM,λ)→ D(HT,λ), and
Decλ : D(HK,λ ⊗HT,λ)→ D(HM,λ)

where, for functions n, `, κ : N+ → N+, the plaintext space is given by HM,λ = Q(n(λ)), the
ciphertext space is given by HT,λ = Q(`(λ)), and the keyspace is given by HK,λ = Q(κ(λ)).

For all λ ∈ N+, k ∈ {0, 1}κ(λ), and m ∈ {0, 1}n(λ), the maps must satisfy

Tr[|k〉〈k|Key(1)] > 0 =⇒ Tr[|m〉〈m|Deck ◦ Enck(|m〉〈m|)] = 1 (9)

where λ is implicit, Enck is the CPTP map defined by ρ 7→ Enc(|k〉〈k| ⊗ ρ), and we define
Deck analogously.
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4:10 Uncloneable Quantum Encryption via Oracles

A short discussion on the key generation circuit, Key, is in order. First, note that Key
takes no input. Indeed, the domain of Keyλ is D(C) and C is the state space of zero qubits.
In particular, there is a single valid quantum state on C: D(C) = {1}. To generate a classical
key to be used by the encryption and decryption circuits Encλ and Decλ, a party runs the
circuit Keyλ and obtains the quantum state Keyλ(1). This quantum state is then measured
in the computational basis and the result of this measurement is used as the key. We then
see that Equation (9) is a correctness condition which imposes that, for all keys that may be
generated, a valid ciphertext is always correctly decrypted.

3.2 Security Notions
Now that we have formal definition for QECM schemes, we can define security notions for
these schemes. We define three such notions:
1. Indistinguishable security. Conceptually inspired by the original security notion of indis-

tinguishable encryptions [14], which considers classical plaintexts and classical ciphertexts,
and similar in details to an analogue definition in [4] which considers quantum plaintexts
and quantum ciphertexts, this security notion considers classical plaintexts and quantum
ciphertexts. It is formally stated in Definition 6.

2. Uncloneable security. This security notion is novel to this work and captures, in the
broadest sense, what we mean by an “uncloneable encryption scheme”. This security
notion is defined in Definition 8 and is paramatrized by a real value 0 ≤ t ≤ n, where n
is the message size. The case where t = 0 is ideal and t = n is trivial. In particular, no
encryption scheme with classical ciphertexts may achieve t-uncloneable security for t < n.

3. Uncloneable-indistinguishable security. This security notion is also novel to this work. It
can be seen as a combination of indistinguishable and uncloneable security. It is formally
defined in Definition 11.

Each of these security notions is defined in two steps. First, we define a type of attack
(Definitions 5, 7 and 10). Then, we say that the QECM scheme achieves the given security
notion if all admissible attacks have their winning probability appropriately bounded (Defini-
tions 6, 8 and 11). The definitions for uncloneable security and uncloneable-indistinguishable
security will formalize the games which we described in Section 1.1.

Note that many classical encryption schemes which are secure against quantum adversaries,
such as the one-time pad, are indistinguishable secure but satisfy neither uncloneable security
notions as their ciphertexts can alway be perfectly copied. We also discuss in Appendix A
a scheme which offers non-trivial uncloneable security but is not in any way uncloneable-
indistinguishable secure.

We first define our notion of indistinguishable security.

I Definition 5 (Distinguishing Attack). Let S be a QECM scheme. A distinguishing attack
against S is a pair of efficient quantum circuits A = (G, A) implementing CPTP maps of the
form

Gλ : D(C)→ D(HS,λ ⊗HM,λ) and
Aλ : D(HS,λ ⊗HT,λ)→ D(Q)

where HS,λ = Q(s(λ)) for a function s : N+ → N+ and HM,λ and HT,λ are as defined by S.

I Definition 6 (Indistinguishable Security). Let S be a QECM scheme. For a fixed and
implicit value of λ, we define the CPTP map Enc1

k : D(HM,λ)→ D(HT,λ) by

ρ 7→
∑

m∈{0,1}n
Tr [|m〉〈m| ρ] · Enck(|m〉〈m|) (10)
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and the CPTP map Enc0
k : D(HM,λ)→ D(HT,λ) by

ρ 7→ Enck(|0n〉〈0n|) (11)

where 0n ∈ {0, 1}n is the all zero bit string.
Then, we say that S is indistinguishable secure if for all distinguishing attacks A against S,

there exists a negligible function η such that

E
b

E
k←K

Tr
[
|b〉〈b|Aλ ◦

(
1S ⊗ Encbk

)
◦G(1)

]
≤ 1

2 + η(λ) (12)

where λ is implicit on the left-hand side, b ∈ {0, 1}, and Kλ is the random variable distributed
on the set {0, 1}κ(λ) such that Pr [Kλ = k] = Tr [|k〉〈k|Keyλ(1)].

In Definition 6, the map Enc0
k should be seen as discarding whatever plaintext was given

and producing the encryption of the all zero bit string. On the other hand, Enc1
k is the map

which first measures the state given in the computational basis, to ensure that the plaintext
is indeed a classical message, and then encrypts this message. We say that a QECM scheme
has indistinguishable security if no efficient adversary can distinguish between both of these
scenarios (by trying to determine the value of b) with more then a negligible advantage. This
security notion allows us to show that the schemes we define do offer a level of security as
encryption schemes.

Next, we formalize the intuitive definition for uncloneable security as given by the game
described in Section 1.1. In Figure 2, we sketch out the relation between the various CPTP
maps and the underlying Hilbert spaces considered in this definition.

I Definition 7 (Cloning Attack). Let S be a QECM scheme. A cloning attack against S is a
triplet of efficient quantum circuits A = (A, B, C) implementing CPTP maps of the form

Aλ : D(HT,λ)→ D(HB,λ ⊗HC,λ),
Bλ : D(HK,λ ⊗HB,λ)→ D(HM,λ), and
Cλ : D(HK,λ ⊗HC,λ)→ D(HM,λ)

where HB,λ = Q(β(λ)) and HC,λ = Q(γ(λ)) for some functions β, γ : N+ → N+ and HK,λ,
HM,λ, and HT,λ are as defined by S.

I Definition 8 (Uncloneable Security). A QECM scheme S is t(λ)-uncloneable secure if for
all cloning attacks A against S there exists a negligible function η such that

E
m

E
k←K

Tr [(|m〉〈m| ⊗ |m〉〈m|) (Bk ⊗ Ck) ◦A ◦ Enck (|m〉〈m|)] ≤ 2−n+t(λ) + η(λ) (13)

where λ is implicit on the left-hand side, Kλ is a random variable distributed on {0, 1}κ(λ) such
that Pr [Kλ = k] = Tr [|k〉〈k|Keyλ(1)] and Bk is the CPTP map defined by ρ 7→ B(|k〉〈k| ⊗ ρ)
and similarly for Ck.

If S is 0-uncloneable secure, we simply say that it is uncloneable secure.

The left-hand side of Equation (13) is the probability, averaged over all messages and all
keys, that both adversaries can correctly output the encrypted message.

We note that any encryption which produces classical ciphertexts cannot be t-uncloneable
secure for any t < n. Indeed, an attack A where A copies the classical ciphertext and where
B = C = Dec succeeds with probability 1.

Our definition of uncloneable security is with respect to messages sampled uniformly
at random. However, if the length of the message is fixed, t-uncloneable security implies a
similar security notion for messages sampled according to other distributions. We formalize
this in the next theorem whose proof can be found in Appendix B.1.
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HM HT
HB

HC

HM

HM

Enck A

Bk

Ck

Figure 2 Schematic representation of the maps considered in a cloning attack (Definition 7). The
k subscript indicates which maps have access to the encryption key.

I Theorem 9. Let S be a QECM scheme which is t-uncloneable secure and whose message
size is constant, i.e.: n(λ) = n. Let M be a random variable distributed over {0, 1}n with
min-entropy h. Then, for any cloning attack A on S there is a negligible function η such
that

E
m←M

E
k←K

Tr [(|m〉〈m| ⊗ |m〉〈m|) (Bk ⊗ Ck) ◦A ◦ Enck |m〉〈m|] ≤ 2−h+t(λ) + η(λ) (14)

where λ is implicit on the left-hand side.

Finally, we formalize the notion of uncloneable-indistinguishable security (see Section 1.1
for a description in terms of a game, and Figure 3 for the relation between the various CPTP
maps and the underlying Hilbert spaces).

I Definition 10 (Cloning-Distinguishing Attack). Let S be a QECM scheme. A cloning-
distinguishing attack against S is a tuple A = (G, A, B, C) of efficient quantum circuits
implementing CPTP maps of the form

Gλ : D(C)→ D(HS,λ ⊗HM,λ),
Aλ : D(HS,λ ⊗HT,λ)→ D(HB,λ ⊗HC,λ),
Bλ : D(HK,λ ⊗HB,λ)→ D(Q), and
Cλ : D(HK,λ ⊗HC,λ)→ D(Q)

where HS,λ = Q(s(λ)), HB,λ = Q(β(λ)), and HC,λ = Q(γ(λ)) for s, β, γ : N+ → N+ and all
other Hilbert spaces are as defined by S.

I Definition 11 (Uncloneable-Indistinguishable Security). Let S be a QECM scheme and define
Enc0

k and Enc1
k as in Definition 6.

We say that S is uncloneable-indistinguishable secure if for all cloning-distinguishing
attacks A there exists a negligible function η such that

E
b

E
k←K

Tr
[
(|b〉〈b| ⊗ |b〉〈b|) (Bk ⊗ Ck) ◦A ◦

(
1S ⊗ Encbk

)
◦G(1)

]
≤ 1

2 + η(λ) (15)

where λ is implicit on the left-hand side, Kλ is the random variable distributed on {0, 1}κ(λ)

such that Pr[K = k] = Tr[|k〉〈k|K(1)], Bk is the CPTP map defined by ρ 7→ B(|k〉〈k| ⊗ ρ),
and similarly for Ck.

The left-hand side of Equation (15) is the probability, averaged all keys, that both
adversaries can correctly determine if their submitted message (generated by G) or the all 0
bit string was encrypted.

It is trivial to see, but worth noting, that uncloneable-indistinguishable security implies
indistinguishable security. Indeed, if a scheme is not indistinguishable secure, then an ad-
versary can determine which message was encrypted (with non-negligible advantage) without
having to wait for the key to be divulged. Thus, instead of trying to split the ciphertext,
the A circuit in an uncloneable-indistinguishable attack should attempt to determine which
message was encrypted and simply pass on the result to the B and C circuits.
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C
HM HT

HS HB

HC
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Encbk
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Bk
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Figure 3 Schematic representation of the maps considered in a cloning-distinguishing attack
(Definition 10). The k subscript indicates which maps have access to the encryption key.

Finally, it can also be shown that any 0-uncloneable secure QECM scheme S with constant
message length is uncloneable-indistinguishable secure. The proof can be found in the full
version and proceeds by using any cloning-distinguishing attack to construct a cloning attack.
We then show that security against the constructed cloning attack implies security against
the original distinguishing-cloning attack.

I Theorem 12. Let S be an 0-uncloneable secure QECM with constant message size, i.e.:
n(λ) is the constant function n(λ) = n, then S is also uncloneable-indistinguishable secure.

4 An Uncloneable Encryption Scheme

A first scheme which attempts to achieve a notion of uncloneable encryption is presented in
Appendix A. It is based on a simple use of Wiesner states and illustrates the basic principle,
but it is in many respects insufficient.

In Section 4.1, we present a refinement of the Appendix A protocol which uses quantum
secure pseudorandom functions. The proof of the uncloneable security of this protocol relies
on technical lemmas presented in Section 4.2. We give our final main results in Section 4.3.

4.1 Our qPRF Scheme

As discussed in Section 1.1, the motivation for this scheme is to use quantum-secure pseudo-
random functions to attempt to “distill” the uncloneability found in the Wiesner state.

I Definition 13 (F -Conjugate Encryption). Let F =
{
fλ :{0, 1}λ × {0, 1}λ → {0, 1}n(λ)}

λ∈N+

be a quantum-secure pseudorandom function for a function n : N+ → N+. We define the
F-conjugate encryption QECM scheme by the circuits implementing the following algorithms
which are implicitly parametrized by λ. Note that the message size is the output size of the
qPRF, n(λ), the key size is κ(λ) = 2λ, and the ciphertext size is `(λ) = λ+ n(λ).

Algorithm 1 Key generation circuit, Key.

Input :None.
Output :A state ρ ∈ D(Q(κ(λ))).

1 Sample s← {0, 1}λ uniformly at random.
2 Sample θ ← {0, 1}λ uniformly at random.
3 Output ρ = |s〉〈s| ⊗ |θ〉〈θ|.
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Algorithm 2 Encryption circuit, Enc.

Input :A plaintext m ∈ {0, 1}n and a key (s, θ) ∈ {0, 1}κ.
Output :A ciphertext ρ ∈ D(Q(`(λ))).

1 Sample x← {0, 1}λ uniformly at random.
2 Compute c = m⊕ fλ(s, x).
3 Output ρ = |c〉〈c| ⊗

∣∣xθ〉〈xθ∣∣.
Algorithm 3 Decryption circuit, Dec.

Input :A ciphertext |c〉〈c| ⊗ ρ ∈ D(Q(`)) and a key (s, θ) ∈ {0, 1}κ.
Output :A plaintext m ∈ {0, 1}n.

1 Compute ρ′ = HθρHθ.
2 Measure ρ′ in the computational basis. Call the result r.
3 Output m = c⊕ fλ(s, r).

It is trivial to see that this scheme is correct. It is also straightforward to see that
this scheme is indistinguishable secure (Definition 6). Indeed, if we replace the qPRF with
a function chosen uniformly a random from Bool(λ, n(λ)), then the ciphertext, averaged
over all keys, is independent of the plaintext. Security then follows from the fact that
efficient adversaries cannot distinguish with non-negligible advantage between the qPRF and
a function chosen randomly from Bool(λ, n(λ)).

4.2 Technical Lemmas
The following two lemmas form the core of the upcoming proofs of uncloneable security and
they can be seen as extending Unruh’s one-way-to-hiding lemma [22] to a two player setting.
They are interpreted as follows.

We consider two adversaries who have oracle access to a function H ∈ Bool(λ, n) which
is chosen uniformly at random. Their goal is to simultaneously guess the value H(x) for
some value of x. The adversaries share a quantum state representing all the information
they initially have on x. The lemmas relate the probability of both parties simultaneously
guessing H(x) to their probability of being able to both simultaneously guess x.

The first of these lemmas, Lemma 14, considers this problem in a setting where the
adversaries do not share any entanglement. The second, Lemma 15, imposes no such
restriction.

We show that the probability that both adversaries correctly guess H(x) is upper bounded
by 1

2n + Q ·G or 9
2n + Q′ ·G′ where Q and Q′ are polynomial functions of the number of

queries the adversaries make to the oracle and G and G′ quantify their probability of guessing
x with a particular strategy. The factor of 9 is present only if we allow the adversaries to
share entanglement.

We can interpret G and G′ in a manner very similar to its analogous quantity in Unruh’s
one-way-to-hiding lemma [22]. The adversaries, instead of continuing until the end of their
computation, will stop immediately before a certain (randomly chosen) query to the oracle
and measure their query register in the computational basis. Then, G is related to the
probability that this procedure succeeds at letting both adversaries simultaneously obtain x,
averaged over the possible stopping points and possible functions implemented by the oracle.

The key idea in the proof of these lemmas is that we can decompose the unitary operator
representing each of the adversaries’ computations into two “parts” (see Equation (26)). One
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of these “parts” will never query the oracle on x and the other could query the oracle on x.
This idea was present in the proof of Unruh’s one-way-to-hiding lemma [22].

Recall from Section 2.3 that we model queries to an oracle implementing a function H as
a unitary operator OH acting on a query and a response register with Hilbert spaces HQ
and HR respectively. The action of this unitary operator on the computational basis states
is given by |x〉Q ⊗ |y〉R 7→ |x〉Q ⊗ |y ⊕H(x)〉R. A party having access to an oracle may also
have some other register with Hilbert space HS with which they perform other computations.
In general, their computation can then be modeled by an operator of the form

(
UOH

)q
where U is a unitary operator on HQ ⊗HR ⊗HS and q is the number of queries made to
the oracle [8, 22].

The proof of Lemma 15 can be found in Appendix B.2. The proof of Lemma 14, which
uses very similar ideas to those found in the proof of Lemma 15, can be found in the full
version.

I Lemma 14. Let λ, n ∈ N+. For L ∈ {B,C}, we let sL, qL ∈ N+, HLQ = Q(λ),
HLR = Q(n), HLS = Q(sL), UL ∈ U(HLQ ⊗ HLR ⊗ HLS ), and {πyL}y∈{0,1}n be a pro-
jective measurement on HLQ ⊗HLR ⊗HLS .

Finally, let |ψ〉 = |ψB〉 ⊗ |ψC〉 be a separable unit vector with |ψL〉 ∈ Q(n+ λ+ sL) for
L ∈ {B,C} and x ∈ {0, 1}λ. Then, we have

E
H

∥∥∥ΠH(x)
((
UBO

H
B

)qB ⊗ (UCOHC )qC) |ψ〉∥∥∥2
≤ 1

2n + (3q + 2)q 4
√
M (16)

where ΠH(x) = π
H(x)
B ⊗ πH(x)

C , q = qB + qC and

M = E
k
È E
H

E
H′

∥∥∥∥(|x〉〈x|BQ ⊗ |x〉〈x|CQ)((UBOHB )k ⊗ (UCOH′

C

)`)
|ψ〉
∥∥∥∥2

(17)

with k ∈ {0, . . . , qB − 1}, ` ∈ {0, . . . , qC − 1}, and H,H ′ ∈ Bool(λ, n).

I Lemma 15. Let λ, n ∈ N+. For L ∈ {B,C}, we let sL, qL ∈ N+, HLQ = Q(λ),
HLR = Q(n), HLS = Q(sL), UL ∈ U(HLQ ⊗ HLR ⊗ HLS ), and {πyL}y∈{0,1}n be a pro-
jective measurement on HLQ ⊗HLR ⊗HLS .

Finally, let |ψ〉 ∈ Q(2(λ+n) + sB + sC) be a unit vector and x ∈ {0, 1}λ. Then, we have

E
H

∥∥∥ΠH(x)
((
UBO

H
B

)qB ⊗ (UCOHC )qC) |ψ〉∥∥∥2
≤ 9

2n + (3qBqC + 2)qBqC
√
M (18)

where ΠH(x) = π
H(x)
B ⊗ πH(x)

C and

M = E
k
È E
H

∥∥∥(|x〉〈x|BQ ⊗ |x〉〈x|CQ)((UBOHB )k ⊗ (UCOHC )`) |ψ〉∥∥∥2
(19)

with k ∈ {0, . . . , qB − 1}, ` ∈ {0, . . . , qC − 1}, and H ∈ Bool(λ, n).

4.3 Main Results
We now have all the necessary tools to state our main results.

I Theorem 16. Let S be the QECM scheme defined in Definition 13. If the qPRF is modeled
by a quantum oracle, then S is log2(9)-uncloneable secure.

Our main results (Theorem 16) holds under the following assumptions:

1. The family of functions used in the encryption is indistinguishable from truly random
functions for efficient adversaries (i.e.: it satisfies the indistinguishable property of a
pseudorandom function).
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2. The adversarial circuit A (the one which attempts to split the ciphertext) does not know
precisely which function was used. This models the idea that the A circuit does not know
the encryption key.

3. The adversarial circuits B and C (the ones attempting to guess the plaintext) may only
interact with the function as a “black box”.

One way to model these assumptions is to use the quantum random oracle model, where in
addition we specify that the A circuit cannot query the oracle. This captures the idea that
all circuits, except the A circuit, are given the encryption key.

The above explains our design choice of presenting the scheme with a qPRF, which is
modelled as an oracle in the proof. This allows us to assume that the B and C circuits only use
the key k to query f(k, ·) as a black box. By definition of a qPRF, and since all adversaries
are efficient, this scenario is indistinguishable from the random oracle scenario discussed
above.

The proof of Theorem 16 can be found in Appendix B.2. It essentially argues that
Lemma 15 can be applied with a bound of M ≤

(
1
2 + 1

2
√

2

)λ
, which is negligible in λ, due

to Corollary 2.
We can strengthen this result if the adversaries do not share any entanglement (see

Section 1.2 for an application).

I Theorem 17. Let S be the QECM scheme given in Definition 13. If the qPRF is modeled by
a quantum oracle and the adversaries cannot share any entanglement, then S is 0-uncloneable
secure.

Proof (Sketch). Follow the proof of Theorem 16 using Lemma 14 instead of Lemma 15. J

I Corollary 18. Let S be the QECM scheme given in Definition 13 with constant message
size, i.e.: n(λ) = n. If the qPRF is modeled by a quantum oracle and the adversaries cannot
share any entanglement, then S is indistinguishable-uncloneable secure.

Proof (Sketch). Use Theorem 17 with Theorem 12. J
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4:18 Uncloneable Quantum Encryption via Oracles

A Conjugate Encryption

Our first QECM scheme is a one-time pad encoded into Wiesner states. We emphasize that
this scheme will not offer much in terms of uncloneable security but it remains an instructive
example.

I Definition 19 (Conjugate Encryption). We define the conjugate encryption QECM scheme
by the circuits implementing the following algorithms, each implicitly parametrized by λ.
Note that the message size is n(λ) = λ, the key size is κ(λ) = 2λ and the ciphertext size is
`(λ) = λ.

Algorithm 4 The key generation circuit Key.

Input :None.
Output :A state ρ ∈ D(Q(κ)).

1 Sample r ← {0, 1}n uniformly at random.
2 Sample θ ← {0, 1}n uniformly at random.
3 Output ρ = |r〉〈r| ⊗ |θ〉〈θ|.

Algorithm 5 The encryption circuit Enc.

Input :A plaintext m ∈ {0, 1}n and a key (r, θ) ∈ {0, 1}κ.
Output :A ciphertext ρ ∈ D(Q(n)).

1 Output ρ =
∣∣(m⊕ r)θ〉〈(m⊕ r)θ∣∣.

Algorithm 6 The decryption circuit Dec.

Input :A ciphertext ρ ∈ D(Q(n)) and a key (r, θ) ∈ {0, 1}κ.
Output :A plaintext m ∈ {0, 1}n.

1 Compute ρ′ = HθρHθ.
2 Measure ρ′ in the computational basis. Call the result c. Output c⊕ r.

The correctness of this scheme is trivial to verify and it is indistinguishable secure. The
indistinguishable security follows from the fact that if Enc0

r,θ and Enc1
r,θ are as defined in

Definition 6, then for any state ρ ∈ D(HS ⊗Q(n)) we have that

E
r
E
θ

(
1S ⊗ Enc1

(r,θ)

)
(ρ) = E

r
E
θ

(
1S ⊗ Enc0

(r,θ)

)
(ρ). (20)

We will need one small technical lemma before proceeding to the proof of uncloneable
security for this scheme.

I Lemma 20. Let n ∈ N+, f : {0, 1}n × {0, 1}n → R be a function and s ∈ {0, 1}n be a
string. Then, Ex f(x, x⊕ s) = Ex f(x⊕ s, x).

The proof of Lemma 20 may be found in the full version.

I Theorem 21. The scheme in Definition 19 is λ log2

(
1 + 1√

2

)
-uncloneable secure.
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Proof. It suffices to show that for any cloning attack A the quantity

E
m
E
r
E
θ

Tr
[
(|m〉〈m| ⊗ |m〉〈m|)

(
B(r,θ) ⊗ C(r,θ)

)
◦A

(∣∣(m⊕ r)θ〉〈(m⊕ r)θ∣∣)] (21)

is upper bounded by
(

1
2 + 1

2
√

2

)λ
. By applying Lemma 20 with respect to the expectation

over m, this quantity is the same as

E
m
E
r
E
θ

Tr
[
(|m⊕ r〉〈m⊕ r| ⊗ |m⊕ r〉〈m⊕ r|)

(
B(r,θ) ⊗ C(r,θ)

)
◦A

(∣∣mθ
〉〈
mθ
∣∣)] . (22)

We then see that for any fixed r, we can apply Corollary 2 to bound the expectation of the
trace over m and θ by

(
1
2 + 1

2
√

2

)λ
. Setting this quantity to be equal to 2−n+t, recalling

that n = λ, and solving for t completes the proof. J

Finally, note that this scheme cannot be uncloneable-indistinguishable secure if n ≥ 2.
Indeed, the adversaries could submit the all 1 plaintext to be encrypted and split the
ciphertext such that each adversary gets half of the qubits. Once the key is revealed, the
adversaries can then each obtain half of the message with probability 1. This is sufficient to
distinguish between the two possible messages.

B Proofs

B.1 From Section 3
Proof of Theorem 9. For all k ∈ {0, 1}κ(λ) and m ∈ {0, 1}n, define

p(k,m) = Tr [(|m〉〈m| ⊗ |m〉〈m|) (Bk ⊗ Ck) ◦A ◦ Enck (|m〉〈m|)] . (23)

Recalling the min-entropy ofM and that S is t-uncloneable, we may write

E
m←M

E
k←K

Tr [(|m〉〈m| ⊗ |m〉〈m|) (Bk ⊗ Ck) ◦A ◦ Enck (|m〉〈m|)] (24)

=
∑

m∈{0,1}n
Pr [M = m] E

k←K
p(k,m) ≤ 2−h · 2n E

m
E

k←K
p(k,m) ≤ 2−h

(
2t + 2nη(λ)

)
.

Noting that λ 7→ 2−h+nη(λ) is a negligible function concludes the proof. J

B.2 From Section 4
Before giving the proofs of Lemmas 14 and 15, we need the following three small lemmas.
The first two, Lemma 22 and Lemma 23, have straightforward proofs which may be found in
the full version. The third, Lemma 24, implicitly appears in [22].

I Lemma 22. Let R be a ring with a, b ∈ R and c = a+ b. Then, for all n ∈ N+, we have
that cn = an +

∑n−1
k=0 a

n−k−1bck.

I Lemma 23. Let H be a Hilbert space, n ∈ N+, and {v0, v1, . . . , vn} be n + 1 vectors
in H such that ‖vi‖ ≤ 1 for all i ∈ {1, . . . , n} and ‖

∑n
i=0 vi‖ ≤ 1. Then, we have that

‖
∑n
i=0 vi‖

2 ≤ ‖v0‖2 + (3n+ 2)
∑n
i=1 ‖vi‖.

I Lemma 24. Let f : Bool(n,m) → R be a function and x ∈ {0, 1}n be a string. For any
H ∈ Bool(n,m) and y ∈ {0, 1}m, define Hx,y ∈ Bool(n,m) by

s 7→

{
H(s) if s 6= x,

y if s = x.
(25)

Then, EH f(H) = EH Ey f(Hx,y).
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We can now give the proofs of our main technical lemma from Section 4.2.

Proof of Lemma 15. For L ∈ {B,C}, we define PL = |x〉〈x|LQ . Using Lemma 22 and the
fact that we may write ULOHL = ULO

H
L PL + ULO

H
L (1− PL), we have that

(
ULO

H
L

)qL =

=V HL︷ ︸︸ ︷(
ULO

H
L (1− PL)

)qL +
qL−1∑
k=0

=WH,k
L︷ ︸︸ ︷(

ULO
H (1− PL)

)qL−k−1
ULO

H
L PL

(
ULO

H
L

)k (26)

and we define WH
L =

∑qL−1
k=0 WH,k

L . This implies that∥∥∥ΠH(x)
((
UBO

H
B

)qB ⊗ (UCOHC )qC) |ψ〉∥∥∥2

=
∥∥∥ΠH(x)

((
OBO

H
B

)qB ⊗ V HC + V HB ⊗WH
C +WH

B ⊗WH
C

)
|ψ〉
∥∥∥2
.

(27)

We now claim that the contribution from the WH
B ⊗WH

C operator corresponds to the M
in the upper bound provided in the statement. Indeed, using Lemma 23, the definition of
the various W operators, and properties of the operator norm on projectors and unitary
operators, we have that∥∥∥ΠH(x)

((
OBO

H
B

)qB ⊗ V HC + V HB ⊗WH
C +WH

B ⊗WH
C

)
|ψ〉
∥∥∥2

≤
∥∥∥ΠH(x)

((
OBO

H
B

)qB ⊗ V HC + V HB ⊗WH
C

)
|ψ〉
∥∥∥2

+ (3qBqC + 2)qBqC E
k
È
∥∥∥(PB ⊗ PC)

((
UBO

H
B

)k ⊗ (UCOHC )`) |ψ〉∥∥∥.
(28)

Using Jensen’s inequality, the above inequality and the definition of M , we have that

E
H

∥∥∥ΠH(x)
((
OBO

H
B

)qB ⊗ V HC + V HB ⊗WH
C +WH

B ⊗WH
C

)
|ψ〉
∥∥∥2

≤ E
H

∥∥∥ΠH(x)
((
OBO

H
B

)qB ⊗ V HC + V HB ⊗WH
C

)
|ψ〉
∥∥∥2

+ (3qBqC + 2)qBqC
√
M.

(29)

It now suffices to show that

E
H

∥∥∥ΠH(x)
((
OBO

H
B

)qB ⊗ V HC + V HB ⊗WH
C

)
|ψ〉
∥∥∥2
≤ 9

2n . (30)

By Lemma 24, this is equivalent to showing that

E
H
E
y

∥∥∥Πy
((
UBO

Hx,y
B

)qB
⊗ V Hx,yC + V

Hx,y
B ⊗WHx,y

C

)
|ψ〉
∥∥∥2
≤ 9

2n . (31)

In fact, it will be sufficient to show that for any particular H, the expectation over y is
bounded by 9 · 2−n. If, for any H, we define

α = E
y

∥∥∥Πy
((
UBO

Hx,y
B

)qB
⊗ V Hx,yC

)
|ψ〉
∥∥∥2

and β = E
y

∥∥∥Πy
(
V
Hx,y
B ⊗WHx,y

C

)
|ψ〉
∥∥∥2

(32)

then, using the triangle inequality and the fact that the operators in {Πy}y∈{0,1}n project on
mutually orthogonal subspaces, we have that

E
y

∥∥∥Πy
((
OBO

Hx,y
B

)qB
⊗ V Hx,yC + V

Hx,y
B ⊗WHx,y

C

)
|ψ〉
∥∥∥2
≤ α+ β + 2

√
αβ. (33)
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Now, noting that V Hx,yB and V Hx,yC do not depend on the value of y, as they always project
on a subspace which does not query the oracle H on x, and using properties of the operator
norm, we have that

α = E
y

∥∥∥Πy
((
UBO

Hx,y
B

)qB
⊗ V Hx,yC

)
|ψ〉
∥∥∥2

≤ E
y
‖πyB ⊗ 1C‖

2 ·
∥∥∥(UBOHx,yB

)qB
⊗ 1C

∥∥∥2
·
∥∥∥(1B ⊗ πyC)

(
1B ⊗ V

Hx,y
C

)
|ψ〉
∥∥∥2

≤ E
y

∥∥∥(1B ⊗ πyC)
(
1B ⊗ V

Hx,y
C

)
|ψ〉
∥∥∥2

= 1
2n
∥∥(1B ⊗ V HC ) |ψ〉∥∥2 ≤ 1

2n .

(34)

A similar reasoning yields that β ≤ 4 · 2−n, where the 4 is a result of squaring the upper
bound∥∥∥WHx,y

C

∥∥∥ ≤ ∥∥∥(UCOHx,yC

)qC∥∥∥+
∥∥∥V Hx,yC

∥∥∥ ≤ 2. (35)

Finally, noting that α+ β + 2
√
αβ ≤ 9 · 2−n finishes the proof. J

Finally, we can give the proof of our main result.

Proof of Theorem 16. Let A = (A, B, C) be a cloning attack against S as described in
Definition 7. We need to show that the probability that the adversaries can simultaneously
guess a message chosen uniformly at random is upper bounded by 9 · 2−n + η(λ) for a
negligible function η. Furthermore, since the adversaries treat the qPRF as an oracle, it
suffices to show that their winning probability is upper bounded by 9 · 2−n + η(λ) when
averaged over all functions in Bool(λ, n) and not only the functions {fλ(s, ·)}s∈{0,1}λ . Indeed,
by definition of a qPRF, their winning probability in both cases can differ by at most a
negligible function of λ.

The remainder of the proof is an application of Lemma 15 followed by an application of
Corollary 2.

Accounting for the randomness of the encryption and for a fixed and implicit λ, the
quantity we wish to bound is given by

ω = E
H
E
θ
E
x
E
m

Tr
[
Pm

(
BHθ ⊗ CHθ

)
◦A

(
|m⊕H(x)〉〈m⊕H(x)| ⊗

∣∣xθ〉〈xθ∣∣)] (36)

where Pm = |m〉〈m| ⊗ |m〉〈m| and H ∈ Bool(λ, n). Then, by using Lemma 20 with respect
to the expectation over m to move the dependence on the string H(x) from the state to the
projector, we have that

ω = E
H
E
θ
E
x
E
m

Tr
[
Pm⊕H(x) (BHθ ⊗ CHθ ) ◦A (|m〉〈m| ⊗ ∣∣xθ〉〈xθ∣∣)] . (37)

Using standard purification arguments, we add auxiliary states |aux-B〉〈aux-B| and
|aux-C〉〈aux-C| to the state A(|m〉〈m| ⊗

∣∣xθ〉〈xθ∣∣), replace the CPTP maps BHθ and CHθ by
unitary operators on the resulting larger Hilbert spaces and replace the projectors |m〉〈m| by
projectors {πmB }m∈{0,1}n and {πmC }m∈{0,1}n on these larger Hilbert spaces.

Following [8], these purified unitary operators will be of the form
(
UθLO

H
L

)qL , acting on a
Hilbert space of the form Q(λ)LQ ⊗Q(n)LR ⊗Q(sL)LS for some qL, sL ∈ N+ as they model
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oracle computations. In particular, we note that qL represents the number of queries made
to the oracle by that particular party. We also assume that

ρm,x,θ = A(|m〉〈m| ⊗
∣∣xθ〉〈xθ∣∣)⊗ |aux-B〉〈aux-B| ⊗ |aux-C〉〈aux-C|

∈ D(Q(λ)BQ ⊗Q(n)BR ⊗Q(sB)BS ⊗Q(λ)CQ ⊗Q(n)CR ⊗Q(sC)CS ).
(38)

Next, we can write ρm,x,θ as an ensemble of pure states, which is to say that

ρm,x,θ =
∑

i∈Im,x,θ
pi

∣∣∣ψm,x,θi

〉〈
ψm,x,θi

∣∣∣ (39)

for some index set Im,x,θ, some non-zero pi which sum to 1, and some unit vectors
∣∣∣ψm,x,θi

〉
.

It then follows that ω can be expressed as

E
m
E
θ
E
x
E
H

∑
i∈Im,x,θ

pi

∥∥∥(πm⊕H(x)
B ⊗ πm⊕H(x)

C

)((
UθBO

H
B

)qB ⊗ (UθCOHC )qC) ∣∣∣ψm,x,θi

〉∥∥∥2
. (40)

Noting that we can bring the expectation with respect to H into the summation, we can
then use Lemma 15 to upper bound ω by

9
2n + q E

m
E
θ
E
x

∑
i∈Im,x,θ

pi

√
E
H
E
k
È
∥∥∥Qx ((UBOHB )qB ⊗ (UCOHC )qC) ∣∣∣ψm,x,θi

〉∥∥∥2
(41)

where q = (3qBqC + 2)qBqC and Qx = |x〉〈x|QB ⊗ |x〉〈x|QC . Defining

βθ,H,kx =
((
UθBO

H
B

)qB)† |x〉〈x|QB ((UθBOHB )qB) , (42)

and similarly for γθ,H,`x by replacing every instance of B with C, we use Jensen’s lemma to
bring the remaining expectations and sums into the square root and obtain

ω = 9
2n + q

√
E
m
E
θ
E
x
E
H
E
k
ÈTr

[(
βθ,H,kx ⊗ γθ,H,k

)
ρm,x,θ

]
. (43)

Letting Φm to be the CPTP map defined by

ρ 7→ A (|m〉〈m| ⊗ ρ)⊗ |aux-B〉〈aux-B| ⊗ |aux-C〉〈aux-C| (44)

we see that, for any fixed H, k, `, and m, Corollary 2 implies that

E
x
E
θ

Tr
[(
βθ,H,kx ⊗ γθ,H,k

)
ρm,x,θ

]
≤
(

1
2 + 1

2
√

2

)λ
(45)

since ρm,x,θ = Φm
(∣∣xθ〉〈xθ∣∣). Thus,

ω ≤ 9
2n + q

(√
1
2 + 1

2
√

2

)λ
. (46)

Finally, since B and C are efficient quantum circuits, they may query the oracle a number of
time which grows at most polynomially in λ. Thus, q ≤ p(λ) for some polynomial p. Noting

that the function λ 7→ p(λ) ·
(√

1
2 + 1

2
√

2

)λ
is a negligible function completes the proof. J
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Abstract
Mixing (or quasirandom) properties of the natural transition matrix associated to a graph can be
quantified by its distance to the complete graph. Different mixing properties correspond to different
norms to measure this distance. For dense graphs, two such properties known as spectral expansion
and uniformity were shown to be equivalent in seminal 1989 work of Chung, Graham and Wilson.
Recently, Conlon and Zhao extended this equivalence to the case of sparse vertex transitive graphs
using the famous Grothendieck inequality.

Here we generalize these results to the non-commutative, or “quantum”, case, where a transition
matrix becomes a quantum channel. In particular, we show that for irreducibly covariant quantum
channels, expansion is equivalent to a natural analog of uniformity for graphs, generalizing the
result of Conlon and Zhao. Moreover, we show that in these results, the non-commutative and
commutative (resp.) Grothendieck inequalities yield the best-possible constants.
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1 Introduction

In a seminal work [8], Chung, Graham and Wilson – building on work of Thomason [33, 34] –
proved that several seemingly distinct notions of quasirandomness for graphs are equivalent.
In particular, they identified seven properties found in random graphs with high probability,
that always coexist simultaneously in any large dense graph. Two of these properties are
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5:2 Quasirandom Quantum Channels

spectral expansion and uniformity (defined below). A question of Chung and Graham [7]
on the equivalence of these two properties in sparse graphs resulted in a line of research
culminating in recent work of Conlon and Zhao [9], which introduced a surprising new item
to the armory of combinatorics: the famous Grothendieck inequality [13]. In this paper, we
draw a parallel line in the context of quantum information theory, where quantum channels
take the place of graphs. In addition, we give a streamlined proof of the main result of [9]
and show that the use of Grothendieck’s inequality yields an optimal constant. Similarly, we
show that the non-commutative Grothendieck inequality gives an optimal constant in the
quantum setting.

Spectral expansion and uniformity

Spectral expansion is a linear-algebraic property given in terms of the transition matrix of
a graph. This transition matrix is the normalized adjacency matrix, which for a d-regular
graph G = (V,E) is given by Auv = e({u}, {v})/d, where e(S, T ) denotes the number of
edges connecting subsets S, T ⊆ V . We say that the graph G is an (n, d, λ) graph if |V | = n,
it is d-regular and all but the largest eigenvalue of A, which is always 1, have modulus at
most λ. The smallest value of λ for which this holds is denoted by λ(G). Spectral expansion
then refers to the property that λ(G) is much smaller than 1, in which case G is referred
to as a (spectral) expander. Expanders have many important applications in mathematics
and computer science (we refer to [23] for an extensive survey). One such application is
in randomized algorithms, which can exploit the fact that a random walk on an expander
rapidly mixes (i.e. quickly converges to its limit distribution) to significantly reduce the
amount of randomness needed.

Uniformity is a combinatorial property of the configuration of the edges. An n-vertex
d-regular graph G = (V,E) is ε-uniform if for all S, T ⊆ V ,∣∣∣e(S, T )− d

n
|S| |T |

∣∣∣ ≤ εdn (1)

and ε(G) denotes the smallest value of ε for which this holds. Uniformity then refers to
the property that this parameter is much smaller than 1; trivially any graph is 1-uniform.
Intuitively, this says that for any two vertex subsets, the number of edges between those sets
is close to the expected number of edges in a random graph with the same edge density.

A basic result known as the Expander Mixing Lemma [23] shows that for any regular
graph G we have ε(G) ≤ λ(G), which is to say that spectral expansion implies uniformity.
A sequence Gn of dn-regular graphs is called dense if dn ≥ Ω(n), and sparse if dn/n −→ 0.
It was shown in [8] that in the dense case, a converse to the Expander Mixing Lemma
ε(Gn) ≤ o(1)⇒ λ(Gn) ≤ o(1) also holds. In contrast, Krivelevich and Sudakov [25] showed
that this is false for sparse graphs, thereby answering the question posed in [7]. Their
counterexample is not regular, however (and a later one from [4] is not connected). But
in [9] it was shown that even regular sparse graphs (where dn ≤ o(n)) can simultaneously
satisfy ε(Gn) ≤ o(1) and λ(Gn) ≥ Ω(1). Surprisingly, Kohayakawa, Rödl, and Schacht [24]
showed that Cayley graphs over abelian groups, including sparse ones, do again admit such a
converse. Cayley graphs are an important class of regular graphs that include for instance the
famous Ramanujan graphs of Margulis [27] and Lubotzky, Phillips and Sarnak [26]. Conlon
and Zhao [9] generalized this to all Cayley graphs and showed that this implies the same
for all vertex-transitive graphs in general, for which they showed that λ(G) ≤ 4KGε(G),
where 1.6769 . . . ≤ KG < 1.7822 . . . is the famous Grothendieck constant, whose exact value
is currently unknown; the bounds shown here are the best known and were shown by Davie
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and Reeds (independently) in [11, 30] and Braverman et al. in [5], respectively. Spectral
expansion and uniformity are thus equivalent notions of quasirandomness for dense graphs
and vertex-transitive graphs.

Quasirandomness in quantum information theory

A transition matrix, such as the normalized adjacency matrix of a graph, maps probability
vectors1 to probability vectors. A natural non-commutative generalization of a transition
matrix is a quantum channel, a completely positive trace preserving linear map Φ : Mn(C)→
Mn(C); see Section 2 for formal definitions. Quantum channels are the most general operations
on quantum systems that are physically realizable. They encapsulate the “classical” transition
matrices by restricting them to diagonal matrices whose diagonals form probability vectors;
we discuss this in more detail in Section 3. In quantum information theory, general linear
maps from Mn(C) to itself are referred to as superoperators. Since superoperators are in
one-to-one correspondence with bilinear forms on Mn(C)×Mn(C), they also appear in the
context of (generalizations of) Bell inequalities from physics in the form of quantum XOR
games [31, 10], as well as in combinatorial optimization [28].

The graph-theoretic concepts mentioned above have natural analogues for superoperators,
which we discuss next.

In independent work, Hastings [18] and Ben-Aroya, Schwartz and Ta-Schma [3] introduced
quantum expanders as a special class of quantum channels defined analogously to spectral
expanders. For a unital2 quantum channel Φ, the expansion parameter is given by

λ(Φ) = ‖Φ−Π‖S2→S2 = sup
{
‖(Φ−Π)(X)‖S2 : ‖X‖S2 ≤ 1

}
, (2)

where Π : X 7→ 1
nTr(X)Id is the projection onto the identity, ‖X‖S2 =

√
〈X,X〉 is the

Frobenius (or Schatten-2) norm and 〈X,Y 〉 = 1
nTr(Y ∗X) is the normalized trace inner

product. A quantum channel is an expander if λ(Φ) is much smaller than 1. Also quantum
expanders found many applications, one of which is again randomness reduction, where
randomness takes on the form of random unitary matrices. Since a k-qubit unitary requires
4k real parameters, sampling one from the uniform distribution (Haar probability measure)
is very expensive. A 1-design is a fixed collection of unitaries U1, . . . , Um such that the
superoperator Φ(X) = 1

m

∑m
i=1 UiXU

∗
i exactly effects the projection Π, thus mimicking

in a finite way the Haar measure on U(n). Quantum expanders can be used to construct
approximate 1-designs, meaning that Φ(X) and Π(X) are close in trace distance3 instead of
precisely equal. Another application is in cryptography where Ambainis and Smith [1] used
quantum expanders to construct short quantum one-time pads. It was shown in [18] that
truly random quantum channels (given by independent Haar-uniform Ui as described above)
are quantum expanders with high probability, supporting the idea that this is a notion of
quasirandomness.

In this work we introduce a natural notion of uniformity for superoperators, informally
given by how well they mimic the action of Π on projectors on subspaces, which may be
thought of as generalizations of vertex subsets in graphs. This is similar to Hasting’s notion
of edge expansion for quantum channels [18]. In particular, we say that Φ is ε-uniform if for
any two subspaces V,W ⊆ Cn with associated projections PV , PW , it holds that

|〈PV , (Φ−Π)(PW )〉| ≤ ε. (3)

1 We use the convention of writing probability vectors as column vectors intead of row vectors.
2 This is the superoperator analogue of regularity for graphs, defined in Section 2.
3 The trace distance is the distance induced by the Schatten-1 norm, defined in Section 2.
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5:4 Quasirandom Quantum Channels

Let ε(Φ) denote the smallest ε for which this holds. As we show in Section 3.3, the
parameters λ(Φ) and ε(Φ) reduce to their graphical analogs under a suitable embedding of
graphs into quantum channels.

Finally, also symmetry, which in the graph-theoretic context takes the form of vertex
transitivity, is an important property of quantum channels. In particular, irreducibly covariant
quantum channels, which turn out to generalize vertex-transitive graphs (see Section 3), play
an important role in questions about the capacity of quantum channels as noisy transmitters
of quantum information [22]. A now famous result of Hastings [19] shows that the minimum
output capacity in general does not have the intuitively natural property of being sub-additive
under tensor products. However, it was shown earlier by Holevo [21], that the capacity is
additive for the subclass of irreducibly covariant quantum channels.

Summary of our results

In this work we make a first step in the study of the equivalence of quasirandom properties
for quantum channels, or superoperators in general, and show optimality in the case of
vertex-transitive graphs and covariant quantum channels.

(Section 3.2) Our main result shows that under irreducible covariance, expansion and
uniformity are equivalent for superoperators. In particular, while a simple analogue of the
classical Expander Mixing Lemma implies that ε(Φ) ≤ λ(Φ) in general, we show using a
non-commutative version of Grothendieck’s inequality due to Haagerup [14], that for this
class of superoperators, also λ(Φ) ≤ 2π2ε(Φ) always holds. This implies the same result
for vertex-transitive graphs with C-weighted edges, essentially proved in [9] with the
factor 2 replaced by the complex Grothendieck constant 1.3380 . . . ≤ KC

G ≤ 1.4049 . . . .
(Section 3.3) We show that a construction of sparse regular graphs from [9] can be
embedded to give a sequence of quantum channels Φn that are not irreducibly covariant
and for which it holds that ε(Φn) ≤ o(1) and λ(Φn) ≥ Ω(1).
(Section 3.4) We show that for randomizing channels, a notion introduced in [2], the two
notions of quasirandomness are also equivalent. This can be interpreted as a generalization
of the same statement for dense graphs proved in [8].
(Section 4.1) We show that the result of [9] cannot be improved in the sense that the
factors 4KG and π2KC

G are optimal in the case of vertex-transitive graphs with R-weighted
and C-weighted edges, respectively.
(Section 4.2) Our work leaves open whether the factor 2π2 in our main result is optimal.
However, our proof consists of two steps, the first of which gives a factor 2 and the second
a factor π2, and we show these steps are individually optimal. We prove that the first step
is optimal by showing that an example of Haagerup and Ito [16] for the non-commutative
Grothendieck inequality is irreducibly covariant, which uses some representation theory
of SO(n). The optimality of the second step follows directly from a result of [9].

2 Preliminaries

Write [n] = {1, . . . , n}. For a finite set S, write Es∈S for 1
|S|
∑
s∈S . For a compact set S,

write C(S) for the set of continuous functions from S to C. For a compact group Γ, write
Eg∈Γ for the the integral with respect to the (unique) Haar probability measure on Γ.

WriteMn(C) for the set of complex n×n matrices and let U(n) = {X ∈Mn(C) : X∗X =
Id} be the set of unitary matrices. Here, all maps of the form Φ : Mn(C) → Mn(C) are
linear, and we refer to these as superoperators. A superoperator Φ is unital if Φ(Id) = Id
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and it is completely positive if for all k ∈ N the superoperator Id⊗Φ : Mk ⊗Mn →Mk ⊗Mn

maps positive semidefinite matrices to positive semidefinite matrices. Completely positive
superoperators that are trace preserving are called quantum channels.

We normalize inner products so that for x, y ∈ Cn we define 〈y, x〉 = Ei∈[n] yixi and for
matrices X,Y ∈Mn(C) we have 〈Y,X〉 = 1

nTr[Y ∗X].

Norms

For p ∈ [1,∞), x ∈ Cn and X ∈Mn(C), the Lp norm and (normalized) Schatten-p norm are
defined by

‖x‖Lp =
(

E
i∈[n]
|xi|p

)1/p
and ‖X‖Sp =

( 1
n

Tr
[
(X∗X)p/2

])1/p

and ‖x‖L∞ = maxi |xi| and ‖X‖S∞ = sup{|〈Xx, y〉| : ‖x‖L2 , ‖y‖L2 ≤ 1}. Note that for the
identity matrix Id ∈Mn we have ‖Id‖Sp

= 1 for all p ∈ [1,∞].

I Proposition 1. Let p ≥ 1 and let X ∈Mn(C). Then ‖X‖Sp
≥ ‖(X11, . . . , Xnn)‖Lp

.

Proof. For a vector x ∈ Cn, denote by Diag(x) the n× n matrix with x on the diagonal and
for a matrix X denote by diag(X) the matrix where we set the off-diagonal elements to 0. A
small computation shows that

E
s∈{±1}n

Diag(s)X Diag(s) = diag(X).

Since the Schatten-p norms are invariant under conjugation with a unitary matrix, applying
the above with the triangle inequality gives

‖(X11, . . . , Xnn)‖Lp
= ‖diag(X)‖Sp

≤ E
s∈{±1}n

‖Diag(s)X Diag(s)‖Sp
= ‖X‖Sp

. J

For q ∈ [1,∞], define q′ ∈ [1,∞] to be its dual given by 1
q + 1

q′ = 1. For p, q ∈ [1,∞], a
matrix A ∈Mn(C) and a superoperator Φ : Mn(C)→Mn(C), define

‖A‖Lp→Lq = sup{|〈y,Ax〉| : ‖x‖Lp ≤ 1, ‖y‖Lq′ ≤ 1}

‖Φ‖Sp→Sq = sup{|〈Y,Φ(X)〉| : ‖X‖Sp ≤ 1, ‖Y ‖Sq′ ≤ 1}.

Also define the cut norms by

‖A‖cut = max{|〈y,Ax〉| : x, y ∈ {0, 1}n}
‖Φ‖cut = sup{|〈Y,Φ(X)〉| : X,Y projectors}.

It is then not hard to see that if G is a d-regular graph with normalized adjacency matrix A,
then ε(G) = ‖A− 1

nJ‖cut, where J is the all-ones matrix. Similarly, we have ε(Φ) = ‖Φ−Π‖cut.
We have the following relation between these norms, the proof of which is a simple

generalization of the same result from [9] for matrices.

I Lemma 2. For any superoperator Φ, we have ‖Φ‖cut ≤ ‖Φ‖S∞→S1 ≤ π2‖Φ‖cut and π2 is
the best possible constant.

Proof. First note that the cut norm as defined above can also be written as

‖Φ‖cut = sup{|〈Y,Φ(X)〉| : X,Y � 0 , ‖X‖S∞ , ‖Y ‖S∞ ≤ 1}, (4)
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5:6 Quasirandom Quantum Channels

because the set {X : X � 0, ‖X‖S∞ ≤ 1} is the convex hull of the set of projectors. Hence,
by linearity the supremum in (4) will always be attained by projectors.

The first inequality of the lemma follows by dropping the positive semidefinite constraint.
For the second inequality, let z be a complex number of norm 1, and w a uniform random
complex number of norm 1. Then

z = π Ew[w 1{<(zw̄)≥0} ].

Note that Ew[f(w)] = 1
2π
∫ 2π

0 f(eiθ)dθ, hence the equality follows by using
∫ π/2
−π/2 cos(θ)dθ = 2.

We have ‖Φ‖S∞→S1 = sup{|〈Y,Φ(X)〉| : ‖X‖S∞ , ‖Y ‖S∞ ≤ 1}. The set of matrices X such
that ‖X‖S∞ ≤ 1 is the convex hull of the set of unitary matrices, so by linearity we can
assume that the supremum in ‖Φ‖S∞→S1 is obtained by unitary X,Y . Unitary matrices
are diagonalizable, so write X = UAU∗ and Y = V BV ∗ with U, V unitary and A,B

diagonal. Let u,w ∈ C, |u| = |w| = 1 be uniform random complex numbers and define
diagonal matrices A′, B′ as A′ii(w) = 1{<(Aiiw̄)≥0} and B′ii(u) = 1{<(Biiū)≥0}. By the above
we have A = π Ew[wA′(w)] and similar for B, so we have X = π Ew[wUA′(w)U∗] and
Y = π Eu[uV B′(u)V ∗]. Now, UA′(w)U∗ and V B′(u)V ∗ are projections for all values of w
and u, as required in the definition of the cut norm. Therefore

‖Φ‖S∞→S1 = |〈Y,Φ(X)〉| = π2|Eu,wūw〈V B′(u)V ∗,Φ(UA′(w)U∗)〉|
≤ π2Eu,w|〈V B′(u)V ∗,Φ(UA′(w)U∗)〉|
≤ π2Eu,w‖Φ‖cut

= π2‖Φ‖cut,

completing the first part of the proof. Conlon and Zhao show that π2 is the best possible
constant in the commutative case, using the matrix A ∈Mn(C) given by Ast = e2πi(s−t)/n.
This matrix satisfies ‖A‖L∞→L1 = n and one can show ‖A‖cut = (π−2 + o(1))n. By
Proposition 10 in Section 3.3, their example can be embedded into a superoperator with the
same norms so π2 is also the best possible constant here. J

Define the Grothendieck norm of of a matrix A ∈Mn(C) by

‖A‖G := sup
{∣∣∣ 1
n

n∑
i,j=1

Aij〈xi, yj〉
∣∣∣ : d ∈ N, xi, yj ∈ Cd, ‖xi‖L2 ≤ 1, ‖yj‖L2 ≤ 1

}
.

Then, the complex Grothendieck constant is given by

KC
G := sup

{ ‖A‖G
‖A‖L∞→L1

: n ∈ N, A ∈Mn(C)
}
.

The current best upper and lower bounds on KC
G are 1.4049 [15] and 1.338 [11], respectively.

The real version of the Grothendieck constant, denoted by KG and mentioned in the
introduction, is obtained by replacing the underlying field in the above quantities by the
reals.

Some basic group theory

Given a graph G = (V,E), a permutation π : V → V is an automorphism of G if for all
u, v ∈ V , we have {π(u), π(v)} ∈ E ⇔ {u, v} ∈ E. The automorphisms of G form a group
under composition, which we call Aut(G). Then, G is said to be vertex transitive if for every
u, v ∈ V , there is a π ∈ Aut(G) such that π(u) = v. For superoperators, we have the following
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analogous definitions. A unitary representation of a group Γ on Cn is a homomorphism from
Γ to U(n) and it is irreducible if the only subspaces of Cn that are left invariant by the group
action are the zero-dimensional subspace and Cn itself.

I Definition 3 (Irreducible covariance). A superoperator Φ : Mn(C)→Mn(C) is irreducibly
covariant if there exist a compact group Γ and continuous irreducible unitary representations
U, V : Γ→ U(n) such that for all g ∈ Γ and X ∈Mn(C), we have

Φ(U(g)XU∗(g)) = V (g)Φ(X)V ∗(g).

3 Converse expander mixing lemmas

In this section, we prove the “converse expander mixing lemmas” announced in the first and
third bullet in the introduction. As a warm-up, we start with a proof of the commutative
case due to Conlon and Zhao, which we reprove in a slightly different manner analogous to
how we will prove the non-commutative case.

3.1 Commutative case
In the following, let S be a compact set and Γ be a compact group acting continuously and
transitively on S. The Haar probability measure on Γ induces a measure on S (by pullback)
according to which the Lp-norm (for p ∈ [1,∞)) and inner product of f, g ∈ C(S) are given
by

‖f‖Lp
=
(

E
π∈Γ

∣∣f(π(s0)
)∣∣p) 1

p and 〈f, g〉 = E
π∈Γ

f
(
π(s0)

)
g
(
π(s0)

)
, (5)

where (by transitivity) s0 can be taken to be some arbitrary but fixed element of S. We
lift the action of Γ on S to an action on C(S) by precomposition, that is, for any function
f ∈ C(S) and element π ∈ Γ, define the function fπ by fπ(s) := f(π(s)). Furthermore, for
a linear map A : C(S)→ C(S) define Aπ by Aπf := (Afπ)π−1 and say that A is transitive
covariant with respect to Γ if for any π ∈ Γ we have Aπ = A.4 We sometimes omit the group
and simply say A is transitive covariant if such a group Γ exists.

In [9], the following result is proved (over the real numbers) for the case S = [n], in which
case transitive covariant linear maps A are simply n× n matrices which commute with the
permutation matrices of a transitive subgroup Γ of Sn. However, their proof easily implies
the more general version below.

I Theorem 4 (Conlon–Zhao). Let S be as above and let A : C(S)→ C(S) be a linear map
that is transitive covariant with respect to Γ. Then,

‖A‖L2→L2 ≤ KC
G‖A‖L∞→L1 .

Here we give a somewhat more streamlined proof of this result based on a well-known
factorization version of Grothendieck’s inequality [13] (see also [29]), which will serve as a
stepping stone to the proof of the non-commutative case.5 In our setting the inequality
asserts the following

4 In general one says A is covariant with respect to Γ, but we say transitive to emphasize that we require Γ
to act transitively on S.

5 The main difference is that in [9], the result is first proved for weighted Cayley graphs, after which it is
shown that this implies the result for transitive covariant matrices.

TQC 2020



5:8 Quasirandom Quantum Channels

I Theorem 5 (Commutative Grothendieck inequality (factorization)). Let S be as above and
let A : C(S)→ C(S) be a linear map. Then, there exist probability measures λ, ν on S such
that for all f, g ∈ C(S), we have

|〈g,Af〉| ≤ KC
G‖A‖L∞→L1

(∫
S

|f(s)|2 dλ(s)
)1/2(∫

S

|g(s)|2dν(s)
)1/2

.

Proof of Theorem 4. It follows from the triangle inequality and transitivity that

|〈g,Af〉| ≤ E
π∈Γ
|〈g,Aπf〉| = E

π∈Γ
|〈gπ, Afπ〉|.

By Theorem 5 and the AM-GM inequality there are probability measures λ, ν on S such
that the above right-hand side is at most

KC
G‖A‖L∞→L1

2 E
π∈Γ

(∫
S

|fπ(s)|2dλ(s) +
∫
S

|gπ(s)|2dν(s)
)

= KC
G‖A‖L∞→L1

2 (‖f‖2L2 + ‖g‖2L2 ),

where we switched the order of the integrals (using Tonelli’s theorem) and the expression (5)
for the L2 norm. For ‖f‖L2 = ‖g‖L2 = 1 this shows ‖A‖L2→L2 ≤ KC

G‖A‖L∞→L1 . J

3.2 Non-commutative case
Our main technical result is as follows.

I Theorem 6. Let Φ : Mn(C) → Mn(C) be an irreducibly covariant superoperator. Then,
‖Φ‖S∞→S1 ≤ ‖Φ‖S2→S2 ≤ 2‖Φ‖S∞→S1 .

Since the supremum in ‖Φ‖S∞→S1 is taken over X,Y with S∞-norm equal to 1, the first
inequality of the theorem follows from the fact that ‖X‖S2 ≤ ‖X‖S∞ . As projectors have
Schatten-∞ norm 1, the first inequality also easily implies the analogue of the Expander
Mixing Lemma, that is, ε(Φ) ≤ λ(Φ), where λ(Φ) and ε(Φ) are as in (2) and (3), respectively;
note that when Φ is irreducibly covariant, so is Φ−Π. The second inequality is proved at
the end of this section and in Section 4.2 we show that the factor 2 in the theorem is optimal.
With Lemma 2, which relates the uniformity parameter ε(Φ) to ‖Φ−Π‖S∞→S1 , Theorem 6
then immediately gives the following result stated in the introduction.

I Corollary 7 (Converse Quantum Expander Mixing Lemma). Let Φ : Mn(C)→Mn(C) be an
irreducibly covariant superoperator. Then, λ(Φ) ≤ 2π2ε(Φ).

In this non-commutative setting we use the following analog of Theorem 5 (a factorization
version of the non-commutative Grothendieck inequality), proved by Haagerup in [14]; see
also [29]. A density matrix is a positive semidefinite matrix with trace equal to 1.

I Theorem 8 (Haagerup). Let Φ: Mn(C)→ Mn(C) be a superoperator. Then, there exist
density matrices ρ1, ρ2, σ1, σ2 such that for any X,Y ∈Mn(C), we have

|〈Y,Φ(X)〉| ≤ ‖Φ‖S∞→S1 (Tr[ρ1X
∗X] + Tr[ρ2XX

∗])1/2 (Tr[σ1Y
∗Y ] + Tr[σ2Y Y

∗])1/2
.

(6)

We also use the following lemma.

I Lemma 9. Let Γ be a compact group. Then, a unitary representation U : Γ → U(n) is
irreducible if and only if for any X ∈Mn(C), we have

E
g∈Γ

U(g)XU(g)∗ = Tr(X) 1
n

Id.
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Proof. By Schur’s lemma, if U is an irreducible representation, then for T ∈Mn(C)[
∀g ∈ Γ U(g)TU(g)∗ = T

]
⇐⇒

[
∃λ ∈ C T = λ Id

]
.

Let TX = Eg∈Γ U(g)XU(g)∗, then by the group structure we have U(g)TXU(g)∗ = TX for
all g ∈ Γ. Therefore, if U is irreducible then TX = λX Id. By taking the trace, it follows
that λX = Tr(X)/n. In the other direction, if U is reducible then there exists a projector
P onto an irreducible subspace that is left invariant, i.e. U(g)PU(g)∗ = P for all g ∈ Γ, so
TP 6= λId. J

Proof of Theorem 6. Denote by Γ and U, V : Γ→ U(n) the group and irreducible repres-
entations such that Φ is irreducibly covariant with respect to Γ (see Definition 3). For any
X,Y ∈Mn(C) write Xg = U(g)XU∗(g) and Yg = V (g)Y V ∗(g), then we have

|〈Y,Φ(X)〉| = E
g∈Γ
|〈Yg,Φ(Xg)〉|.

By Theorem 8 and the AM-GM inequality, there exist density matrices ρ1, ρ2, σ1, σ2 such
that the right hand side is bounded from above by

1
2‖Φ‖S∞→S1 E

g∈Γ

(
Tr[ρ1X

∗
gXg] + Tr[ρ2XgX

∗
g ] + Tr[σ1Y

∗
g Yg] + Tr[σ2YgY

∗
g ]
)
.

By Lemma 9 we have Eg∈ΓX
∗
gXg = Eg∈Γ U(g)X∗XU∗(g) = 1

nTr[X∗X]Id = ‖X‖2S2
Id. Let

ρ be a density matrix, then Eg∈Γ Tr[ρX∗gXg] = ‖X‖2S2
. The same holds for Eg∈Γ Tr[ρXgX

∗
g ]

but with U , and for Y with V , so we see that the above quantity is equal to

‖Φ‖S∞→S1

(
‖X‖2S2

+ ‖Y ‖2S2

)
.

If ‖X‖S2 = ‖Y ‖S2 = 1 we obtain ‖Φ‖S2→S2 ≤ 2‖Φ‖S∞→S1 . J

3.3 Embedding graphs into quantum channels
In this subsection, we elucidate the claim that quantum channels generalize graphs and
prove the result stated in the second bullet in the introduction, namely that there are
non-irreducible quantum channels for which a converse expander mixing lemma does not
hold.

We consider the following embeddings. For A ∈Mn(C), define ΦA : Mn(C)→Mn(C) as

ΦA(X) =
∑
i,j

AijXjjEii, (7)

where Eij is the matrix with a single 1 at position (i, j). When A is a transition matrix, i.e.,
its column sums are 1, then it is not hard to see that ΦA is completely positive and trace
preserving and that Φ 1

nJ
= Π. Several other ways exist to create quantum expanders from

expander graphs, see for example [20] and [17], but as we show below, our embedding given
above carries over all relevant properties of the graph we consider here.

Conlon and Zhao [9] give an infinite sequence of d-regular graphs Gn that are o(1)-uniform
but for which λ(Gn) ≥ 1/2. Combined with the following proposition, this immediately gives
the result stated in the second bullet in the introduction.

I Proposition 10. Let A ∈Mn(C) and p, q ∈ [1,∞]. Then, for ΦA as in (7), we have

‖ΦA −Π‖Sp→Sq = ‖A− 1
n
J‖Lp→Lq and ‖ΦA −Π‖cut = ‖A− 1

n
J‖cut.
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5:10 Quasirandom Quantum Channels

Proof. Let B = A− 1
nJ , then ΦA −Π = ΦB. By compactness and definition of ‖ · ‖Sp→Sq

we can assume there is an X ∈Mn(C) such that ‖ΦB‖Sp→Sq
= ‖ΦB(X)‖Sq

/‖X‖Sp
. Write

X = diag(x)+Xother where x ∈ Cn is the diagonal ofX, andXother are the off-diagonal entries.
Note that by definition of ΦB we have ΦB(X) = ΦB(diag(x)) = diag(Bx). By definition of
Schatten norms, ‖diag(x)‖Sp

= ‖x‖Lp
and by Proposition 1 we have ‖X‖Sp

≥ ‖x‖Lp
. We

have

‖B‖Lp→Lq
≥
‖Bx‖Lq

‖x‖Lp

≥
‖diag(Bx)‖Sq

‖X‖Sp

=
‖ΦB(X)‖Sq

‖X‖Sp

= ‖ΦB‖Sp→Sq

Now let y ∈ Cn be such that ‖B‖Lp→Lq = ‖By‖Lq/‖y‖Lp . Then

‖ΦB‖Sp→Sq
≥
‖ΦB(diag(y))‖Sq

‖diag(y)‖Sp

=
‖diag(By)‖Sq

‖y‖Lp

=
‖By‖Lq

‖y‖Lp

= ‖B‖Lp→Lq
.

This proves the first part.

The cut norm of a matrix takes the supremum over x, y ∈ {0, 1}n. Instead we can
relax this to x, y ∈ [0, 1]n, since by linearity the supremum will always be attained by
the extreme points. Similarly, for the superoperator case, we use Equation (4). Then,
there exist x, y ∈ [0, 1]n such that ‖B‖cut = |〈Bx, y〉|. We have diag(x),diag(y) � 0 and
‖diag(x)‖S∞ , ‖diag(y)‖S∞ ≤ 1. Therefore

‖ΦB‖cut ≥ |〈diag(y),ΦB(diag(x))〉| = |〈diag(y),diag(Bx)〉| = |〈y,Bx〉| = ‖B‖cut.

In the other direction, let X,Y ∈Mn(C) such that X,Y � 0 and ‖X‖S∞ , ‖Y ‖S∞ ≤ 1. Define
x, y to be the diagonals of X,Y , i.e. xi = Xii and yi = Yii. By Proposition 1 we have
‖x‖L∞ , ‖y‖L∞ ≤ 1. Since X,Y � 0 we know all diagonal entries of X and Y are real and
non-negative, so we have x, y ∈ [0, 1]n. We conclude

‖B‖cut ≥ |〈y,Bx〉| = |〈diag(y),diag(Bx)〉| = |〈Y,ΦB(X)〉| = ‖ΦB‖cut,

completing the proof. J

Note that ‖A− 1
nJ‖L2→L2 is the second largest eigenvalue in absolute value of the matrix A,

so spectral expansion is preserved under the embedding of graphs into quantum channels.
Also, uniformity is preserved since the cut-norm does not change.

The following proposition shows that the embedding (7) preserves transitivity. This shows
that our Theorem 6 generalizes the main result of [9], albeit with a slightly worse constant.

I Proposition 11. For any A ∈Mn(C), A is vertex transitive if and only if ΦA is irreducibly
covariant.
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Proof. Suppose A is vertex transitive. Let π ∈ Aut(A) be a permutation and Pπ ∈Mn(C)
be the associated permutation matrix, so that PπAP ∗π = A. Then,

ΦA(PπXP ∗π ) =
∑
i,j

Aij(PπXP ∗π )jjEii

=
∑
i,j

AijXπ−1(j)π−1(j)Eii

=
∑
i,j

Aiπ(j)XjjEii

=
∑
i,j

Aπ(i)π(j)XjjEπ(i)π(i)

=
∑
i,j

Aπ(i)π(j)Xjj(PπEiiP ∗π ) = PπΦA(X)P ∗π .

This shows that for all π ∈ Aut(A) we have ΦA(PπXP ∗π ) = PπΦA(X)P ∗π .
Let T = {c ∈ C : |c| = 1} be the complex unit circle. For α ∈ Tn, define Uα := diag(α).

We have UαEiiU∗α = |αi|2Eii = Eii and (UαXU∗α)ii = |αi|2Xii = Xii. Therefore

ΦA(UαXU∗α) =
∑
i,j

Aij(UαXU∗α)jjEii =
∑
i,j

AijXjjUαEiiU
∗
α = UαΦA(X)U∗α.

We combine these two observations as follows. First we have that(
E

α∈Tn
UαXU

∗
α

)
ij

= E
α∈Tn

αiXijαj =
∫ 2π

0

∫ 2π

0
αiXijαj dαidαj = Xiiδij

If A is vertex transitive then for all x ∈ Cn we have Eπ∈Aut(A) Pπ diag(x)P ∗π = (Ei xi) Id.
Therefore

E
π∈Aut(A)
α∈Tn

(PπUα)X(PπUα)∗ = E
π∈Aut(A)

Pπ

(
E

α∈Tn
UαXU

∗
α

)
P ∗π = Tr(X)

n
Id.

Letting G ⊂ Mn(C) be the subgroup generated by the Uα and Pπ for π ∈ Aut(A), we see
that for any g ∈ G

ΦA(gXg∗) = gΦA(X)g∗

and by the previous equation and Lemma 9, G acts irreducibly on Cn (and it is unitary).
This proves Φ is irreducibly covariant with respect to the group G with equal representations.

For the other direction, let U : G → U(n) be the irreducible representation such that
ΦA is irreducibly covariant, i.e. ΦA(U(g)XU∗(g)) = U(g)ΦA(X)U∗(g) for all g ∈ G. Define
Pg ∈Mn(C) as (Pg)ij = |U(g)ij |2 so that (U(g)EjjU(g)∗)ii = (Pg)ij . Then

Akl = Tr[EkkΦA(Ell)] = Tr[U(g)EkkU(g)∗ ΦA(U(g)EllU(g)∗)]

=
∑
ij

Aij(Pg)jl(Pg)ik = (PTg APg)kl,

showing PTg APg = A. Since U(g) is unitary, Pg is doubly stochastic so by Birkhoff’s
Theorem Pg is a convex combination of permutation matrices, i.e., Pg = Ei Πi for some (not
necessarily uniform) probability distribution and where Πi is a permutation matrix. We have

Akl = (PTg APg)kl = E
i
E
j
(ΠT

i AΠj)kl = E
i
E
j
Aπi(k) πj(l).
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5:12 Quasirandom Quantum Channels

Since A is {0, 1}-valued, it follows that if Akl = 1 then all elements of the convex combination
on the right-hand side must be 1, and if Akl = 0 then all elements of the right hand side must
be 0. Therefore, for all i we have ΠT

i AΠi = A. By irreducibility, we have for all k, l that

1
n

= Tr[Ekk]
n

Idll =
(

E
g∈G

U(g)EkkU∗(g)
)
ll

= E
g∈G
|U(g)lk|2 ,

showing Eg∈G(Pg)lk = 1/n. It follows that there is a g ∈ G such that (Pg)lk > 0. Decompos-
ing Pg into permutation matrices shows there is a Π ∈ Aut(A) such that Πlk = 1. This holds
for all k, l, proving the lemma. J

3.4 Randomizing superoperators

We prove the following analogue of one of the results from [8] showing that for any d-regular
graph G, it holds that λ(G) ≤

(
2ε(G)/δ2)1/4, where δ = d/n is the edge density. This in

particular establishes a tight relation between spectral expansion and uniformity for sequences
of graphs with δn ≥ Ω(1). For A ∈ Mn(C), we have ‖A‖L1→L∞ = n supij |Aij |, and for an
n-vertex d-regular graph with normalized adjacency matrix A we have supij |Aij | = 1

d so
‖A‖L1→L∞ = 1

δ . Therefore, a sequence of graphs with normalized adjacency matrices An is
dense exactly when ‖An‖L1→L∞ ≤ O(1).

A superoperator Φ is said to be η-randomizing if ‖Φ‖S1→S∞ ≤ η, which when η ≤ O(1),
may thus be seen as an analogue of density. Note that by Proposition 10 the embedding of
any dense graph is O(1)-randomizing.

I Proposition 12. Let Φ : Mn(C) → Mn(C) be a unital superoperator that is O(1)-
randomizing. Then, λ(Φ) ≤ O(ε(Φ)1/4).

To prove Proposition 12, we require the following lemma.

I Lemma 13. Let Φ : Mn(C)→Mn(C) be a superoperator and let C = ‖Φ‖S1→S∞ . Then

we have ‖Φ‖S2→S2 ≤
(
C3‖Φ‖S∞→S1

)1/4
.

Proof. Note that by definition of C we have |〈Q,Φ(P )〉| ≤ C‖Q‖S1‖P‖S1 . Let X,Y ∈Mn(C)
be such that 〈Y,Φ(X)〉 = ‖Φ‖S2→S2 with ‖X‖S2 = ‖Y ‖S2 = 1. Write X = 1

n

∑n
i=1 λiPi

and Y = 1
n

∑n
i=1 µiQi with Pi, Qi rank-1 matrices with ‖Qi‖S1 = ‖Pi‖S1 = 1. We have

‖λ‖L2 = ‖µ‖L2 = 1 and by applying Cauchy-Schwarz twice,

|〈Y,Φ(X)〉|4 =
∣∣∣E
ij
λiµj〈Qj ,Φ(Pi)〉

∣∣∣4
≤
(
E
i
λ2
i

)2 (
E
i

∣∣E
j
µj〈Qj ,Φ(Pi)〉

∣∣2)2

=
(

E
i,j,j′

µjµj′〈Qj ,Φ(Pi)〉〈Pi,Φ∗(Qj′)〉
)2

≤
(

E
j,j′

µ2
jµ

2
j′

)(
E
j,j′

∣∣∣E
i
〈Qj ,Φ(Pi)〉〈Pi,Φ∗(Qj′)〉

∣∣∣2)
= E
i,i′,j,j′

〈Qj ,Φ(Pi)〉〈Pi,Φ∗(Qj′)〉〈Qj′ ,Φ(Pi′)〉〈Pi′ ,Φ∗(Qj)〉,

where all indices are averaged from 1 to n. Now we see
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|〈Y,Φ(X)〉|4 ≤ E
i,j
〈Qj ,Φ(Pi)〉

〈
E
j′
〈Qj′ ,Φ(Pi)〉Qj′ ,Φ

(
E
i′
〈Pi′ ,Φ∗(Qj)〉Pi′

)〉
≤ E
i,j
|〈Qj ,Φ(Pi)〉| ‖Φ‖S∞→S1 ‖E

j′
〈Qj′ ,Φ(Pi)〉Qj′‖S∞ ‖E

i′
〈Pi′ ,Φ∗(Qj)〉Pi′‖S∞

≤ E
i,j
|〈Qj ,Φ(Pi)〉| ‖Φ‖S∞→S1 max

j′
|〈Qj′ ,Φ(Pi)〉| max

i′
|〈Qj ,Φ(Pi′)〉|

≤ C3‖Φ‖S∞→S1 . J

Proof of Proposition 12. Let Π(X) = 1
nTr[X]Id and E = Φ − Π, then ‖E‖cut ≤ ε by

assumption. Define C = ‖Φ‖S1→S∞ . We have ‖Π‖S1→S∞ = 1 so by the triangle inequality,
‖E‖S1→S∞ ≤ C + 1. Using Lemma 2 and Lemma 13 applied to E we find ‖E‖S2→S2 ≤
((C + 1)3π2ε)1/4. J

4 Optimality of constants

4.1 Commutative case
In this section we prove the fourth bullet point in our introduction. Theorem 4 shows
that KC

G bounds the ratio of the L2 → L2 and L∞ → L1 norms, and Lemma 2 (the matrix
version) shows that π2 bounds the ratio of the L∞ → L1 norm and the cut norm. We now
prove the optimality of the combined inequality.

Let Sm−1 = {x ∈ Cm : ‖x‖L2 = 1} denote the (m− 1)-dimensional unit sphere endowed
with its Haar probability measure µ.

I Theorem 14. For any ε > 0 there exist positive integers m, k and a transitive covariant
linear map M : C(Sm−1 × [k])→ C(Sm−1 × [k]) such that ‖M‖L2→L2 ≥ (π2KC

G − ε)‖M‖cut.

The optimality of π2 between the L∞ → L1 norm and the cut norm is already covered in
Lemma 2. We show that KC

G is optimal in the sense that Theorem 4 cannot be improved
(despite the fact that the exact value of the Grothendieck constant KC

G is unknown). We do
this in Lemma 15 below. Then in Lemma 16 we show that any map can be lifted to one
on a bigger space with appropriately bounded cut norm. The combination of these lemmas
proves our theorem.

In the introduction we also mentioned the optimal constant 4KG in the case where the
field is R instead of C. The proofs below still apply in this case, with only small modifications.

I Lemma 15. For any ε > 0 there exists a positive integer m and a transitive covariant
linear map B : C(Sm−1)→ C(Sm−1) such that ‖B‖L2→L2 ≥ (KC

G − ε)‖B‖L∞→L1 .

Proof. By definition of the Grothendieck constant, for any ε > 0 there exists an n ∈ N
and a linear map A ∈ Mn(C) such that ‖A‖G ≥ (KC

G − ε)‖A‖L∞→L1 . This map A might
not be transitive covariant, so from it we will now construct a transitive covariant linear
map B : C(S2n−1)→ C(S2n−1) such that ‖B‖L∞→L1 ≤ ‖A‖L∞→L1 and ‖B‖L2→L2 ≥ ‖A‖G.
This idea is based on a lemma found in [6].

Let xi, yj ∈ S2n−1 be the vectors that attain the Grothendieck norm for A, which can
always be assumed to be 2n-dimensional since there are only 2n of them, so

‖A‖G =
∣∣∣ 1
n

∑
i,j

Aij〈xi, yj〉
∣∣∣.
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Define the map B by

〈f,B(g)〉 = 1
n

∑
i,j

Aij

∫
U(2n)

f(Uxi)g(Uyj)dU.

To bound ‖B‖L∞→L1 we have to bound |〈f,B(g)〉| for f, g : S2n−1 → [−1, 1]. By the triangle
inequality,

|〈f,B(g)〉| ≤
∫
U(2n)

∣∣∣ 1
n

∑
i,j

Aijf(Uxi)g(Uyj)
∣∣∣dU ≤ ∫

U(2n)
‖A‖L∞→L1dU ≤ ‖A‖L∞→L1 .

Now for each i ∈ [2n] let fi ∈ C(S2n−1) be given by fi(x) = xi (i.e. the i-th coordinate).
Then,

1
2n

2n∑
i=1
〈fi, B(fi)〉 ≤

1
2n

2n∑
i=1
‖B‖L2→L2‖fi‖2L2

= ‖B‖L2→L2

∫
S2n−1

1
2n

2n∑
i=1

x2
i dµ(x)

= ‖B‖L2→L2 .

On the other hand,

1
2n

2n∑
i=1
〈fi, B(fi)〉 = 1

n

∑
i,j

Aij

∫
U(2n)

〈Uxi, Uyj〉dU = 1
n

∑
i,j

Aij〈xi, yj〉 = ‖A‖G,

so we conclude ‖B‖L2→L2 ≥ ‖A‖G. We will show B is transitive covariant with respect
to Γ = U(2n). To show B is invariant, we have to prove that for all V ∈ U(2n) we have
〈fV , B(gV )〉 = 〈f,B(g)〉. Indeed,

〈fV , B(gV )〉 = 1
n

∑
i,j

Aij

∫
U(2n)

f(V Uxi)g(V Uyj)dU

= 1
n

∑
i,j

Aij

∫
U(2n)

f(U ′xi)g(U ′yj)dU ′ = 〈f,B(g)〉,

which completes the proof. J

I Lemma 16. Let S be any compact set and let B : C(S)→ C(S) be a linear map. For any
ε > 0 there exists a k ∈ N and a linear map M : C(S × [k])→ C(S × [k]) such that

‖M‖cut

‖M‖L2→L2

≤
( 1
π2 + ε

)‖B‖L∞→L1

‖B‖L2→L2

and if B is transitive covariant then so is M .

Proof. We will choose k large enough, to be determined later. For any f, g ∈ C(S × [k])
define f i ∈ C(S) as f i(s) := f(s, i), and similar for gi. Define ω = e2πi/k. Define a linear
map M : C(S × [k])→ C(S × [k]) as

(
M(f)

)
(t, j) := 1

k

k∑
i=1

ωi−jB(f i)(t), for t ∈ S and j ∈ [k].
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We then have

〈g,M(f)〉S×[k] = 1
k2

〈∑
i

ωigi, B
(∑

j

ωjf j
)〉

S

where one factor of 1
k comes from our normalization of the inner product. This implies

∣∣〈g,M(f)〉S×[k]
∣∣ ≤ ‖B‖L∞→L1

∥∥∥1
k

k∑
i=1

ωigi
∥∥∥
L∞

∥∥∥1
k

k∑
j=1

ωjf j
∥∥∥
L∞

. (8)

If f, g ∈ C(S × [k]) are the [0, 1]-valued functions that attain the cut norm of M , then by (8)

‖M‖cut ≤
( 1
π2 + ε

)
‖B‖L∞→L1 ,

where we used Lemma 17 to bound
∥∥∥ 1
k

∑k
i=1 ω

igi
∥∥∥
L∞

.
Let u, v ∈ C(S) with ‖u‖L2 = ‖v‖L2 = 1 be such that ‖B‖L2→L2 = 〈v,B(u)〉S . Now

define f(u), g(v) ∈ C(S × [k]) as f(u)(s, i) := ω−iu(s) and g(v)(s, i) := ω−iv(s), which also
have L2-norm equal to 1. We then see

‖M‖L2→L2 ≥
〈
g(v),M(f(u))

〉
S×[k] = 〈v,B(u)〉S = ‖B‖L2→L2 .

The combination of these observations completes the first part of the proof. Now assume B
is transitive covariant with respect to Γ, so B(fπ)(π−1(s)) = B(f)(s) for all s ∈ S and π ∈ Γ.
Define a new group Γ′ as the cartesian product Γ′ = Γ × Zk. For (π,m) ∈ Γ′ define the
action (π,m) : S × [k]→ S × [k] as (π,m)(s, i) = (π(s), i+m). By entering f (π,m) into the
definition of M it follows that M (π,m) = M , so M is transitive covariant with respect to Γ′,
completing the proof. J

I Lemma 17. Let ε > 0, then there exists a k0 ∈ N such that for all k ≥ k0 and x ∈ [0, 1]k
we have∣∣∣1

k

k∑
j=1

e2πi j/kxj

∣∣∣ ≤ 1
π

+ ε.

Proof. First let k0 be arbitrary, to be determined later and k ≥ k0. Define y ∈ [−1, 1]k as
yi = 2xi − 1, then∣∣∣1

k

k∑
j=1

e2πi j/kxj

∣∣∣ = 1
2

∣∣∣1
k

k∑
j=1

e2πi j/kyj

∣∣∣ = 1
2e

2πiφ 1
k

k∑
j=1

e2πi j/kyj .

In the first equality we used that
∑k
j=1 e

2πi j/k = 0. In the second equality we used that there
exists a φ such that the full expression becomes real and positive. Since eiθ = cos(θ) + i sin(θ)
and the full expression is real, we know the sin component vanishes and therefore

1
2

1
k

k∑
j=1

e2πi(φ+j/k)yj = 1
2

1
k

k∑
j=1

cos(2π(φ+ j/k))yj .

Now note that cos(2π(φ+ j/k))yj ≤
∣∣ cos(2π(φ+ j/k))

∣∣ and hence

1
2

1
k

k∑
j=1

∣∣ cos(2π(φ+ j/k))
∣∣ k→∞−→ 1

2

∫ 1

0

∣∣ cos
(
2π(φ+ x)

)∣∣dx = 1
π
.

This completes the proof. J
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4.2 Non-commutative case
In the non-commutative case we show optimality of Theorem 6. By Lemma 2, the factor π2

between the cut-norm and S∞ → S1-norm is also optimal. In contrast with the commutative
case, our work leaves the optimality of the combined inequality in Corollary 7 as an open
problem. Straightforward analogues of the techniques employed in Lemma 16 did not follow
through in the non-commutative case.

I Proposition 18. For any ε > 0, there exists a positive integer n and an irreducibly covariant
superoperator Φ : Mn(C)→Mn(C) such that ‖Φ‖S2→S2 ≥ (2− ε)‖Φ‖S∞→S1 .

One of the forms of the non-commutative Grothendieck inequality, equivalent to Theorem 8,
is the following [29]. Let Φ : Mn(C) → Mn(C) be a linear map and xi, yj ∈ Mn(C) finite
sets of matrices. Then,∣∣∣∑

i

〈xi,Φ(yi)〉
∣∣∣ ≤ K′G‖Φ‖S∞→S1

(
‖
∑

i
x∗i xi‖+ ‖

∑
i
xix
∗
i ‖

2 ·
‖
∑

i
y∗i yi‖+ ‖

∑
i
yiy
∗
i ‖

2

)1/2

(9)

where K ′G ≤ 2 and the norms on the right hand side are operator norms ‖ · ‖S∞ . To show
tightness, i.e. K ′G ≥ 2, Haagerup and Itoh [16] (see [29] for a survey) gave an explicit family
of operators for which (9) gives a lower bound of K ′G approaching 2. We will show that slight
modifications of these operators are irreducibly covariant, which proves Proposition 18. It is
instructive to repeat their construction. The proof uses techniques familiar in the context of
the antisymmetric Fock space, but our proof is self contained.

I Lemma 19 ([16]). For each n ∈ N there exists a d ∈ N and a linear map Φ : Md(C) →
Md(C) with sets of matrices {xi}, {yi} such that (9) yields K ′G ≥ (2n+ 1)/(n+ 1).

Proof. Let H = C2n+1 and consider the antisymmetric k-fold tensor product H∧k which
is a linear subspace of the k-fold tensor product H⊗k. A basis of H∧k is formed by vectors
ei1 ∧ ei2 ∧ · · · ∧ eik with i1 < · · · < ik where the ei are standard basis vectors of H. Here
∧ is the wedge product or exterior product, which has the property x ∧ y = −y ∧ x and is
given by x ∧ y = x⊗ y − y ⊗ x, for x, y ∈ H. We will consider k = n and k = n+ 1 so that
the dimension of H∧k is d =

(2n+1
n

)
for both k = n and k = n+ 1.

For 1 ≤ i ≤ (2n+ 1), define ci : H∧n → H∧(n+1) as ci(x) := ei ∧ x, which physicists call
the fermionic creation operator. Its adjoint c∗i : H∧(n+1) → H∧n is known as the annihilation
operator. By the antisymmetric property, ci(x) = 0 whenever ei was present in x, i.e., when
x = ei ∧ x′. The operator cic∗i , also known as the number operator, is a projector onto the
space spanned by basis vectors in which ei is present. The operator c∗i ci is a projector onto
the space where ei is not present. Since there are always (n+ 1) vectors present in H∧(n+1)

and (n+ 1) vectors not present in H∧n, we have

2n+1∑
i=1

cic
∗
i = (n+ 1)IdH∧(n+1) and

2n+1∑
i=1

c∗i ci = (n+ 1)IdH∧n .

We will now argue that

〈ci, cj〉 := 1
d

Tr(c∗i cj) = δi,j
n+ 1
2n+ 1 , (10)

‖
2n+1∑
i=1

αici‖S1 = ‖α‖L2

n+ 1√
2n+ 1

for α ∈ C2n+1. (11)
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The δi,j in (10) follows because 〈x, c∗i cjx〉 = 0 for any x = ek1 ∧ · · · ∧ ekn when i 6= j. The
factor n+1

2n+1 follows by taking the trace of one of the sums above and noting that by symmetry
in i, every term of the sum must have the same trace. To prove (11), first note that for any
unitary U ∈ U(2n+ 1) we have

U⊗(n+1) · ci · (U⊗n)−1 =
∑
j

Ujicj , (12)

which can be shown by proving it for all basis states:

U⊗(n+1)ci(U⊗n)−1(ek1 ∧ ... ∧ ekn
) = U⊗(n+1)ci(U−1ek1 ∧ ... ∧ U−1ekn

)

= U⊗(n+1)(ei ∧ U−1ek1 ∧ ... ∧ U−1ekn
)

= (Uei ∧ ek1 ∧ ... ∧ ekn)

= (
∑
j

Ujiej ∧ ek1 ∧ ... ∧ ekn
)

=
∑
j

Ujicj(ek1 ∧ ... ∧ ekn).

The trace-norm is unitarily invariant, so (12) implies ‖ci‖S1 = ‖
∑
j Ujicj‖S1 . Since c∗i ci is

a projector, we have
√
c∗i ci = c∗i ci and hence ‖ci‖S1 = 1

d Tr(c∗i ci). Now let α ∈ C2n+1 with∑
i |αi|2 = 1, then there is a unitary U ∈ U(2n+ 1) such that the i-th row of U is α. Note

that ‖α‖L2 = 1/
√

2n+ 1 since we use normalized L2-norms, which implies (11).
Since the dimensions of H∧n and H∧(n+1) are equal, we can identify the space of linear

maps L(H∧n, H∧(n+1)) with Md(C) (by choosing bases for H∧n and H∧(n+1)), and define
the following operator Φ : Md(C)→Md(C),

Φ(x) =
2n+1∑
i=1
〈ci, x〉 ci.

Consider (9) for Φ with xi = yi = ci. For the left hand side, note that by (10) we have

∣∣∣ 2n+1∑
j=1
〈cj ,Φ(cj)〉

∣∣∣ =
∣∣∣ 2n+1∑
i,j=1
〈ci, cj〉 〈cj , ci〉

∣∣∣ = (n+ 1)2

2n+ 1 .

For the right-hand side of (9), we require ‖Φ‖S∞→S1 = sup‖x‖S∞=1 ‖Φ(x)‖S1 . For any
x ∈ Md(C), define v(x) ∈ C2n+1 as v(x)

i = 〈ci, x〉. Note that ‖v‖L2 = sup‖α‖L2 =1 |〈v, α〉|.
First apply (11) to obtain

‖Φ(x)‖S1 = ‖
2n+1∑
i=1
〈ci, x〉ci‖S1 = ‖v(x)‖L2

n+ 1√
2n+ 1

= sup
‖α‖L2 =1

|〈v(x), α〉| n+ 1√
2n+ 1

.

Using (11) again, we compute sup‖x‖S∞=1 |〈v(x), α〉| for arbitrary α with ‖α‖L2 = 1,

sup
‖x‖S∞=1

|〈v(x), α〉| = sup
‖x‖S∞=1

1
2n+ 1

∣∣〈x,∑
i

αici〉
∣∣ = 1

2n+ 1‖
∑
i

αici‖S1 = n+ 1
(2n+ 1)

√
2n+ 1

.

We obtain ‖Φ‖S∞→S1 = (n+ 1)2/(2n+ 1)2. Now (9) yields (n+1)2

2n+1 ≤ K ′G
(n+1)2

(2n+1)2 · (n+ 1)
and therefore 2n+1

n+1 ≤ K
′
G. J

We use the following fact from [12, Theorem 19.14], about the representations of the odd
dimensional complex special orthogonal groups on wedge products of complex vector spaces.
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I Lemma 20. Let n, k ∈ N, N := 2n+ 1 and let Rk : SO(N,C)→ GL((CN )∧k) be given by
A 7→ A⊗k. This representation is irreducible.

Below, we actually need that the real special orthogonal group SO(N,R) acts irreducibly on
the same anti-symmetric space. Fortunately, this is implied by Lemma 20; see [12, pp. 439].
We will also use the fact that Rk and RN−k are unitarily equivalent to each other. This is
the content of the following proposition [32, Proposition IX.10.4].

I Proposition 21. For positive integer n and N = 2n+ 1 and k ∈ {1, . . . , N}, let Rk be the
representation as in lemma 20. Then, there exists an isometry Vk : (CN )∧k → (CN )∧(N−k)

such that

VkRk(A) = RN−k(A)Vk, ∀A ∈ SO(N,R).

of Proposition 18. Let d be the dimension of (CN )∧n and let Φ : Md(C)→Md(C) be as in
the proof of Lemma 19. For each k ∈ N, let Rk : SO(N,R)→ GL(H∧k) be the representation
A 7→ A⊗k, which is irreducible by Lemma 20. Define, for notational convenience, π := Rn+1
and ρ := Rn. We first show that for all A ∈ SO(N,R), we have

Φ(π(A)xρ∗(A)) = π(A) Φ(x) ρ∗(A). (13)

For the left-hand side, note that

Φ(π(A)xρ∗(A)) =
∑
i

〈
ci, π(A)xρ∗(A)

〉
ci

=
∑
i

〈
π(A)∗ciρ(A), x〉 ci

=
∑
i

〈∑
j

Aijcj , x
〉
ci

=
∑
ij

Aij〈cj , x〉 ci,

where we used (12) from the proof of Lemma 19 and noting that SO(N,R) ⊂ U(N) is a
subgroup. Using (12) again for the right-hand side, we have

π(A) Φ(x) ρ∗(A) =
∑
i

〈ci, x〉π(A)ciρ∗(A)

=
∑
i

〈ci, x〉
∑
j

Ajicj

=
∑
ij

Aij〈cj , x〉 ci.

which proves (13).
Define a new superoperator Φ′ : Md(C)→Md(C) by

Φ′(x) = Φ(xV ∗)V,

where V := Vn+1 is the isometry as in Lemma 21 (we view V as a matrix in Md(C) by
choosing basis). We first note that this Φ′ might also be used in Lemma 19 to show that the
non-commutative Grothendieck constant is 2, since Schatten-norms are unitarily invariant.
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Hence, if we show that Φ′ is irreducibly covariant, we are done. This follows from the following
computation, where we use (13) and the fact that V π(A) = ρ(A)V for all A ∈ SO(N,R):

Φ′
(
π(A)xπ(A)∗

)
= Φ

(
π(A)xπ(A)∗V ∗

)
V

= Φ
(
π(A)xV ∗ρ(A)∗

)
V

(13)= π(A) Φ(xV ∗) ρ(A)∗V
= π(A) Φ(xV ∗) V π(A)∗

= π(A) Φ′(x) π∗(A),

where the second-last line follows since ρ(A)∗ = V π(A)∗V ∗. Hence, Φ′ is irreducibly covariant
with respect to the irreducible representation π of SO(N,R). J
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Abstract
A central tenet of theoretical cryptography is the study of the minimal assumptions required to
implement a given cryptographic primitive. One such primitive is the one-time memory (OTM),
introduced by Goldwasser, Kalai, and Rothblum [CRYPTO 2008], which is a classical functionality
modeled after a non-interactive 1-out-of-2 oblivious transfer, and which is complete for one-time
classical and quantum programs. It is known that secure OTMs do not exist in the standard model in
both the classical and quantum settings. Here, we propose a scheme for using quantum information,
together with the assumption of stateless (i.e., reusable) hardware tokens, to build statistically
secure OTMs. Via the semidefinite programming-based quantum games framework of Gutoski
and Watrous [STOC 2007], we prove security for a malicious receiver, against a linear number of
adaptive queries to the token, in the quantum universal composability framework, but leave open
the question of security against a polynomial amount of queries. Compared to alternative schemes
derived from the literature on quantum money, our scheme is technologically simple since it is of the
“prepare-and-measure” type. We also show our scheme is “tight” according to two scenarios.
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1 Introduction

Theoretical cryptography centers around building cryptographic primitives secure against
adversarial attacks. In order to allow a broader set of such primitives to be implemented,
one often considers restricting the power of the adversary. For example, one can limit the
computing power of adversaries to be polynomial bounded [68, 7], restrict the storage of
adversaries to be bounded or noisy [49, 11, 22], or make trusted setups available to honest
players [39, 6, 14, 16, 36, 55, 42, 46, 47, 48, 41, 40], to name a few. One well-known trusted
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setup is tamper-proof hardware [38, 30], which is assumed to provide a specific input-output
functionality, and which can only be accessed in a “black box” fashion. The hardware
can maintain a state (i.e., is stateful) and possibly carry out complex functionality, but
presumably may be difficult or expensive to implement or manufacture. This leads to an
interesting research direction: Building cryptography primitives using the simplest (and
hence easiest and cheapest to manufacture) hardware.

In this respect, two distinct simplified notions of hardware have captured considerable
interest. The first is the notion of a one-time memory (OTM) [30], which is arguably the
simplest possible notion of stateful hardware. An OTM, modeled after a non-interactive
1-out-of-2 oblivious transfer, behaves as follows: first, a player (called the sender) embeds
two values s0 and s1 into the OTM, and then gives the OTM to another player (called
the receiver). The receiver can now read his choice of precisely one of s0 or s1; after
this “use” of the OTM, however, the unread bit is lost forever. Interestingly, OTMs are
complete for implementing one-time use programs (OTPs): given access to OTMs, one can
implement statistically secure OTPs for any efficiently computable program in the universal
composability (UC) framework [32]. (OTPs, in turn, have applications in software protection
and one-time proofs [30].) In the quantum UC model, OTMs enable quantum one-time
programs [9]. (This situation is analogous to the case of oblivious transfer being complete for
two-party secure function evaluation [39, 36].) Unfortunately, OTMs are inherently stateful,
and thus represent a very strong cryptographic assumption – any physical implementation of
such a device must somehow maintain internal knowledge between activations, i.e., it must
completely “self-destruct” after a single use.

This brings us to a second important simplified notion of hardware known as a stateless
token [17], which keeps no record of previous interactions. On the positive side, such hardware
is presumably easier to implement. On the negative side, an adversary can run an experiment
with stateless hardware as many times as desired, and each time the hardware is essentially
“reset”. (Despite this, stateless hardware has been useful in achieving computationally secure
multi-party computation [17, 32, 19], and statistically secure commitments [23].) It thus
seems impossible for stateless tokens to be helpful in implementing any sort of “self-destruct”
mechanism. Indeed, classically stateful tokens are trivially more powerful than stateless ones,
as observed in, e.g., [32]. This raises the question:

Can quantum information, together with a classical stateless token, be used to simulate
“self destruction” of a hardware token?

In particular, a natural question along these lines is whether quantum information can help
implement an OTM. Unfortunately, it is known that quantum information alone cannot
implement an OTM (or, more generally, any one-time program) [9]; see also Section 4 below.
We thus ask the question: What are the minimal cryptographic assumptions required in a
quantum world to implement an OTM?

1.1 Contributions and summary of techniques
We propose what is, to our knowledge, the first prepare-and-measure quantum protocol that
constructs OTMs from stateless hardware tokens. For this protocol, we are able to rigorously
prove information theoretic security against an adversary making a linear (in n, the security
parameter) number of adaptive queries to the token. While we conjecture that security holds
also for polynomially many queries, note that already in this setting of linearly many adaptive
queries, our protocol achieves something impossible classically (i.e., classically, obtaining
security against a linear number of queries is impossible). We also show stand-alone security
against a malicious sender.
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Historical Note. We proposed the concept that quantum information could provide a
“stateless to stateful” transformation in a preliminary version of this work [8]; however, that
work claimed security against a polynomial number of token queries, obtained via a reduction
from the interactive to the non-interactive setting. We thank an anonymous referee for
catching a subtle, but important bug which ruled out the proof approach of [8]. The current
paper employs a different proof approach, which models interaction with the token as a
“quantum game” via semidefinite programming. Since our original paper was posted, recent
work [20] has shown an alternate quantum “stateful to stateless” transformation via quantum
money constructions [3]. Specifically, in [20], security against a polynomial number of queries
is achieved, albeit with respect to a new definition of “OTMs relative to an oracle” (while the
security results of the present paper are with respect to the well-established simulation-based
definition of [32, 38]). Furthermore, [20] directly applies known quantum money constructions,
which require difficult-to-prepare highly entangled states. Our focus here, in contrast, is to
take a “first-principles” approach and build a technologically simple-to-implement scheme
which requires no entanglement, but rather the preparation of just one of four single qubit
states, |0〉, |1〉, |+〉, |−〉. Indeed, the two works are arguably complementary in that the former
focuses primarily on applications of “stateful” single-use tokens, while our focus is on the
most technologically simple way to implement such “stateful” tokens.

Construction. Our construction is inspired by Wiesner’s conjugate coding [65]: the quantum
portion of the protocols consists in n quantum states chosen uniformly at random from
{|0〉, |1〉, |+〉, |−〉} (note this encoding is independent of the classical bits of the OTM func-
tionality). We then couple this n-qubit quantum state, |ψ〉 (the quantum key) with a classical
stateless hardware token, which takes as inputs a choice bit b, together with an n-bit string y.
If b = 0, the hardware token verifies that the bits of y that correspond to rectilinear (|0〉
or |1〉, i.e., Z basis) encoded qubits of |ψ〉 are consistent with the measurement of |ψ〉 in
the computational basis, in which case the bit s0 is returned. If b = 1, the hardware token
verifies that the bits of y that correspond to diagonal (|+〉 or |−〉, i.e., X basis) encoded
qubits of |ψ〉 are consistent with the measurement of |ψ〉 in the diagonal basis, in which case
the bit s1 is returned.1 The honest use of the OTM is thus intuitive: for choice bit b = 0,
the user measures each qubit of the quantum key in the rectilinear basis to obtain an n-bit
string y, and inputs (b, y) into the hardware token. If b = 1, the same process is applied, but
with measurements in the diagonal basis.

Assumption. Crucially, we assume the hardware token accepts classical input only (al-
ternatively and equivalently, the token immediately measures its quantum input in the
standard basis), i.e., it cannot be queried in superposition. Although this may seem a strong
assumption, in Section 4 we show that any token which can be queried in superposition in a
reversible way, cannot be used to construct a secure OTM (with respect to our setting in
which the adversary is allowed to apply arbitrary quantum operations). Similar classical-input
hardware has previously been considered in, e.g., [60, 9].

Security and intuition. Stand-alone security against a malicious sender is relatively simple
to establish, since the protocol consists in a single message from the sender to the receiver,
and stand-alone security only requires simulation of the local view of the adversary.

1 We note that a simple modification using a classical one-time pad could be used to make both the
quantum state and hardware token independent of s0 and s1: the token would output one of two
uniformly random bits r0 and r1, which could each be used to decrypt a single bit, s0 or s1.
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The intuition underlying security against a malicious receiver is clear: in order for a
receiver to extract a bit sb as encoded in the OTM, she must perform a complete measurement
of the qubits of |ψ〉 in order to obtain a classical key for sb (since, otherwise, she would likely
fail the test as imposed by the hardware token). But such a measurement would invalidate the
receiver’s chance of extracting the bit s1−b! This is exactly the “self-destruct”-like property
we require in order to implement an OTM. This intuitive notion of security was present in
Wiesner’s proposal for quantum money [65], and is often given a physical explanation in
terms of the no-cloning theorem [67] or Heisenberg uncertainty relation [35].

Formally, we work in the statistical (i.e., information-theoretic) setting of the quantum
Universal Composability (UC) framework [59], which allows us to make strong security
statements that address the composability of our protocol within others. As a proof technique,
we describe a simulator, such that for any “quantum environment” wishing to interact with
the OTM, the environment statistically cannot tell whether it is interacting with the ideal
OTM functionality or the real OTM instance provided by our scheme. The security of this
simulator requires a statement of the following form: Given access to a (randomly chosen)
“quantum key” |ψk〉 and corresponding stateless token Vk, it is highly unlikely for an adversary
to successfully extract keys for both the secret bits s0 and s1 held by Vk. We are able to
show this statement for any adversary which makes a linear number of queries, by which we
mean an adversary making m queries succeeds with probability at most O(22m−0.228n) (for
n the number of quantum key bits in |ψk〉). In other words, if the adversary makes at most
m = cn queries with c < 0.114, then its probability of cheating successfully is exponentially
small in n. We conjecture, however, that a similar statement holds for any m ∈ poly(n), i.e.,
that the protocol is secure against polynomially many queries.

To show security against linearly many queries, we exploit the semidefinite programming-
based quantum games framework of Gutoski and Watrous (GW) [33] to model interaction
with the token. Intuitively, GW is useful for our setting, since it is general enough to model
multiple rounds of adaptive queries to the token, even when the receiver holds quantum “side
information” in the form of |ψ〉. We describe this technique in Sections 2.1 and 3.4, and
provide formal details in the full version. Summarizing, we show the following.

I Main Theorem (informal). There exists a protocol Π, which together with a classical
stateless token and the ability to randomly prepare single qubits in one of four pure states,
implements the OTM functionality with statistical security in the UC framework against a
corrupted receiver making a linear number of adaptive queries.

As stated above, we conjecture that our protocol is actually secure against polynomially
many adaptive queries. However, we are unable to show this claim using our present proof
techniques, and hence leave this question open. Related to this, we make the following
comments: (1) As far as we are aware, the Main Theorem above is the only known formal
proof of any type of security for conjugate coding in the interactive setting with Ω(1) queries.
Moreover, as stated earlier, classically security against Ω(1) queries is trivially impossible. (2)
Our proof introduces the GW semidefinite programming framework from quantum interactive
proofs to the study of conjugate coding-based schemes. This framework allows handling
multiple challenges in a unified fashion: arbitrary quantum operations by the user, classical
queries to the token, and the highly non-trivial assumption of quantum side information for
the user (the “quantum key” state sent to the user.)

Towards security against polynomially many queries. Regarding the prospects of proving
security against polynomially many adaptive queries, we generally believe it requires a
significant new insight into how to design a “good” feasible solution to the primal semidefinite
program (SDP) obtained via GW. However, in addition to our proof for linear security, in the
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full version we give evidence potentially supporting our conjecture for polynomial security.
Namely, we first simplify the SDPs obtained from GW, and derive the corresponding dual
SDPs. These derivations apply for any instantiation of the GW framework, i.e. they are
not specific to our setting, and hence may prove useful elsewhere. We then give a feasible
solution Y to the dual SDP. While Y is simple to state, it is somewhat involved to analyze.
A heuristic analysis suggests Y ’s dual objective function value has precisely the behavior
needed to show security, i.e. the value scales as m/

√
2n, for m queries and n key bits. If Y

were to be the optimal solution to the dual SDP, this would strongly suggest the optimal
cheating probability is essentially m/

√
2n. However, we explicitly show Y is not optimal,

and so m/
√

2n is only a lower bound on the optimal cheating probability. Nevertheless, we
conjecture that while Y is not optimal, it is approximately optimal; this would imply the
desired polynomial security claim. Unfortunately, the only techniques we are aware of to show
approximate optimality require a better primal SDP solution, which appears challenging.

Further related work. Our work contributes to the growing list of functionalities achievable
with quantum information, yet unachievable classically. This includes: unconditionally
secure key expansion [4], physically uncloneable money [65, 51, 53], a reduction from obli-
vious transfer to bit commitment [5, 21] and to other primitives such as “cut-and choose”
functionality [27], and revocable time-release quantum encryption [61]. Importantly, these
protocols all make use of the technique of conjugate coding [65], which is also an important
technique used in protocols for OT in the bounded quantum storage and noisy quantum
storage models [22, 63] (see [10] for a survey).

Various proof techniques have been developed in the context of conjugate coding, including
entropic uncertainty relations [64]. In the context of QKD, another technique is the use of
de Finetti reductions [58] (which exploit the symmetry of the scheme in order to simplify
the analysis). Recently, semidefinite programming (SDP) approaches have been applied to
analyze security of conjugate coding [51] for quantum money, in the setting of one round of
interaction with a “stateful” bank. SDPs are also the technical tool we adopt for our proof
(Section 3.4), though here we require the more advanced quantum games SDP framework of
Gutoski and Watrous [33] to deal with multiple adaptive interactions with stateless tokens.
Reference [53] has also made use of Gavinsky’s [28] quantum retrieval games framework.

Somewhat similar to [53], Aaronson and Christiano [1] have studied quantum money
schemes in which one interacts with a verifier. They introduce an “inner product adversary
method” to lower bound the number of queries required to break their scheme.

We remark that [53] and [51] have studied schemes based on conjugate coding similar to
ours, but in the context of quantum money. In contrast to our setting, the schemes of [53]
and [51] (for example) involve dynamically chosen random challenges from a verifier to the
holder of a “quantum banknote”, whereas in our work here the “challenges” are fixed (i.e.,
measure all qubits in the Z or X basis to obtain secret bit s0 or s1, respectively), and the
verifier is replaced by a stateless token. Thus, [51], for example, may be viewed as using a
“stateful” verifier, whereas our focus here is on a “stateless” verifier (i.e., a token).

Also, prior work has achieved oblivious transfer using quantum information, together with
some assumption (e.g., bit commitment [5], bounded quantum storage [22]). These protocols
typically use an interaction phase similar to the “commit-and-open” protocol of [5]; because
we are working in the non-interactive setting, these techniques appear to be inapplicable.

Finally, Liu [43, 44, 45] has given stand-alone secure OTMs using quantum information
in the isolated-qubit model. Liu’s approach is nice in that it avoids the use of trusted setups.
In return, however, Liu must use the isolated-qubit model, which restricts the adversary to
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perform only single-qubit operations (no entangling gates are permitted); this restriction
is, in some sense, necessary if one wants to avoid trusted setups, as a secure OTM in the
plain quantum model cannot exist (see Section 4). In contrast, in the current work we
allow unbounded and unrestricted quantum adversaries, but as a result require a trusted
setup. In addition, we remark the security notion of OTMs of [43, 44, 45] is weaker than the
simulation-based notion studied in this paper, and it remains an interesting open question
whether the type of OTM in [43, 44, 45] is secure under composition (in the current work,
the UC framework gives us security under composition for free).

Significance. Our results show a strong separation between the classical and quantum
settings, since classically, stateless tokens cannot be used to securely implement OTMs. To
the best of our knowledge, our work is the first to combine conjugate coding with stateless
hardware tokens. Moreover, while our protocol shares similarities with prior work in the
setting of quantum money, building OTMs appears to be a new focus here 2.

Our protocol has a simple implementation, fitting into the single-qubit prepare-and-
measure paradigm, which is widely used as the “benchmark” for a “physically feasible”
quantum protocol (in this model, one needs only the ability to prepares single-qubit states
|0〉, |1〉, |+〉, |−〉, and to perform single-qubit projective measurements. In particular, no
entangled states are required, and in principle no quantum memory is required, since qubits
can be measured one-by-one as they arrive). In addition, from a theoretical cryptographic
perspective, our protocol is attractive in that its implementation requires an assumption of a
stateless hardware token, which is easier and cheaper to mass produce than a stateful token.

In terms of security guarantees, we allow arbitrary operations on behalf of a malicious
quantum receiver in our protocol (i.e., all operations allowed by quantum mechanics), with
the adversary restricted in that the stateless token is assumed only usable as a black box.
The security we obtain is statistical, with the only computational assumption being on the
number of queries made to the token (recall we show security for a linear number of queries,
and conjecture security for polynomially many queries). Finally, our security analysis is in
the quantum UC framework against a corrupted receiver; this means our protocol can be
easily composed with many others; for example, combining our results with [9]’s protocol
immediately yields UC-secure quantum OTPs against a dishonest receiver.

Finally, our scheme is “tight” with respect to two impossibility results (Section 4), both of
which assume the adversary has black-box access to both the token and its inverse operation3.
First, the assumption that the token be queried only in the computational basis cannot be
relaxed: If the token can be queried in superposition, then an adversary can easily break an
OTM scheme. Second, our scheme has the property that corresponding to each secret bit si
held by the token, there are exponentially many valid keys one can input to the token to
extract si. We show that for any “measure-and-access” OTM (i.e., an OTM in which one
measures a given quantum key and uses the classical measurement result to access a token
to extract data, of which our protocol is an example), a polynomial number of keys implies
the ability to break the scheme with inverse polynomial probability (more generally, ∆ keys
allows probability at least 1/∆2 of breaking the scheme).

2 We remark, however, that a reminiscent concept of single usage of quantum “tickets” in the context of
quantum money is very briefly mentioned in Appendix S.4.1 of [53].

3 This is common in the oracle model of quantum computation, where a function f : {0, 1}n 7→ {0, 1} is
implemented via the (self-inverse) unitary mapping Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉.
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Open Questions. While our work shows the fundamental advantage that quantum inform-
ation yields in a stateful to stateless reduction, it does leave a number of open questions:
1. Security against polynomially many queries. Can our security proof be streng-

thened to show information theoretic security against a polynomial number of queries to
the token? We conjecture this to be the case, but finding a formal proof has been elusive.

2. Composable security against a malicious sender. While we show composable
security against a malicious receiver, our protocol can achieve standalone security against
a malicious sender. Could an adaptation of our protocol ensure composable security
against a malicious sender as well?4

3. Non-reversible token. Our impossibility result for quantum one-time memories with
quantum queries (Section 4) assumes the adversary has access to reversible tokens; can a
similar impossibility result be shown for non-reversible tokens? In Section 4, we briefly
discuss why it may be difficult to extend the techniques of our impossibility results
straightforwardly when the adversary does not have access to the inverse of the token.

4. Imperfect devices. While our prepare-and-measure scheme is technologically simple, it
is still unrealizable with current technology, due to the requirement of perfect quantum
measurements. We leave open the question of tolerance to a small amount of noise.

Organization. Section 2 covers preliminaries, including ideal functionalities for an OTM
and stateless token, background on quantum channels, semidefinite programming, and the
Gutoski-Watrous (GW) framework for quantum games. Section 3 gives our construction for
an OTM based on a stateless hardware token; the proof ideas for security are also provided.
Section 4 discusses “tightness” of our construction by showing two impossibility results for
“relaxations” of our scheme. In the Appendix, we discuss classical UC and quantum UC
(Appendix A); Appendix B establishes notation required in the definition of stand-alone
security against a malicious sender. Due to space constraints, our formal security proof
against a linear number of queries to the token (used to finish the security proof in Section 3)
is deferred to the full version, along with simplifications of the GW SDP, derivation of its
dual, and a dual feasible solution which we conjecture to be approximately optimal.

2 Preliminaries

Notation. Two binary distributions X and Y are indistinguishable, denoted X ≈ Y, if
|Pr(Xn = 1)− Pr(Yn = 1)| ≤ negl(n). We define single-qubit |0〉+ = |0〉 and |1〉+ = |1〉, so
that {|0〉+, |1〉+} form the rectilinear basis. We define |0〉× = 1√

2 (|0〉+|1〉) and |1〉× = 1√
2 (|0〉−

|1〉), so that {|0〉×, |1〉×} form the diagonal basis. For strings x = x1, x2, . . . xn ∈ {0, 1}n and
θ = θ1, θ2, . . . , θn ∈ {+,×}n, define |x〉θ =

⊗n
i=1 |xi〉θi

. For X a finite dimensional complex
Hilbert space, L(X ), Herm(X ), Pos(X ), and D(X ) denote the sets of linear, Hermitian,
positive semidefinite, and density operators acting on X , respectively. Notation A � B

means A−B is positive semidefinite.

Quantum universal composition (UC) framework. We study simulation-based security in
this paper. In particular, we prove security of our construction against a malicious receiver in
the quantum universal composition (UC) framework [59]. See Appendix A for a description
of classical UC [14] and quantum UC [59]. In the next two paragraphs, we introduce the
ideal functionalities of one-time memory and stateless hardware token.

4 We note that this would require a different protocol, since in our current construction, a cheating sender
could program the token to abort based on the user’s input.
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One-time memory (OTM). The one-time memory (OTM) functionality FOTM involves two
parties, the sender and the receiver, and consists of two phases, “Create” and “Execute”.
Please see Functionality 1 below for details; for the sake of simplicity, we have omitted the
session/party identifiers as they should be implicitly clear from the context. We sometimes
refer to this functionality FOTM as an OTM token.

Functionality 1 Ideal functionality FOTM.

1. Create: Upon input (s0, s1) from the sender, with s0, s1 ∈ {0, 1}, send create to the
receiver and store (s0, s1).

2. Execute: Upon input b ∈ {0, 1} from the receiver, send sb to receiver. Delete any trace
of this instance.

Stateless hardware. The original work of Katz [38] introduces the ideal functionality Fwrap

to model stateful tokens in the UC-framework. In the ideal model, a party that wants to
create a token, sends the Turing machine to Fwrap. Fwrap will then run the machine (keeping
the state), when the designated party will ask for it. The same functionality can be adapted to
model stateless tokens. It is sufficient that the functionality does not keep the state between
two executions. A simplified version of the Fwrap functionality as shown in [17] (that is very
similar to the Fwrap of [38]) is described below. Note that, again for the sake of simplicity,
we have omitted the session/party identifiers as they should be implicitly clear from the
context. Although the environment and adversary are unbounded, we specify that stateless

Functionality 2 Ideal functionality Fwrap.
The functionality is parameterized by a polynomial p(·), and implicit security parameter n.
1. Create: Upon input (create,M) from the sender, where M is a Turing machine, send

create to the receiver and store M .
2. Execute: Upon input (run,msg) from the receiver, execute M(msg) for at most p(n)

steps, and let out be the response. Let out := ⊥ if M does not halt in p(n) steps. Send
out to the receiver.

hardware can be queried only a polynomial number of times. This is necessary; otherwise the
hardware token model is vacuous (with unbounded queries, the entire input-output behavior
of stateless hardware can be extracted).

Quantum channels. A linear map Φ : L(X ) 7→ L(Y) is a quantum channel if Φ is trace-
preserving and completely positive (TPCP). Such maps take density operators to density
operators. A useful representation of linear maps (or “superoperators”) Φ : L(X ) 7→ L(Y)
is the Choi-Jamiołkowski representation, J(Φ) ∈ L(Y ⊗ X ). The latter is defined (with
respect to some choice of orthonormal basis {|i〉} for X ) as J(Φ) =

∑
i,j Φ(|i〉〈j|) ⊗ |i〉〈j|.

The following properties of J(Φ) hold [18, 37]: (1) Φ is completely positive if and only if
J(Φ) � 0, and (2) Φ is trace-preserving if and only if TrY(J(Φ)) = IX . In a nutshell, the
Gutoski-Watrous (GW) framework generalizes this definition to interacting strategies [33].

Semidefinite programs. We review semidefinite programs (SDPs) from the perspective of
quantum information, as done e.g., in the notes of Watrous [62] or [51]. Given any 3-tuple
(A,B,Φ) for operators A ∈ Herm(X ) and B ∈ Herm(Y), and Hermiticity-preseving linear
map Φ : L(X ) 7→ L(Y), one can state a primal and dual semidefinite program:
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Figure 1 A general interaction between two quantum parties.

Primal problem (P)
sup Tr(AX)
s.t. Φ(X) = B,

X ∈ Pos(X ),

Dual problem (D)
inf Tr(BY )
s.t. Φ∗(Y ) � A

Y ∈ Herm(Y),

where Φ∗ denotes the adjoint of Φ, which is the unique map satisfying Tr(A†Φ(B)) =
Tr((Φ∗(A))†B) for all A ∈ L(Y) and B ∈ L(X ). Not all SDPs have feasible solutions (i.e. a
solution satisfying all constraints); in this case, optimal values are −∞ for P and ∞ for D.

2.1 The Gutoski-Watrous framework for quantum games
We now recall the Gutoski-Watrous (GW) framework for quantum games [33], which can be
used to model quantum interactions between spatially separated parties. The setup most
relevant to our protocol here is depicted in Figure 1. Here, we imagine one party, A, prepares
an initial state ρ0 ∈ D(X1 ⊗ W0). Register X1 is then sent to the second party (W0 is
kept as private memory), B, who applies some quantum channel Φi : L(X1) 7→ L(Y1 ⊗Z1).
B keeps register Z1 as private memory, and sends Y1 back to A, who applies channel
Ψ1 : L(W0 ⊗Y1) 7→ L(X2 ⊗W1), and sends X2 to B. The protocol continues for m messages
back and forth, until the final operation Ψm : L(Wm ⊗ Ym) 7→ C, in which A performs
a two-outcome measurement (specifically, a POVM Λ = {Λ0,Λ1}, meaning Λ0,Λ1 � 0,
Λ0 + Λ1 = I) in order to decide whether to reject (Λ0) or accept (Λ1). As done in [33],
without loss of generality (by the Stinespring dilation theorem) all channels are given by linear
isometries Ak, i.e. Φk(X) = AkXA

†
k. Reference [33] refers to (Φ1, . . . ,Φm) as a strategy and

(ρ0,Ψ1, . . . ,Ψm) as a co-strategy. In our setting, the former is “non-measuring”, meaning it
makes no final measurement after Φm is applied, whereas the latter is “measuring”, since we
will apply a final measurement on space Wm (not depicted in Figure 1).

Intuitively, since our protocol (Section 3.1) begins with the token sending the user a
quantum key |x〉θ, we will model the token as a measuring co-strategy, and the user as
a strategy. The advantage to doing so is that the GW framework allows one to (recurs-
ively) characterize any such strategy (resp., co-strategy) via a set of linear (in)equalities
and positive semi-definite constraints. (In this sense, the GW framework generalizes the
Choi-Jamiołkowski representation for channels to a “Choi-Jamiołkowski” representation
for strategies/co-strategies.) To state these constraints, we first write down the Choi-
Jamiołkowski (CJ) representation of a strategy (resp., measuring co-strategy) from [33].

CJ representation of (non-measuring) strategy. The CJ representation of a strategy
(A1, . . . , Am) is given by matrix [33]

TrZm
(vec(A) vec(A)†), (1)
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where A ∈ L(X1 ⊗ · · · ⊗ Xm,Y1 ⊗ · · · ⊗ Ym ⊗Zm) is the product of the isometries Ai,

A := (IY1⊗···⊗Ym−1 ⊗Am) · · · (A1 ⊗ IX2⊗···⊗Xm
), (2)

and the vec : L(S, T ) 7→ T ⊗ S mapping is the linear extension of the map |i〉〈j| 7→ |i〉|j〉
defined on all standard basis states |i〉, |j〉.

CJ representation of (measuring) co-strategy. Let P := {Λ0,Λ1} denote a POVM with
reject and accept measurement operators Λ0 and Λ1, respectively. A measuring strategy
which ends with a measurement via POVM Λ replaces, for Λa ∈ Λ, Equation (1) with [33]

Qa := TrZm((Λa ⊗ IY1⊗···⊗Ym) vec(A) vec(A)†) = TrZm(vec(Ba) vec(Ba)†), (3)

for Ba := (
√

Λa ⊗ IY1⊗···⊗Ym
)A. To convert this to a co-strategy, one takes the transpose of

the operators defined above (with respect to the standard basis).

Optimization characterization over strategies and co-strategies. With CJ representations
for strategies and co-strategies in hand, one can formulate [33] the optimal probability with
which a strategy can force a corresponding co-strategy to output a desired result as follows.
Fix any Qa from a measuring co-strategy {Q0, Q1}, as in Equation (3). Then, Corollary 7
and Theorem 9 of [33] show that the maximum probability with which a (non-measuring)
strategy can force the co-strategy to output result a is given by

min: p (4)
subject to: Qa � pRm (5)

Rk = Pk ⊗ IYk
for 1 ≤ k ≤ m (6)

TrXk
(Pk) = Rk−1 for 1 ≤ k ≤ m (7)

R0 = 1 (8)
Rk ∈ Pos(Y1,...,k ⊗X1,...,k) for 1 ≤ k ≤ m (9)
Pk ∈ Pos(Y1,...,k−1 ⊗X1,...,k) for 1 ≤ k ≤ m (10)
p ∈ [0, 1] (11)

Intuition. The minimum p denotes the optimal “success” probability, meaning the optimal
probability of forcing the co-strategy to output a (Theorem 9 of [33]). The variables above,
in addition to p, are {Ri} and {Pi}, where the optimization is happening over all m-round
co-strategies Rm satisfying Equation (5). How do we enforce that Rm encodes such an
m-round co-strategy? This is given by the (recursive) Equations (6)-(10). Specifically,
Corollary 7 of [33] states that Rm is a valid m-round co-strategy if and only if all of the
following hold: (1) Rm � 0, (2) Rm = Pm ⊗ IYm

for Pm � 0 and Ym the last incoming
message register to the co-strategy, (3) TrXm

(Pm) is a valid m− 1 round co-strategy (this
is the recursive part of the definition). An intuitive sense as to why conditions (2) and (3)
should hold is as follows: For any m-round co-strategy Rm, let Rm−1 denote Rm restricted
to the first m − 1 rounds. Then, to operationally obtain Rm−1 from Rm, the co-strategy
first ignores the last incoming message in register Ym. This is formalized via a partial trace
over Ym, which (once pushed through the CJ formalism5) translates into the ⊗IYk

term

5 Recall that the CJ representation of the trace map is the identity matrix (up to scaling).
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in Equation (6). Since the co-strategy is now ignoring the last incoming message Ym, any
measurement it makes after m− 1 rounds is independent of the last outgoing message Xm.
Thus, we can trace out Xm as well, obtaining a co-strategy Rm−1 on just the first m − 1
rounds; this is captured by Equation (7).

3 Feasibility of Quantum OTMs using Stateless Hardware

In this section, we present a quantum construction for one-time memories by using stateless
hardware (Section 3.1). We also state our main theorem (Theorem 1). In Section 3.3, we
describe the Simulator and prove Theorem 1 using the technical results of the full version.
The intuition and techniques behind the proofs in the full version are sketched in Section 3.4.

3.1 Construction

We now present the OTM protocol Π in the Fwrap hybrid model, between a sender Ps and a
receiver Pr. Here the security parameter is n.

Upon receiving input (s0, s1) from the environment where s0, s1 ∈ {0, 1}, the sender:
The sender chooses uniformly random x ∈R {0, 1}n and θ ∈R {+,×}n, and pre-
pares |x〉θ. Based on (s0, s1, x, θ), the sender prepares program M as in Program 1.

Program 1 Program for hardware token.
Hardcoded values: s0, s1 ∈ {0, 1}, x ∈ {0, 1}n, and θ ∈ {+,×}n
Inputs: y ∈ {0, 1}n and b ∈ {0, 1}, where y is a claimed measured value for the quantum
register, and b the evaluator’s choice bit
1. If b = 0, check that the θ = + positions return the correct bits in y according to x. If

Accept, output s0. Otherwise output ⊥.
2. If b = 1, check that the θ = × positions return the correct bits in y according to x. If

Accept, output s1. Otherwise output ⊥.

The sender sends |x〉θ to the receiver.
The sender sends (create,M) to functionality Fwrap, and the functionality sends create
to notify the receiver.

The receiver Pr operates as follows:
Upon input b from the environment, and |x〉θ from the receiver, and create notification
from Fwrap,

If b = 0, measure |x〉θ in computational basis to get y. Input (run, (y, b)) into Fwrap.
If b = 1, apply H⊗n to |x〉θ, then measure in computational basis to get y. Input
(run, (y, b)) into Fwrap.

Return the output of Fwrap to the environment.
It is easy to see that the output of Fwrap is sb for both b = 0 and b = 1.

Note again that the hardware token, as defined in Program 1, accepts only classical input
(i.e., it cannot be queried in superposition). As mentioned earlier, relaxing this assumption
yields impossibility of a secure OTM implementation (assuming the receiver also has access
to the token’s inverse operation), as shown in Section 4.
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3.2 Stand-Alone Security Against a Malicious Sender
We note that in protocol Π of Section 3.1, once the sender prepares and sends the token, she is
no longer involved (and in particular, the sender does not receive any further communication
from the receiver). We call such a protocol a one-way protocol. Because of this simple
structure, and because the ideal functionality Fwrap also does not return any message to the
sender, we can easily establish stand-alone security against a malicious sender (Appendix B).

3.3 UC-Security against a corrupt receiver
Our main theorem, which establishes security against a corrupt receiver is now stated.

I Theorem 1. Construction Π above quantum-UC-realizes FOTM in the Fwrap hybrid model
with statistical security against an actively-corrupted receiver making at most cn number of
adaptive queries to the token, for any fixed constant c < 0.114.

To prove Theorem 1, we now construct and analyze an appropriate simulator.

3.3.1 The simulator
In order to prove Theorem 1, for an adversary A that corrupts the receiver, we build a
simulator S (having access to the OTM functionality FOTM), such that for any unbounded
environment Z, the executions in the real model and that in simulation are statistically
indistinguishable. Our simulator S is given below:

The simulator emulates an internal copy of the adversary A who corrupts the receiver.
The simulator emulates the communication between A and the external environment Z
by forwarding the communication messages between A and Z.
The simulator S needs to emulate the whole view for the adversary A. First, S picks
dummy inputs s̃0 = 0 and s̃1 = 0, and randomly chooses x ∈ {0, 1}n, and θ ∈ {+,×}n,
and generates program M̃ . Then the simulator plays the role of the sender to send |x〉θ
to the adversary A (who controls the corrupted receiver). The simulator also emulates
Fwrap to notify A by sending create to indicate the hardware is ready for queries.
For each query (run, (b, y)) to Fwrap from the adversary A, the simulator evaluates program
M̃ (created based on s̃0, s̃1, x, θ) as in the construction, and then acts as follows:
1. If this is a rejecting input, output ⊥.
2. If this is the first accepting input, call the external FOTM with input b, and learn the

output sb from FOTM. Output sb.
3. If this is a subsequent accepting input, output sb (as above).

3.3.2 Analysis
We now show that the simulation and the real model execution are statistically indistinguish-
able. There are two cases in an execution of the simulation which we must consider:

Case 1: In all its queries to Fwrap, the accepting inputs of A have the same choice bit b.
In this case, the simulation is perfectly indistinguishable.
Case 2: In its queries to Fwrap, A produces accepting inputs for both b = 0 and b = 1. In
this case, it is possible that the simulation fails (the environment can distinguish the real
model from the ideal model), since the simulator is only able to retrieve a single bit from
the external OTM functionality FOTM (either corresponding to b = 0 or b = 1).
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Thus, whereas in Case 1 the simulator behaves perfectly, in Case 2 it is in trouble. Fortunately,
in Theorem 2 we show that the probability that Case 2 occurs is exponentially small in n,
the number of qubits comprising |x〉θ, provided the number of queries to the token is at
most cn for any c < 0.114. Specifically, we show that for an arbitrary m-query strategy (i.e.,
any quantum strategy allowed by quantum mechanics, whether efficiently implementable
or not, which queries the token at most m times), the probability of Case 2 occurring is at
most O(22m−0.228n). This concludes the proof.

3.4 Security analysis for the token: Intuition
Our simulation proof showing statistical security of our Quantum OTM construction of
Section 3.1 relies crucially on Theorem 2, stated below. For this, we now introduce notation
in line with the formal analysis of the full version.

With respect to the construction of Section 3.1, let us replace each two-tuple (x, θ) ∈
{0, 1}n × {+,×}n by a single string z ∈ {0, 1}2n, which we denote the secret key. Bits 2i
and 2i + 1 of z specify the basis and value of conjugate coding qubit i for i ∈ {1, . . . , n}
(i.e., z2i = θi and z2i+1 = xi). Also, rename the “quantum key” (or conjugate coding key)
|ψz〉 := |x〉θ ∈ (C2)⊗n. Thus, the protocol begins by having the sender pick a secret key
z ∈ {0, 1}2n uniformly at random, and preparing a joint state

|ψ〉 = 1
2n

∑
z∈|0,1〉2n

|ψz〉R|z〉T . (12)

The first register, R, is sent to the receiver, while the second register, T , is kept by the token.
(Thus, the token knows the secret key z, and hence also which |ψz〉 the receiver possesses.)
The mixed state describing the receiver’s state of knowledge at this point is given by

ρR := 1
22n

∑
z∈{0,1}2n

|ψz〉〈ψz|.

I Theorem 2. Given a single copy of ρR, and the ability to make m (adaptive) queries to
the hardware token, the probability that an unbounded quantum adversary can force the token
to output both bits s0 and s1 scales as O(22m−0.228n).

Thus, the probability of an unbounded adversary (i.e., which applies arbitrary trace-preserving
completely positive (TPCP) maps, which are not necessarily efficiently implementable) to
successfully cheat using m = cn for c < 0.114 queries is exponentially small in the quantum
key size, n. The proof of Theorem 2 is in the full version; here, we give intuition.

Proof intuition. The challenge in analyzing security of the protocol is the fact that the
receiver (a.k.a. the user) is not only given adaptive query access to the token, but also a copy
of the quantum “resource state” ρR, which it may arbitrarily tamper with (in any manner
allowed by quantum mechanics) while making queries. Luckily, the GW framework [33]
(Section 2.1)) is general enough to model such “queries with quantum side information”. The
framework outputs an SDP, Γ (Equation (13)), the optimal value of which will encode the
optimal cheating probability for a cheating user of our protocol. Giving a feasible solution
for Γ will hence suffice to upper bound this cheating probability, yielding Theorem 2.

Coherently modeling quantum queries to the token. To model the interaction between the
token and user, we first recall that all queries to the token must be classical by assumption.
To model this process coherently in the GW framework, we hence imagine (solely for the
purposes of the security analysis) that the token behaves as follows:
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1. It first sends state ρR to the user.
2. When it receives as ith query a quantum state ρi from the user, it sends response string

ri to the user, and “copies” ρi via transversal CNOT gates to a private memory register
Wi, along with ri. It does not access ρi again throughout the protocol, and only accesses
ri again in Step 3. For clarity, the token runs a classical circuit, and conditions each
response ri solely on the current incoming message, ρi.

3. After all communication, the token “measures” its responses (r1, . . . , rm) in the Z-basis
to decide whether to accept (user successfully cheated) or reject (user failed to cheat).

The “copying” phase of Step 2 accomplishes two tasks: First, since the token will never read
the “copies” of ρi again, the principle of deferred measurement [52] implies the transversal
CNOT gates effectively simulate measuring ρi in the standard basis. In other words, without
loss of generality the user is reduced to feeding a classical string ỹ to the token. Second, we
would like the entire security analysis to be done in a unified fashion in a single framework,
the GW framework. To this end, we want the token itself to “decide” at the end of the
protocol whether the user has successfully cheated (i.e. extracted both secret bits). Storing all
responses ri in Step 2 allows us to simulate such a final measurement in Step 3. We reiterate
that, crucially, once the token “copies” ρi and ri to Wi, it (1) never accesses (i.e. reads or
writes to) ρi again and (2) only accesses ri again in the final standard basis measurement of
Step 3. Together, these ensure all responses ri are independent, as required..

Formalization in GW framework. To place the discussion thus far into the formal GW
framework, we return to Figure 1. The bottom “row” of Figure 1 will depict the token’s
actions, and the top row the user’s actions. As outlined above, the protocol begins by
imagining the token sends initial state ρ0 = ρR to the user via register X1. The user then
applies an arbitrary sequence of TPCP maps Φi to its private memory (modeled by register
Zi in round i), each time sending a query ỹi (which is, as discussed above a classical string
without loss of generality) to the token via register Yi. Given any such query ỹi in round
i, the token applies its own TPCP map Ψi to determine how to respond to the query. In
our protocol, the Ψi correspond to coherently applying a classical circuit, i.e. a sequence
of unitary gates mapping the standard basis to itself. Specifically, their action is fully
determined by Program 1, and in principle all Ψi are identical since the token is stateless
(i.e., the action of the token in round i is unaffected by previous rounds {1, . . . , i− 1}). (We
use the term “in principle”, as recall from above that in the security analysis we model each
Ψi as classically copying (ỹi, ri) to a distinct private register Wi.) Finally, after receiving the
mth query ỹm in register Ym, we imagine the token makes a measurement (not depicted in
Fig. 1) based on the query responses (r1, . . . , rm) it returned; if the user managed to extract
both s0 and s1 via queries, then the token “accepts”; otherwise it “rejects”. (Again, we are
using the fact that in our security analysis, the token keeps a history of all its responses ri,
solely for the sake of this final measurement.)

With this high-level setup, the output of the GW framework is a semidefinite program, Γ:

min: p (13)
subject to: Q1 � Rm+1 (14)

Rk = Pk ⊗ IYk
for 1 ≤ k ≤ m+ 1 (15)

TrXk
(Pk) = Rk−1 for 1 ≤ k ≤ m+ 1 (16)

R0 = p (17)
Rk ∈ Pos(Y1,...,k ⊗X1,...,k) for 1 ≤ k ≤ m+ 1 (18)
Pk ∈ Pos(Y1,...,k−1 ⊗X1,...,k) for 1 ≤ k ≤ m+ 1 (19)
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Above, Q1 encodes the actions of the token, i.e. the co-strategy in the bottom row of Figure 1.
The variable p denotes the “cheating probability” (i.e., the probability with which both s0
and s1 are extracted), subject to linear constraints (Equations (15)-(19)) which enforce that
operator Rm+1 encodes a valid co-strategy (see Section 2.1). Theorem 9 of [33] now says
that the minimum p above encodes precisely the optimal cheating probability for a user
which is constrained only by the laws of quantum mechanics. Since Γ is a minimization
problem, to upper bound the the cheating probability it hence suffices to give a feasible
solution (p,R1, . . . , Rm+1, P1, . . . , Pm+1) for Γ, which will be our approach.

Intuition for Q1 and an upper bound on p. It remains to give intuition as to how
one derives Q1 in Γ, and how an upper bound on the optimal p is obtained. Without
loss of generality, one may assume that each of the token’s TPCP maps Ψi are given
by isometries Ai : Yi ⊗ Wi−1 7→ Xi+1 ⊗ Wi, meaning A†iAi = IYi⊗Wi−1 (due to the
Stinespring dilation theorem). (We omit the first isometry which prepares state ρ0 in
our discussion here for simplicity.) Let us denote their sequential application by a single
operator A := Am · · ·A1. Then, the Choi-Jamiołkowski representation of A is given by [33]
(Section 2.1) TrZm(vec(A) vec(A)†), where we trace out the token’s private memory register
Zm. However, since in our security analysis, we imagine the token also makes a final
measurement via some POVM Λ = {Λ0,Λ1}, whereupon obtaining outcome Λ1 the token
“accepts”, and upon outcome Λ0 the token rejects, we require a slightly more complicated
setup. Letting B1 := Λ1A, we define Q1 as [33] Q1 = TrZm

(vec(B1) vec(B1)†).
The full derivation of Q1 is deferred to the full version; here, we state Q1 with intuition:

Q1 = 1
4n
∑
s∈T
|tmstm〉〈tmstm |Xm+1

⊗ · · · ⊗ |t1st1〉〈t1st1 |X2
⊗ ∑

(ỹ,z)∈Yt

|ỹm〉〈ỹm|Ym
⊗ · · · ⊗ |ỹ1〉〈ỹ1|Y1

⊗ |ψz〉〈ψz|X1

 .

Intuitively, each string tisti ∈ {0, 1}
3 encodes the response ri of the token given the ith query

from the user; hence, the corresponding projectors in Q1 act on spaces X2 through Xm+1.
Each string ỹi ∈ {0, 1}n+1 denotes the ith query sent from the user to the token, where each
ỹi = bi ◦ yi in the notation of Program 1, i.e. bi ∈ {0, 1} is the choice bit for each query.
Each such message is passed via register Yi. The states |ψz〉 and strings z are defined as in
the beginning of Section 3.4; recall z ∈ {0, 1}2n and |ψz〉 ∈ (C2)⊗n denote the secret key and
corresponding quantum key, respectively. Finally, the relation Yt encodes the constraint that
for all i ∈ {1, . . . ,m}, the tuple (ỹi, z) (i.e. the ith message to the token, ỹi, and secret key
z) is consistent with the response returned by the token, ti.

Upper bounding p. To now upper bound p, we give a feasible solution Rm+1 satisfying
the constraints of Γ. Note that giving even a solution which attains p = 1 for all n and m
is non-trivial – such a solution is given in the full version. Here, we give a solution which
attains p ∈ O(22m−0.228n), as claimed in Theorem 2. Namely, we set

Rm+1 = 1
|T |
∑
t∈T
|tmstm〉〈tmstm |Xm+1

⊗ · · · ⊗ |t1st1〉〈t1st1 |X2
⊗ IY1⊗···⊗Ym

⊗ I

2nX1
.

This satisfies constraint (15) of Γ due to the identity term IY1⊗···⊗Ym
. The renormalization

factor (|T | 2n)−1 above ensures that tracing out all Xi registers yields R0 = 1 in constraint (17)
of Γ. We are thus reduced to choosing the minimum p satisfying constraint (14).
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Now, observe we have chosen Rm+1 to align with the block-diagonal structure of Q1 on
registers X2, . . . ,Xm. Since registers Y1 ⊗ · · · ⊗ Ym and X1 of Rm+1 are proportional to
the identity matrix, it thus suffices to characterize the largest eigenvalue of Q1, λmax(Q1).
This is done in the full version, which shows λmax(Q1) = 2

4n

(
1 + 1√

2

)n
. Combining this

bound on λmax(Q1) with the parameters of Rm+1 above now yields the desired claim that
p ∈ O(22m−0.228n). For m < 0.114n queries, this implies that the probability that a user of
the token successfully cheats and thus that the simulation fails is exponentially small in the
key size, n. Simplifications of the GW SDP, the derivation of its dual SDP, and a conjectured
approximately optimal dual feasible solution are given in the full version.

4 Impossibility Results

We now discuss “tightness” of our protocol with respect to impossibility results. To begin, it is
easy to argue that OTMs cannot exist in the plain model (i.e., without additional assumptions)
in both the classical and quantum settings: in the classical setting, impossibility holds, since
software can always be copied. Quantumly, this follows by a rewinding argument [9]. Here,
we give two no-go results for the quantum setting which support the idea that our scheme is
“tight” in terms of the minimality of the assumptions it uses. Both results assume the token
is reversible, meaning the receiver can run both the token and its inverse operation. Note
that if the receiver is not given access to the token’s inverse operation, it is unlikely for our
no-go techniques to go through. This is because, in the most general case where the token is
an arbitrary unitary U , which the receiver may apply as a black box, simulating U−1 = U†

appears difficult [26, 57]; see the full version for a discussion.

Result 1: Tokens which can be queried in superposition. In our construction, we require
that all queries to the token be classical strings, i.e., no querying in superposition is allowed.
It is easy to argue via a standard rewinding argument that relaxing this requirement yields
impossibility of a secure OTM, as long as access to the token’s adjoint (inverse) operation
is given, as we now show. Specifically, let M be a quantum OTM implemented using a
hardware token. Since the token access is assumed to be reversible, we may model it as
an oracle Of realizing a function f : {0, 1}n 7→ {0, 1}m in the standard way, i.e., for all
y ∈ {0, 1}n and b ∈ {0, 1}m, Of |y〉|b〉 = |y〉|b ⊕ f(y)〉. Now, suppose our OTM stores two
secret bits s0 and s1, and provides the receiver with an initial state |ψ〉 ∈ A⊗B ⊗ C, where
A, B, and C are the algorithm’s workspace, query (i.e., input to Of ), and answer (i.e., Of ’s
answers) registers, respectively. By definition, an honest receiver must be able to access
precisely one of s0 or s1 with certainty, given |ψ〉. Thus, for any i ∈ {0, 1}, there exists a
quantum query algorithm Ai = UmOf · · ·OfU2OfU1 for unitaries Ui ∈ U(A⊗B ⊗ C) such
that Ai|ψ〉 = |ψ′〉AB |si〉C . For any choice of i, however, this implies a malicious receiver
can now classically copy si to an external register, and then “rewind” by applying A†i to
|ψ′〉AB |si〉C to recover |ψ〉. Applying Ai′ for i′ 6= i to |ψ〉 now yields the second bit i′ with
certainty as well. We conclude that a quantum OTM which allows superposition queries to a
reversible stateless token is insecure.
I Remark 3. Above, the OTM outputs si with certainty. A similar argument holds if si is
output with probability at least 1− ε for small ε > 0 via the Gentle Measurement Lemma [66].

Result 2: Tokens with a bounded number of keys. We observed superposition queries to
the token prevent an OTM from being secure. One can also ask how simple a hardware
token with classical queries can be, while still allowing a secure OTM. Below, we consider
such a strengthening in which the token is forced to have a bounded number of keys.
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To formalize this, we define the notion of a “measure-and-access (MA)” OTM, i.e., an
OTM in which given an initial state |ψ〉, an honest receiver applies a prescribed measurement
to |ψ〉, and feeds the resulting classical string (i.e., key) y into the token Of to obtain si.
Our construction is an example of a MA memory in which each bit si has an exponential
number of valid keys y such that f(y) = si. Can the construction can be strengthened such
that each si has a bounded number (e.g., a polynomial number) of keys? We now show that
such a strengthening would preclude security, assuming the token is reversible.

I Lemma 4. Let M be an MA memory with oracle Of , such that Of cannot be queried in
superposition. If a secret bit si has at most ∆ keys yi such that f(yi) = si, then given a
single copy of |ψ〉, one can extract both s0 and s1 from M with probability at least 1/∆2.

Thus, if a secret bit bi has at most polynomially many keys, then any measure-and-access
OTM can be broken with at least inverse polynomial probability. The proof is in the full
version. In this sense,in the setting of measure-and-access memories, our construction is tight
– in order to bound the adversary’s success probability of obtaining both secret bits by an
inverse exponential, we require each secret bit to have exponentially many valid keys.
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A Universal Composition (UC) Framework

We consider simulation-based security. The Universal Composability (UC) framework was
proposed by Canetti [14, 13], culminating a long sequence of simulation-based security
definitions (c.f. [29, 31, 50, 2, 12]); please see also [54, 56, 15, 42, 48] for alternative/extended
frameworks. Recently Unruh [59] extend the UC framework to the quantum setting. Next,
we provide a high-level description of the original classical UC model by Canetti [14, 13],
and then the quantum UC model by Unruh [59].

A.1 Classical UC Model ([14, 13])
Machines. The basic entities involved in the UC model are players P1, . . . , Pk where k is
polynomial of security parameter n, an adversary A, and an environment Z. Each entity
is modeled as a interactive Turing machine (ITM), where Z could have an additional non-
uniform string as advice. Each Pi has identity i assigned to it, while A and Z have special
identities idA := adv and idZ := env.

Protocol Execution. A protocol specifies the programs for each Pi, which we denote as
π = (π1, . . . , πk). The execution of a protocol is coordinated by the environment Z. It starts
by preparing inputs to all players, who then run their respective programs on the inputs and
exchange messages of the form (idsender, idreceiver, msg). A can corrupt an arbitrary set of
players and control them later on. In particular, A can instruct a corrupted player sending
messages to another player and also read messages that are sent to the corrupted players.
During the course of execution, the environment Z also interacts with A in an arbitrary way.
In the end, Z receives outputs from all the other players and generates one bit output. We
use EXEC[Z,A, π] denote the distribution of the environment Z’s (single-bit) output when
executing protocol π with A and the Pi’s.

Ideal Functionality and Dummy Protocol. Ideal functionality F is a trusted party, modeled
by an ITM again, that perfectly implements the desired multi-party computational task. We
consider an “dummy protocol”, denoted PF , where each party has direct communication
with F, who accomplishes the desired task according to the messages received from the
players. The execution of PF with environment Z and an adversary, usually called the
simulator S, is defined analogous as above, in particular, S monitors the communication
between corrupted parties and the ideal functionality F. Similarly, we denote Z’s output
distribution as EXEC[Z,S, PF ].

I Definition 5 (Classical UC-secure Emulation). We say π (classically) UC-emulates π′ if
for any adversary A, there exists a simulator S such that for all environments Z,

EXEC[Z,A, π] ≈ EXEC[Z,S, π′] (20)

We here consider that A and Z are computationally unbounded, and we call it statistical
UC-security. We require the running time S is polynomial in that of A. We call this property
Polynomial Simulation.

Let F be a well-formed two party functionality. We say π (classically) UC-realizes
F if for all adversary A, there exists a simulator S such that for all environments Z,
EXEC[Z,A, π] ≈ EXEC[Z,S, PF ]. We also write EXEC[Z,A, π] ≈ EXEC[Z,S,F ] if the
context is clear.
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UC-secure protocols admit a general composition property, demonstrated in the following
universal composition theorem.

I Theorem 6 (UC Composition Theorem [13]). Let π, π′ and σ be n-party protocols. Assume
that π UC-emulates π′. Then σπ UC-emulates σπ′ .

A.2 Quantum UC Model ([59])
Now, we give a high-level description of quantum UC model by Unruh [59].

Quantum Machine. In the quantum UC model, all players are modeled as quantum
machines. A quantum machine is a sequence of quantum circuits {Mn}n∈N, for each
security parameter n. Mn is a completely positive trace preserving operator on space
Hstate ⊗Hclass ⊗Hquant, where Hstate represents the internal workspace of Mn and Hclass

and Hquant represent the spaces for communication, where for convenience we divide the
messages into classical and quantum parts. We allow a non-uniform quantum advice6 to the
machine of the environment Z, while all other machines are uniformly generated.

Protocol Execution. In contrast to the communication policy in classical UC model, we
consider a network N which contains the spaceHN := Hclass⊗Hquant⊗iHstate

i . Namely, each
machine maintains individual internal state space, but the communication space is shared
among all . We assume Hclass contains the message (idsender, idreceiver, msg) which specifies
the sender and receiver of the current message, and the receiver then processes the quantum
state on Hquant. Note that this communication model implicitly ensures authentication. In a
protocol execution, Z is activated first, and at each round, one player applies the operation
defined by its machine Mn on Hclass ⊗Hquant ⊗Hstate. In the end Z generates a one-bit
output. Denote EXEC[Z,A,Π] the output distribution of Z.

Ideal Functionality. All functionalities we consider in this work are classical, i.e., the inputs
and outputs are classical, and its program can be implemented by an efficient classical
Turing machine. Here in the quantum UC model, the ideal functionality F is still modeled
as a quantum machine for consistency, but it only applies classical operations. Namely, it
measures any input message in the computational basis to get a classical bit-string, and
implements the operations specified by the classical computational task.

We consider an “dummy protocol”, denoted PF , where each party has direct communic-
ation with F, who accomplishes the desired task according to the messages received from
the players. The execution of PF with environment Z and an adversary, usually called the
simulator S, is defined analogous as above, in particular, S monitors the communication
between corrupted parties and the ideal functionality F. Similarly, we denote Z’s output
distribution as EXEC[Z,S, PF ]. For simplicity, we also write it as EXEC[Z,S,F ].

I Definition 7 (Quantum UC-secure Emulation). We say Π quantum-UC-emulates Π′ if for
any quantum adversary A, there exists a (quantum) simulator S such that for all quantum
environments Z,

EXEC[Z,A,Π] ≈ EXEC[Z,S,Π′] (21)

6 Unruh’s model only allows classical advice, but we tend to take the most general model. It is easy to
justify that almost all results remain unchanged, including the composition theorem. See [34, Section 5]
for more discussion.
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We consider here that A and Z are computationally unbounded, we call it (quantum) statistical
UC-security. We require the running time S is polynomial in that of A. We call this property
Polynomial Simulation.

Similarly, (quantum) computational UC-security can be defined. Let F be a well-
formed two party functionality. We say Π quantum-UC-realizes F if for all quantum
adversary A, there exists a (quantum) simulator S such that for all quantum environments
Z, EXEC[Z,A,Π] ≈ EXEC[Z,S, PF ].

Quantum UC-secure protocols also admit general composition:

I Theorem 8 (Quantum UC Composition Theorem [59, Theorem 11]). Let Π,Π′ and Σ be
quantum-polynomial-time protocols. Assume that Π quantum UC-emulates Π′. Then ΣΠ

quantum UC-emulates ΣΠ′ .

I Remark 9. Out of the two protocol parties (the sender and the receiver), we consider
security only in the case of the receiver being a corrupted party. Note that we are only
interested in cases where the same party is corrupted with respect to all composed protocol.
Furthermore, we only consider static corruption.

B Stand-Alone Security in the case of a Malicious Sender

In order to define stand-alone security against a malicious sender (Definition 11), in our
context, we closely follow definitions given in prior work [24], which we now recall. (Note that,
instead of considering the approximate case for security, we are able to use the exact one.)

I Definition 10. An n-step quantum two-party protocol with oracle calls, denoted ΠO =
(A ,B,O, n) consists of:
1. input space A0 and B0 for parties A and B respectively.
2. memory spaces A1, . . .An and B1, . . .Bn for A and B, respectively.
3. An n-tuple of quantum operations (A1, . . .An) for A , Ai : L(Ai−1) 7→ L(Ai), (1 ≤ i ≤ n).
4. An n-tuple of quantum operations (B1, . . .Bn) for B, Bi : L(Bi−1) 7→ L(Bi), (1 ≤ i ≤ n).
5. Memory spaces A1, . . . ,An and B1, . . . ,Bn can be written as Ai = AiO ⊗Ai′ and Bi =
BiO ⊗ Bi′, (1 ≤ i ≤ n) and O = (O1, . . . ,On) is an n-tuple of quantum operations:
Oi : L(AOi ⊗ BOi ) 7→ L(AOi ⊗ BOi ), (1 ≤ i ≤ n).

If ΠO = (A ,B,O, n) is an n-turn two-party protocol, then the final state of the interaction
upon input ρin ∈ D(A0 ⊗ B0 ⊗R) where R is a system of dimension dimA0 dimB0, is:

[A ©∗ B](ρin) = (1L(A′n⊗B′n⊗R)⊗On)(An⊗Bn⊗1R) . . . (1L(A′1⊗B
′
1⊗R)⊗O1)(A1⊗B1⊗1R)(ρin) .

(22)

As in [24], we specify that an oracle O can be a communication oracle or an ideal functionality
oracle.

An adversary Ã for an honest party A in ΠO = (A ,B,O, n) is an n-tuple of quantum
operations matching the input and outputs spaces of A . A simulator for Ã is a sequence of
quantum operations (Si)ni=1 where Si has the same input-output spaces as the maps of Ã at
step i. In addition, S has access to the ideal functionality for the protocol Π.

I Definition 11. An n-step quantum two-party protocol with oracle calls, ΠO = (A ,B,O, n)
is statistically stand-alone secure against a corrupt A if for every adversary Ã there exists
a simulator S such that for every input ρin,

TrBn⊗R(Ã ©∗ B) = TrBn⊗R(S ©∗ B) . (23)
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We note that Definition 11 is weaker than some other definitions for active security used
in the literature, e.g., [25], because we ask only that the local view of the adversary be
simulated.

Given the simple structure of our protocol and ideal functionality, the construction and
proof of the simulator is straightforward as shown below.

I Theorem 12. Protocol Π is statistically stand-alone secure against a corrupt sender.

Proof. Since Π consists in a single message from the sender to the receiver (together with a
call to the ideal functionality for the token), we have that A = (A1). Furthermore, since
the ideal functionality Fwrap does not return anything to the sender, there is no need for our
simulator S to call an ideal functionality.

We thus build S that runs A on the input in register A0. When A calls the Fwrap ideal
functionality, the simulator does nothing. Since Π is a one-way protocol, and since the ideal
functionality also does not allow communication from the receiver to the sender,

TrBn⊗R(Ã ©∗ B) = A (TrB0⊗R(ρin)) = S(TrB0⊗R(ρin)) . (24)

This concludes the proof. J

C Proof of Lemma 4

For clarity, implicitly in our proof below, we model the oracle Of as having three possible
outputs: 0, 1, or 2, where 2 is output whenever Of is fed an invalid key y. This is required
for the notion of having “few” keys to make sense (i.e., there are 2n candidate keys, and only
two secret bits, each of which is supposed to have a bounded number of keys). Note that our
construction indeed fits into this framework.

Proof. Observe first that an honest receiver Alice wishing to extract si acts as follows. She
applies a unitary Ui ∈ U(A⊗B) to get state

|φ1〉 := Ui|ψ〉AB |0〉C . (25)

She then measures B in the computational basis and postselects on result y ∈ {0, 1}n,
obtaining state

|φ2〉 := |φy〉A|y〉B |0〉C . (26)

She now treats y as a “key” for si, i.e., she applies Of to B ⊗ C to obtain her desired bit si,
i.e.,

|φ3〉 := |φy〉A|y〉B |si〉C . (27)

A malicious receiver Bob wishing to extract s0 and s1 now acts similarly to the rewinding
strategy for superposition queries. Suppose without loss of generality that s0 has at most ∆
keys. Then, Bob first applies U0 to prepare |φ1〉 from Equation (25), which we can express
as

|φ1〉 =
∑

y∈{0,1}n

αy|ψy〉A|y〉B |0〉C . (28)

for
∑
y |αy|

2 = 1. Since measuring B next would allow us to retrieve s0 in register C with
certainty, we have that all y appearing in the expansion above satisfy f(y) = s0. Moreover,
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since s0 has at most ∆ keys, there exists a key y′ such that |αy′ |2 ≥ 1/∆. Bob now measures B
in the computational basis to obtain |φ2〉 from Equation (26), obtaining y′ with probability at
least 1/∆. Feeding y′ into Of yields s0. Having obtained y′, we have that |〈φ1|φ2〉|2 ≥ 1/∆,
implying∣∣∣〈ψ|U†0 |φy′〉|y′〉∣∣∣2 ≥ 1/∆, (29)

i.e., Bob now applies U†0 to recover a state with “large” overlap with initial state |ψ〉.
To next recover s1, define |ψgood〉 := U1|ψ〉 and |ψapprox〉 := U1U

†
0 |φy′〉|y′〉. Bob applies

U1 to obtain

|ψapprox〉 = β1|ψgood〉+ β2|ψ⊥good〉, (30)

where
∑
i |βi|

2 = 1, 〈ψgood|ψ⊥good〉 = 0, and |β1|2 ≥ 1/∆. Define

Πgood :=
∑

y∈{0,1}n s.t. f(y)=s1

|y〉〈y|.

Then, the probability that measuring B in the computational basis now yields a valid key
for s1 is

〈ψapprox|Πgood|ψapprox〉 ≥ |β1|2 ≥
1
∆ , (31)

where we have used the fact that Πgood|ψgood〉 = |ψgood〉 (since an honest receiver can extract
s1 with certainty). We conclude that Bob can extract both s0 and s1 with probability at
least 1/∆2. J
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7:2 Beyond Product State Approximations

1 Introduction

In this paper we continue a line of recent work which aims to understand the power
and limitations of approximation algorithms for quantum constraint satisfaction problems.
Consider an n-qubit local Hamiltonian of the form

H =
∑
ij

hij . (1)

Here each term hij is a Hermitian operator which acts nontrivially only on qubits i and
j and we shall assume that hij ≥ 0. Estimating the maximum energy ‖H‖ is a quantum
constraint satisfaction problem which is a special case of the well-studied 2-local Hamiltonian
problem, and it is known that computing an estimate of ‖H‖ within a given small additive
error ε = 1/poly(n) is QMA-complete [16, 15]. Consequently, this sort of precise estimate
is unlikely to admit efficient algorithms. An estimate λ is an r-approximation of ‖H‖, or
achieves approximation ratio r, if

r ≤ λ

‖H‖
≤ 1.

The classical PCP theorem places stringent bounds on the efficiency of good approximation
algorithms for this problem even in the special case where H is diagonal in the computational
basis. It states that there exists a constant r < 1 such that computing an r-approximation to
‖H‖ is NP-hard [3]. A major open question in this area is whether or not the problem is in
fact QMA-hard for some r < 1. Whereas the standard PCP theorem already implies hardness
of approximation, the quantum PCP conjecture targets the more fine-grained question of
whether or not such approximations can be checked efficiently given a concise classical witness.
These considerations also motivate the study of efficient classical or quantum algorithms for
such quantum approximation problems, as measured by the achievable approximation ratio.

A natural way to establish a lower bound ‖H‖ ≥ α is to exhibit a state |φ〉 satisfying
〈φ|H|φ〉 ≥ α. Several previous works have bounded the approximation ratios that can be
achieved by product states φ = φ1 ⊗ φ2 ⊗ . . . φn [10, 5, 14, 6, 12]. Gharibian and Kempe
have shown that there always exists a product state which achieves an approximation ratio
r = 0.5 [10]. This is also easily seen to be the best possible approximation guarantee for
product states, as there are simple examples which saturate this bound. It is not known if
a product state achieving a ratio 1/2 can be computed efficiently in the general case; the
most recent progress is an efficient algorithm which outputs a product state that achieves a
ratio of r = 0.328 [1]. On the other hand, it is known that efficient classical algorithms can
achieve approximation ratios arbitrarily close to 1 if we are willing to specialize to certain
families of 2-local Hamiltonians. Such algorithms are known if the graph which describes the
nonzero interactions between qubits is either (a) a d = O(1) dimensional lattice, (b) a planar
graph [4, 5] or (c) dense graphs, in which the number of edges is close to maximal, i.e. Ω(n2)
[10, 5].

For completeness, we note that Ref. [6] considers a different approximation problem
for Hamiltonians where the terms hij are traceless (rather than positive semidefinite) and
describes an efficient r = O(1/ log(n)) approximation algorithm based on product states,
generalizing the classical result of Charikar and Wirth [8]. A related work [14] considers
a slightly different notion of approximation ratio, again achieved by product states in the
traceless setting.

An n-qubit product state is an appealing generalization of a classical n-bit string, and has
the desirable feature that it can be manipulated and stored efficiently by classical algorithms.
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Moreover, some of the known approximation algorithms for classical constraint satisfaction
problems which are based on semidefinite programming have a natural extension to product
states [6, 12]. But how good are these algorithms, and can we hope to do better using
efficient algorithms that are based on entangled states? Of course, most n-qubit states do not
have concise classical descriptions and cannot even be prepared efficiently using a quantum
computer. Since we are aiming for efficient algorithms, we shall restrict our attention to
entangled quantum states prepared by polynomial size quantum circuits.

We shall focus our attention on a specific family of Hamiltonians studied previously in
Ref. [12] which defines a quantum analogue of the Max Cut problem. Unless otherwise
specified, throughout this paper we shall consider graphs G = (V,E,w) with nonnegative
edge weights w : E → R≥0, and we write n = |V |. We shall also assume that the maximum
edge weight is upper bounded by O(nc) for some c = O(1).

For completeness we begin by reviewing facts about the classical Max Cut problem.
Recall that the maximum cut of a weighted graph G is defined to be

MC(G) = max
z∈{±1}n

CutG(z) where CutG(z) =
∑
{i,j}∈E

wij
2 (I − zizj). (2)

An approximation algorithm for the Max Cut problem due to Goemans and Williamson [13]
is based on the following semidefinite programming relaxation of Eq. (2):

SDP(G) = max
M∈Rn×n:M≥0,diag(M)=I

∑
{i,j}∈E

wij
2 (I −Mij). (3)

A matrixM achieving the maximum SDP value SDP(G) can be computed efficiently using
standard classical algorithms. The Goemans-Williamson algorithm then uses a randomized
procedure which maps M to a bit string z which is guaranteed to satisfy

CutG(z) ≥ 0.8785 · SDP(G) (4)

for all graphs G [13].
The quantum Max Cut problem as considered in Ref. [12] is defined by a family of local

Hamiltonians Eq. (1) where each term hij is proportional to the two-qubit singlet state
|s〉 =

√
2−1(|01〉 − |10〉). In particular, given a graph G = (V,E,w) we define

HG =
∑
{i,j}∈E

wijhij hij = 1
2 (I −XiXj − YiYj − ZiZj) = 2|s〉〈s|ij . (5)

We are interested in approximating the maximum eigenvalue of HG which we write as

OPT(G) = ‖HG‖.

Estimating this quantity can be viewed as a quantum analogue of the classical Max Cut
problem. Indeed, a constraint (I− zizj) in the Max Cut problem Eq. (2) has maximal energy
when the corresponding two entries disagree, i.e., zi 6= zj . Analogously, a constraint hij in
the Hamiltonian Eq. (5) has maximal energy for a quantum state |ψ〉 when the two qubits
are antisymmetric under swap, i.e., SWAPij |ψ〉 = −|ψ〉. In this sense, the classical and
quantum constraints represent two different notions of disagreement.

Piddock and Montanaro have shown that the problem of computing a precise estimate of
OPT(G) is QMA-complete [19], and recent work has focused on its approximability using
product states [12]. Let us now see how the problem of optimizing the energy of Eq. (5)

TQC 2020
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over product states is directly related to the Max Cut problem Eq. (2) and its semidefinite
relaxation Eq. (3). An n-qubit product state φ can be specified (up to a global phase) by n
normalized vectors v(j) ∈ R3:

|φ〉〈φ| =
n⊗
j=1

1
2

(
I + v

(j)
1 X + v

(j)
2 Y + v

(j)
3 Z

)
‖v(j)‖ = 1,

and its energy is given by

Tr [|φ〉〈φ|HG] =
∑
{i,j}∈E

wij
2 (1− v(i) · v(j)). (6)

Defining

α(k) = max
{vi∈Rk:‖vi‖=1}

∑
{i,j}∈E

wij
2 (1− vi · vj). (7)

we see that

α(1) = MC(G) ≤ PROD(G) = α(3) ≤ SDP(G) = α(n).

The Goemans-Williamson algorithm for the Max Cut problem has been generalized by
Briet, de Oliveira Filho, and Vallentin to obtain efficient algorithms for approximating
α(k) for 1 < k < n [7]. The resulting approximation ratios obtained become larger as k
increases towards k = n where the optimal value can be computed efficiently and exactly by
semidefinite programming. Their result for the case k = 3 at hand is summarized below.

I Theorem 1 ([7]). There exists an efficient randomized classical algorithm which computes
an estimate µ such that

0.956 ≤ µ

PROD(G) ≤ 1.

This algorithm (and other randomized algorithms discussed in this paper) may fail with some
small probability, say 0.01, in which case the output of the algorithm is a flag indicating
failure.

Since PROD(G) ≥ 0.5 ·OPT(G) [10], the algorithm described in Theorem 1 can be used
to approximate OPT(G) with ratio at least 0.5 · 0.956 = 0.478, as observed in Ref. [11].
The recently proposed approximation algorithm of Gharibian and Parekh [12] is based on
rounding a solution to a semidefinite program relaxation of OPT(G), and obtains an even
higher ratio of 0.498. The authors of Ref. [12] note that their algorithm is almost optimal
(as far as product states are concerned), since there exists a very simple graph – just two
vertices connected by a single weight one edge – for which the optimal product state is equal
to 0.5 ·OPT(G).

Our first result shows that if all edge weights are equal then this limitation of product
states only occurs in small graphs. That is, for sufficiently large connected graphs with
uniform weights, it is always possible to efficiently find a product state with a strictly larger
approximation ratio:

I Theorem 2. Suppose G = (V,E,w) is a connected and unweighted graph, i.e., wij = 1 for
all {i, j} ∈ E. Then

PROD(G)
OPT(G) ≥

4
7 −O(|E|−1). (8)

The efficient randomized algorithm from Theorem 1 computes an r-approximation to OPT(G),
where r ≥ 0.546−O(|E|−1).
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In the more general setting where the weights may not be uniform, one can of course
construct examples of connected graphs where all weights are vanishingly small except for
the weight of a single edge. In this limit we already know that it is impossible to beat a ratio
of 0.5 using product states. Our next result shows that by considering tensor products of
one- and two-qubit states it is possible to guarantee a strictly better approximation ratio.

I Theorem 3. Let G = (V,E,w) be a weighted graph. Then there is a tensor product
φ = φ1 ⊗ φ2 ⊗ . . . φL of 1- and 2-qubit states {φj} such that

〈φ|HG|φ〉
OPT(G) ≥ 0.55.

Moreover, there is an efficient randomized algorithm which outputs an r-approximation to
OPT(G), where r ≥ 0.53.

Theorem 3 provides the best currently known efficient approximation algorithm for this
problem, improving slightly on Ref. [12]. Moreover, it establishes that although there exist
graphs where the best product state is only 1/2 of the optimal energy, efficient classical
algorithms can go slightly beyond this ratio.

Our next result shows that, for a family of low-degree graphs it is possible to efficiently
beat product states on every graph from the family. In particular, given any 3- or 4-regular
graph G, we can efficiently compute a constant-depth quantum circuit which prepares a state
with energy strictly larger than the best product state energy PROD(G) (in fact, larger than
its semidefinite relaxation SDP(G)).

I Theorem 4. Suppose G = (V,E,w) is a k-regular graph with k ∈ {3, 4}. There is a
depth-(k+ 1) quantum circuit U(G) that can be efficiently computed by a randomized classical
algorithm such that the state |φ〉 = U(G)|0n〉 approximates OPT(G) with a strictly larger
ratio than that of any product state. Moreover,

〈φ|HG|φ〉
PROD(G) ≥

〈φ|HG|φ〉
SDP(G) > 1.001

The low depth quantum circuit used in Theorem 4 is inspired (and similar to) the quantum
approximate optimization algorithm described by Farhi, Goldstone, and Gutmann [9]. The
circuit is directly obtained from any computational basis state z ∈ {0, 1}n with a large
enough cut value CutG(z)1; in particular, it is sufficient to use a bit string satisfying Eq. (4)
which can be computed efficiently using the Goemans-Williamson algorithm. The quantum
computation starts from the computational basis state |z〉 and then applies a low-depth
quantum circuit composed of a sequence of commuting two-qubit gates of the form

eiθP (j)P (k)

where for each qubit v we choose a Pauli operator P (v) ∈ {Xv, Yv} depending only on the bit
zv. To prove the theorem we compute the energy of this state as a function of the variational
parameter θ and then optimize.

In summary, we have shown that for the quantum Max Cut problem there are efficient
algorithms which beat any approximation algorithm based on product states. A natural
open question is whether this is also true for the more general problem of approximating the

1 Note that we previously defined CutG(z) for inputs z ∈ {−1, 1}n. Here and below we extend this
definition to bit string inputs z ∈ {0, 1}n by identifying each bit zj with the ±1-valued variable (−1)zj .
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maximum energy of a two-local Hamiltonian Eq. (1). One may also ask if the semidefinite
programming method [13] can be used in some novel way to efficiently obtain approximation
ratios which go beyond the limitations of product states. For the quantum Max Cut problem,
Ref. [12] provides a semidefinite program which upper bounds the optimal energy OPT(G).
A central challenge here is that we do not (yet) know a randomized rounding scheme which
maps an SDP solution to an entangled state.

2 Tensor products of few qubit states

In this Section, we prove Theorems 2 and 3. We shall use the following upper bound for the
special case where G is a star graph. The lemma shows that the maximum energy for any star
with at least 3 vertices is always less than the trivial upper bound 2

∑
e∈E we which comes

from the triangle inequality. This can be interpreted as a consequence of the monogamy
of entanglement–the center spin cannot be maximally entangled with all of the points of
the star. Along similar lines, Ref. [11] provides a different upper bound on ‖HG‖ using a
monogamy of entanglement bound known as the Coffman-Kundu-Wooters inequality.

I Lemma 5. Suppose G = (V,E,w) is a star graph with nonnegative weights. Then

‖HG‖ ≤ max
e∈E

we +
∑
e∈E

we. (9)

Proof. Define the total spin operators

~S = 1
2

∑
j∈V

Xj ,
∑
j∈V

Yj ,
∑
j∈V

Zj

 .

Let Sx = 1
2
∑
j∈V Xj , Sy = 1

2
∑
j∈V Yj , Sz = 1

2
∑
j∈V Zj and note that the Hamiltonian

Eq. (5), S2 = S2
x+S2

y +S2
z , and Sz are mutually commuting. It is shown in Ref. [17] that the

maximum eigenvalue of Eq. (5) on any (nonnegatively) weighted complete bipartite graph
with bipartition V = A tB is attained by an eigenvector φ which satisfies

S2|φ〉 = s(s+ 1)|φ〉 Sz|φ〉 = s|φ〉 s = (|A| − |B|) /2.

A star graph is a complete bipartite graph with |A| = |V | − 1 and |B| = 1. Therefore
the result of Lieb and Mattis implies that a maximum eigenvalue is attained by a state φ
satisfying Sz|φ〉 = |V |/2− 1. In particular, φ is equal to the maximum eigenvector of HG

restricted to the |V |-dimensional subspace

Q = span{|100 . . . 0〉, |010 . . . 0〉, . . . , |00 . . . , 01〉}

spanned by computational basis states with Hamming weight equal to 1. It is easily seen that
the Hamiltonian restricted to this subspace is the Laplacian matrix of G. More precisely,

HG|Q = L(G)

where L(G) is the graph Laplacian of G, defined by

L(G)ij =


∑
e∼i we i = j

−we e = {i, j} ∈ E
0 otherwise.
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The lemma follows by upper bounding the norm of the Laplacian of a star graph

‖L(G)‖ ≤
∑
e∈E

we + max
e∈E

we. (10)

The upper bound Eq. (10) is obtained using an argument from Ref. [18]. In particular, we
note that

‖L(G)‖ = ‖W−1L(G)W‖

where W is a diagonal matrix such that Wii =
∑
e∼i we, and then use Gershgorin’s circle

theorem to upper bound the right hand side. Computing the Gershgorin discs for a star
graph we arrive at

‖W−1L(G)W‖ ≤ max

∑
e∈E

we +
(∑
e∈E

we

)−1 ∑
e∈E

w2
e , max

e∈E
we +

∑
e∈E

we

 (11)

= max
e∈E

we +
∑
e∈E

we. (12)

J

We note that for a star graph with uniform weights the upper bound Eq. (9) becomes an
equality, as can be seen using the rules for addition of angular momentum.

Next, we consider the case of uniform weights wij = 1 on an arbitrary connected graph.
Using Lemma 5, we exhibit a product state with approximation ratio better than 1

2 .

I Theorem 6. Suppose G = (V,E,w) is a connected graph with uniform weights, i.e., wij = 1
for all {i, j} ∈ E. Then

PROD(G)
OPT(G) ≥

1
3 + 2

3

(
|E|

2|E|+ |V |

)
. (13)

Moreover, there exists a computational basis state with energy satisfying the above inequality.

Proof. For any vertex v ∈ V define a Hamiltonian hv which has support only on qubit v
and its neighbors:

hv =
∑

j:{v,j}∈E

1
2 (I −XvXj − YvYj − ZvZj) .

Note that we may write HG = 1
2
∑
v∈V hv, where the factor of 1/2 compensates for the fact

that the Hamiltonian term corresponding to each edge of the graph appears twice on the
right hand side. Now using the triangle inequality we get

OPT(G) ≤ 1
2
∑
v∈V
‖hv‖. (14)

Let us write dv for the degree of vertex v. Then

‖hv‖ ≤ dv + 1,

where we used Lemma 5. Substituting in Eq. (14) gives

OPT(G) ≤ 1
2
∑
v∈V

(dv + 1) = |E|+ |V |/2. (15)

TQC 2020
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The upper bound Eq. (15) and its proof is similar to the one derived by Anderson in Ref. [2]
for the special case of bipartite graphs. To see why Eq. (15) is nontrivial, note that since G
is a connected graph on |V | vertices, it satisfies |E| ≥ |V | − 1 (the minimum is attained by a
tree). Thus Eq. (15) implies

OPT(G) ≤ 1
2(3|E|+ 1), (16)

which improves upon the naive upper bound OPT(G) ≤ 2|E| which is obtained by applying
the triangle inequality directly to Eq. (5).

We need only a little bit more to get the Theorem from Eq. (15). Let us write

HG = |E|2 +HX(G) +HY (G) +HZ(G)

where

HX(G) = −1
2
∑
{i,j}∈E

XiXj HY (G) = −1
2
∑
{i,j}∈E

YiYj HZ(G) = −1
2
∑
{i,j}∈E

ZiZj .

(17)

We denote their largest eigenvalues as λPmax(G) with P = X,Y, Z. Note that these 3 quantities
are all equal. Applying the triangle inequality and using this fact gives

OPT(G) ≤ |E|2 + 3λZmax(G). (18)

Also note that we can lower bound PROD(G) by the maximum energy of a computational
basis state:

PROD(G) ≥ |E|2 + λZmax(G). (19)

Now combining Eqs. (18, 19) gives

PROD(G) ≥ |E|2 + OPT(G)− |E|/2
3 = 1

3OPT(G) + 1
3 |E|.

Therefore
PROD(G)
OPT(G) ≥

1
3 + 1

3
|E|

OPT(G) .

Finally, substituting Eq. (15) in the second term we arrive at Eq. (13) and complete the
proof. J

Proof of Theorem 2
Proof. Let T be a spanning tree of G, which can be computed efficiently and has |V | − 1
edges. Let s ∈ {0, 1}n be a bit string corresponding to a 2-coloring of T , i.e., si 6= sj whenever
{i, j} is an edge of T (of course, s can also be computed efficiently). Then

〈s|HG|s〉 = CutG(s) ≥ |V | − 1,

and combining with Eq. (15) gives

〈s|HG|s〉
OPT(G) ≥

2|V | − 2
2|E|+ |V | .
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Putting this together with Theorem 6 we arrive at

PROD(G)
OPT(G) ≥ max

{
2(|V | − 1)
2|E|+ |V | ,

4|E|+ |V |
6|E|+ 3|V |

}
(20)

(21)

Now let x = (|V | − 1)/|E| and note that x ∈ [0, 1], and

PROD(G)
OPT(G) ≥ min

0≤x≤1
max

{
2x

2 + x
,

4 + x

6 + 3x

}
−O(|E|−1) (22)

= 4/7−O(|E|−1). (23)

The randomized approximation algorithm of 1 outputs an estimate which is an α-approx-
imation to PROD(G) with ratio α ≥ 0.956. Eq. (23) implies that this estimate is an
r-approximation of OPT(G) with r ≥ α · (4/7−O(|E|−1)) = 0.546−O(|E|−1)). J

Proof of Theorem 3
Proof. Note that in the weighted case we may run through exactly the same arguments used
to obtain Eq. (13). Eq. (15) is replaced by

OPT(G) ≤W + 1
2
∑
v∈V

max
e∼v

we

where W =
∑
e∈E we, and correspondingly we have

PROD(G)
OPT(G) ≥

1
3 + 2

3

(
W

2W +
∑
v∈V maxe∼v we

)
. (24)

Now let us focus on the expression∑
v∈V

max
e∼v

we.

We note that this quantity can be trivially upper bounded as 2W since each edge can appear
at most twice in the sum (once for each of its incident vertices). This naive upper bound is
not sufficient for our purposes, and so we perform a more careful analysis below.

I Lemma 7. We may efficiently compute edge subsets M,F ⊆ E such that M is a matching
and F is a forest, and∑

v∈V
max
e∼v

we =
∑
e∈M

we +
∑
e∈F

we.

Proof. Let us fix an ordering e1, e2, . . . , em of all the edges of G such that

we1 ≤ we2 ≤ . . . ≤ wem

(if all edge weights are distinct there is a unique such ordering, otherwise there is some
freedom in the choice). Now for each vertex v ∈ V we let I(v) ∈ E be the (unique) edge
incident to v which is maximal with respect to the above ordering. We define

F = {I(v) : v ∈ V }
M = {e ∈ E : e = I(v) and e = I(w) for two distinct vertices v 6= w ∈ V } .
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7:10 Beyond Product State Approximations

At most one edge e = I(v) incident to any given vertex v can appear in M , and hence M
is a matching. To see that F is a forest, consider a graph G′ = (V,E,w′) with the same
vertex and edge sets as G, but where the edge weights are rescaled so that w′(ej) = −j
for 1 ≤ j ≤ m (in particular, all edge weights are negative, distinct, and their magnitudes
respect our chosen ordering). Then each edge of F is contained in any minimum spanning
tree of G′, by the well-known cut property of minimum spanning trees. We infer that F does
not contain any cycles, and is therefore a forest. J

Now let M,F be as in the lemma, and define the set of vertices U ⊆ V which are not
incident to an edge in M . Consider a random variable

|φz〉 =

 ⊗
e={i,j}∈M

1√
2

(|01〉 − |10〉)ij

⊗ |z〉U
where z ∈ {0, 1}|U | is a uniformly random bit string. Then

Ez[〈φz|HG|φz〉] = 2
∑
e∈M

we + 1
2(W −

∑
e∈M

we) = 3
2m+ 1

2W m ≡
∑
e∈M

we. (25)

This shows that there exists a state φz with energy at least 3
2m+ 1

2W .
Finally, since F is a forest, we may efficiently compute a computational basis state

s ∈ {0, 1}n such that

〈s|HG|s〉 ≥ f f ≡
∑
e∈F

we. (26)

This follows since the Max Cut for a forest is achieved by an efficiently computable
2-coloring of the vertices. Putting together Eqs. (24,25,26) and Lemma 7, we see that there
exists a tensor product φ of 1- and 2-qubit states such that
〈φ|HG|φ〉
OPT(G) ≥ max

{
2f

2W + f +m
,

3m+W

2W + f +m
,

1
3 + 2

3

(
W

2W + f +m

)}
(27)

≥ min
0≤x≤y≤1

1
2 + y + x

max
{

2y, 3x+ 1, 1
3(4 + x+ y)

}
(28)

≥ 0.55, (29)

where in the second line we set x = m/W, y = f/W , and in the last line we used a computer.
Now let us bound the approximation ratio achieved by an efficient randomized algorithm.

First note that the state |s〉 in Eq. (26) can be computed efficiently. Moreover, using Eq. (25)
and the fact that 〈φz|HG|φz〉 is a random variable upper bounded by 2W we see that the
probability of randomly sampling a bit string z with energy at least 3

2m+ 0.49W is

Pr
[
〈φz|HG|φz〉 ≥

3
2m+ 0.49W

]
≥ 0.01

1.51 .

By randomly sampling O(1) times, with high probability we will obtain a bit string with
this energy. Finally, note that combining Theorem 1 with Eq. (24) we get a randomized
algorithm that outputs a state with energy at least

0.956 ·
(

1
3 + 2

3

(
W

2W + f +m

))
.

Thus we may efficiently compute a state with approximation ratio at least

min
0≤x≤y≤1

1
2 + y + x

max
{

2y, 3x+ 0.98, 0.956
3 (4 + x+ y)

}
≥ 0.53. (30)

J
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i j

Figure 1 An edge {i, j} contained in 4 triangles.

3 Low degree regular graphs

In this section we consider the case of 3- or 4-regular graphs and we establish Theorem 4.
Given an n-vertex graph G = (V,E,w), we shall consider the following algorithm. First,

we use the classical Goemans-Williamson algorithm [13] to compute a bit string z ∈ {0, 1}n
satisfying Eq. (4). This defines a partition of the edges into those which are satisfied and
those which are not:

Esat = {{u, v} ∈ E : zu 6= zv} Eunsat = E \ Esat. (31)

Next we define a Pauli operator P (j) for each qubit 1 ≤ j ≤ n, which depends on the
j-th bit of z:

P (j) =
{
Xj , zj = 1
Yj , zj = 0

.

Finally, we define a variational state

|φ(θ)〉 = V (θ)|z〉 where V (θ) = exp

 ∑
{j,k}∈E

iθP (j)P (k)

 . (32)

Here θ ∈ R is a parameter that we will choose later. Note that V (θ) can be expressed as a
product of commuting 2-qubit gates

V (θ) =
∏

{j,k}∈E

exp (iθP (j)P (k)) . (33)

Moreover, if the graph G has maximum degree ∆ then we may efficiently compute an edge
coloring with ∆ + 1 colors such that no two edges with the same color share a vertex. If we
order the gates Eq. (33) in ∆ + 1 layers according to this edge coloring we obtain a depth
∆ + 1 quantum circuit that implements V (θ).

The following lemma describes the energy of the variational state φ(θ). Below we write
dj for the degree of vertex j ∈ V . We say that an edge {i, j} ∈ E is contained in T

triangles iff there are vertices k1, k2, . . . , kT such that {i, k1}, {i, k2}, . . . , {i, kT } ∈ E and
{j, k1}, {j, k2}, . . . , {j, kT } ∈ E. This is depicted in Fig. 1.
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I Lemma 8. Let G = (V,E,w) be a graph and let φ(θ) be the variational state defined in
Eq. (32). If {i, j} ∈ Esat is a satisfied edge contained in exactly T triangles then

〈φ(θ)|2hij |φ(θ)〉 = 1+sin(2θ) cosdi−1(2θ)+sin(2θ) cosdj−1(2θ)+ 1 + cosT (4θ)
2 cosdi+dj−2−2T (2θ).

(34)

On the other hand, if {i, j} ∈ Eunsat is an unsatisfied edge contained in exactly T triangles,
then

〈φ(θ)|2hij |φ(θ)〉 = 1− cosdi+dj−2−2T (2θ). (35)

We defer the proof of the Lemma until the end of this section. Let us now see how
Lemma 8 can be used to lower bound the energy 〈φ(θ)|HG|φ(θ)〉 when G is a 3- or 4-regular
graph. In fact, we will only need Eq. (34) for the proof below; Eq. (35) is included only for
completeness.

Proof of Theorem 4. In a d-regular graph, each edge may be contained in T ≤ d−1 triangles.
Note that the energy Eq. (34) of a satisfied edge is lower bounded by the same expression
with T = 0 since the last term is monotonically increasing with T . Thus all satisfied edges in
a d-regular graph have energy lower bounded as

〈φ(θ)|2hij |φ(θ)〉 ≥ 1 + 2 cosd−1(2θ) sin(2θ) + cos2d−2(2θ) (36)

An unsatisfied edge in a d-regular graph always contributes a nonnegative energy since
the Hamiltonian terms hij are positive semidefinite and the weights wij are nonnegative.

Thus for a d-regular graph G we have

〈φ(θ)|HG|φ(θ)〉 ≥ F (θ, d)
2

∑
{i,j}∈Esat

wij = F (θ, d)
2 CutG(z), (37)

where

F (θ, d) = 1 + 2 cosd−1(2θ) sin(2θ) + cos2d−2(2θ).

For a fixed d we may compute θ?(d) = argmaxθF (θ, d) which maximizes the right hand side.
Also note that since z is the output of the Goemans-Williamson approximation algorithm, it
satisfies Eq. (4) and therefore

〈φ(θ)|HG|φ(θ)〉
SDP(G) ≥ G(d) ≡ (0.8785) · F (θ?(d), d)

2 . (38)

Using a computer we find G(3) = 1.047 . . . and G(4) = 1.001 . . ., which completes the
proof. J

Proof of Lemma 8. We shall compute

〈φ|2hij |φ〉 = 1− 〈φ|XiXj |φ〉 − 〈φ|YiYj |φ〉 − 〈φ|ZiZj |φ〉 (39)

(here and below we write φ ≡ φ(θ) for ease of notation).
We treat the two cases separately: satisfied edges {i, j} ∈ Esat (i.e., zi 6= zj) and

unsatisfied edges {i, j} ∈ Eunsat (i.e., zi = zj).
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Satisfied edge

Without loss of generality, assume that zi = 0 and zj = 1 (else we perform the same
calculation with i and j interchanged). Using the standard commutation relations between
Pauli operators, and the fact that the set of operators {P (k)P (`)}(k,`)∈E mutually commute
we get

〈φ|XiXj |φ〉

= 〈z|
( ∏
{k,`}∈E

exp(−iθP (k)P (`))
)
XiXj

( ∏
{k,`}∈E

exp(iθP (k)P (`))
)
|z〉

= 〈z|
( ∏
k:{i,k}∈E

exp(−2iθYiP (k))
)
XiXj |z〉

= 〈z|
∏

k:{i,k}∈E

(cos(2θ)− i sin(2θ)YiP (k))XiXj |z〉

= −i cosdi−1(2θ) sin(2θ)〈z|YiP (j)XiXj |z〉 = − cosdi−1(2θ) sin(2θ).

Here, the second last equality follows since 〈zk|P (k)|zk〉 = 0 for all k 6= i, j. A similar
calculation shows that

〈φ|YiYj |φ〉 = − cosdj−1(2θ) sin(2θ).

Finally, for the last term in Eq. (39), we will need to take the triangles into account:

〈φ|ZiZj |φ〉 (40)

= 〈z|
( ∏
{k,`}∈E

exp(−iθP (k)P (`))
)
ZiZj

( ∏
{k,`}∈E

exp(iθP (k)P (`))
)
|z〉

= 〈z|
( ∏
k:k 6=i,{k,j}∈E

exp(−2iθP (k)Xj)
∏

k:k 6=j,{i,k}∈E

exp(−2iθYiP (k))
)
ZiZj |z〉

= −〈z|
∏

k:k 6=i,{k,j}∈E

(cos(2θ)− i sin(2θ)P (k)Xj)
∏

k 6=j:{i,k}∈E

(cos(2θ)− i sin(2θ)YiP (k))|z〉

(41)

= −
bT

2 c∑
a=0

(
T

2a

)
sin4a(2θ) cosdi+dj−2−4a(2θ)) (42)

Where the last equality is obtained by noting that a pair of triangles {i, j, k} and {i, j, l} will
give a term (−i sin(2θ))4YiP (k)YiP (l)XjP (k)XjP (l) = sin4(2θ) · I inside the expectation
value in Eq. (41). The summation in Eq. (42) runs over all even cardinality subsets of
triangles. Thus, when zi 6= zj ,

〈φ(θ)|2hij |φ(θ)〉 =

1 + sin(2θ) cosdi−1(2θ) + sin(2θ) cosdj−1(2θ) +
bT

2 c∑
a=0

(
T

2a

)
sin4a(2θ) cosdi+dj−2−4a(2θ)

= 1 + sin(2θ) cosdi−1(2θ) + sin(2θ) cosdj−1(2θ) + 1
2

(
1

cos2T (2θ) + cosT (4θ)
cos2T (2θ)

)
cosdi+dj−2(2θ)

= 1 + sin(2θ) cosdi−1(2θ) + sin(2θ) cosdj−1(2θ) + 1 + cosT (4θ)
2 cosdi+dj−2−2T (2θ).

Here, the second equality follows from the binomial expansion of 1
2
(
(1 + x)T + (1− x)T

)
for x = sin2(2θ)

cos2(2θ) .
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Unsatisfied edge

Suppose zi = zj = 0. Then P (i) = Yi and P (j) = Yj and so

〈φ|YiYj |φ〉 = 〈z|YiYj |z〉 = 0.

On the other hand,

〈φ|XiXj |φ〉 = 〈z|
( ∏
{k,`}∈E

exp(−iθP (k)P (`))
)
XiXj

( ∏
{k,`}∈E

exp(iθP (k)P (`))
)
|z〉

= 〈z|
( ∏

k:k 6=j,{i,k}∈E

exp(−2iθYiP (k))
)( ∏

k:k 6=i,{k,j}∈E

exp(−2iθP (k)Yj)
)
XiXj |z〉

= 〈z|
∏

k:k 6=j,{i,k}∈E

(cos(2θ)− i sin(2θ)YiP (k))
∏

k:k 6=i,{k,j}∈E

(cos(2θ)− i sin(2θ)P (k)Yj)XiXj |z〉

=
bT +1

2 c∑
a=1

(
T

2a− 1

)
sin4a−2(2θ) cosdi+dj−4a(2θ).. (43)

The summation in Eq. (43) runs over all odd cardinality subsets of triangles. Finally,

〈φ|ZiZj |φ〉

= 〈z|
∏

k:k 6=j,{i,k}∈E

(cos(2θ)− i sin(2θ)YiP (k))
∏

k:k 6=i,{k,j}∈E

(cos(2θ)− i sin(2θ)PkYj)ZiZj |z〉

=
bT

2 c∑
a=0

(
T

2a

)
sin4a(2θ) cosdi+dj−2−4a(2θ)

Where again, we have used the fact that any pair of triangles will result in an identity term.
If zi = zj = 1, similar calculations show that the contributions from 〈φ|YiYj |φ〉 and

〈φ|XiXj |φ〉 are interchanged, but that their sum is unchanged. So for any unsatisfied edge,
we have added lines to this equation:

〈φ|2hij |φ〉 = 1−
bT +1

2 c∑
a=1

(
T

2a− 1

)
sin4a−2(2θ) cosdi+dj−4a(2θ)

−
bT

2 c∑
a=0

(
T

2a

)
sin4a(2θ) cosdi+dj−2−4a(2θ)

= 1− cosdi+dj−2(2θ)

(
T∑

b=0

(
T

b

)
sin2b(2θ)
cos2b(2θ)

)
= 1− cosdi+dj−2−2T (2θ),

where we used the binomial expansion of (1 + x)T for x = sin2(2θ)
cos2(2θ) . J
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Abstract
A proof of quantumness is a method for provably demonstrating (to a classical verifier) that a
quantum device can perform computational tasks that a classical device with comparable resources
cannot. Providing a proof of quantumness is the first step towards constructing a useful quantum
computer.

There are currently three approaches for exhibiting proofs of quantumness: (i) Inverting a
classically-hard one-way function (e.g. using Shor’s algorithm). This seems technologically out of
reach. (ii) Sampling from a classically-hard-to-sample distribution (e.g. BosonSampling). This
may be within reach of near-term experiments, but for all such tasks known verification requires
exponential time. (iii) Interactive protocols based on cryptographic assumptions. The use of a
trapdoor scheme allows for efficient verification, and implementation seems to require much less
resources than (i), yet still more than (ii).

In this work we propose a significant simplification to approach (iii) by employing the random
oracle heuristic. (We note that we do not apply the Fiat-Shamir paradigm.)

We give a two-message (challenge-response) proof of quantumness based on any trapdoor claw-
free function. In contrast to earlier proposals we do not need an adaptive hard-core bit property.
This allows the use of smaller security parameters and more diverse computational assumptions (such
as Ring Learning with Errors), significantly reducing the quantum computational effort required for
a successful demonstration.
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8:2 Simpler Proofs of Quantumness

1 Introduction

Quantum computing holds a promise of a qualitative leap in our ability to perform important
computational tasks. These tasks include simulation of chemical and physical systems at
the quantum level, generating true randomness, algorithmic tasks such as factoring large
numbers, and more. However, constructing a quantum computer with capabilities beyond
those of existing classical computers is technologically challenging. Indeed, whether it is
possible or not remains to be proven; such a “proof” is the focus of the ongoing race to
construct a useful quantum device, with records for device size and functionality set at an
increasing rate by the likes of Google, IBM, and the increasing number of startups heavily
invested in this race. This notion, known as “proof of quantumness”,1 is generally viewed as
a major milestone towards unlocking the powers of quantum computing. We can classify
existing approaches towards proof of quantumness into three families:
1. There are tasks that are generally believed to be classically intractable, and for which

quantum algorithms are known; most notably the factoring and discrete logarithm
problems [16]. Constructing a quantum computer that can factor beyond our classical
capabilities would constitute a valid proof of quantumness. Alas, in order to implement
the factoring algorithm on relevant input sizes one requires fault-tolerant quantum
computation, which seems technologically out of reach (see e.g. [8] for recent and highly
optimized estimates ranging in the millions of qubits).

2. A different approach, introduced independently by Bremner, Josza and Shepperd [4] and
by Aaronson and Arkhipov [1], is to use a quantum device to sample from distributions
that are presumed to be hard to sample from classically. The intractability of classically
achieving the task has not stood the same test of time as more established problems
such as e.g. factoring, but can nonetheless be based on reasonable complexity-theoretic
conjectures, at least for the problem of exact sampling. While quantum devices that
can sample from these distributions appear to be “right around the corner”, the real
challenges are in (i) showing hardness of approximate sampling – the quantum device
will never be perfect – and (ii) the classical verification: verification for these methods
generally requires investing exponential classical computational resources, and can thus
only be performed for fairly small input lengths.

3. A new approach was recently proposed in [3]. They propose to use post-quantum
cryptography, namely to rely on cryptographic assumptions that cannot be broken even
by the quantum device. Rather than verifying that the quantum device has the ability to
break the assumption, cryptography is used to compel the device to generate a quantum
superposition in a way that can be efficiently verified using a secret key. This method
is inherently interactive, unlike the previous two, and requires at least four rounds of
communication. As a cryptographic building block it uses trapdoor claw-free function
families (recall that claw-freeness was originally introduced in the context of digital
signatures and constructed based on factoring [9]). In addition to claw freeness, the [3]
approach also requires an additional adaptive hardcore bit property which appears to be
hard to realize and is currently only known to be achievable based on the Learning with
Errors (LWE) assumption [15].

The third approach is compelling in its ability to verify quantumness even of large
quantum devices efficiently, but it still requires a large number of quantum operations.

1 The term “quantum supremacy” is also used in the literature.



Z. Brakerski, V. Koppula, U. Vazirani, and T. Vidick 8:3

Furthermore, the interactive nature of the protocol requires the quantum device to retain a
superposition while waiting for the verifier’s second message (a single random bit).

In this work we simplify the [3] approach and allow for it to be based on a more diverse set
of computational assumptions. This marks a step towards a protocol that can be realistically
implemented on an actual quantum device, and can be efficiently verified on a classical
computer.

Our Results

We propose to use the random oracle heuristic as a tool to reduce the round complexity of the
proof of quantumness protocol from [3], making it into a simple one-round message-response
protocol. We note that it is unlikely that a similar result can be achieved in the standard
model without introducing an additional hardness assumption. The reason is that a single-
round message-response protocol in the standard model (i.e. without oracles) immediately
implies that quantum samplers cannot be efficiently de-quantized (otherwise the protocol
will have no soundness). Such a result therefore implies a (weak) separation between the
BQP and BPP models. However, the LWE assumption does not appear to imply such a
separation, and the current state of the art suggests that it is equally intractable in the
quantum and classical settings.2

We show that using the random oracle heuristic, it is possible to implement the protocol
in a single round while at the same time eliminating the need for an adaptive hard-core bit
property, and thus relying on any family of claw-free functions. In particular, we propose a
construction of trapdoor claw free functions which is analogous to that of [3] but relies on
the Ring-LWE assumption [10, 11]. Ring-LWE based primitives are often regarded as more
efficient than their LWE-based counterparts since they involve arithmetic over polynomial
rings, which can be done more efficiently than over arbitrary linear spaces. Despite the
similarity between LWE and Ring-LWE, proving an adaptive hard-core theorem for the latter
appears to be a challenging task. This is since the LWE-based construction uses a so-called
lossiness argument that is not known to be replicable in the Ring-LWE setting. We note that
we can also instantiate our method using “pre-quantum” cryptography since soundness should
hold only with respect to classical adversaries. Using a back-of-the-envelope calculation we
estimate that it is possible to execute our protocol using superpositions over ∼ 8λ log2 λ

qubits, for security parameter λ and the adversary would have advantage negligible in λ.
While we allow the use of trapdoor claw-free families based on arbitrary assumptions,

which should allow for better security/efficiency trade-offs, our protocol still requires the
quantum device to evaluate the random oracle on a quantum superposition, which could
potentially create an additional burden. We point out that current and future heuristic
instantiations of the random oracle model using explicit hash functions are assumed to enjoy
efficient quantum implementation. Specifically, in evaluating the post-quantum security level
of cryptographic constructions (e.g. for the NIST competition [14]), security is evaluated
in the Quantum Random Oracle model where adversaries are assumed to evaluate hash
functions on superpositions as efficiently as they do classically. Granted, this is just a model
for an adversary, but it is customary to try to be as realistic as possible and not over-estimate
the power of the adversary. We therefore consider the evaluation of the random hash function
as a relatively lower-order addition to the cost of performing the quantumness test.

2 This insight is due to a discussion with Omer Paneth.
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Lastly, we compare our method to the most straightforward way to employ a random
oracle for the purpose of round reduction, the Fiat-Shamir transform [7]. The basic protocol
of [3] contains 4 messages, where the third message is simply a random bit. One can therefore
do parallel repetition of the protocol (though the soundness of this transformation needs to
be shown),3 and apply Fiat-Shamir to compress it into challenge-response form. Furthermore,
for proofs of quantumness soundness is only required to hold against a classical adversary, so
the standard security reduction for Fiat-Shamir should hold. This approach only requires
to apply the random oracle to a classical input. However, it still requires the adaptive
hard-core bit property and is therefore restricted to the LWE assumption. We believe that
our protocol, being of a somewhat modified form compared to prior works, may be useful for
future applications.

Our Technique

At a high level, a family of trapdoor claw free functions allows to sample a function
f : {0, 1} × {0, 1}n → {0, 1}n together with a trapdoor. The function has two branches
f(0, ·), f(1, ·) which are both injective, i.e. permutations (this is a simplified description,
actual protocols use a relaxed “noisy” notion). It is guaranteed that it is computationally
intractable to find a collision (“claw”) x0, x1 s.t. f(0, x0) = f(1, x1), however given the
trapdoor it is possible to find for all y the preimages x0, x1 s.t. f(0, x0) = f(1, x1) = y.

The [3] protocol sends a description of f to the quantum device, asks it to apply f on a
uniform superposition of inputs and measure the image register, call the value obtained y.
The quantum device is then left with a uniform superposition over the two preimages of y:
(0, x0) and (1, x1). The value y is sent to the verifier who challenges the quantum device to
measure the remaining superposition on inputs in either the standard or Hadamard basis. A
classical adversary that can answer each query independently must also be able to answer
both at the same time, which is ruled out by the adaptive hard core property.

We propose to enable the quantum device to generate a superposition over (0, x0, H(0, x0))
and (1, x1, H(1, x1)), where H is a one-bit hash function modeled as a random oracle. This
can be done in a straightforward manner, similar to the previous method. The device is then
asked to measure the resulting state in the Hadamard basis (always), and send the outcomes
obtained to the verifier.4 Since the device makes a single measurement, there is no need for a
challenge from the verifier, which effectively collapses the protocol to two messages. A quick
calculation shows that the verifier receives a bit m and vector d s.t. in the case of a honest
behavior the equation m = d · (x0 ⊕ x1) ⊕H(0, x0) ⊕H(1, x1) holds. Finally, the verifier
uses the trapdoor to recover x0, x1 from y and checks that the equation is satisfied. The
crux of the security proof is that a classical adversary cannot query the oracle at both (0, x0)
and (1, x1), otherwise it would have been able to find a claw and break the cryptographic
assumption. Therefore at least one value out of H(0, x0) and H(1, x1) remains random,
and thus the adversary cannot compute m, d that adhere to the required equation with
probability greater than 1/2. The proof thus follows from a simple extraction-style argument.
In our main protocol, we use parallel repetition to argue that no prover can succeed with
non-negligible probability.

3 Very recently, two concurrent works by Alagic et al. [2] and Chia et al. [6] showed that parallel repetition
of Mahadev’s protocol indeed achieves negligible soundness error.

4 In fact we use a slight variant of this protocol, since measuring the H part in Hadamard basis has
probability 1/2 of erasing the information on that bit. Instead we append the H values directly to the
phase. This is immaterial for the purpose of this exposition.
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Discussion on the “Random Oracle” Heuristic

As discussed above, the Fiat-Shamir heuristic can be used for the quantum supremacy
protocol of Brakerski et al. [3]. However, this would mean that the resulting scheme would
require stronger assumptions (in particular, it would require noisy TCFs with the adaptive
hardcore bit property). Secondly, starting with the work of Canetti et al. [5], many works
have shown uninstantiability of the random oracle. These works show certain cryptographic
primitives which are secure in the random oracle model, but are broken when instantiated
by any concrete hash function. However, these constructions are very contrived, and in
particular, do not apply to our protocol.

Efficiency of our Protocol, and Comparison to Previous Approaches

We would like to emphasize that at the current level of maturity of quantum technology, any
estimate of “practical advantage” would be educated guesswork at best. The technology for
any option is far from being available and it is hard to predict the direction that technology
will take, and as a consequence the practical cost of implementing certain operations.

This state of affairs, we believe, highlights the importance of developing multiple ap-
proaches to tasks such as proof of quantumness. This way, an assortment of solutions will be
ready to accommodate the different directions that technology may lead.

A second point that we wish to highlight before getting into technical calculations, is
that our approach allows to use any family of trapdoor claw free permutations (and as we
point out, for proofs of quantumness even “pre-quantum” candidates will suffice, e.g. if a
candidate can be devised based on DDH in EC groups). This means that our back of the
envelope calculation only refers to one specific way of using our scheme. Currently, we do
not know any candidates for trapdoor claw free permutations based on such “pre-quantum”
assumptions.

Our protocol can be executed using a quasi-linear number of qubits and, with the proper
choice of candidate for the hash function, has quasi-linear computational complexity.

Comparison with [3]: Since we do not require the hardcore bit property, our input
dimension n is smaller by a factor of at least 60 log(λ). This follows due to Lemma 4.2 in [3].
Also, note that the parameter q must also grow, hence the overall number of qubits required
to implement the protocol in [3] is O(λ log3(λ)), at least 100 log(λ) times more. Secondly,
since [3] is a four-round protocol, the prover must maintain its quantum state until it receives
a challenge from the verifier.

Comparison to discrete log via Shor’s algorithm: Let n denote the number of bits required
for representing the group elements. The current estimates for the number of qubits required
for discrete log are 3n, while the number of quantum gates required is 0.3n3 (see [8]).
Similar to Shor’s algorithm for factoring/discrete log, our protocol is also a non-interactive
one (that is, the verifier sends a challenge, and the prover responds with an answer).

Open Problems

Our work suggests a number of open problems in the context of utilizing random oracles in
the regime of classical verification of quantum computation. Most desirably, whether it is
possible to use the random oracle in order to eliminate the need for other assumptions, or at
least the need for a trapdoor. Obtaining a publicly verifiable protocol is a highly desirable
goal. We can also wonder whether our protocol can be used for the purposes of certifying
randomness or verifying quantum computation. In the plain model, the adaptation of the
proof of quantumness for these purposes was far from trivial and yet the protocol itself is
almost identical. Improving the state of the art in certifying randomness and in verifiability
using random oracles (or using other methods) is also an interesting open problem.
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2 Preliminaries

2.1 Notations
For an integer n we write [n] for the set {1, . . . , n}. For any finite set X, let x← X denote
a uniformly random element drawn from X. Similarly, for any distribution D, let x ← D
denote a sample from D. For an element x ∈ X we write BitDecomp(x) for an arbitrarily
chosen but canonical (depending only on the implicit set X) binary representation of x.
For any density function f on domain X, let Supp(f) denote the support of f ; that is
Supp(f) = {x ∈ X : f(x) > 0}.

For density functions f1, f2 over the same finite domain X, the Hellinger distance between
f1 and f2 is

H2(f1, f2) = 1−
∑
x∈X

√
f1(x)f2(x).

The total variation distance between f1 and f2 is

‖f1 − f2‖TV = 1
2
∑
x∈X
|f1(x)− f2(x)| ≤

√
2H2(f1, f2).

The following lemma relates the Hellinger distance and the trace distance of superpositions.

I Lemma 1. Let X be a finite set and f1, f2 two density functions on X. Let

|ψ1〉 =
∑
x∈X

√
f1(x) |x〉 , and |ψ2〉 =

∑
x∈X

√
f2(x) |x〉 .

Then

‖|ψ1〉 − |ψ2〉‖tr ≤
√

1− (1−H2(f1, f2))2.

2.2 Ideal Lattices
In this section, we present some background on ideal lattices, the truncated discrete Gaussian
distribution and the Ring Learning with Errors problem. For a positive integer B, modulus q,
and dimension n, the truncated discrete Gaussian distribution is a distribution with support{
x ∈ Znq : ‖x‖ ≤ B

√
n
}
defined as follows:

DZnq ,B(x) =
exp
(
−π‖x‖2

/B2
)

∑
z∈Znq ,‖z‖≤B

√
n exp(−π|z|2/B2) .

The Ring Learning with Errors (RLWE) assumption[11] is parameterized by a ring R,
modulus q ∈ N and a noise distribution χ. Informally, the assumption states that given many
samples of the form (a, a · s+ e) where s is fixed for all samples, a is chosen uniformly at
random and e is chosen from the error distribution χ for each sample, it is hard to compute
s. The formal definition is given below. Here, we restrict ourselves to a special family of
cyclotomic rings.

I Assumption 1. Let n be a power of two, fn(X) = Xn + 1 an irreducible polynomial over
Q[X] and Rn = Z[X]/(fn(X)). Let q = {qn}n∈N be a family of moduli, Rn,qn = Rn/qnRn =
Zqn [X]/(fn(X)) the quotient space, and χ = {χn}n∈N a family of error distributions, where
χn is a distribution over Rn,qn . For any secret s in Rn,qn , let Os denote the oracle that, on
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each query, chooses a← Rn,qn , e← χn and outputs (a, a ·s+e mod qn). The Ring Learning
with Errors assumption RLWER,q,χ, parameterized by the family of rings {Rn}n=2k,k∈N,
moduli family q and distribution family χ, states that for any PPT adversary A, there exists
a negligible function negl(·) such that for all security parameters n = 2k, k ∈ N,

Pr
[
s← AOs()(1n) : s← Rn,qn

]
≤ negl(n).

Given many samples {ai, ai · s+ ei}i, one can efficiently find s using a trapdoor for the
public elements {ai}i. There exists a sampling algorithm that can sample {ai}i together with
a trapdoor τ , and an inversion algorithm that uses τ to extract s from the set of evaluations
{ai · s+ ei}i. Without the trapdoor, the public elements {ai}i look uniformly random.

I Theorem 2 (Theorem 5.1 of [13] in the Ring setting). Let n,m, q be such that n is a power
of 2, m = Ω(log q). There is an efficient randomized algorithm GenTrap that takes as
input (1n, 1m, q), and returns a = (ai)i ∈ Rmn,q and a trapdoor τ such that the distribution
of a is negligibly (in n) close to the uniform distribution over Rmn,q. Moreover, there is an
efficient algorithm Invert and a universal constant CT such that the following holds with
overwhelming probability over the choice of (a, τ)← GenTrap(1n, 1m, q):

for all s ∈ Rn,q, e such that ‖e‖ ≤ q

CT
√
n log q

, Invert(a, τ,a · s+ e) = s.

2.3 Noisy Trapdoor Claw-Free Hash Functions
In this section we introduce the notion of noisy trapdoor claw-free functions (NTCFs). Let
X ,Y be finite sets and K a set of keys. For each k ∈ K there should exist two (efficiently
computable) injective functions fk,0, fk,1 that map X to Y, together with a trapdoor tk
that allows efficient inversion from (b, y) ∈ {0, 1} × Y to f−1

k,b (y) ∈ X ∪ {⊥}. For security,
we require that for a randomly chosen key k, no polynomial time adversary can efficiently
compute x0, x1 ∈ X such that fk,0(x0) = fk,1(x1) (such a pair (x0, x1) is called a claw).

Unfortunately, we do not know how to construct such “clean” trapdoor claw-free functions.
Hence, as in previous works [3, 12], we will use “noisy” version of the above notion. For each
k ∈ K, there exist two functions fk,0, fk,1 that map X to a distribution over Y.

The following definition is taken directly from [3].

I Definition 3 (NTCF family). Let λ be a security parameter. Let X and Y be finite sets.
Let KF be a finite set of keys. A family of functions

F =
{
fk,b : X → DY

}
k∈KF ,b∈{0,1}

is called a noisy trapdoor claw free (NTCF) family if the following conditions hold:

1. Efficient Function Generation. There exists an efficient probabilistic algorithm GenF
which generates a key k ∈ KF together with a trapdoor tk:

(k, tk)← GenF (1λ) .

2. Trapdoor Injective Pair.
a. Trapdoor: There exists an efficient deterministic algorithm InvF such that with over-

whelming probability over the choice of (k, tk)← GenF (1λ), the following holds:

for all b ∈ {0, 1}, x ∈ X and y ∈ Supp(fk,b(x)), InvF (tk, b, y) = x.
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8:8 Simpler Proofs of Quantumness

b. Injective pair: For all keys k ∈ KF , there exists a perfect matching Rk ⊆ X × X such
that fk,0(x0) = fk,1(x1) if and only if (x0, x1) ∈ Rk.

3. Efficient Range Superposition. For all keys k ∈ KF and b ∈ {0, 1} there exists a
function f ′k,b : X → DY such that the following hold.
a. For all (x0, x1) ∈ Rk and y ∈ Supp(f ′k,b(xb)), InvF (tk, b, y) = xb and InvF (tk, b ⊕

1, y) = xb⊕1.
b. There exists an efficient deterministic procedure ChkF that, on input k, b ∈ {0, 1},

x ∈ X and y ∈ Y, returns 1 if y ∈ Supp(f ′k,b(x)) and 0 otherwise. Note that ChkF is
not provided the trapdoor tk.

c. For every k and b ∈ {0, 1},

Ex←UX
[
H2(fk,b(x), f ′k,b(x))

]
≤ 1/50 .5

Here H2 is the Hellinger distance. Moreover, there exists an efficient procedure SampF
that on input k and b ∈ {0, 1} prepares the state

1√
|X |

∑
x∈X ,y∈Y

√
(f ′k,b(x))(y) |x〉 |y〉 . (1)

4. Claw-Free Property. For any PPT adversary A, there exists a negligible function
negl(·) such that the following holds:

Pr
[
(x0, x1) ∈ Rk : (k, tk)← GenF (1λ), (x0, x1)← A(k)

]
≤ negl(λ)

3 Proof of Quantumness Protocol

We will now present our protocol. Throughout the protocol, we will ignore dependence on
the security parameter when clear from context. Let F be a NTCF family with domain X ,
range Y described by the algorithms GenF , InvF ,ChkF ,SampF . Let w denote the length
of bit decomposition of elements of X . Finally, let H be a hash function that maps X to
{0, 1}.

Proof of Quantumness Protocol

The protocol is parameterized by a hash function H : {0, 1}n → {0, 1} (which will be modeled as a
random oracle in the security proof).

1. The verifier generates (k, κ)← GenF (1λ) and sends k to the prover.
2. The prover sends λ tuples {(yi,mi, di)}i∈[λ]. The verifier initializes count = 0 and performs the

following checks:
a. It checks that all values in {yi}i are distinct.
b. It computes xi,b = InvF (κ, b, yi) for each i ∈ [λ], b ∈ {0, 1}. Next, it checks if mi =

dTi ·(BitDecomp(xi,0)+BitDecomp(xi,1))+H(xi,0)+H(xi,1). If this check passes, it increments
the value of count by 1.

3. If count > 0.75λ, the verifier outputs 1, else it outputs ⊥.

Figure 1 Protocol for Proof of Quantumness.
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I Theorem 4. Let F be a family of NTCF functions satisfying Definition 3. Then Protocol
1 satisfies the following properties:
- Completeness: There exists a quantum polynomial-time prover P and a negligible function

negl(·) such that for all λ ∈ N and hash functions H, P succeeds in the protocol with
probability at least 1− negl(λ).

- Proof of Quantumness: For any PPT (classical) adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, A succeeds in the protocol with probability at
most negl(λ) where H is modeled as a random oracle.

3.1 Completeness
In this section, we show that the honest (quantum) prover is accepted by the verifier.

The honest prover receives NTCF key k. It does the following:
1. It starts with λ copies of the state |0〉 |0〉 |0〉 |−〉. For each i ∈ [λ], let |ψi〉 = |0〉 |0〉 |0〉 |−〉.

It then applies SampF to the first three registers of |ψi〉 for each i, resulting in the state∣∣∣ψ′(1)
i

〉
, where

∣∣∣ψ′(1)
1

〉
=

 1√
2|X |

∑
x∈X ,y∈Y,b∈{0,1}

√
(f ′k,b(x))(y) |b〉 |x〉 |y〉

 |−〉 . (2)

This quantum state is at distance at most 0.2 from the following quantum state:∣∣∣ψ(1)
i

〉
=

 1√
2|X |

∑
x∈X ,y∈Y,b∈{0,1}

√
(fk,b(x))(y) |b〉 |x〉 |y〉

 |−〉 . (3)

2. Next, it measures the third register, obtaining measurement y ∈ Y. Let x0, x1 ∈ X be
the unique elements such that y is in the support of fk,b(xb). Applying this operation to
the state in (3), the resulting state (ignoring the measured register) is∣∣∣ψ(2)

i

〉
=
(

1√
2

(|0〉 |x0〉+ |1〉 |x1〉)
)
|−〉 . (4)

3. Let UH be a unitary that maps |a〉 |b〉 to |a〉 |b+H(a)〉. The prover applies UH to the
second and third register. On applying this operation to the state in (4), the new state is∣∣∣ψ(3)

i

〉
= 1

2

∑
b,b′

(−1)b
′
|b〉 |xb〉 |b′ +H(xb)〉

 . (5)

4. The prover then evaluates the function BitDecomp on the second register. Applying this
to (5), the resulting state is∣∣∣ψ(4)

i

〉
= 1

2

∑
b,b′

(−1)b
′
|b〉 |BitDecomp(xb)〉 |b′ +H(xb)〉

 . (6)

5. Finally, the prover applies the Hadamard operator to all registers. On applying this to
(6), this produces the state (where hb = H(xb) and xb = BitDecomp(xb))∣∣∣ψ(5)

i

〉
= 1√

2w+4

∑
b,b′∈{0,1}

∑
m,m′∈{0,1},
d∈{0,1}w

(−1)m·b+d
T ·xb+m′·b′+m′·hb+b′ |m〉 |d〉 |m′〉

= 1√
2w+2

∑
m∈{0,1},d∈{0,1}w

|m〉 |d〉 |1〉
(

(−1)d
T ·x0+h0 + (−1)m+dT ·x1+h1

)
(7)
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Upon measurement of the state in (7), the output tuple (m, d, 1) satisfies m = dT · (x0 +
x1) + h0 + h1 (with probability 1). As a result, applying the above operations to

∣∣∣ψ′(1)
i

〉
results in a tuple (y,m, d) that is accepted with probability at least 0.8. Using a Chernoff
bound it is straightforward to argue that there exists a negligible function negl(·) such that
with probability at least 1− negl(λ), at least 3/4 fraction of the tuples in {(yi,mi, di)}
pass the verification.

3.2 Proof of Quantumness : Classical Prover’s Advantage in the
Random Oracle Model

Here, we will show that if the function H is replaced with a random oracle, then any classical
algorithm that has non-negligble advantage in Protocol 1 can be used to break the claw-free
property of F . Consider the following security experiment which captures the interaction
between a (classical) prover and a challenger in the random oracle model; the challenger
represents the verifier in the protocol.

Experiment 1

In this experiment, the challenger represents the verifier in Protocol 1 and also responds to
the random oracle queries issued by the prover.
1. The challenger (verifier) chooses an NTCF key (k, κ)← GenF (1λ) and sends k to the

prover. The prover and challenger have access to a random oracle H : {0, 1}n → {0, 1}.
2. The prover sends {(yi,mi, di)}i∈[λ]. For each i ∈ [λ], the challenger computes xi,b ←

InvF (κ, b, yi) for b ∈ {0, 1}, queries the random oracle H on xi,0, xi,1 and receives hi,0, hi,1
respectively. Next, it checks if mi = dTi · (BitDecomp(xi,0) +BitDecomp(xi,1)) +hi,0 +hi,1.
If at least 0.75λ tuples satisfy the check, it outputs 1, else it outputs ⊥.

Experiment 2

This experiment is similar to the previous one, except that the challenger implements the
random oracle, and does not use the trapdoor for performing the final λ checks.

1. The challenger (verifier) chooses an NTCF key (k, κ)← GenF (1λ) and sends k to the
prover. The challenger also implements the random oracle as follows. It maintains a
database which is initially empty. On receiving a query x, it checks if there exists a tuple
(x, h) in the database. If so, it outputs h, else it chooses a random bit h← {0, 1}, adds
(x, h) to the database and outputs h.

2. The prover sends {(yi,mi, di)}i∈[λ]. On receiving this set from the prover, the challenger
does not compute the inverses of yi. Instead, it initializes count = 0, and for each i,
it looks for tuples (xi,0, hi,0) and (xi,1, hi,1) in the table such that ChkF (yi, 0, xi,0) =
ChkF (yi, 1, xi,1) = 1. If such (xi,0, xi,1) do not exist, then the challenger chooses a
random bit ri and sets count = count + ri. Else, it checks if mi = dTi · (BitDecomp(xi,0) +
BitDecomp(xi,1)) + hi,0 + hi,1. If so, it increments count.
Finally, it checks if count > 0.75λ. If so, it outputs 1, else outputs ⊥.

Experiment 3

This experiment is identical to the previous one, except that the challenger, after receiving
{(yi,mi, di)}i, outputs ⊥ if for all i ∈ [λ], there does not exist two entries (xi,0, hi,0), (xi,1, hi,1)
in the database such that ChkF (yi, 0, xi,0) = ChkF (yi, 1, xi,1) = 1.
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3.2.1 Analysis

For any classical PPT prover A, let pA denote the probability that the verifier outputs 1 in
Protocol 1 (when H is replaced with a random oracle), and for w ∈ {1, 2, 3}, let pA,w denote
the probability that the challenger interacting with A in Experiment w outputs 1. From the
definition of Experiment 1 it follows that pA = pA,1.

B Claim 5. For any prover A, pA,1 = pA,2.

Proof. The main differences between Experiment 1 and Experiment 2 are that the challenger
implements the random oracle, and secondly, after receiving {(yi,mi, di)}i, the challenger
does not use the trapdoor for checking. Note that in Experiment 1, if either xi,0 or xi,1 are not
queried to the random oracle H, then H(xi,0) +H(xi,1) is a uniformly random bit. Moreover,
since the yi values are distinct, if there exist two indices i, j such that both the preimages of
yi and yj are not queried, then H(xi,0) +H(xi,1) is independent of H(xj,0) +H(xj,1). As a
result, for each index i such that the preimages of yi are not queried, the value of count is
incremented with probability 1/2.

In Experiment 2, the challenger checks for pairs corresponding to xi,0 and xi,1 in the
database, and if either of them is missing, it increments count with probability 1/2. As a
result, the probability of count > 0.75λ is identical in both experiments. C

B Claim 6. There exists a negligible function negl(·) such that for any prover A and any
security parameter λ ∈ N, pA,2 ≤ pA,3 + negl(λ).

Proof. The only difference between these two experiments is that the challenger, at the end
of the experiment, outputs ⊥ if for all i ∈ [λ], either xi,0 or xi,1 has not been queried to the
random oracle. The only case in which the challenger outputs 1 in Experiment 2 but outputs
⊥ in Experiment 3 is when for all i ∈ [λ], either xi,0 or xi,1 has not been queried, but there
exist t ≥ 0.75λ indices {i1, . . . , it} such that count was incremented. Using Chernoff bounds,
we can show that this happens with negligible probability. C

B Claim 7. Assuming F is a secure claw-free trapdoor family, for any PPT prover A, there
exists a negligible function negl(·) such that for all λ ∈ N, pA,3(λ) ≤ negl(λ).

Proof. Suppose there exists a PPT prover A and a non-negligible function ε(·) such that
for all λ ∈ N, the challenger outputs 1 with probability ε = ε(λ) in Experiment 3. This
means with probability at least ε, there exists an index i∗ ∈ [λ] such that A queries the
random oracle on xi∗,0, xi∗,1 and finally outputs {(yi,mi, di)}i such that ChkF (yi∗ , 0, xi∗,0) =
ChkF (yi∗ , 1, xi∗,1) = 1.

We will construct a reduction algorithm B that breaks the claw-free property of F with
probability ε. The reduction algorithm receives the key k from the NTCF challenger, which it
forwards to A. Next, A makes polynomially many random oracle queries, which are answered
by the reduction algorithm by maintaining a database. Eventually, A sends {(yi,mi, di)}.
The reduction algorithm checks if there exist tuples (xi∗,0, hi∗,0) and (xi∗,1, hi∗,1) in its
database such that ChkF (yi∗ , 0, xi∗,0) = ChkF (yi∗ , 1, xi∗,1) = 1. If so, it sends (xi∗,0, xi∗,1)
to the NTCF challenger. C

Using the above claims, it follows for every classical prover A, there exists a negligible
function negl(·) such that for all λ ∈ N, pA ≤ negl(λ).
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4 Construction of NTCFs based on Ring LWE

Our construction is similar to the one in [3]. Let λ be the security parameter, n = 2dlogλe.
The following are other parameters chosen by our scheme (we will ignore dependence on
security parameter/n):

Ring R = Z[X]/(Xn + 1).
Modulus q = poly(n), Rq = R/qR

m = Ω(log q) : determines the dimension of range space
χ: the noise distribution. In our case, χ is a Discrete Gaussian over Zn with parameter
BV .
BP : the noise bound for function evaluation. We require the following constraints on
BP :
BP ≥ Ω(n ·m ·BV )
2BP
√
n ·m ≤ q/(CT ·

√
n log q) for some constant CT

The domain is X = Rq, and range is Y = Rmq .
Each function key k = (a,a · s + e), where s ∈ Rq, ai, ei ∈ Rq for all i ∈ [m], a =

[a1 . . . am]T , e = [e1 . . . em]T . For b ∈ {0, 1}, x ∈ X , k = (a,a · s + e), the density function
fk,b(x) is defined as follows:

∀y ∈ Y, (fk,b(x))(y) = DZn·m,BP (y− a · x− b · a · s), (8)

where y = [y1 . . . ym]T , and each yi can be represented as an element in Znq (using the
coefficient representation); similarly for a · x and a · s.

We will now show that each of the properties of NTCFs hold.

1. Efficient Key Generation: The key generation algorithm GenF (1λ) first chooses
(a, τ) ← GenTrap(1n, 1m, q), s ← Rq and e ← χm. It outputs key k = (a,a · s + e),
and the trapdoor is κ = (τ, k, s).

2. Trapdoor Injective Pair:
a. Trapdoor : For k = (a,a · s+ e), x ∈ X and b ∈ {0, 1}, the support of fk,b(x) is

Supp(fk,b(x)) =
{

y ∈ Y : ‖y− a · x− b · a · s‖ ≤ BP
√
n ·m

}
The inversion algorithm InvF takes as input the lattice trapdoor τ , b ∈ {0, 1}, y ∈ Y
and outputs Invert(τ,a,y)−b ·s. From Theorem 2, it follows that with overwhelming
probability over the choice of a, for all y ∈ Supp(fk,b(x)), Invert(τ,a,y) = x+ b · s.
Hence, it follows that InvF (κ, b,y) = x.

b. Injective Pair : Let k = (a,a · s+ e). From the construction, it follows that fk,0(x0) =
fk,1(x1) if and only if x1 = x0 + s. Hence the set Rk = {(x, x+ s) : x ∈ X}.

3. Efficient Range Superposition: The function f ′k,0 is same as fk,0, while f ′k,1 is defined
as follows (recall k = (a,a · s+ e)):

∀y ∈ Y, (f ′k,1(x))(y) = DZn·m,BP (y− a · x− (a · s+ e)) (9)

a. Since f ′k,0 = fk,0, it follows that for all (x0, x1) ∈ Rk and y ∈ Supp(f ′k,0(x0)),
InvF (κ, 0,y) = x0 and InvF (κ, 1,y) = x1. We need to show the same for f ′k,1; that is,
for all (x0, x1) ∈ Rk and y ∈ Supp(f ′k,1(x1)), InvF (κ, 1,y) = x1 and InvF (κ, 0,y) =
x0. For all x ∈ X ,

Supp(f ′k,1(x)) =
{

y ∈ Y : ‖y− a · x− a · s− e‖ ≤ BP
√
n ·m

}
Hence for any y ∈ Supp(f ′k,1(x)), ‖y− a · x1 − a · s‖ ≤ 2BP

√
n ·m; using Theorem 2,

we can conclude that InvF (κ, 1,y) = x1.
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b. The procedure ChkF takes as input y ∈ Y, k = (a,v), b ∈ {0, 1}, x ∈ X and checks if
‖y− a · x− b · v‖ ≤ BP

√
n ·m.

c. The definition of SampF is identical to the one in [3], and the Hellinger distance can
be bounded by 1− e−

2πm·n·BV
BP .From our setting of parameters, this quantity is at most

1/50.
4. Claw-Free Property Suppose there exists an adversary A that, on input k = (a,a ·s+e)

can output (x0, x1) ∈ Rk. Then this adversary can be used to break the Ring LWE
assumption, since x1 − x0 = s.

References
1 Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In

Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose,
CA, USA, 6-8 June 2011, pages 333–342, 2011.

2 Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung. Non-interactive classical
verification of quantum computation, 2019. arXiv:1911.08101.

3 Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani, and Thomas Vidick.
A cryptographic test of quantumness and certifiable randomness from a single quantum device.
In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 320–331, 2018.

4 Michael J Bremner, Richard Jozsa, and Dan J Shepherd. Classical simulation of commuting
quantum computations implies collapse of the polynomial hierarchy. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 467(2126):459–472, 2010.

5 Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J.
of the ACM, 51(4):557–594, 2004.

6 Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. Classical verification of quantum
computations with efficient verifier. ArXiv, abs/1912.00990, 2019.

7 Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology - CRYPTO ’86, Santa Barbara, California,
USA, 1986, Proceedings, pages 186–194, 1986.

8 Craig Gidney and Martin Ekerå. How to factor 2048 bit rsa integers in 8 hours using 20
million noisy qubits. arXiv preprint arXiv:1905.09749, 2019.

9 Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A “paradoxical” solution to the signature
problem. In George Robert Blakley and David Chaum, editors, Advances in Cryptology, 1985.

10 Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Monaco / French
Riviera, May 30 - June 3, 2010. Proceedings, pages 1–23, 2010.

11 Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-lwe cryptography.
IACR Cryptology ePrint Archive, 2013:293, 2013.

12 Urmila Mahadev. Classical verification of quantum computations. In 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9,
2018, pages 259–267, 2018.

13 Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings, pages 700–718, 2012.

14 NIST. Candidate quantum-resistant cryptographic algorithms pub-
licly available. URL: https://www.nist.gov/news-events/news/2017/12/
candidate-quantum-resistant-cryptographic-algorithms-publicly-available.

TQC 2020

http://arxiv.org/abs/1911.08101
https://www.nist.gov/news-events/news/2017/12/candidate-quantum-resistant-cryptographic-algorithms-publicly-available
https://www.nist.gov/news-events/news/2017/12/candidate-quantum-resistant-cryptographic-algorithms-publicly-available


8:14 Simpler Proofs of Quantumness

15 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 84–93, 2005.

16 Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA,
20-22 November 1994, pages 124–134, 1994.



Quantum Algorithms for Computational Geometry
Problems
Andris Ambainis
Faculty of Computing, University of Latvia, Raina bulvaris 19, Riga, LV-1586, Latvia
ambainis@lu.lv

Nikita Larka
Faculty of Computing, University of Latvia, Raina bulvaris 19, Riga, LV-1586, Latvia
nikitalarka@gmail.com

Abstract
We study quantum algorithms for problems in computational geometry, such as Point-On-3-Lines
problem. In this problem, we are given a set of lines and we are asked to find a point that lies on at
least 3 of these lines. Point-On-3-Lines and many other computational geometry problems are
known to be 3Sum-Hard. That is, solving them classically requires time Ω(n2−o(1)), unless there is
faster algorithm for the well known 3Sum problem (in which we are given a set S of n integers and
have to determine if there are a, b, c ∈ S such that a + b + c = 0).
Quantumly, 3Sum can be solved in time O(n log n) using Grover’s quantum search algorithm. This
leads to a question: can we solve Point-On-3-Lines and other 3Sum-Hard problems in O(nc) time
quantumly, for c < 2?
We answer this question affirmatively, by constructing a quantum algorithm that solves Point-
On-3-Lines in time O(n1+o(1)). The algorithm combines recursive use of amplitude amplification
with geometrical ideas. We show that the same ideas give O(n1+o(1)) time algorithm for many
3Sum-Hard geometrical problems.
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1 Introduction

The 3Sum problem is as follows: given a set of numbers S, do there exist a, b, c ∈ S such that
a+ b+ c = 0? There is a nearly trivial classical algorithm that solves this problem in time
O(n2). More advanced algorithms give only a logarithmic improvement to this quadratic
complexity [15]. It is conjectured that no classical algorithm can solve 3Sum problem in
O(n2−ε) time.
Many problems in computational geometry (for example, determining whether a given set
of points contains 3 points that lie on a line) also seem to require Ω(n2) time classically.
Gajentaan and Overmars [12] showed that the 3Sum problem can be embedded into them.
This implies that they cannot be solved in O(n2−ε) time, unless the 3Sum problem can also
be solved in O(n2−ε) time. Such problems are called 3Sum-Hard. Besides 3 points on a
line, examples of 3Sum-Hard problems include determining whether a given set of points
contain 3 points that lie on a line, determining whether a given set of triangles covers given
polygon, and determining whether a given set of axis-parallel segments are separable with a
line into two nonempty subsets [12].
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Quantum computing allows designing quantum algorithms that outperform classical al-
gorithms. One such example is Grover search [14] which achieves quadratic speedup over
classical exhaustive search and can be used as a subroutine to speedup more complicated
problems [3, 17].

In particular, the 3Sum problem can be solved by a quantum algorithm in O(n logn) time,
by a fairly simple application of Grover search procedure. Indeed, we can do an exhaustive
search over pairs a, b ∈ S and look for −(a+ b) ∈ S using some data structure (for example,
we can use a balanced search tree). However, a direct application of Grover search does not
give a quadratic speedup for many geometrical 3Sum-Hard class problems. For example, if
we need to determine whether a set of points contain three points that lie on the same line,
we need to search for all possible triplets of points, which results in O(n 3

2 ) time quantum
algorithm [11].
In this paper we combine quantum effects with more sophisticated geometric techniques to
design a quantum algorithm with complexity O(n1+o(1)) for Point-On-3-Lines problem. We
use ideas from this algorithm to solve many other 3Sum-Hard problems in time O(n1+o(1)).

Related work. The he 3Sum problem has been studied in the context of query complexity
and it can be solved with O(n3/4) queries, as it is a special case of the subset finding
problem of Childs and Eisenberg [10] in which one has to find constant-size subset S of an
n-element set, with S satisfying a certain property. A matching Ω(n3/4) quantum query
lower bound is known [6]. However, the subset finding algorithm of [10] does not have
a time-efficient implementation in the general case. Some special cases (for example, the
element distinctness and k-distinctness algorithms of [2]) can be implemented efficiently but
no efficient implementation is known for the 3-SUM case.

We think that it is unlikely that this line of work would lead to an o(n) time quantum
algorithm for the 3Sum problem. The element distinctness algorithm [2] and the subset
finding algorithm [10] are special cases of a quadratic speedup for hitting times of Markov
chains [18, 4, 5]. It is unlikely that these methods will lead to a quantum algorithm that is
more than quadratically faster than the best classical algorithm.

More generally, we conjecture that the 3Sum problem cannot be solved in O(n1−ε)
quantum time in the QRAM model, neither with methods based on subset finding nor any
oher approach. This could serve as a basis for a quantum version of fine-grained complexity,
similarly to recent quantum fine grained lower bounds of [1, 8] based on quantum versions of
Strong Exponential Time Hypothesis (SETH).

2 Preliminaries

2.1 Problems
Here we define problems we focus on in this paper. All of them belong to 3Sum-Hard class.
[12]

Point-On-3-Lines: Given a set of lines in the plane, is there a point that lies on at least
three of them? [12]
3-Points-On-Line: Given a a set of points in the plane, is there a line that contains at
least three points? [12]
Strips-Cover-Box: Given a set of strips in the plane (strip is defined as an infinite area
between two parallel lines (see Figure 1)), does their union contain a given axis-parallel
rectangle? [12]
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Triangles-Cover-Triangle: Given a set of triangles in the plane, does their union
contain another given triangle? [12]
Point-Covering: Given a set of n half-planes and a number t, determine whether there
is a point that is covered by at least t half-planes. [12]
Segment-Separator: Given a set of vertical line segments, does there exists a non
vertical line that does not intersect any of given segments and contaisn at least one given
segment in each of two half-planes? [12]
Visibility-Between-Segments: Given a set of n vertical line segments S and two
particular line segments s1 and s2, determine whether there is a point on s1 and a point
on s2, such that segment between these two points doesn’t intersect any segment from S.
[12]

We also define General-Covering problem. We will design quantum algorithm for this
problem with O(n1+o(1)) complexity and then reduce many 3Sum-Hard problems to this
problem.

General-Covering: We are given a set of n strips and angles (angle is defined as an
infinite area between two non-parallel lines (see Figure 2)) in the plane. The task is to
find a point X that satisfies the following conditions:

the point X is an intersection of two angle or strip boundary lines `1, `2 (`1 and `2
may be boundary lines of two different angles/strips);
the point X does not belong to the interior of any angle or strip;
the point X satisfies a given predicate P (X) that can be computed in O(1) time.

Figure 1 Strip. Figure 2 Angle.

2.2 Model
We assume a query model in which the query returns the description Di of the ith object
(point, line, strip, triangle, etc.), given i. The description consists of several numbers that
specify the ith object (e.g. coordinates of a point or values of coefficients in the equation
that specifies a line). In the quantum case, we can query superpositions of indices i. The
input to quantum query Q consists of two registers, with one register holding i and the other
register provides the space for Di. The query transformation acts as Q|i, x〉 = |i, x⊕Di〉. In
particular, given a superposition |ψ〉 =

∑
i αi|i, 0〉 in which x = 0, applying Q gives the state

Q|ψ〉 =
∑
i αi|i,Di〉. Applying Q to |φ〉 =

∑
i αi|i,Di〉 gives the state Q|φ〉 =

∑
i αi|i, 0〉 in

which the descriptions Di are erased from the second register.
Our algorithms work in the commonly used QRAM (quantum random access memory)

model of computation [13] which assumes quantum memory can be accessed in a superposition.
QRAM has the property that any time-T classical algorithm that uses random access memory

TQC 2020



9:4 Quantum Algorithms for Computational Geometry Problems

can be invoked as a subroutine for a quantum algorithm in time O(T ). We can thus use
primitives for quantum search (e.g., Grover’s quantum search or Amplitude amplification)
with conditions checking which requires data stored in a random access memory.

2.3 Tools
We will use two well known quantum procedures in our algorithm.

I Theorem 1 (Grover search [16]). Given a set of n elements X = {x1, x2, ..., xn} and a
boolean function f : X → {0, 1}. The task is to find x ∈ X such that f(x) = 1. There is a
bounded-error quantum procedure that solves this problem using O(

√
n) quantum queries.

I Theorem 2 (Amplitude amplification [7]). Let A be a quantum procedure with one-sided
error and success probability at least ε. Then, there is a quantum procedure B that solves the
same problem with success probability 2

3 invoking A O( 1√
ε
) times.

Note that any constant success probability 1− ε can be achieved with repeating Amplitude
Amplification constantly many times.

We will also use the following well known computational geometry algorithm.

I Theorem 3 (Arrangement of lines [9]). Given a set of n lines in the plane, we can compute
partition of the plane formed by those lines in time O(n2).

We will also use point-line dualization for problem reductions. Point-line dualization is a
plane transformation that maps points to lines and lines to points in the following way:

Line ` : y = ax+ b is mapped to point `∗ = (a,−b)
Point P = (a, b) is mapped to line P ∗ : y = ax− b

One may note, that the following properties are true:
1. (P ∗)∗ = P and (`∗)∗ = `

2. P ∈ ` ⇐⇒ `∗ ∈ P ∗
3. If point A,B,C lie on one non-vertical line, then lines A∗, B∗, C∗ meet at one point.
4. If non-vertical lines p, q, r meet at one point, then points p∗, q∗, r∗ lie on one line.
5. Points from vertical line segment are mapped to a strip.
6. Points from non-vertical line segment are mapped to an angle.

3 Point on three lines

In this part we describe a quantum algorithm which solves Point-On-3-Lines problem in
O(n1+o(1)) time, improving over the O(n3/2) time quantum algorithm of Furrow [11]. The
idea behind our algorithm is as follows. Suppose we are given a set S of lines in the plane.
From this set we randomly pick k lines. Those k lines split plane into no more than

(
k+1

2
)

+ 1
regions. Each line from set S intersects k+ 1 regions. So, on average, a region contains O(nk )
lines crossing that region.
These facts give an opportunity to design a quantum algorithm that improves over the
complexity O(n 3

2 ) of simple quantum search (as in Furrow’s algorithm [11]). If we have a
point A, then we can decide if A belongs to some line from S using O(

√
n
k + k) quantum

time. To do so, we need to find a region which contains point A and check if A belongs
to a line which crosses that region. For finding the region, O(k) time suffices. Checking if
A belongs to a line from S can be done by Grover’s search over O(nk ) lines that cross this
region. For this, O(

√
n
k ) time suffices.
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If we need to find three lines that intersect in one point, we run Grover search over all pairs
of lines (`i, `j). For each pair, we find the intersection point Pi,j = li ∩ lj and check if point
Pi,j belongs to a third line using algorithm described earlier. If the subdivision of the plane
into regions can be done in time O(nk2), this algorithm runs in time O(nk2 +

√
n2(k+

√
n
k )).

Setting k = n
1
5 gives O(n 7

5 ). But we can find even better algorithm. After dividing the
plane into regions, instead of searching for an intersection point of three lines, we search
for a region which has this point (search is done using Grover search) and we recursively
apply O(n 7

5 ) algorithm to find the intersection point of three lines inside that region. We
can then add more levels of recursion to decrease the complexity further. We now describe
the final algorithm (in which we recurse at the optimal choice of k and the number of levels
of recursion grows with n).
Let S be the given set of lines in a plane. Let P be a subset of S containing exactly k lines.
Lines in P divide plane into convex (possibly infinite) polygons. We arbitrarily triangulate
regions, which are bounded by at least 4 lines. This results in a subdivision of the plane into
regions R1, R2, ..., Rt where each region is bounded by at most 3 segments (see Figure 3).
Let s(Ri) = {` | ` ∈ S and ` intersect Ri}.

Figure 3 Blue lines divide plate into 13 regions: R1, R2, ..., R13. Red line ` passes through regions:
` ∈ s(R1), s(R3), s(R6), s(R7), s(R8), s(R10).

We start with the following three observations:

I Lemma 4. If after the triangulation we get t regions: R1, R2, ..., Rt, then t ≤ 2|P |2 = 2k2

Proof. If fi is the number of faces bounded by i lines before the triangulation, then

t = f1 + f2 + f3 + 2f4 + 3f5 + ...+ (k − 2)fk ≤
k∑
i=1

ifi ≤ 2k2 (1)

The last inequality holds because
∑k
i=1 ifi is equal to twice the total number of line segments

before the triangulation (because each line segment is on the boundary of two faces, one on
each side) and the number of line segments is at most k2 (because each of k lines is split by
the other k − 1 lines into at most k segments). J

TQC 2020
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I Lemma 5. Sets s(R1), ..., s(Rt) can be built classically in time O(|S| × |P |2).

Proof. We can construct regions R1, R2, ..., Rt in time O(|P |2) using Theorem 3. We build
s(Ri) by iterating through each line from S and checking whether the line intersects region
Ri. This step takes time O(|S| × t) = O(|S| × |P |2). J

I Lemma 6. If P is chosen uniformly at random, then

Pr[max
i
|s(Ri)| ≥ 3 |S|

|P |
(5 log(|S|) + log(ε−1))] ≤ ε (2)

Proof. Let ` be an arbitrary line (possibly not from the set S). Lines from set S intersect
line ` in points X1, X2, ..., Xm in this order (if two lines `i and `j intersect ` in the same
point, then Xi = Xj). We note that m ≤ |S|, since some lines from S might be parallel to
`. We color a point Xi with white color if the corresponding line `i from S is in the set P .
Otherwise we color the point Xi with black color. We define L =

⌈
|S|
|P | (5 log(|S|) + log(ε−1))

⌉
and we assume that L ≤ |S|, since otherwise lemma is obviously true.

We say that a line ` is bad, if there exists index i, such that Xi+j is black for all
j ∈ [0...L− 1]. The probability of ` being bad can be upper bounded as follows

Pr
[m−L+1∨

i=1
(Xi, Xi+1, ..., Xi+L−1 are all black)

]
= (3)

≤
m−L+1∑
i=1

Pr[Xi, Xi+1, ..., Xi+L−1 are all black] = (m− L+ 1)

(|S|−L
|P |

)(|S|
|P |
) (4)

≤ |S|
(
|S| − L
|S|

)|P |
≤ |S|

[(
1− L

|S|

) |S|
L

]L |P ||S|
≤ |S|
e5 log |S|+log ε−1 = ε

|S|4
(5)

Consider set S′ which consists of lines from S and lines that pass through at least two
intersection points of lines from S. Then, every edge e of every region Ri lies on a line that
belongs to S′ (because e is either a segment of one of original lines from S or is created
during the triangulation and, in the second case, both endpoints of e are intersection points
of two lines from S) Since there are at most

(|S|
2
)
intersection points of lines from S, we have

|S′| ≤ |S|4 and

Pr[S′ contains bad line] ≤
∑
`∈S′

Pr[` is bad] ≤ |S′| × ε

|S4|
≤ ε (6)

To finish the proof, it is enough to see that the fact that S′ doesn’t contain bad line
implies |s(Ri)| ≤ 3(L− 1) < 3 |S||P | (5 log(|S|) + log(ε−1)) for all i. Indeed, if no lines in S′ is
bad, then each side of each region Ri contains less than L black points. Since a black point
corresponds to a line which intersects a region Ri and each region is bounded by at most
three segments, the region Ri is intersected by no more than 3(L− 1) lines from S. J

I Theorem 7. There is a bounded error quantum algorithm for Point-On-3-Lines problem,
that runs in time O(|S|1+o(1)).

Proof. The algorithm has a parameter k and allowable error probability ε. The algorithm
consists of a recursive procedure that takes a set of lines X as input and returns 3 lines from
the set X which intersects at one point or tells that there are no such 3 lines.
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Procedure Algok(X).

if |X| < k then
Check for an intersection of 3 lines classically, by exhaustive search

end
R1, R2, ..., Rt = RandomPlaneSeparation ε

2
(X)

Build sets: s(R1), s(R2), ..., s(Rt)
if maxi|s(Ri)| > 3 |X|k (5 log(|X|) + log( 2

ε )) then
return error

end
Let A be the algorithm that randomly chooses j ∈ [t] and runs Algok(s(Rj)).
With Amplitude amplification, run A with the success probability amplified to at
least 1− ε

2 .

The recursive procedure can be described as follows. If the input set X contains less than
k lines, we solve Point-On-3-Lines classically in time O(|X|2). Otherwise, we split the plane
into regions R1, R2..., Rt with k random lines from X and build sets s(R1), s(R2), ..., s(Rt).
If there are three lines that intersect at one point, then this point is located in one of the
regions Ri (if this point is on the boundary of a region, then this point can be found during
the construction of sets s(Ri)). We use amplitude amplification to find the region Ri which
contains intersection point of three lines and recursively apply the procedure to lines from
s(Ri).

Suppose that S contains three lines that intersect at one point. If |S| < k, the algorithm
finds those 3 lines with certainty. Let |S| ≥ k. The probability that s(Ri) > 3 |S|k (5 log(|S|) +
log( 2

ε )) for some Ri and the algorithm returns an error is less than ε
2 . By executing amplitude

amplification (running Algok(s(Ri)) O(
√
t) = O(k) times), we can reduce probability of not

finding the 3 lines to ε
2 . So, Algok(S) finds desired three lines with probability at least 1− ε.

If T (|X|) is a runtime of Algok(X), then:

T (|X|) = O(|X| × k2) +O
(√
k2
)
× T

(
3 |X|
k

(5 log(|X|) + log(2
ε

))
)

(7)

If k = |S| 1
α · 3(5 log(|S|) + log( 2

ε )), then:

T (|X|) ≤ O(|X| × |S| 2
α log2(|S|)) +O

(√
k2
)
× T

(
|X| × |S|− 1

α

)
(8)

There are (C1k)2j problems on recursion level j for some constant C1 and each problem size
is at most |S|1−

j
α .

T (|S|) ≤
α∑
j=0

√
(C1k)2j ×

[
|S|1−

j
α × |S| 2

α log2(|S|)
]

=

=
α∑
j=0

(
C1k

|S| 1
α

)j(
|S|1+ 2

α log2(|S|)
)
≤

≤ α
(
C2 log(|S|)

)α(|S|1+ 2
α log2(|S|)

)
(9)

If α =
√

2 log(|S|)
log(C2)+log log |S| , then T (|S|) = O(α|S|1+ 4

α log2(|S|)) = O(|S|1+o(1)) J
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4 Other 3SUM hard problems

In this section, we show how it is possible to apply plane separation ideas, described in the
previous section, to speed up other 3-Sum-Hard problems defined in [12].

3-Points-On-Line
This problem is dual to the Point-On-3-Lines problem [12], and so is solvable with the
same quantum algorithm in time O(n1+o(1)), as described in the previous section.
General-Covering
The given n strips and angles form 2n lines. We divide the plane into regions by randomly
choosing k out of those 2n lines, similarly to the algorithm described in the previous
section. A region and a strip/angle can be in one of the following relations: the strip/angle
fully covers the region, the strip/angle partly covers the region or the strip/angle has
no common points with the region. We can identify all regions that are fully covered
by some strip/angle in time O(nk2). For regions that are not fully covered by some
strip/angle, we identify the set s(Ri) of strips and angles which cross that region. Non
covered regions may contain the desired intersection point, but this intersection point is
formed by the lines that are boundary lines of the strips/angles in the set s(Ri). Similarly
to the algorithm Point-On-3-Lines, our task is divided into O(k2) tasks, each of which
involved O(n logn

k ) objects. The time complexity is

T (n) = O(nk2) +O
(√
k2
)
× T

(
32n
k

(5 log(2n) + log(2
ε

))
)
. (10)

Similarly to the analysis of Point-On-3-Lines problem, we get T (n) = O(n1+o(1)).
Strips-Cover-Box
This problem is just the special case of the General-Covering problem with the
predicate P (X) being true if the point X is located inside the given box. Then, the point
X from General-Covering problem corresponds to an uncovered point in Strips-
Cover-Box problem. So, Strips-Cover-Box can also be solved in time O(n1+o(1)).
Triangles-Cover-Triangle
The given n triangles consist of 3n segments. We extend each segment to a line and
separate the plane into regions, similarly to the Point-On-3-Lines problem with ran-
domly chosen k lines. A triangle and a region can be in one of the following relations:
the triangle fully covers the region, the triangle partly covers the region or the triangle
has no common point with the region. We can identify all regions that are fully covered
by some triangle in time O(nk2). All other regions may contain a point X which is not
covered by any triangle. Similarly to the Point-On-3-Lines problem, we search for the
region Ri which contains that point. Note that, if a triangle partly covers the region Ri,
then at least one of the segments that form this triangle is in s(Ri). So, we can finish our
algorithm, just as in General-Covering problem, with the predicate P (X) being true,
if the point X is located inside the triangle that must be covered.
Point-Covering
The given n half-planes are specified by n lines. We separate the plane into regions,
similarly to the Point-On-3-Lines problem, by randomly choosing k out of n given lines.
For each region Ri we compute the number of half-planes ri that fully cover this region.
This takes O(nk2) time. To determine if there exists a point that is covered by at least
t half-planes, we need to tell, if there exists a point inside a region Ri that is covered
by at least t− ri half-planes from s(Ri). As in the General-Covering problem, the
algorithm takes O(n1+o(1)) time.
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Visibility-Between-Segments
We dualize the given n vertical segments, to get n strips. We need to find a point that
does not belong to any of the strips and has the property that the corresponding line
in the initial plane intersects two given segments s1 and s2. This problem is just the
special case of the General-Covering problem, where the predicate P (X) is true if
the line corresponding to X intersects two given segments s1 and s2. Just like in the
General-Covering problem, this problem can also be solved in O(n1+o(1)) time.
Segment-Separator
This problem can be solved in exactly the same way as the Visibility-Between-
Segments problem, with the only difference being the predicate P (X). Now this
predicate is true, if the line corresponding to a point separates the given segments in the
way required for the Segment-Separator problem. Since X is the intersection point of
two lines in the dual plane, the line, corresponding to the point X, must go through two
endpoints of two different given segments. So, P (X) is false, if the corresponding line
goes through an edge of the convex hull of the endpoints of given segments. This can be
detemined in time O(1), after we precompute the convex hull in time O(n log(n)). This
results in an O(n1+o(1)) time quantum algorithm.
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Abstract
We study how efficiently a k-element set S ⊆ [n] can be learned from a uniform superposition |S〉 of
its elements. One can think of |S〉 =

∑
i∈S
|i〉 /
√
|S| as the quantum version of a uniformly random

sample over S, as in the classical analysis of the “coupon collector problem.” We show that if k is
close to n, then we can learn S using asymptotically fewer quantum samples than random samples.
In particular, if there are n− k = O(1) missing elements then O(k) copies of |S〉 suffice, in contrast
to the Θ(k log k) random samples needed by a classical coupon collector. On the other hand, if
n− k = Ω(k), then Ω(k log k) quantum samples are necessary.

More generally, we give tight bounds on the number of quantum samples needed for every k
and n, and we give efficient quantum learning algorithms. We also give tight bounds in the model
where we can additionally reflect through |S〉. Finally, we relate coupon collection to a known
example separating proper and improper PAC learning that turns out to show no separation in the
quantum case.
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1 Introduction

Learning from quantum states is a major topic in quantum machine learning. While this task
has been studied extensively [15, 27, 7, 8, 6, 17, 4], many fundamental questions about the
power of quantum learning remain. Determining properties of quantum states has potential
applications not only in the context of machine learning, but also as a basic primitive for
other types of quantum algorithms and for quantum information processing more generally.

In this paper we study a very simple and natural quantum learning problem. We are
given copies of the uniform superposition

|S〉 := 1√
|S|

∑
i∈S
|i〉

over the elements of an unknown set S ⊆ [n] := {1, . . . , n} (sometimes referred to as a uniform
quantum sample from S [2]). Assume we know the size k := |S| < n. Our goal is to learn S
exactly. How many copies of |S〉 do we need for this? And given the information-theoretically
minimal number of copies needed, can we learn S gate-efficiently (i.e., using a quantum
circuit with gate count polynomial in k and logn)?

As a warm-up, first consider what happens if we just measure our copies of |S〉 in the
computational basis, giving uniform samples from S. How many such samples do we need
before we learn S? As long as there is some element of S that we have not seen, we cannot
even guess S with constant success probability, so we need to sample until we see all k
distinct elements. This is known as the “coupon collector problem.” Analyzing the required
number of samples is easy to do in expectation, as follows. Suppose we have already seen
i < k distinct elements from S. Then the probability that we see a new element in the next
sample is (k − i)/k, and the expected number of samples to see an (i+ 1)st element is the
reciprocal of that probability, k/(k − i). By linearity of expectation we can add this up over
all i from 0 to k − 1, obtaining the expected number of samples to see all k elements:

k−1∑
i=0

k

k − i
= k

k∑
j=1

1
j
∼ k ln k.

With a bit more work one can show that Θ(k log k) samples are necessary and sufficient to
identify S with high probability [25, Chapter 3.6]:

I Proposition 1 (Classical coupon collector). Given uniformly random samples from a set
S ⊆ [n] of size k < n, the number of samples needed to identify S with high probability is
Θ(k log k).

The relationship between the probability of seeing all elements of S and the number of
samples is extremely well understood. In particular, we can achieve probability arbitrarily
close to 1 using only k ln k +O(k) samples [25, Theorem 3.8].
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Of course, measuring |S〉 in the computational basis is not the only approach a quantum
computer could take. The goal of this paper is to identify when and how we can do better,
reducing the number of copies of |S〉 that are used to solve this “quantum coupon collector
problem.” It turns out that we can asymptotically beat the classical threshold of Θ(k log k)
if and only if the number m = n− k of “missing elements” is small (whereas classically the
parameter m is irrelevant). Specifically, we give a simple, gate-efficient quantum algorithm
that learns S from O(n log(m + 1)) copies of |S〉. For small m this is significantly more
efficient than classical coupon collection. In particular, for m = O(1) we only need O(k)
quantum samples, saving a factor of O(log k).

As we explain in Section 5, this result is relevant for the comparison of proper and
improper learning in the PAC model. A “proper” learner is one that only outputs hypotheses
from the same concept class that its target function comes from. The coupon collector
problem can be viewed as a learning task where the sample complexity of proper learners
from classical random examples is asymptotically higher than that of proper learners from
quantum examples.

We also prove lower bounds on the number T of copies needed, using the general (i.e.,
negative-weights) adversary bound of quantum query complexity [20]. This approach may
be surprising, since no queries are involved when trying to learn S from copies of |S〉.1
However, the adversary bound also characterizes the quantum query complexity of “state
conversion” [21] and “state discrimination.” Our learning problem may be viewed as the
problem of converting the state |S〉⊗T to a basis state that gives a classical description of
the k-set S. To employ the general adversary bound, we exploit the underlying symmetries
of the problem using the mathematical machinery of association schemes (see also [3, 23]
for prior uses of association schemes in proving adversary lower bounds). Using this, we
show that, unless the number of missing elements m = n − k is very small, the O(k log k)
classical coupon collector algorithm is essentially optimal even in the quantum case. This
means that the quantum coupon collector might as well just measure the copies of the state
in the computational basis, unless m is very small.

We also study the situation where, in addition to copies of |S〉, we can also apply a
unitary operation RS = 2|S〉〈S| − Id that reflects through the state |S〉 (i.e., RS |S〉 = |S〉
and RS |φ〉 = − |φ〉 for all states |φ〉 orthogonal to |S〉). This model is reasonable to consider
because if we had a unitary that prepared |S〉, or even |S〉 |ψ〉 for some garbage state |ψ〉,
starting from some canonical state |0〉, then we could use this unitary to create the unitary RS
in a black-box manner. For example, if U |0〉 = |S〉, then RS = U(2|0〉〈0| − Id)U†.

This model gives us extra power and enables more efficient learning of the set S: Θ(
√
km)

states and reflections are necessary and sufficient to learn S for large k (i.e., small m),
and Θ(k) states and reflections are necessary and sufficient for small k.

The following table summarizes our main results. Sections 2 and 3 prove the upper
and lower bounds in the first row, respectively, while Section 4 proves the results in the
second row.

1 A natural approach is to analyze the success probability of the “pretty good measurement” (PGM) for
discriminating the states |S〉⊗T . The PGM is an explicit measurement whose average success probability
is no more than quadratically worse than that of the optimal measurement [10] (in fact, one can show
that the PGM is optimal in our case because our set of states is “geometrically uniform”). One can write
down the average success probability of the PGM explicitly, and upper bounding it would establish a
lower bound on the required number of copies of |S〉. However, we have been unable to suitably bound
this expression despite considerable effort.
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Table 1 Main results about the complexity of learning the set S with m = n−k missing elements.

k ≥ n/2 k ≤ n/2

Number of copies
of |S〉:

Θ(k log(m+ 1))
Theorem 2 and Theorem 6

Θ(k log k)
Proposition 1 and Theorem 6

Number of copies
and reflections:

Θ(
√
km)

Theorem 10 and Theorem 11
Θ(k)
Theorem 12 and Theorem 13

We contrast our work with recent results on the quantum query complexity of approximate
counting by Aaronson, Kothari, Kretschmer, and Thaler [1]. They consider a similar model,
given copies of the state |S〉, the ability to reflect through |S〉, and also the ability to query
membership in S. However, in their work the size of S is unknown and the goal is to
approximately count this set up to small multiplicative error. They obtain tight upper and
lower bounds on the complexity of this approximate-counting task using techniques quite
different from ours (specifically, Laurent polynomials for the lower bounds). This allows
them to give an oracle separation between the complexity classes SBP and QMA. In contrast,
in our case the size k of the set S is already known to the learner from the start, and the
goal is to identify S exactly.

2 Upper bound on quantum samples

In this section we prove upper bounds on the number of copies of |S〉 that suffice to identify
the k-element set S ⊆ [n] with high probability.

The easiest way to recover S is by measuring O(k log k) copies of |S〉 in the computational
basis. By the classical coupon collector problem (Proposition 1), we will (with high probability)
see all elements of S at least once. As we will show later, this number of copies of |S〉 turns
out to be asymptotically optimal if the number of missing elements m = n− k is large (at
least polynomial in n). However, here we show that something better is possible for very
small m.

I Theorem 2 (Upper bound for small m). Let S ⊆ [n] be a set of size k < n and let m = n−k.
We can identify S with high probability using O(k log(m+ 1)) copies of |S〉 by a gate-efficient
quantum algorithm.

Proof. This bound is trivial when m is polynomial in n, since an upper bound of O(k log k)
follows from Proposition 1. So let us now assume that m ≤ n1/4 and hence k ≥ n− n1/4.

Consider the uniform superposition over all elements of the universe [n]:

|[n]〉 = 1√
n

∑
i∈[n]

|i〉 .

Performing the 2-outcome projective measurement with operators |[n]〉 〈[n]| and Id−|[n]〉〈[n]|
is no harder than preparing |[n]〉, so it can be implemented gate-efficiently. If we apply this
measurement to a copy of |S〉, then we get the first outcome with probability |〈S|[n]〉|2 = k/n

and the second outcome with probability m/n. In the latter case, the post-measurement
state is

|ψ〉 =
√
m

n
|S〉 −

√
k

n
|S〉

which is close to − |S〉 if m� n.
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We use an expected number of O
(
n
m ·m log(m+ 1)

)
= O(n log(m+ 1)) copies of |S〉 to

prepare O(m log(m+ 1)) copies of |ψ〉. If |ψ〉 were exactly equal to − |S〉, then measuring in
the computational basis would sample uniformly over the set S of m missing elements, and
O(m log(m+ 1)) such samples suffice to recover S by the classical coupon collector problem
(Proposition 1). Instead, |ψ〉 only approximately equals − |S〉: if we measure it then each
i ∈ S has probability k

nm , while each i ∈ S has (much smaller but nonzero) probability m
nk .

Suppose we prepare and measure T = 10m log(m + 1) copies of |ψ〉. Then the expected
number of occurrences of each i ∈ S is T · k

nm ≥ 5 log(m + 1) since k ≥ n/2, while the
expected number of occurrences of each i ∈ S is T · mnk = O(log(n)/n3/2). In both cases the
number of occurrences is tightly concentrated.2 Hence if we keep only the elements that
appear, say, at least log(m+ 1) times among the T outcomes, then with high probability we
will have found S, and hence learned S = [n] \ S. J

3 Lower bound on quantum samples

In this section we prove lower bounds on the number of copies of |S〉 needed to identify S with
high probability. Before establishing the lower bounds claimed in Table 1, we introduce some
preliminary concepts, namely the γ2-norm (Section 3.1), association schemes (Section 3.2), the
Johnson scheme (Section 3.3), and the adversary bound for state discrimination (Section 3.4).
The lower bound itself is established in Section 3.5.

3.1 γ2-norm
The γ2-norm of a D1 ×D2 matrix A with entries A(x, y) for x ∈ [D1] and y ∈ [D2] can be
defined in two equivalent ways [12, Section 3]. The primal definition is

minimise max
{

maxx∈[D1]‖ux‖
2
,maxy∈[D2]‖vy‖

2
}

subject to A(x, y) = 〈ux, vy〉 for all x ∈ [D1] and y ∈ [D2],
(1)

where {ux : x ∈ [D1]} and {vy : y ∈ [D2]} are vectors of the same dimension. The dual
definition is

maximise ‖Γ ◦A‖
subject to ‖Γ‖ ≤ 1

(2)

where Γ ranges over D1 × D2-matrices, ◦ denotes the Hadamard (entrywise) product of
matrices, and ‖ · ‖ is the spectral norm of a matrix. Note that γ2(A ◦ B) ≤ γ2(A)γ2(B):
consider the vectors obtained from the optimal feasible solutions of γ2(A) and γ2(B) in
Eq. (1) and observe that the tensor product of these vectors forms a feasible solution for the
primal problem for γ2(A ◦B) with (not necessarily minimal) value γ2(A)γ2(B).

2 Suppose we flip T 0/1-valued coins, each taking value 1 with probability p. Let X be their sum (i.e.,
the number of 1s), which has expectation µ = pT . The Chernoff bound implies Pr[X ≤ (1 − δ)µ] ≤
exp(−δ2µ/2). To get concentration for the number of occurrences of a specific i ∈ S, apply this tail
bound with p = k/(nm), µ = Tp ≥ 5 log(m+ 1), δ = 4/5 to obtain Pr[X ≤ log(m+ 1)]� 1/m. Hence,
by a union bound, the probability that among the m elements i ∈ S there is one of which we see fewer
than log(m + 1) occurrences, is � 1. For an i ∈ S, by Markov’s inequality the probability to see at
least log(m+ 1) occurrences of this i among the T samples is � 1/n, and we can use a union bound
over all i ∈ S.
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3.2 Association schemes
Here we present a quick introduction to association schemes (see, for example, [16, Chapter 1]
for a more thorough treatment).

I Definition 3. An association scheme on the set U is a finite set of real symmetric U × U
matrices {A0, A1, . . . , As} satisfying all the following properties:

each Aj only has entries 0 and 1;
A0 is the identity matrix Id;∑s
j=0 Aj is the all-1 matrix J ; and

for every i and j, the product AiAj is a linear combination of the matrices {A0, . . . , As}.
The space spanned by the set {A0, A1, . . . , As} forms an algebra, which is called the Bose–
Mesner algebra corresponding to the scheme. By abuse of terminology, we may also refer to
this algebra as the association scheme.

We now state a few properties of {A0, . . . , As}. First, observe that Aj has zero diagonal
for j > 0. Additionally, {A0, . . . , As} form a basis of the corresponding Bose–Mesner
algebra, since for every (x, y), there is exactly one j for which Aj(x, y) 6= 0. Also, the basis
{A0, . . . , As} satisfies Ai ◦Aj = 1[i=j]Ai, where 1[P ] is the indicator function of predicate P
(i.e., 1 if P is true and 0 if P is false). It is possible to find another basis {E0, . . . , Es}
consisting of idempotent matrices for span{A0, . . . , As} that satisfy EiEj = 1[i=j]Ei, with
respect to the usual product of matrices. The operators Ei are orthogonal projectors onto
the eigenspaces of the association scheme. We have

E0 = J/N and
s∑
j=0

Ej = Id,

where N = |U |. Since both {Ai} and {Ej} are bases for the space of N ×N matrices, it is
possible to write

Ai =
s∑
j=0

pi(j)Ej and Ej =
s∑
i=0

qj(i)
N

Ai, (3)

where pi(j) and qj(i) are called the eigenvalues and dual eigenvalues of the association
scheme, respectively.

It is easy to show that the Hadamard product and the usual product of any two elements
of the association scheme also belong to the association scheme. Clearly for every i, j we
know that Ai ◦ Aj and Ei · Ej are elements of the basis of the scheme. Also observe that
Ai ·Aj and Ei ◦ Ej are elements of the scheme by writing out these products using Eq. (3)
and observing that Ai ·Aj (resp. Ei ◦Ej) is a linear combination of elements of {A0, . . . , As}
(resp. {E0, . . . , Es}). In particular, we can write

Ei ◦ Ej = 1
N

s∑
`=0

qi,j(`)E`. (4)

The real numbers qi,j(`) are called the Krein parameters of the association scheme.

3.3 Johnson scheme
In the Johnson association scheme J (n, k), the set U is the set of all k-subsets of [n]. Therefore,
N = |U | =

(
n
k

)
. Let m = min{k, n− k}. For j = 0, 1, . . . ,m, define Aj(x, y) := 1[|x∩y|=k−j].
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The idempotent Ej is defined as follows: for x ∈ U , let ex ∈ RU be the indicator vector
defined as ex(y) = 1[x=y] for y ∈ U , and let

Vj :=
{

span
{∑

x⊇z ex : z ⊆ [n] with |z| = j
}

if k ≤ n/2,
span

{∑
x⊆z ex : z ⊆ [n] with |z| = n− j

}
if k > n/2,

where the sums are over x ∈ U . These spaces satisfy V0 ⊂ V1 ⊂ · · · ⊂ Vm = RU and the
dimension of Vj is

(
n
j

)
. For j ∈ {1, . . . ,m}, the idempotent Ej is defined as the orthogonal

projector on Vj∩V⊥j−1, and E0 is the orthogonal projector on V0. Hence, for j ∈ {0, 1, . . . ,m},
the dimension of the jth eigenspace is

dj := Tr[Ej ] =
(
n

j

)
−
(

n

j − 1

)
. (5)

We do not require explicit expressions for most eigenvalues and valencies of J (n, k), the only
exceptions being the dual eigenvalues

q0(i) = 1 and q1(i) = n(n− 1)
n− k

(
k − i
k
− k

n

)
. (6)

See [26, Eq. 1.24] for the latter. We are only interested in the following Krein parameters of
this association scheme. When one idempotent is E0, we have

qi,0(j) = 1[i=j]. (7)

When one idempotent is E1, we have

qj−1,1(j) = j(n− 1)n(k − j + 1)(m− j + 1)
mk(n− 2j + 1)(n− 2j + 2) , (8a)

qj,1(j) = j(n− 1)(n− j + 1)(m− k)2

mk(n− 2j)(n− 2j + 2) , (8b)

qj+1,1(j) = n(n− 1)(n− j + 1)(k − j)(m− j)
mk(n− 2j)(n− 2j + 1) , (8c)

and qi,1(j) = 0 whenever |i− j| > 1 (see [9, Section 3.2]).

3.4 Adversary lower bound for state discrimination
Consider the following state-discrimination problem.
(∗) Let f : D → R be a function for some finite sets D and R. Let {|ψx〉 : x ∈ D} be a

family of quantum states of the same dimension. Given a copy of |ψx〉 for an arbitrary
x ∈ D, the goal is to determine f(x) with high success probability.

Let A be the Gram matrix of the states, namely

A(x, y) = 〈ψx | ψy〉 ,

and let F be the D ×D matrix with

F (x, y) = 1[f(x)6=f(y)].

Informally, the main result of this section is that the above state-discrimination problem can
be solved with small error probability if and only if

γ2(A ◦ F )

is small. We start with the proof of the lower bound. With constants refined, it reads as
follows:
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10:8 Quantum Coupon Collector

I Proposition 4. If the above state-discrimination problem (∗) can be solved with success
probability 1− ε, then γ2(A ◦ F ) ≤ 4

√
ε.

Proof. This is essentially the result of [12, Claim 3.27], which is also closely related to [20].
For completeness we repeat the proof, with slight modifications.

Without loss of generality we may assume the measurement is projective (this follows
from Neumark’s theorem). Thus, there exist orthogonal projectors {Πa}a∈R such that∥∥Πf(x) |ψx〉

∥∥2 ≥ 1− ε for all x ∈ D. Denote Π⊥a = Id−Πa, so that ‖Π⊥f(x) |ψx〉 ‖
2 ≤ ε for all

x ∈ D. We first write

A(x, y) = 〈ψx | ψy〉 = 〈ψx|Πf(y) |ψy〉+ 〈ψx|Π⊥f(y) |ψy〉

= 〈ψx|Πf(x)Πf(y) |ψy〉+ 〈ψx|Π⊥f(x)Πf(y) |ψy〉+ 〈ψx|Π⊥f(y) |ψy〉 .

Note that if f(x) 6= f(y), then the first term is 0 because Πf(x) and Πf(y) project onto
orthogonal subspaces. This motivates us to define the D ×D matrix

B(x, y) = 〈ψx|Π⊥f(x)Πf(y) |ψy〉+ 〈ψx|Π⊥f(y) |ψy〉 .

We have A(x, y) = B(x, y) whenever f(x) 6= f(y), and hence A ◦ F = B ◦ F . Note
that γ2(B) ≤ 2

√
ε by taking the vectors ux =

(
ε−1/4Π⊥f(x) |ψx〉 , ε

1/4 |ψx〉
)
and vy =(

ε1/4Πf(y) |ψy〉 , ε−1/4Π⊥f(y) |ψy〉
)
. Now we have

γ2(A ◦ F ) = γ2(B ◦ F ) ≤ γ2(B)γ2(F ) ≤ 4
√
ε,

where we used the composition property of the γ2-norm in the first inequality and in the second
inequality we used γ2(F ) ≤ 2, which follows by considering the vectors ux, vy ∈ {0, 1}|R|+1

whose last coordinate is always 1, and where ux has a 1 at coordinate f(x) and vy has a
−1 at coordinate f(y) (identifying R with {1, . . . , |R|} for the purposes of indexing these
vectors), and whose remaining entries are all 0. J

I Proposition 5. The above state-discrimination problem (∗) can be solved with success
probability at least 1− γ2(A ◦ F ).

Proof. If B is the Gram matrix of the collection of states {|ψx〉 ⊗ |f(x)〉}x∈D, then

A−B = A ◦ F.

Using [22, Claim 3.10], there exists a unitary U such that(
〈ψx| ⊗ 〈f(x)|

)
U
(
|ψx〉 ⊗ |0〉

)
≥ 1− ε/2

where ε := γ2(A ◦ F ). Thus, if we measure the second register of U(|ψx〉 ⊗ |0〉), we get f(x)
with probability at least (1− ε/2)2 ≥ 1− ε. J

3.5 Lower bound
For x ⊆ [n] of size k, let

|ψx〉 = 1√
k

∑
i∈x
|i〉 .

This is what we denoted by |S〉 earlier (x = S); we use |ψx〉 here for consistency with the
common notation in lower bounds. The task is to identify the subset x using as few copies of
the state |ψx〉 as possible. We prove the following lower bound.
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I Theorem 6. To find x with success probability Ω(1), it is necessary to have
Ω(k log(min{k, n− k})) copies of the state |ψx〉.

Let m = n− k. Since we could add more elements to the ambient space artificially, the
problem becomes no easier as n grows with k fixed. Thus, it suffices to prove the lower
bound of Ω(k log(m+ 1)) under the assumption m� k.

Define the Gram matrix Ψ by Ψ(x, y) = 〈ψx | ψy〉 . The Gram matrix corresponding to
|ψx〉⊗` is Ψ◦` (where Ψ◦` is the Hadamard product of Ψ with itself ` times). The function
we want to compute is f : x 7→ x, so we have F (x, y) = 1[f(x) 6=f(y)] = 1[x 6=y], i.e., F = J − Id.
By Proposition 4, it thus suffices to prove that for some ` = Ω(k log(m+ 1)) we have

γ2
(
Ψ◦` ◦ (J − Id)

)
= Ω(1).

To that end, we use the dual formulation of the γ2-norm (in Eq. (2)) and construct a matrix
Γ such that

‖Γ‖ = 1, Γ ◦ Id = 0, and ‖Γ ◦Ψ◦`‖ = Ω(1).

We now construct a Γ that satisfies the constraints above. To do so, we first write Γ in terms
of the idempotents {Ej}mj=0 of the Johnson association scheme (as defined above Eq. (5)):
for {γj}j which we define shortly, let

Γ =
m∑
j=0

γjEj . (9)

To satisfy Γ ◦ Id = 0, we would like Γ to have zero diagonal. Note that Γ has zero diagonal if
and only if Tr[Γ] =

∑m
j=0 γjTr[Ej ] =

∑m
j=0 γjdj = 0, where dj was defined in Eq. (5). We

now fix {γj}j as follows: since dm =
(
n
m

)
−
(

n
m−1

)
is larger than the sum of the remaining

djs, we let

γ0 = γ1 = · · · = γm−1 = 1, γm ∈ [−1, 0] (10)

so that Tr[Γ] = 0 and ‖Γ‖ = 1. Thus, it remains to show that

‖Γ ◦Ψ◦`‖ = Ω(1). (11)

For that, we use the following technical result.

I Lemma 7. For each j = 0, 1, . . . ,m, we have

Ej ◦Ψ = pj+1,−1Ej+1 + pj,0Ej + pj−1,+1Ej−1,

where

pj,−1 = j(k − j + 1)(m− j + 1)
(n− 2j + 1)(n− 2j + 2)k ,

pj,0 = k

n
+ j(n− j + 1)(m− k)2

nk(n− 2j)(n− 2j + 2) ,

pj,+1 = (n− j + 1)(k − j)(m− j)
(n− 2j)(n− 2j + 1)k .

Before we proceed with the proof of this lemma, let us state a simple consequence.
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I Corollary 8. For each j ∈ {0, . . . ,m}, the numbers pj,−1, pj,0, and pj,+1 are non-negative,
and satisfy pj,−1 + pj,0 + pj,+1 = 1.

Proof. The non-negativity is obvious. For the last property note that

m∑
j=0

Ej = Id = Ψ ◦ Id = Ψ ◦
( m∑
j=0

Ej

)
=

m∑
j=0

(
pj,−1 + pj,0 + pj,1

)
Ej ,

where the first equality uses the definition of an association scheme, the second equality
follows because Ψ(x, x) = 1 by definition, and the last equality is by the assumption of
Lemma 7. J

Proof of Lemma 7. It suffices to write out Ψ in the basis {Ej}mj=0 and use the Krein
parameters. By definition of |ψx〉 = 1√

k

∑
i∈x |i〉, we have that Ψ(x, y) = 〈ψx | ψy〉 equals 1

k

times the intersection of x and y, and

Ψ =
m∑
i=0

(
1− i

k

)
Ai,

where Ai was defined at the beginning of Section 3.3 as Ai(x, y) := 1[|x∩y|=k−i]. We now
rewrite Ψ as follows: using Eq. (6), we have

k

n
E0 + n− k

n(n− 1)E1 = 1
N

m∑
i=0

(k
n
q0(i) + n− k

n(n− 1)q1(i)
)
Ai = 1

N

m∑
i=0

k − i
k

Ai = 1
N

Ψ,

where the first equality used Eq. (3). Additionally observe that

NEj ◦E0 = qj,0(j)Ej and NEj ◦E1 = qj,1(j−1)Ej−1 +qj,1(j)Ej +qj,1(j+1)Ej+1.

Plugging in the values of qj,· from Eq. (8), we get the required equality. J

We are now ready to prove our main lower bound in Theorem 6.

Proof of Theorem 6. We prove this by induction on the number of copies of the state |ψx〉,
which we denote by s. Let us define γ(s)

j via

Γ ◦Ψ◦s =
m∑
j=0

γ
(s)
j Ej .

Since the Ej are pairwise-orthogonal projections, the norm of Γ ◦ Ψ◦s equals maxj |γ(s)
j |.

Hence to lower bound ‖Γ ◦Ψ◦s‖, it suffices to lower bound γ(s)
0 .

We have

Γ ◦Ψ◦(s+1) =
m∑
j=0

γ
(s)
j Ej ◦Ψ

and using Lemma 7 we get

γ
(s+1)
j = pj,−1γ

(s)
j−1 + pj,0γ

(s)
j + pj,+1γ

(s)
j+1. (12)
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For every j ∈ {0, . . . ,m}, we now consider the following probabilistic sequence {B(s)
j }. For

s = 0, we let B(0)
j = γj and

B
(s+1)
j =


B

(s)
j−1 with probability pj,−1,

B
(s)
j with probability pj,0,

B
(s)
j+1 with probability pj,+1,

using the fact that pj,−1 +pj,0 +pj,+1 = 1. Note that B(s)
j only takes values from {γ0, . . . , γm}

and there are only two distinct such values, namely 1 and γm (since γ0 = γ1 = · · · = γm−1 = 1
as defined in Eq. (10)). Also note that p0,−1 = pm,+1 = 0, so we do not have to explicitly
handle the boundaries. Induction on s using Eq. (12) shows that E[B(s)

j ] = γ
(s)
j , which is the

motivation behind defining these variables.
Define similarly C(s)

j as C(0)
j = γj and

C
(s+1)
j =

{
C

(s)
j with probability pj,−1 + pj,0,

C
(s)
j+1 with probability pj,+1.

Let us give an intuitive description of how the random variables C(s)
j behave. For each s,

the head of the sequence C(s)
0 , C

(s)
1 , . . . , up to some C(s)

` consists purely of 1s, and the tail
C

(s)
`+1, . . . , C

(s)
m consists purely of γm. Initially, for s = 0, the tail consists of one element C(s)

m

only, but the tail gradually extends as s grows (and the head, respectively, shrinks). The
probability of growing the length of the tail from m− j to m− j + 1 in one step is pj,+1.

The random variables B(s)
j behave similarly, but are slightly more complicated, since

the tail can also shrink and 1s can get into the tail. This is the reason why we replace
B

(s)
j with C

(s)
j in our analysis: C(s)

j is easier to analyze, and it suffices to lower bound
its expectation because B(s)

j dominates C(s)
j , i.e., for each s and j and real t we have

Pr[B(s)
j ≥ t] ≥ Pr[C(s)

j ≥ t]. The latter is proven by induction, as follows. The base case
s = 0 is trivial, and the inductive step is

Pr[B(s+1)
j ≥ t] = pj,−1 Pr[B(s)

j−1 ≥ t] + pj,0 Pr[B(s)
j ≥ t] + pj,+1 Pr[B(s)

j+1 ≥ t]

≥ pj,−1 Pr[C(s)
j−1 ≥ t] + pj,0 Pr[C(s)

j ≥ t] + pj,+1 Pr[C(s)
j+1 ≥ t]

≥ (pj,−1 + pj,0) Pr[C(s)
j ≥ t] + pj,+1 Pr[C(s)

j+1 ≥ t] = Pr[C(s+1)
j ≥ t],

since C(s)
j−1 ≥ C

(s)
j by our above analysis.

The analysis of C(s)
j is very similar to the classical coupon collector problem if we interpret

the length of the tail as the number of acquired coupons. We briefly repeat the argument.
For each j, define random variable Tj as the first value of s such that C(s)

j = γm. Obviously,
Tm = 0. We can interpret Tj as the first value of s such that the length of the tail becomes
m− j+ 1. The random variable Tj −Tj+1 is the number of steps required to grow the length
of the tail from m− j to m− j + 1. Clearly, these variables are independent for different
j. Also, each of them is distributed according to a geometric distribution and standard
probability theory gives us that E[Tj−Tj+1] = 1/pj,+1 and Var[Tj−Tj+1] = (1−pj,+1)/p2

j,+1.
We have pj,+1 = Θ((m− j)/k) from Lemma 7, so

E[T0] =
m−1∑
j=0

1
pj,+1

= Θ(k)
(m−1∑
j=0

1
m− j

)
= Θ(k log(m+ 1)).
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Similarly,

Var[T0] =
m−1∑
j=0

1− pj+1

p2
j,+1

= Θ(k2)
(m−1∑
j=0

1
(m− j)2

)
= Θ(k2).

Hence, using Chebyshev’s inequality, there exists ` = Θ(k log(m+ 1)) such that

Pr[T0 > `] ≥ 3/4.

Since C(`)
0 can take only two values (1 and γm ∈ [−1, 0]), we have that

γ
(`)
0 = E[C(`)

0 ] ≥ 3/4 · 1 + 1/4 · γm ≥ 1/2.

Finally, since B(`)
0 dominates C(`)

0 , we get

γ
(`)
0 = E[B(`)

0 ] ≥ E[C(`)
0 ] ≥ 1/2,

implying Eq. (11). This shows the existence of ` = Θ(k log(m+ 1)) such that the error prob-
ability of any measurement on ` copies of |ψx〉 has error probability Ω(1) in identifying x. J

4 Learning from quantum samples and reflections

In the previous sections we assumed we were given a number of copies of the unknown
state |S〉. In this section we assume a stronger model: in addition to a number of copies of
the state |S〉, we are also given the ability to apply the reflection RS = 2|S〉〈S| − Id through
|S〉. The key additional tool we will use is (exact) amplitude amplification, encapsulated by
the next theorem, which follows from [14]:

I Theorem 9 (Exact amplitude amplification). Let |φ〉 and |ψ〉 be states such that 〈φ|ψ〉 =
α > 0. Suppose we know α exactly, and we can implement reflections through |φ〉 and |ψ〉.
Then we can convert |φ〉 into |ψ〉 (exactly) using O(1/α) reflections and Õ(1/α) other gates.

We distinguish the two regimes of k ≥ n/2 and k < n/2.

4.1 Tight bound if k ≥ n/2
I Theorem 10 (Upper bound for small m). Let S ⊆ [n] be a set of size k ≥ n/2 and let
m = n− k. We can identify S with probability 1 using O

(√
km
)
uses of RS = 2|S〉〈S| − Id.

Proof. Our algorithm sequentially finds all m missing elements. We would like to use
amplitude amplification to prepare a copy of |S〉, which is the uniform superposition over
the m missing elements. Consider the uniform state over the n-element universe:

|[n]〉 =
√
k

n
|S〉+

√
m

n
|S〉 .

This state is easy to prepare, and hence also easy to reflect through. Note that in the
2-dimensional plane spanned by |S〉 and |S〉, reflection through |S〉 is the same as a reflection
through |S〉 up to an irrelevant global phase. The inner product between |[n]〉 and |S〉 equals√
m/n. Accordingly, using O(

√
n/m) rounds of exact amplitude amplification (which only

rotates in the 2-dimensional space spanned by |S〉 and |S〉; each round “costs” one application
of RS) we can turn |[n]〉 into |S〉, up to a global phase.
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Measuring |S〉 gives us one of the missing elements, uniformly at random. Now we remove
this element from the universe. Note that |S〉 does not change since we removed an element
of the universe that was missing from S. We then repeat the above algorithm on a universe
of size n− 1 with m− 1 missing elements in order to find another missing element at the
cost of O(

√
(n− 1)/(m− 1)) rounds of amplitude amplification, and so on. This finds all

missing elements (and hence S) with probability 1, using

m−1∑
i=0

O

(√
n− i
m− i

)
= O(

√
n)

m∑
j=1

1√
j

= O(
√
nm) = O(

√
km)

applications of RS , where we used k ≥ n/2. Note that in this regime we do not need any
copies of |S〉, just reflections RS . J

I Theorem 11 (Lower bound for small m). Let S ⊆ [n] be a set of size k < n and let
m = n− k. Any quantum algorithm that identifies S with high probability using a total of T
copies of |S〉 and uses of RS, must satisfy T = Ω

(√
km
)
. The lower bound holds even if we

allow T copies of |S〉, uses of RS, and membership queries to S.

Proof. We prove a matching lower bound in a stronger model, namely in a model where we
can make queries to the n-bit characteristic vector x for S. That is, we now assume we have
a unitary US that maps

US : |i, b〉 7→ |i, b⊕ xi〉 for all i ∈ [n], b ∈ {0, 1},

where xi = 1 iff i ∈ S.
We first argue that this is indeed a stronger model, by showing how we can unitarily

prepare a copy of |S〉 using O(1) applications of US . Note that 〈[n]|S〉 =
√
k/n ≥ 1/

√
2

under the current assumption that k ≥ n/2. Also note that, in the 2-dimensional space
spanned by |S〉 and |S〉, a reflection through |S〉 corresponds to a “phase query” to x, which
can be implemented by one query to US (setting the target qubit to (|0〉 − |1〉)/

√
2). Hence

using O(1) rounds of exact amplitude amplification suffices to prepare a copy of |S〉 starting
from the state |[n]〉, which is easy to prepare and reflect through. Thus we can implement
the state-preparation map GS : |0〉 7→ |S〉 using O(1) applications of US . Note that one
application of G−1

S , followed by a reflection through |0〉 and an application of GS , implements
a reflection through |S〉. Thus preparing a copy of |S〉 and reflecting through |S〉 each “cost”
only O(1) queries to x (i.e., applications of US).

Accordingly, an algorithm that learns S using at most T copies of |S〉 and at most T
applications of RS implies a quantum algorithm that can learn an n-bit string x of weight
k ≥ n/2 using O(T ) queries to x. But it is known that this requires Ω(

√
nm) = Ω(

√
km)

queries to x, even when allowing bounded error probability. This follows, for instance,
from [11, Theorem 4.10]. Hence we obtain the same lower bound on the number of copies of
|S〉 plus the number of reflections through |S〉. J

4.2 Tight bound if k < n/2
I Theorem 12 (Upper bound for small k). Let S ⊆ [n] be a set of size k < n. We can identify
S with probability 1 using O(k) copies of |S〉 and uses of RS = 2|S〉〈S| − Id.

Proof. Our algorithm sequentially finds all elements of S. We start with a copy of |S〉 and
measure to find one i1 ∈ S. Then we use exact amplification to convert a fresh copy of |S〉
into |S \ {i1}〉. This requires being able to reflect through |S〉 (i.e., apply RS), and reflect
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through |S \ {i1}〉. In the 2-dimensional plane spanned by |S〉 and |S \ {i1}〉, the latter
reflection is equivalent to putting a minus in front of |i1〉, which is easy to do. We measure
|S \ {i1}〉 and learn (with probability 1) another element i2 ∈ S \ {i1}. Then we change a
fresh copy of |S〉 into |S \ {i1, i2}〉, measure, and learn some i3 ∈ S \ {i1, i2}. We repeat this
until we have seen all k elements.

The amplitude amplifications get more costly as we find more elements of S: If we have
already found a set I ⊆ S, then changing a fresh copy of |S〉 to |S \ I〉 uses O( 1

〈S|S\I〉 ) =
O(
√
k/(k − |I|)) reflections, and hence O(

√
k/(k − |I|)) applications of RS . Overall, this

procedure finds S using k = |S| copies of |S〉, and

k−1∑
i=0

O

(√
k

k − i

)
= O(

√
k)

k∑
j=1

1√
j

= O(k)

applications of RS . J

I Theorem 13 (Lower bound for small k). Let S ⊆ [n] be a set of size k < n. Any quantum
algorithm that identifies S with high probability using a total of T copies of |S〉, and uses of
RS must satisfy T = Ω(k). The lower bound holds even if we allow T copies of |S〉, uses of
RS, and membership queries to S.

Proof. To prove a matching lower bound, suppose our algorithm receives advice in the form
of n − 2k of the missing elements. This advice reduces the problem to one with universe
size n′ = n − (n − 2k) = 2k and m′ = m − (n − 2k) = k missing elements. Importantly,
note that |S〉, and hence RS , do not change after learning these missing elements. But
in Theorem 11 we already proved an Ω(

√
n′m′) = Ω(k) lower bound on the number of

copies of |S〉, reflections, and queries to S needed to solve this special case. Since the extra
advice cannot have made the original problem harder, the same lower bound applies to our
original problem. J

5 Proper PAC learning

As mentioned briefly in the introduction, one of the motivations for this research is the
question whether the sample complexity of proper quantum PAC learning is higher than
that of improper PAC learning. Let us precisely define Valiant’s PAC model [28]. We are
trying to learn an unknown element f from a concept class C. For simplicity we only consider
fs that are Boolean-valued functions on [n]. Our access to f is through random examples,
which are pairs of the form (x, f(x)), where x is distributed according to a distribution
D : [n]→ [0, 1] that is unknown to the learner. A learning algorithm takes a number T of
such i.i.d. examples as input, and produces a hypothesis h : [n]→ {0, 1} that is supposed to
be close to the target function f . The error of the hypothesis h (with respect to the target f ,
under distribution D) is defined as

errD(f, h) := Pr
x∼D

[f(x) 6= h(x)].

We say that a learning algorithm is an (ε, δ)-PAC learner for C, if it probably (i.e., with
probability at least 1 − δ) outputs an approximately correct (i.e., with error at most ε)
hypothesis h:

∀f ∈ C,∀D : Pr[errD(f, h) > ε] ≤ δ,
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where the probability is taken over the sequence of T D-distributed examples that the learner
receives, as well as over its internal randomness. The (ε, δ)-PAC sample complexity of C is
the minimal T for which such a learning algorithm exists.3

The PAC sample complexity of C is essentially determined by its VC-dimension d as4

Θ
(
d

ε
+ log(1/δ)

ε

)
. (13)

See Blumer et al. [13] for the lower bound and Hanneke [18] for the upper bound.
The above upper bound on sample complexity allows the learner to be improper, i.e.,

to sometimes output hypotheses h 6∈ C. The following folklore example, which we learned
from Steve Hanneke [19], shows that the sample complexity of proper learning can be
asymptotically larger.5 Consider the concept class C = {f : [n]→ {0, 1} | ∃! i s.t. f(i) = 0}
of functions that are all-1 except on one “missing element” i. The VC-dimension of this class
is 1, hence Θ

( log(1/δ)
ε

)
classical examples are necessary and sufficient for PAC learning C by

(13). With ε = 1/n and δ = 1/3, this bound becomes Θ(n). Now fix an (ε, δ)-PAC proper
learner for this class that uses some T examples; we will show that T = Ω(n logn), exhibiting
an asymptotic separation between the sample complexities of proper and improper PAC
learning.

For every i ∈ [n], consider a distribution Di that is uniform over [n] \ {i}. If the target
concept f has i as its missing element then the learner has to output that f , since any other
g ∈ C will make an error on its own missing element and hence would have error at least
1/(n− 1) > ε under Di. In other words, when sampling from Di the learner has to identify
the one missing element i with success probability ≥ 2/3. But we know from the coupon
collector argument that this requires Ω(n logn) samples. Note that a Di-distributed (x, f(x))
is equivalent to sampling uniformly from [n] \ {i}, since the label f(x) is always 1 under Di.

What about quantum PAC learning? Bshouty and Jackson [15] generalized the PAC
model by considering superposition states

|ψD,f 〉 =
∑
x

√
D(x) |x, f(x)〉

instead of random samples. The learner now receives T copies of this “quantum example”
state, and has to output a probably approximately correct hypothesis. Measuring a quantum
example gives a classical example, so quantum examples are at least as useful as classical
examples, but one of the questions in quantum learning theory is in what situations they are
significantly more useful. Two of us [6] have shown that the bound of (13) also applies to
learning from quantum examples, so for improper learning the quantum and classical sample
complexities are equal up to constant factors. However, quantum examples are beneficial for
learning C under the Di distributions. Note that |ψDi,fi

〉 is just the uniform superposition
over the set S = [n] \ {i}, tensored with an irrelevant extra |1〉. As we showed in Section 2,
given O(n) copies of |ψDi,fi〉 we can identify the one missing element i with probability ≥ 2/3.
So the example that separates the sample complexities of classical proper and improper

3 This definition uses the information-theoretic notion of sample complexity. We do not consider the time
complexity of learning here. For more on sample and time complexity of quantum learning, we refer the
reader to [5].

4 The VC-dimension of C is the maximum size among all sets T ⊆ [n] that are “shattered” by C. A set T
is shattered by C if for all 2|T | labelings ` : T → {0, 1} of the elements of T , there is an f ∈ C that has
that labeling (i.e., where f|T = `).

5 In a recent result, Montasser et al. [24] proved another separation between proper and improper learning.
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learning, does not separate quantum proper and improper learning. This naturally raises the
question of whether the quantum sample complexities of proper and improper PAC learning
are asymptotically equal (which, as mentioned, they provably are not in the classical case).
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Abstract
In fault-tolerant quantum computing systems, realising (approximately) universal quantum com-
putation is usually described in terms of realising Clifford+T operations, which is to say a circuit
of CNOT, Hadamard, and π/2-phase rotations, together with T operations (π/4-phase rotations).
For many error correcting codes, fault-tolerant realisations of Clifford operations are significantly
less resource-intensive than those of T gates, which motivates finding ways to realise the same
transformation involving T -count (the number of T gates involved) which is as low as possible.
Investigations into this problem [5, 21, 4, 3, 10, 6] has led to observations that this problem is closely
related to NP-hard tensor decomposition problems [23] and is tantamount to the difficult problem
of decoding exponentially long Reed-Muller codes [6]. This problem then presents itself as one for
which must be content in practise with approximate optimisation, in which one develops an array
of tactics to be deployed through some pragmatic strategy. In this vein, we describe techniques to
reduce the T -count, based on the effective application of “spider nest identities”: easily recognised
products of parity-phase operations which are equivalent to the identity operation. We demonstrate
the effectiveness of such techniques by obtaining improvements in the T -counts of a number of
circuits, in run-times which are typically less than the time required to make a fresh cup of coffee.
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1 Introduction

To achieve practical scalable quantum computation, it is important to find effective (both
useful and efficient) techniques to reduce the resources required to perform computations.
Error correction, and in particular realising operations in a fault-tolerant way, is expected to
be a particularly significant source of resource overheads. In most quantum error-correcting
codes, Clifford group operations involve less overhead than non-Clifford gates, such as the T
(or π/4 phase-rotation) gate. As the set of Clifford+T circuits is approximately universal for
quantum computation [32], this motivates the T -count — or the number of T gates — as a
quantity of interest in the resources required to realise a quantum computation.

On the other hand, in order to test the effectiveness of quantum technologies, it is helpful
to be able to simulate the outcomes of quantum computations inasmuch as this is feasible. As
circuits of Clifford operations can be efficiently simulated [22, 1], this motivates the approach
of simulating quantum circuits by extending those efficient simulation techniques [9, 8], this
again motivates the T -count as a measure of interest in the complexity of quantum circuits.

In this article, we consider the problem of reducing the T -count required to represent
a unitary circuit provided as input. Following Heyfron and Campbell [23], we consider
transformations of circuits which isolate a subcircuit of diagonal operations which is the only
part of the algorithm with non-trivial T -count. The approach of Heyfron and Campbell [23]
is to transform Clifford+T circuits, to circuits with the following structure:
1. An initial stage of CNOT gates; followed by
2. A stage of diagonal non-Clifford operations; followed by
3. A sequence of (possibly classically controlled) Clifford operations.
This allows Ref. [23] to reduce the problem of T -count reduction to an analysis of the diagonal
non-Clifford portion of this circuit, in terms of phase polynomials. This builds on a sequence
of results which revolve around such operations [5, 21, 4, 3, 10, 6] presented in various but
similar ways, and in particular establishes a connection between T -count optimisation and
difficult coding problems and tensor decomposition problems [6, 23]. Our approach is to
elaborate on that of Campbell and Heyfron as follows:

Reduce the complexity of the diagonal non-Clifford operation by more flexible (but
essentially elementary) separation of the circuit into stages by allowing the first stage to
contain arbitrary Clifford gates;
Analyse the diagonal non-Clifford portion of the circuit directly in terms of “π/4-parity-
phase operations” — essentially operators of the form exp(iπ8 (Z ⊗ · · · ⊗ Z)) — rather
than as phase polynomials, simplifying them through the efficient application of identities
of such operations.

We call these “π/4-parity-phase operations” as they induce a eiπ/4 relative phase on standard
basis states, depending on some parity computation f(x) = xk1 ⊕ xk2 ⊕ · · · ⊕ xkm

. As each
π/4-parity-phase gate can be realised in principle using a single T or T † gate (and some
CNOT gates), simplifying π/4-parity-phase circuits is directly productive to reducing T -count.

This line of investigation, first identified in the context of T -count by Amy, Maslov, and
Mosca [4], was further developed upon by Gosset et al. [21], Amy and Mosca [6], Kissinger
and van de Wetering [26], and Zhang and Chen [34]. In previous work [14], we described
a family of identities of π/4-parity-phase operations — “spider nest identities”’ — which,
when used in combination with Heyfron and Campbell’s “TODD” subroutine [23], led to new
records in T -count for several benchmark circuits.

In this work, we report new techniques for T -count reduction through the use of spider
nest identities, and compare their effectiveness (the reduced T count and run-times) against
the best previous result found in the literature. While these techniques could easily be
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combined with other high-performance reduction subroutines such as TODD, our results do
not involve any other recently developed techniques beyond those of Ref. [14]. We obtain
a number of new records for the T -count, obtained almost exclusively1 in very practical
run-times on a consumer-grade laptop. (For example, the second-largest circuit, on 768
qubits, was simplified in less than 3 minutes.) This opens the door to further improvements
through the identification of further useful identities of π/4-parity-phase operations, and
improved techniques for deploying these identities.

2 Preliminaries

We first set out some basic or existing results, using the following notation. Let [n] :=
{1, 2, . . . , n} and 1 be the 2×2 identity matrix. For sets S, T ⊆ V we write S ∆ T for the
symmetric difference (S ∪ T ) \ (S ∩ T ), and x(S) ∈ {0, 1}V denote the incidence vector of S,
where x (S)

j = 1 if and only if j ∈ S. We let Pn :=
{
ikP1⊗ · · ·⊗Pn

∣∣k∈Z & Pj ∈{1,X,Y,Z}
}

denote the n-qubit Pauli group. We define the Clifford hierarchy (on n qubits) by defining
Cn1 := Pn, and

Cnk =
{
U ∈Un(C)

∣∣ ∀P ∈Pn. UPU†∈ Cnk–1
}

(1)

for k > 1; we call Cnk (for arbitrary n) the kth level of the Clifford hierarchy. As an abuse of
notation, we identify Cnk as a subset of CNk for n < N ; we may then write S ∈ Cn2 and T ∈ Cn3
for all n > 1.

Let Dnk ⊆ Cnk be the subset of diagonal operations in the kth level of the Clifford hierarchy.
(We again identify Dnk as a subset of DNk for n < N .) It is easy to show that Dnk forms an
abelian group. In particular: consider any diagonal operation as a product of operators
exp
(
iθx |x〉〈x|

)
for various x ∈ {0, 1}n, and expand each |x〉〈x| as a linear combination of

Pauli operators. Then one may show (see Ref. e.g. [14, Appendix A]) that Dnk is generated
by the operators ω ·1⊗n for any global phase ω, together with all operations of the form DS,k
for sets S = {s1, . . . , sm} ⊆ [n] for m > 1, defined by

DS,k = exp
(
− iπ2k

(
Zs1⊗ · · · ⊗Zsm

))
= exp

(
− iπ2k ZS

)
= cos

(
π
2k

)
1− i sin

(
π
2k

)
ZS , (2)

where ZS =
⊗

j∈SZj .2 Note that XaZSX†a = (−1)x(S)
a ZS , and that CNOTa,b ZS CNOT†a,b =

ZS′ , where here S′ = S ∆ {a} if b ∈ S and S′ = S otherwise. From this it follows that

XbDS,kX
†
b = D−1

S,k ∈ D
n
k (3a)

if b ∈ S (and XbDS,kX
†
b = DS,k otherwise); and

CNOTa,bDS,k CNOT†a,b = DS′,k ∈ Dnk (3b)

so that Dnk is preserved under conjugation by CNOT and X operations. Also note that
D 2
S,k = DS,k−1, from which it follows that Dnk−1 ⊆ Dnk .

1 The one circuit which we did not simplify on a laptop was the largest benchmark circuit that we tested,
acting on 1536 qubits and involving nearly two million T gates alone. This was instead simplified on
Dalhousie University’s Mathstat Cluster [11], which took less than 15 minutes to realise a 43% reduction
in T -count.

2 We define DS,k for all k ∈ Z; however, as one may easily show DS,0 =−1⊗n and DS,k =1
⊗n for all k < 0

and S ⊆ [n], these operations are of interest principally for k > 0.
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We refer to the operators DS,k+1 , and their inverses, as “π/2k -parity-phase” operations,
as the action of DS,k+1 on standard basis states is given by

DS,k+1 |z〉 = eiπ/2k+1
exp
(
i [x(S) · z]π/2k

)
|z〉 (4)

inducing a relative phase of π/2k depending on the result of a parity computation x(S) · z =
zs1 ⊕ zs2 ⊕ · · · ⊕ zsm

. More generally, we may refer to exp(± 1
2 iθZS) as a θ-parity-phase

operation.
From Eqn. (3b), it follows that any operation DS,k can be reduced to an operation

Dj,k ∝ diag(1, e2πi/2k ) acting on a single qubit j, by conjugation with an appropriate CNOT
circuit. In particular, it follows that the operation DS,3 can be easily realised with a T -
count of 1. This allows us to approach the question of reducing T count by considering
decompositions of unitaries involving few π/4-parity-phase operations, acting on many qubits.
Amy and Mosca [6] noted the relevance of the operators DS,k in this context, and both
Kissinger and van de Wetering [26] and Zhang and Chen [34] make direct use of them in their
analysis of T count to achieve their results. (Litinski [27] similarly considers these operators
in the context of compilation of quantum circuits to lattice surgery [24]).

An important role of DS,3 gates for S ⊆ [n] is their relationship to diagonal gates in Dn3
which are controlled-unitaries in a more straightforward sense, such as CS and CCZ:

CS = exp
( iπ

2 |11〉〈11|
)
, CCZ = exp

(
iπ |111〉〈111|

)
; (5)

we may describe how to generate these from Dk,3 operations by decomposing the projectors
|11〉〈11| or |111〉〈111| into tensor products of |1〉〈1| = 1

2
(
1− Z), and expanding to obtain a

product of DS,3 gates. Disregarding any D∅,3 factors, which realise global phases, we obtain

CSh,j ∝ D{h},3D{j},3D−1
{h,j},3 ;

CCZg,h,j ∝ D{g},3D{h},3D{j},3D−1
{g,h},3D

−1
{g,j},3D

−1
{h,j},3D{g,h,j},3 . (6)

More generally, we may relate (t−1)-controlled π/2k-phase gates to π/2k−t+1-phase parity
gates:∏

S∈℘(V )
S 6=∅

D
(−1)|S|
S,k ∝ exp

( iπ

2k−|V |+1 |1〉〈1|
⊗V
)
, (7)

where the right-hand operator applies a phase of π/2k−|T |−1 to those components of a state
in which all of the qubits in T are in the state |1〉.

Circuits of parity-phase operations on n qubits which realise the identity, correspond in
the notation of Amy and Mosca [6] to operators UPa for a ∈ Cn ⊆ Z2n−1

8 , where

Pa(z) =
∑

x∈{0,1}n

x6=0

ax
(
x1z1 ⊕ x2z2 ⊕ · · · ⊕ xnzn

)
(8)

and where UPa |z〉 = exp
(
iπ
4 Pa(z)

)
|z〉, which is identically |z〉 for all z ∈ {0, 1}n when

a ∈ Cn. Let supp(a) =
{

x ∈ {0, 1}n : ax 6= 0
}
. In this notation, each element y ∈ supp(a)

corresponds to a single phase-parity operator acting on the qubits j for which yj = 1;
the relative phase induced by this operator is ayπ/4; and the polynomial Pa describes a
commuting product of such operations, for which Pa : {0, 1}n → Z8 is the all-zero function
when a ∈ Cn.
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We remark that a θ-phase parity operation U (such as an operator DS,k) can be easily
represented as tensor networks, using ZX diagrams (see Appendix A for an introduction to
this notation),3 with structure such as the following:

... ±θ
(

or
... ±θ ,R if classically conditioned on

∑
R ≡ 1 (mod 2)

)
(9)

where horizontal wires represent qubits which are acted on by U , and S ⊆ [n] is the subset
of those qubits which have (light, green) degree-3 nodes on them. These are “phase gadgets”,
using the terminology of Kissinger and van de Wetering [26]. When the number of qubits
acted on is m, we may refer to it as an “m-gadget”. (If θ is an odd multiple of π/4, we may
refer to it as a “T -phase m-gadget”; for θ an integer multiple of π/2, we refer to it as a
“Clifford-phase m-gadget”. If m = 1, we may also mildly abuse this terminology to refer to a
simple green phase node as a “1-gadget”.)

Remark.

The role played by the ZX calculus in our work is not an essential one, nor is expertise in
the ZX calculus required to understand our results. However, in practice it did inform our
line of investigation, by allowing us to obtain our results more quickly by identifying the
objects of interest, and by making it easy to reason directly about the operators DS,k. As the
ZX calculus also provides a useful notation for visually representing the (non-local) unitary
gates DS,k in a readable way, as in Eqn. (9), we use this notation in the article below. Readers
should be able to understand our results by reading ZX diagrams simply as a straightforward
alternative notation for quantum circuits (see Appendix A), the transformations of which
are the subject of our work.

3 Phase gadget elimination tactics & spider nest identities

Reducing the T -count while preserving the meaning of a circuit, implicitly involves applying a
mathematical identity. These are often identities of diagonal unitary circuits [4, 6, 34], though
not always [21, 26].) In the special case of unitary circuits consisting solely of π/4-parity-phase
operations, such a mathematical identity may be described in terms of a commuting product
of operations which are proportional to the identity operator; and for any such identity, there
is the question of how to effectively apply it to realise a significant reduction of T -count, as
efficiently as possible.

In this section, we describe a broad framework for the reduction of T -count by means
of the application of mathematical identities of commuting Dn3 operations. We also present
some mathematical identities of this form — called “spider nest identities” — first presented
in Ref. [14], and describe new techniques to use these identities to reduce T -count.

In the following, we use the terms “identity of π/4-parity-phase operations” or “identity
of phase gadgets” (or simply “an identity”) to refer to a circuit J , whose T -count is at least
1 but which nevertheless realises the identity operation.

3 In this article, where they occur, ZX diagrams may be read essentially as circuit diagrams, and in
particular are read from left to right as with other circuit diagrams.
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3.1 PHAGE tactics
We consider a particular approach to the reduction of Dn3 circuits by an analysis of families
of non-trivial circuits which realise the identity transformation, which may be applied more
broadly than we do here (and which in principle can be used to describe some existing
techniques [6, 23]). For any family F of identities of π/4-parity-phase operations, there is an
associated “phase gadget elimination tactic” (or PHAGE tactic) to reduce the T -count in a
circuit C of such phase gadgets:

I Phage Tactic (F).
1. Determine whether there is an identity J ∈ F , such that C contains at least half of the

T -gadgets which occur in J (or their inverses).
2. For any such identity J , compute a circuit CJ as the product of C and J−1. This may

allow for simplifications (using the fact noted in Section 2 that D 2
S,k = DS,k−1), where

by T -gadgets accumulate to form Clifford gadgets or to cancel altogether. Determine the
resulting T -count.

3. Replace C with the circuit CJ with the smallest T -count, if this is less than the T -count
of C itself.

The behaviour of a PHAGE tactic is in a sense “greedy”, in that it selects some circuit
CJ which minimises the T count after a single application, ignoring the possibility of a more
complicated sequence of reductions. The main principle of a PHAGE tactic is in that it
selects a way to reduce the T -count, based on the comparison of a few different applicable
identities of phase gadgets from a specific family F . Such a tactic can then be applied again,
or followed by other such “tactics”.

In principle, the Tpar subroutine of Ref. [6], the TOOL and TODD subroutines of Ref. [23],
and the results of Zhang and Chen [34] may be interpreted as algorithms to deploy PHAGE
tactics, possibly more than once in sequence, and possibly with a random choice of family F
(and where F itself may on occasion be a singleton set). This approach to T -count reduction
can be distinguished from that of Kissinger and van de Wetering [26], in which phases may
be reduced in unitary circuits (or more general tensor networks) which are not diagonal.

The difficulty in reducing the T -count arises from the fact that there are a very large
number of identities of π/4-parity-phase operations, and a large number of subsets S ⊆ [n]
which one may consider. As Amy and Mosca observe [6], reducing the T -count is formally
equivalent to decoding a length 2n − 1 punctured Reed-Muller code, in that the smallest
T -count of a circuit amounts to the distance of a ciphertext to a valid codeword of such
a code. However, no polynomial-time algorithms are known for the decoding problem on
such codes. The difficulty is in formulating a successful strategy — a means of selecting an
appropriately-sized family F of identities to try on a particular circuit. The question is then
one of having a variety of tactics which one may efficiently explore and deploy to reduce the
T -count.

3.2 Spider nest identities
We consider PHAGE tactics arising from identities of π/4-parity-phase operations (i.e., of
T -phase gadgets) which can be composed from some specific circuits — introduced in Ref. [14],
and which we call “spider nest identities” — which realise the identity operator.

In qualitative terms, a “spider nest identity” consists of any circuit of phase-parity
operations which realises an operation on n qubits which is proportional to the identity, in
which only “very few” operations act on “many” qubits, and the vast majority act on “very
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few” qubits. (In terms of the notation of Amy and Mosca [6], they would correspond to
a ∈ Z2n−1

8 for which only very few y ∈ supp(a) have Hamming weight larger than some low
threshold w > 0; in the case of Dn3 operations, we set w = 3.) We generate these circuits from
a minimal family of such circuits for n > 4, involving a single phase 4-gadget and various
phase k-gadgets with k 6 3:

n

 ...

...

(n−2)(n−3)π8

(n−2)(n−3)π8

(n−2)(n−3)π8

−(n−3)π4

−(n−3)π4 −(n−3)π4
π
4 ...

...

−π4

∝ 1
⊗n. (10)

Here, the n-qubit circuit on the left-hand side of Eqn. (10) consists of a 1-gadget with phase
(n−2)(n−3)π8 on each line, a 2-gadget on each pair of lines with phase −(n−3)π4 , and a
3-gadget with phase π

4 on each set of three lines, and finally an n-gadget with phase angle −π4 .
(For a proof of this identity, see Appendix B of Ref. [14]; in the case n = 4 this corresponds
to R13 of Ref. [3].) The name “spider nest” here refers to the qualitative feature that it
involves a few “large spiders”, together with a large number of “small spiders”.

Let NS represent the circuit of phase gadgets on the left-hand side of Eqn. (10), acting
on a set S = {1, 2, . . . , n} of cardinality n. How easily one may use this identity as part of a
PHAGE tactic, to reduce T -count, is affected by the T -count of the circuit NS itself. For a
fixed value of n, and a T -phase gadget on 1 to 3 qubits, there is a question of whether or not
such a gadget is involved in NS , as a number of the phase gadgets involved are Clifford-phase
gadgets instead. In particular:

If n ≡ 1(mod 4) or n ≡ 3(mod 4), all of the 2-gadgets in Eqn. (10) are Clifford-phase
gadgets, which do not contribute to the T -count.
If n ≡ 2(mod 4) or n ≡ 3(mod 4), all of the 1-gadgets in Eqn. (10) are Clifford-phase
gadgets, which again do not contribute to the T -count.

Let Tn denote the T -count of NS : then

Tn =


1
6n(n2 + 6δn − 1), for n even;
1
6n(n2 − 3n+ 6δn + 2), for n odd,

(11)

where δn = 1 if n ≡ 0 or n ≡ 1 modulo 4, and δn = 0 if n ≡ 2 or n ≡ 3 modulo 4
(determining whether the 1-gadgets on each wire have T -count one or zero). In general, we
have Tn = 1

6n
3 −O(n2)±O(n).

The scaling of Tn above might suggest that these circuits have at best a limited role to
play in T -count reduction: for increasing sizes of wire-sets S, a somewhat large number of
operations on a given subset S of wires must be present for substitution of NS to yield a
reduction in T -count. However, by composing multiple such circuits NS for different subsets
S, we may obtain a “composite” spider nest identity which has a smaller T -count, and which
is thus more likely to be usable in practise for T -count reduction.

For instance, consider the specific circuit NS N−1
S′ where |S| > 5 and S′ = S \{r} for

some r ∈ S. As all of the operations in these circuits commute, it is possible to see that most
of the phase 3-gadgets of NS — the dominant contribution to Tn above — are cancelled
by corresponding phase 3-gadgets of N−1

S′ . (In many cases, most of the phase 1-gadgets of
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11:8 Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities

NS are similarly cancelled.) By collecting together the actions of the phase gadgets on each
subset, we may show that NS N−1

S′ simplifies to a circuit of the following form:

...

...

(n−3)π4

(n−3)π4

(n−3)π4

n−1



(n−2)(n−3)π8

−π4

−π4 −π4

−(n−3)π4

−(n−3)π4

−(n−3)π4

π
4

π
4

π
4

...

...

−π4
...

...
π
4
,(12)

If r = S \S′ represents the top qubit in the circuit above, note in particular that the dominant
contributions to the size of the circuit are the phase 2-gadgets on all size-2 subsets of S′, and
the phase 3-gadgets which involve r and some size-2 subset of S′. If T̃n denotes the T -count
of the circuit above, we then have

T̃n =

n2 − n+ 2 + δn for n even;

n2 − 3n+ 4 + δn for n odd,
(13)

where again δn = 1 if n ≡ 0 or n ≡ 1 modulo 4, and δn = 0 if n ≡ 2 or n ≡ 3 modulo 4. In
any case, we have T̃n = n2 −O(n).

3.3 Simple PHAGE tactics based on spider nest identities
Combining the two ideas above, we describe the PHAGE tactics which are used to achieve
the T -count reductions seen in our results.

The first tactic is the reduction of phase-parity circuits by merging together π/4-parity-
phase operations which act on sets of qubits in common, which may be described as the
PHAGE tactic associated to the circuits consisting of mutually inverse pairs of T -phase
gadgets on all possible sets of qubits. To do this to greatest effect (and also as simply as
possible), we first use a circuit transformation procedure along the lines of Heyfron and
Campbell [23], with modifications to improve performance. (In the context of reasoning
about T count in terms of π/4-parity-phase operations, this technique was introduced in
Ref. [14].) We describe this in more detail in the following Section, which describes our
T -count reduction procedure.

Our other PHAGE tactic (or tactics, as they are similar but technically numerous) are
novel, and are best described in terms of the following two sets of spider-nest identities on N
qubit circuits:

The family F (4)
N =

{
NS

∣∣ S ⊆ [N ] and |S| = 4
}
, consisting of versions of the identity of

Eqn. (10) applied to all subsets of [N ] of size 4
The family

F (5)
N =

N p0
S N

p1
S1
N p2
S2
N p3
S3
N p4
S4
N p5
S5

∣∣∣∣∣∣∣
S = {q1, q2, q3, q4, q5} for distinct qj ∈ [N ],
Sj = S \ {qj} for 1 6 j 6 5, and
p0p1p2p3p4p5 ∈ {0, 1}6 \ {000000}

 , (14)
consisting of the 63 distinct identities for each set S ⊆ [N ] with |S| = 5, consisting of
NSj

applied to some or all subsets Sj ⊆ S of size 4, and possibly also a copy of NS on
all the qubits of S, fusing together those phase-parity operations which act on common
subsets S′ ⊆ S.
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These are the sets of all possible spider-nest identities on 4 or 5 qubits.4
For increasing values of N , the cardinalities of these families grow as 1

24n
4 +O(n3) and

1
120n

5 +O(n4) respectively — polynomial in size, but impractical to exhaustively iterate
through for values of N which occur in common benchmark tests. This raises the question of
how best to use them to realise T -count reductions. Our approach is to construct a list of
64 identities on four or five qubits, consisting of the elements of the sets F (4)

4 ∪ F (5)
5 , and

performing the following for each element J of this list:
1. Let s be the number of qubits on which J acts.
2. Repeat the following R times, for some fixed R > 0:

a. Select a subset S ⊆ [N ] of size s uniformly at random.
b. Select (from F (4)

N if s = 4, or F (5)
N if s = 5) the identity K acting on S, which is

equivalent to J up to relabelling of the qubits.
c. Apply the tactic PHAGE({K}) associated with the singleton set {K}.

This technique implicitly provides opportunities for identities to be applied in proportion to
the number of isomorphic images of it exist in F (4)

4 ∪ F (5)
5 . (For instance, isomorphic copies

of the simplest identity N[4] occurs six times in this set, and the identity of Eqn. (12) occurs
five times.) As the probability that any one such identity will be useful when applied to a
particular set S ⊆ [N ] of size 4 or 5 is small, it is important to choose a significantly large
value of R: for our results, we took R = 20 000.

We note that this particular strategy for T -count reduction is not particularly strongly
suggested by the framework of PHAGE tactics induced by spider nest identities. Both the
concept of a PHAGE tactic, and the range of possibilities for assembling spider nest identities,
are broad enough that there is potential for much more sophisticated strategies to deploy
them. Despite this, as we show in Section 5, in many cases we obtain the best known T -count
for a number of circuits. Our result may therefore be considered a further proof of principle
of the usefulness of spider nest identities, beyond the results of Ref. [14].

4 Reduction of T -count through simplification of parity-phase circuits

In this section, we describe how we applied the concept of T -count reduction via PHAGE
tactics as part of a complete procedure to transform unitary circuits provided as input.

Remark.

Our results do not make heavy (explicit) use of the re-write rules of the ZX calculus: a
reader who is content with circuits which involve intermediate measurements, and who is
comfortable with reading a parity-phase gadget such as that of Eqn. (9) as a unitary operator,
may interpret every diagram below as a circuit diagram. (See Appendix A for a guide to
reading ZX diagrams.)

We take unitary circuits with gate-set
{
X,CNOT,CCNOT, Z,CZ,CCZ,H, S, T,SWAP

}
as input. For the sake of simplicity, we suppose that any multiply-controlled NOT gates with
more than two controls are decomposed into CCNOT gates, for instance by computation
and uncomputation on auxiliary qubits initialised to |0〉, or some more advanced technique.5

4 The set F(5) in particular is motivated by the reduction in T -count of the spider-nest identity shown in
Eqn. (12), which is represented in five different ways in F(5): once for each subset Sj of size 4.

5 In our benchmarks, we consider the simple computation-uncomputation approach; other techniques
(see e.g. Refs. [25, 20, 29]) are advisable in serious production work for optimising T -count.
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Our procedure follows and extends the approach of Heyfron and Campbell [23], of
performing a transformation on circuits C → CF ◦ Cφ ◦ CI , where CF and CI consist
entirely of Clifford gates, stabiliser state preparations, and stabiliser state measurements, and
where Cφ can be realised using only CNOT and T gates. We express the circuit Cφ entirely
in terms of phase gadgets, and so we describe as a “homogeneous” circuit. The objective of
isolating such a circuit is that it provides us with the best opportunities to apply PHAGE
tactics to reduce the T -count.

4.1 Circuit translation techniques
Our procedure, which we describe more explicitly in the next section, makes use of the
following techniques.

H gate gadgetisation.

One of the techniques involved in isolating a DN3 circuit is to replace Hadamard gates with a
measurement-based gadget:

H ≡
|+〉

X

X
≡

−π/2

−π/2

π/2

π,{s}

π,{s}

≡

−π/2

π/2

π,{s}

−π/2 π,{s}

(15)

In the circuit second from the left, the two qubits are subject to a SWAP operation, followed
by a CZ = exp

(
iπ |11〉〈11|

)
operation. The bottom qubit is measured finally with an X

observable measurement (i.e., in the |+-〉 basis), and the top operation is acted on finally by
an X operation only if the outcome is |-〉. The two diagrams on the right are ZX diagrams
with additional annotations in the style of Ref. [18] (see also Appendix A). In particular,
measurement is represented as a projection with a random outcome s which is heralded and
may be used to control phase operations elsewhere. The leftmost ZX diagram describes
the decomposition of the controlled-Z operation, using CZh,j ∝ D{h,j},2D

−1
{h},2D

−1
{j},2 . The

final ZX diagram propogates the single-qubit D−1
{∗},2 operations towards the preparation and

measurement of the second qubit, so that the second qubit is prepared in the |-y〉 ∝ |0〉− i |1〉
state.

Extracting H gates from the circuit.

An obvious drawback of gadgetising H gates in this way is that it requires the use of auxiliary
qubits. More directly important to our results is that, as the number of wires in a circuit
increases, the more difficult it may be to successfully find opportunities to reduce the T
count. Therefore, we attempt to transform the circuit in such a way that reduces the number
of H gates from the part of the circuit with non-trivial T -count. This motivates us to define
a subroutine moveH (which we describe at a high level in Appendix B), which transforms
a circuit C over our gate-set, into a pair of circuits (CF ,C′), obtained by attempting to
commute as many Hadamard gates of C to the end of the circuit as possible.

We define (CF ,C′) = moveH(C) in such a way that CF ◦ C′ ∼= C realises the same
unitary, CF contains only Clifford gates, C′ contains no CCNOT gates, and where the
total number of Hadamard gates in (CF ◦C′) is at most the number of Hadamard gates
in C.
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We may use moveH twice, to attempt to extract Hadamard gates either from the end of
the circuit C, and also the beginning of the circuit C. If we compute

(CF ,C′) = moveH(C); (C̃I , C̃M ) = moveH
(
(C′)−1); (CI ,CM ) =

(
C̃−1
I , C̃−1

M

)
, (16)

then (CF ◦CM ◦CI) ∼= C, the number of Hadamard gates in (CF ◦CM ◦CI) is at most
the number of Hadamard gates in C, and CI and CF only contain Clifford gates.

We call CI and CF the initial and final Clifford stages of the circuit, respectively, and CM

the main body of the circuit. We use this tripartite decomposition to allow us to condense
the part of the circuit with non-trivial T -count in the main body, and to remove Clifford
gates (H gates in particular) to the initial and final Clifford phases to the extent that this is
possible.

Phase-gadgetisation.

Through appropriate substitution of H gates by gadgets as in Eqn. (15), and substitution of
CCZ with π/4-parity-phase operations as in Eqn. (6), we may transform the main body of
the circuit so that it only contains SWAP gate, X gates, CNOT gates, CZ gates, and various
phase gadgets (including powers of the T gate). We wish to transform this into a circuit
consisting only of phase gadgets, by commuting everything apart from phase gadgets either
to the beginning of the main body (and then removing it to the initial Clifford phase) or to
the end of the main body (and then removing it to the final Clifford phase). In particular, we
commute all SWAP, measurement, and X operations to the end of the circuit; we commute
all preparation operations to the beginning of the circuit; and we commute each CNOT
operation either to the beginning or the end according to a simple heuristic (described
in Appendix B). This may transform various DS,t gates by Eqns. (3), changing the set S
involved and/or negating the phase, according to the following commutation relations:

... θ

π

−→

... −θ

π

;

... θ

π,{s}

−→

...
...θ −2θ,{s}

π,{s}

;

(17)

... θ −→
... θ ; (18)

... θ −→
... θ ;

... θ −→
... θ

. (19)
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Phase gadget fusion.

A final simplifying technique is to simply multiply together any phase gadgets acting on the
same set S of qubits:

...
...α β

−→
... α+β

. (20)

In some cases, this will reduce the T count by turning two gadgets with phases α = 1
4k1π

and β = 1
4k2π (for k1 and k2 odd) into a single gadget with phase α + β = 1

4 (k1 + k2)π,
where k1 + k2 is even.

4.2 Circuit translation procedure
Given a unitary circuit C over the gate-set{
X,CNOT,CCNOT, Z,CZ,CCZ,H, S, T,SWAP

}
, we transform C as follows:

1. We first replace CCNOT operations in C with (1⊗1⊗H) CCZ (1⊗1⊗H), yielding a
circuit C′.

2. Transform C′ → C′F ◦C′M ◦C′I , with an initial Clifford stage C′I , a final Clifford stage
C′F , and a main body C′M , using the procedure moveH to reduce the number of Hadamard
gates in C′M as much as possible.

3. Substitute the H gates in C′M with Hadamard gadgets as in Eqn. (15), using a fresh bit
label for each measurement outcome; and decompose CCZ operations in C using the
formula of Eqn. (6), and represent T gates (on some qubit j) by D{j},3. Call the resulting
circuit CM .

4. We gadgetize CM by commuting all gates which are not single-qubit phase gates or
phase gadgets to the beginning or the end, removing these to the initial or final Clifford
stages. This will generally add some number of measurements, and classically-conditioned
Clifford operations, to the final Clifford stage, and some qubit preparations to the initial
Clifford stage. This realises a transformation of circuits C′F ◦CM ◦C′I → CF ◦C′φ ◦CI .

5. As C′φ is now a homogeneous circuit of phase gadgets, we may commute them past one
another to fuse gadgets on common subsets, yielding a circuit Cφ.

6. Apply the randomised procedure for applying PHAGE tactics based on spider nest
identities described in Section 3.3.

Steps 1–5 realise a transformation C→ CF ◦Cφ ◦CI . If the original circuit C acted on n
qubits and had m Hadamard gates, then the number of Hadamard gates in C′M which are
replaced in Step 3 is some δn 6 m. Then the circuits CI , Cφ, and CF all act on N = n+ δn

qubits, and CF has internal structure

CF = C̃F Dδn · · · D2 D1 , (21)

where C̃F is some general Clifford circuit, and the circuits Dj (for 1 6 j 6 δn) consist of the
jth measurement in the |+-〉 basis with outcome sj (denoted in ZX notation by a light green
“π,{sj}” node), followed by DNk operations conditioned on the outcome sj .

In some instances, we find a significant reduction in the T -count simply from the fusion
of phase gadgets in Step 5 of this transformation. These improvements are similar to those
seen in Refs. [26, 34]. However, the purpose of this circuit transformation (as Ref. [23]) is to
isolate a circuit Cφ consisting entirely of DN3 operations for some N , on which we can apply
the PHAGE tactic of Step 6.
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Note that δn, the number of additional “auxiliary” qubits involved in the circuit, is
bounded above by how many Hadamard gates are either involved in C or are introduced
from the decomposition of CCNOT gates. More precisely, it depends on how many of these
gates can be commuted from the “main body” of C to the initial or final Clifford stages. For
a circuit consisting of M gates, a bound for N = n+ δn which is substantially better than
N 6 n + M will be difficult to obtain, without some knowledge of the structure of C. In
several cases, we find that many or all of these Hadamard gates can be eliminated from the
main body of the circuit: so, N 6 n+M is likely a loose upper bound in a large number of
practical examples.

The largest contributions to the asymptotic run-time of the procedure above are the
complexity of moveH in Step 2; the cumulated complexity of computing the heuristic for
moving Clifford gates out of the main body of the circuit in Step 4; and the complexity of
performing a PHAGE tactics in Steps 5 and 6. For M the number of gates in the input
circuit, the procedure moveH and the procedure to commute CNOT gates out the main body
take time O(M2), essentially due to repeatedly commuting individual gates past O(M) other
gates (or computing the potential cost of doing so, in the case of the heuristic used for
determining the direction to move CNOT gates). We use a hash table to store homogeneous
circuits, allowing essentially O(1) time to look up the phase associated with a phase gadget
acting on a particular subset (which we set to 0 when no such phase gadget is present). In
Step 5, fusing together pairs of phase gadgets can be made a part of initialising this hash
table, and so takes time O(M). In Step 6, applying a PHAGE tactic associated with some
given identity K (which acts on at most 5 qubits) takes time O(1); performing this for each
of the 64 identities in F (4)

4 ∪ F (5)
5 on R uniformly random subsets takes time O(R) = O(1),

for R independent of M . Thus our procedure runs in time O(M2).

5 Results

We realised our techniques in Haskell code [7]. All but two of the circuits were obtained
from Ref. [30]: the circuits “GF(2256) Mult” and “GF(2512) Mult” were obtained instead
from Ref. [28]. With one exception, we ran our code for these benchmarks on a 2.5GHz
Intel Core i7 processor and 8GB of 1867MHz LPDDR3 memory, running Ubuntu Linux
18.04.4. The largest single benchmark circuit, “GF(2512) Mult”, was instead reduced on
Dalhousie University’s Mathstat Cluster [11]. The results are presented as Table 1, including
comparisons to the best known reductions for which recorded times are available.6

Our results do not include an account of the cost of the Clifford group operations. These
are also of interest in principle, though these will likely be significantly less expensive than T
gates in the error-corrected setting in which the T -count becomes a meaningful quantity to
reduce. We also do not describe the T -depth of our circuits, which may also be independently
optimised from the T -count itself [4].

The circuits which were obtained using our techniques may be found on GitHub [7]. As
our main aim was to consider reductions in T -count, our algorithm ignores the possibility
that the measurement outcomes on the auxiliary qubits could be anything but |+〉: in the
event of a |-〉 outcome, additional Clifford group operations would be required, which however
would not affect the T -count. We verified our circuits using feynver [2], which was recently
extended to accomodate circuits involving post-selection of |+〉 states on qubits which are
maximally entangled with a set of other qubits.

6 We do not present the best known T counts which do not have recorded times. We do note that for two
of our results (for the circuits Mod Red21 and RC Adder6) which improve on the known timed results,
there are recorded untimed results which are still better: these may be found in Ref. [14].
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Table 1 Comparison of our techniques to previously reported results. • In each case, “prev. opt.”
represents the best T -count with a time record (an asterisk indicates that the recorded time is
an upper bound). For some circuits, better reductions without times have been reported: those
indicated by (a) have a better reduction reported in Ref. [26], and those indicated by (b) have a
better reduction reported in Ref. [14]. Where it was feasible to verify the correctness of our reduction
with feynver, this is indicated; in all other cases the verification was too computationally expensive
to carry out. • In each case, we also compare the number δn of additional “auxiliary” qubits
required by our decomposition, to that of Ref. [23] (where results are available); in the case of (c),
we may only infer an upper bound on the number of auxiliary qubits used by Ref. [23]. • In our
results, those T -counts which are indicated in bold are those which reproduce or surpass the T -count
of the best previously known timed result. Those with an asterisk also match or surpass the best
previously known untimed result. • All results of Ref. [23] were obtained on the University of
Sheffield’s Iceberg HPC cluster. All results of Ref. [31] were obtained on a machine with a 2.9GHz
Intel Core i5 processor and 8GB of 1867MHz DDR3 memory, running OS X El Capitan. All of our
results were obtained on a machine with a 2.5GHz Intel Core i7 processor and 8GB of 1867MHz
LPDDR3 memory, running Ubuntu Linux 18.04.4 — except those indicated by (d), which were
obtained on Dalhousie University’s Mathstat Cluster [11].

Circuit # qubits T count & optimisation
n δn δn init. #T final #T time final #T time Verified?

input [23] (ours) (prev. opt.) Ref. (s) (our results) (s) (feynver)
Adder8 24 71 41 399 212 (a) [23] 227.81 176 * 24.62 X
Barenco Tof3 5 3 3 28 14 (b) [23] 0.01* 13 * 0.07607 X
Barenco Tof4 7 7 7 56 24 [23] 0.45 25 1.884 X
Barenco Tof5 9 11 11 84 34 [23] 1.94 37 13.76 X
Barenco Tof10 19 31 31 224 84 [23] 460.33 97 24.49 X
CSLA MUX3 15 17 6 70 40 (b) [23] 3.73 44 18.01 X
CSUM MUX9 30 12 12 196 74 (a) [23] 36.57 84 23.98 X
GF(24) Mult 12 7 0 112 56 (b) [23] 0.55 53 * 0.8180 X
GF(25) Mult 15 9 0 175 90 (b) [23] 6.96 88 * 4.279 X
GF(26) Mult 18 11 0 252 132 (b) [23] 121.16 128 * 7.894 X
GF(27) Mult 21 13 0 343 185 (a) [23] 153.75 167 * 27.21 X
GF(28) Mult 24 15 0 448 216 (a) [23] 517.63 229 95.63 X
GF(29) Mult 27 17 0 567 295 [23] 3213.53 306 24.79 X
GF(210) Mult 30 19 0 700 351 [23] 23969.1 357 24.65 X
GF(216) Mult 48 31 0 1 792 922 [23] 76312.5 972 25.65 X (d)

GF(232) Mult 96 – 0 7 168 4 128 [31] 1.834 3 936 * 26.07 X (d)

GF(264) Mult 192 – 0 28 672 16 448 [31] 58.341 15 865 * 29.73 –
GF(2128) Mult 384 – 0 114 688 65 664 [31] 1744.746 64 461 * 48.78 –
GF(2131) Mult 393 – 0 120 127 69 037 [31] 1953.353 67 772 * 53.39 –
GF(2163) Mult 489 – 0 185 983 106 765 [31] 4955.927 105 182 * 66.27 –
GF(2256) Mult 768 – 0 458 752 – – – 260 539 * 137.1 –
GF(2512) Mult 1536 – 0 1 835 008 – – – 1 046 964 * 850.7 (d) –
Mod54 5 6 0 28 16 (b) [31] 0.001* 7 * 0.00899 X
Mod Adder1024 28 6 270 (c) 304 1 995 978 [23] 665.5 1 010 27.56 X (d)

Mod Mult55 9 10 3 49 28 (a) [23] 0.02 19 * 0.5775 X
Mod Red21 11 17 17 119 69 (b) [23] 0.59 65 27.68 X
QCLA Adder10 36 28 25 238 157 [23] 366.1 147 * 24.96 X
QCLA Com7 24 19 18 203 81 [23] 170.77 84 24.21 X
QCLA Mod7 26 58 58 413 221 (a) [23] 289.77 233 24.26 X (d)

RC Adder6 14 21 10 77 45 (b) [23] 0.97 38 30.70 X
NC Toff3 5 2 2 21 13 [23] 0.01* 13 * 0.04005 X
NC Toff4 7 4 4 35 19 [23] 0.06 19 * 0.5322 X
NC Toff5 9 11 6 49 25 [23] 0.4 26 2.910 X
NC Toff10 19 16 16 119 55 [23] 44.78 60 28.01 X
VBE Adder3 10 4 4 70 20 [23] 0.15 20 * 1.896 X
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6 Discussion

Our results show that our techniques, simple as they are, are competitive with the best
known techniques for reducing T count. We expect that better results should be achievable
by a more refined approach to using these concepts, within the more general framework
which we have described of deploying PHAGE tactics. It is not clear which further ideas
may prove useful, however. For instance, in experiments for how we might choose subsets to
apply PHAGE tactics to, we found that it was not helpful to bias the sets of qubits towards
those qubits which were acted on by many T -phase gadgets. More work will be required to
find effective ways to bias or to narrow down the ways in which spider nest identities are
used to simplify homogeneous circuits.

It is remarkable that the run-times for our results in Table 1 are not more varied. Over
half of our results were obtained in an amount of time between 1 and 100 seconds, for
circuits over which other leading techniques [23, 31] had times which ranged over more
than six orders of magnitude. Indeed, in our tests on larger circuits (and in line with the
asymptotic analysis of Section 4.2), we found that the most computationally expensive part
of our procedure was the relatively mundane moveH and CNOT-commutation subroutines.
Refining these elementary steps may provide yet further gains. Expanding the complexity of
the subroutines to apply PHAGE tactics may also yield further gains without substantial
increases in run-time.

We note an optimisation problem of interest is motivated by gadgetizing Hadamard
gates as in Step 3. Simply put: given an n-qubit circuit with M gates over the gate-set
{X,Z, S,CNOT,CZ, T,CCZ}, to obtain an equivalent (unitary) circuit with the minimum
number of H gates in between the first and the last non-Clifford gate.7 Should this problem
be solvable in O(M2 poly log(M)) time, this may further contribute to the effectiveness of
our approach to T -count reduction.

Finally, we remark that while the benchmarks which we have tested have become a
commonplace standard for the evaluation of such techniques, they consist entirely of circuits
to realise permutation operations which would not in themselves be difficult to realise
classically. (Some of these, such as the “GF(2n) Mult” series, may be motivated on the
grounds of cryptography; albeit this motivation may become less important if standard
cryptographic practise incorporates post-quantum cryptography.) A larger range of circuits,
including ones are motivated by the more likely practical applications of fault-tolerant
quantum computation, should be of general interest for future benchmark tests.
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A ZX diagram reference

The ZX calculus — first developed by Coecke and Duncan [12] (see also Refs. [13, 33, 19] for
updated treatments, and Refs. [17, 16, 15, 26] for applications to quantum technology) — is
a relatively recently developed notation for quantum operations, equipped with rules (the
“calculus” part) to compute with this notation. This article does not make explicit use of
the “calculus” part of the ZX calculus: while it does make statements about equivalences
of diagrams which could be shown using the calculus, these can and should be understood
in the same way that other papers make statements of equivalences of conventional circuit
diagrams.

We use ZX notation at various points to describe quantum circuits, including circuits with
classically controlled operations and non-local unitaries such as π/4-parity-phase operations.
The ZX diagrams in this article can be read merely as a slightly unusual (but convenient)
circuit notation. In this Appendix, we provide a reference for this notation, serving also as
a glossary of sorts for various operations as they are represented in ZX diagrams, to allow
readers to understand our results as well as conventional circuit diagrams would.

A.1 General statements
For the purposes of this article (and essentially all other practical purposes), ZX diagrams are
representations of tensor networks. To represent quantum circuits, it is common to choose a
direction in which to read the diagrams from “input” to “output”. (In our paper, we draw
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these diagrams with input on the left and output on the right, as with the usual circuit
notation.) The ZX diagrams of our work are composed of three different kinds of tensor
nodes:

“Green” nodes (which are lighter coloured in our article), which may have any number
of indices, and as a tensor represents a sort of GHZ state over the standard basis. If a
phase parameter θ is provided, the tensor also involves a relative phase of eiθ between
the two terms; otherwise θ = 0 is assumed (and there is no relative phase).

θ ...

}
n = |0〉⊗n + eiθ |1〉⊗n (22)

In principle, we also permit the border case of n = 0, in which case this represents the
“tensor” |0〉⊗0 + eiθ|1〉⊗0 = (1 + cos(θ)) + i sin(θ); though we don’t make use of such nodes
in our results.
“Red” nodes (which are darker coloured in our article), which may have any number of
indices, and are similar to green nodes except that they are expressed in terms of the
{|+〉 , |-〉} basis.

θ ...

}
n = |+〉⊗n + eiθ |-〉⊗n (23)

“Hadamard” boxes, which represent the usual 2× 2 unitary Hadamard matrix.

H = |+〉〈0| + |-〉〈1| (24)

To represent operations taking some qubits as input, we change of some of the “kets” in the
tensor nodes to “bras” — but as |0〉, |1〉, |+〉 and |-〉 are real vectors, this change does not
affect any of the tensor coefficients. This allows us to be flexible with our diagrams, and
avoid committing to the indices of each node as being explicitly an “input” or an “output”,
unless it is a free index of the whole diagram. (In particular, this allows us to draw some
closed indices by vertical wires, without confusion.)

In the rest of this appendix, we describe some simple examples (and simple extensions)
of this notation, which the interested reader should find themselves able to verify by routine
calculation.

A.2 Single-node diagrams
With (light) green or (dark) red nodes of degree 1, we may easily represent states of the
{|0〉 , |1〉} basis or {|+〉 , |-〉} basis, albeit supernormalised by a factor of

√
2.

= |+〉⊗1 + |-〉⊗1 =
√

2 |0〉 ; π = |+〉⊗1 − |-〉⊗1 =
√

2 |1〉 ; (25)

= |0〉⊗1 + |1〉⊗1 =
√

2 |+〉 ; π = |0〉⊗1 − |1〉⊗1 =
√

2 |-〉 . (26)

More generally, green degree-1 nodes may be used to represent newly prepared qubits in
the XY plane of the Bloch sphere, and red degree-1 nodes may be used to represent newly
prepared qubits in the YZ plane of the Bloch sphere, up to the same supernormalisation of√

2. This additional factor of
√

2 does not affect our results: the additional factor may be
accounted for any time we represent the preparation of a qubit in one of these states.
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We may also represent single-qubit measurements by degree-1 nodes oriented in the
opposite direction. As re-orienting edges from the right of a node to the left corresponds to
turning |0〉 to 〈0|, turning |1〉 to 〈1|, and so forth, we then have

=
√

2 〈0| ; π =
√

2 〈1| ; (27)

=
√

2 〈+| ; π =
√

2 〈-| . (28)

Again, the additional factor of
√

2 may be accounted for any time we represent a projection
of a qubit in one of these states. To represent a measurement which may yield either |0〉
or |1〉, or either |+〉 or |-〉, we may introduce a variable s ∈ {0, 1} representing whether a
relative phase of π is absent in the result (s = 0, for the states |0〉 or |+〉) or present in the
result (s = 1, for the states |1〉 or |-〉). We then represent measurement in the {|0〉 , |1〉}
basis and the {|+〉 , |-〉} basis respectively as

π,{s} = 〈+| + eisπ 〈-| ∈
{√

2 〈0| ,
√

2 〈1|
}

; (29)

π,{s} = 〈0| + eisπ 〈1| ∈
{√

2 〈+| ,
√

2 〈-|
}
. (30)

The bit s is in effect a random variable representing the measurement outcome.
In other ZX diagrams (including on nodes of degree 2 or higher), we may use a set

S = {s1, s2, . . .} in place of the set {s}. This indicates a node in which the presence or
absense of the phase of π depends on the parity (s1 ⊕ s2 ⊕ · · · ) of the entire set S, rather
than on the single bit s. For example, we may represent Z rotations and X rotations each
by a single node of degree 2:

θ
= |0〉〈0| + eiθ |1〉〈1| = Rz(θ),

θ
= |+〉〈+| + eiθ |-〉〈-| = Rx(θ); (31)

Then, the following diagrams represent the same operations, conditioned on the parity
s =

⊕
j sj of a set of bits S = {s1, s2, . . .}:

θ,S
= Rz(sθ) = Rz(θ)s,

θ,S
= Rx(sθ) = Rx(θ)s. (32)

This feature of the ZX calculus does not play a prominent role in our work, but is present
in our treatment of the Hadamard gadget (Eqn. (15) on page 10) and in principle useful to
represent the circuits which we would obtain by representing conditionally-controlled Clifford
operations in the ZX calculus.

A.3 Two-node diagrams
Diagrams of more than one node can be easily constructed simply by composing nodes on
their edges. In many cases, this has the same meaning as in conventional quantum circuit
diagrams (with the same “feature” that the algebra is read right-to-left, even though the
diagram is read left-to-right): for example,

θ
H = HRz(θ) = Rx(θ)H =

θ
H (33)

θ π
= XRz(θ) = Rz(−θ)X =

−θπ
(34)
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As with circuit diagrams, we may also represent the tensor product of operations by repres-
enting operations happening on different wires in parallel — for example:

θ

ϕ

= Rz(θ)⊗Rx(ϕ). (35)

Not all “compositions” of nodes take these forms, however: in general we may compose any
two nodes simply by connecting their edges (corresponding to contracting the shared indices
of the tensor nodes). An especially important case in point is the way that CNOT operators
are represented as ZX terms. As with single-qubit states, the usual representation of CNOT
by ZX diagrams is not precisely normalised:

= |0〉〈0| ⊗ 〈0 |+〉 ⊗ |+〉〈+| + |0〉〈0| ⊗ 〈0 |-〉 ⊗ |-〉〈-|

+ |1〉〈1| ⊗ 〈1 |+〉 ⊗ |+〉〈+| + |1〉〈1| ⊗ 〈1 |-〉 ⊗ |-〉〈-|

= 1√
2 |0〉〈0| ⊗ 1 + 1√

2 |1〉〈1| ⊗X = 1√
2 CNOT. (36)

(Again, the subnormalisation of this diagram does not affect our analysis, and can in principle
be accounted for in the ZX representation of any circuit involving CNOT gates.) Note that
the shared wire between the red and green dot does not have a specific interpretation as an
“input” or an “output” of either — nor is this necessary to provide the interpretation of the
diagram as an operator.

A.4 Multi-node diagrams
Composing the diagrams above, in series or in parallel (and with appropriate accounting for
normalisation), suffices to represent an arbitrary unitary operation by the (slightly redundant)
gate set consisting of arbitrary X and Z rotations, Hadamard gates, and CNOT operations.
We may also more directly represent somewhat more “exotic” operators using ZX diagrams,
and π/4-parity-phase operations are in this case the most relevant example: for instance,

θ
=
(
〈0|d + eiθ 〈1|d

)(
|+〉d〈+++|abc + |-〉d〈–-|abc

)
×
(
|0〉〈0|1 ⊗ |0〉a + |1〉〈1|1 ⊗ |1〉a

)(
|0〉〈0|3 ⊗ |0〉b + |1〉〈1|3 ⊗ |1〉b

)
×
(
|0〉〈0|5 ⊗ |0〉c + |1〉〈1|5 ⊗ |1〉c

)
= 1

2
√

2

∑
a,b,c∈{0,1}

(
〈0|d + eiθ 〈1|d

)(
|+〉d + (−1)a+b+c |-〉d

)
⊗ |a, b, c〉〈a, b, c|1,3,5

= 1
4

∑
a,b,c∈{0,1}

(
1 + eiθ + (−1)a+b+c − (−1)a+b+ceiθ

)
|a, b, c〉〈a, b, c|1,3,5

= 1
2

∑
a,b,c∈{0,1}
a⊕b⊕c=0

|a, b, c〉〈a, b, c|1,3,5 + 1
2

∑
a,b,c∈{0,1}
a⊕b⊕c=1

eiθ |a, b, c〉〈a, b, c|1,3,5

= 1
2 eiθ/2 exp

( 1
2 iθ(Z ⊗ 1⊗ Z ⊗ 1⊗ Z)

)
. (37)



N. de Beaudrap, X. Bian, and Q. Wang 11:21

Again, the subnormalisation by a factor of 1
2 does not affect our analysis, which is in principle

about products of DS,3 operators — merely denoted in our work by these phase gadgets, for
convenience — which are proportional to the identity by a global phase.

The existence of rules for transforming ZX diagrams allows us to reason (i.e., to compute)
effectively about these diagrams without the need to expand their meaning algebraically
as we have been doing in this Appendix. This has particularly motivated our use of the
ZX calculus in our work, as a convenient notational tool and also as a means by which we
performed our analysis.

For more information about the ZX calculus, and in particular for resources to learn
about these diagrammatic computational methods, the interested reader is invited to visit
[zxcalculus.com].

B Details of the moveH subroutine and CNOT-commutation heuristic

In this Appendix, we describe our procedures for H gate extraction and CNOT gate
extraction (used in Steps 2 and 4 of the procedure described in Section 4.2) on a high
level. For more details, the interested reader may view our source code on Github [https:
//github.com/onestruggler/fast-stomp].

B.1 The moveH subroutine

Our procedure for extracting H gates from a circuit are built on a subroutine moveH, which
attempts to move each H gate as far to the right (the end of the circuit) as possible.

Representing the circuit as a list of gates in a particular order (without parallelisation),
this procedure looks for the first H gate, and attempts to move it to the right. In doing so,
it makes use of several simple commutation relations or opportunities for cancellation, for
example:

H H → ; H X → Z H ; H Z → X H ;

H
→

H
;

H
→

H
; H → H .

(38)

If the procedure moves the H gate to a point that it precedes a second H gate, it proceeds
recursively to attempt to move the second H gate before continuing with the first. When
the procedure is finished attempting (successfully or otherwise) to move the second H gate,
it returns to the task of moving the first — moving this gate past the other H gate, if the
attempt to move it ended in failure. This process continues until the procedure has stopped
trying to move what originally was the first H gate.

In attempting to move H gates, moveH may encounter situations in which no progress is
possible, without trying to move or cancel other kinds of gates. For instance: in a circuit
consisting only of an H gate followed by four T gates on a single wire, it is possible to move
the H gate to the end, but only after “pushing” the T gate which follows it to the right,
accumulating the other phase gates to form a Z gate. In general, if moveH encounters a gate
G for which there is no commutation rule provided, it attempts instead to push G forward,
to commute with, accumulate with, or cancel against gates further to its right. In doing so,
moveH may encounter yet another gate F for which G has no provided commutation relation,
in which case moveH will attempt to move F further to the right, and so on.

TQC 2020

zxcalculus.com
https://github.com/onestruggler/fast-stomp
https://github.com/onestruggler/fast-stomp


11:22 Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities

In some cases, there are fruitful opportunities for multi-gate substitutions which either
reduce the number of H gates, or allows an H gate to be moved further to the right. For
instance:

If in moving an H gate to the right we encounter an S gate followed by an H gate, moveH
first tries to move the second H gate. If this fails, we may apply the transformation

H S H → S Z H S Z . (39)

This reduces the number of H gates by 1. We then move the S and Z gates further to
the right, then continue by moving the new H gate to the right.
If in moving an H gate to the right we encounter the control qubit of a CNOT gate,
followed by an H gate on either the control or target, we again first try to move the H
gate. If this fails, we may apply one of the transformations

H H
→

H H
;

H

H
→

H

H
. (40)

This doesn’t directly reduce the number of H gates, but may make it possible to move the
later H gate and the CNOT gate to the right before continuing further, thereby providing
an alternative for at least one of the two H gates to be moved further to the right.

The details of all commutation relations which we define for all of the gates are not
important, except that it is important to define these rules in such a way that the procedure
terminates (rather than repeatedly commute two gates such as T and CCZ past one another,
in an attempt to cancel them so that an H gate can be moved to the right of both). Different
techniques will lead to different performances in the ability of moveH to reduce the number
of H gates which precede any non-Clifford gate.

B.2 CNOT movement heuristic
In Step 4, we move all operations which are not single-qubit phase operations or phase-parity
operations out of the main body of the circuit. The way that CNOT gates are treated aims,
roughly, to avoid generating phase-parity operations on very large subsystems, but does so
in a way that attempts to avoid performing too much computation.

The heuristic used to determine which direction to move a CNOT operation is as follows.
For each CNOT gate, from the first in the circuit to the last, we compute the following:
1. Compute the set PL of all phase-parity gadgets to the left which act on the target but

not the control of the CNOT, and the set ML of phase-parity gadgets to the left which
act on its target and control both.

2. Similarly, compute the set PR of phase-parity gadgets to the right which act on the target
but not the control of the CNOT, and the set MR of phase-parity gadgets to the left
which act on its target and control both.

3. If PL −ML < PR −MR, we prefer to move the CNOT to the left; otherwise we prefer to
move it to the right.

If no other CNOT gate acted on any qubits in common with this left-most CNOT gate,
the quantity PL (respectively, ML) would correctly indicate how many phase-parity gadgets
would act on one more qubit (respectively, one fewer) if we commuted that CNOT to the
left. The difference PL −ML then indicates the net change in the cumulative number of
qubits acted on by the phase-gadgets to the left of the CNOT. Similar remarks apply for
PR −MR, albeit with the important caveat that this figure may be inaccurate if there are
further CNOT gates to the right whose targets coincide with the control of the CNOT under
consideration.
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The approach taken to produce our results is as follows. For the left-most CNOT
in the circuit, compute PL, ML, PR, and MR. Commute the CNOT gate to the left if
PL −ML < PR −MR, and otherwise to commute it to the right. If in commuting it to the
right we encounter another CNOT gate with which it does not commute, we also commute
that CNOT gate to the right (and any CNOT gates with which those do not commute, etc.)
Having done this, we compute compute PL, ML, PR, and MR for the leftmost remaining
CNOT gate in the circuit, where these may depend on the commutations which occurred for
the previous CNOT gate. We proceed in this way, recursively from left to right, until no
more CNOT gates are in the main body of the circuit.
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1 Introduction

Oblivious transfer is an important cryptographic primitive in two-party computation as it
can be used as a universal building block for constructing more elaborate protocols [10].
Indeed, some quantum protocols for this task are known [22, 18, 6, 5]. It can be shown that
there do not exist classical protocols with any level of information-theoretic security, and
there do not exist quantum protocols with perfect security [6, 11].

In this paper, we consider a variant of oblivious transfer called XOR oblivious transfer
(XOT). This is the two-party cryptographic primitive in which two spatially separated parties,
Alice and Bob, wish to do the following task: Alice outputs two bits (x0, x1), which are
uniformly random in {0, 1}2, and Bob outputs b which is uniformly random in {0, 1, 2}, as
well as xb where we define x2 = x0 ⊕ x1. In other words, Alice and Bob communicate and
Bob learns one bit of information from Alice’s two bits (either the first bit, second bit, or
their XOR). When designing XOT protocols, the security goals are:
1. Completeness: If both parties are honest, then their outcomes are consistent (i.e., xb is

the correct value), uniformly random, and neither party aborts.
2. Soundness against cheating Bob: If Alice is honest, then a dishonest (i.e., cheating) Bob

cannot learn both x0 and x1 by digressing from protocol.
3. Soundness against cheating Alice: If Bob is honest, then a dishonest (i.e., cheating) Alice

cannot learn b by digressing from protocol.

I Remark 1. One could imagine a situation where Alice already has a fixed choice of
(x0, x1) that she wishes to input into a XOT protocol (perhaps from the result of an earlier
computation). However, we can use the outcomes of an XOT protocol as described above as
a one-time pad to convey the information to Bob. For more details, see [6].

XOR Oblivious Transfer

(x0, x1, x2 = x0 ⊕ x1) (b, xb)

Figure 1 Desired outputs for XOR oblivious transfer.

In this paper we are concerned with information-theoretic security, meaning that Alice
and Bob are only bounded by the laws of quantum mechanics. In other words, Alice and Bob
can perform arbitrarily complicated computations, have arbitrarily large quantum memories,
and so on. We shall have occasion to change how much control Alice and Bob have over the
protocol, but precisely what actions are allowed to be performed by dishonest parties should
be clear from context, and will be described shortly.
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We focus on studying XOT protocols from the perspective of assuming perfect complete-
ness and trying to make them as sound as possible.1 To this end, we choose to quantify the
soundness via cheating probabilities, which we define as follows:

PXOT
B : The maximum probability with which a dishonest Bob can learn both of honest

Alice’s outcome (x0, x1) and the protocol does not abort.
PXOT

A : The maximum probability with which a dishonest Alice can learn honest Bob’s
choice outcome b and the protocol does not abort.

Any XOT protocol with perfect completeness necessarily has PXOT
A ≥ 1

3 and PXOT
B ≥ 1

2 ,
since a dishonest Alice could always guess one of three choices for Bob’s outcome b uniformly
at random; similarly, dishonest Bob can follow the honest protocol to gain perfect knowledge
of x0, x1, or x0 ⊕ x1, and then randomly guess the unknown bit in Alice’s outcome (x0, x1).

As mentioned earlier, XOT is a variation on the more well-known cryptographic primitive,
oblivious transfer (OT). In an oblivious transfer protocol, Alice and Bob wish to do the
following task: Alice outputs two bits (x0, x1), which are uniformly random in {0, 1}2, and
Bob outputs (b, xb) where b is uniformly random in {0, 1}. The completeness and soundness
against cheating Alice and Bob for OT are the same as in XOT, the only difference being
that here Alice is trying to learn which one of two possible values of b Bob has. Any OT
protocol with perfect completeness has POT

A ≥ 1/2, POT
B ≥ 1

2 .

I Remark 2. In this work, we chose to quantify soundness via cheating probabilities, but we
note that such a measure of security is not necessarily composable [23, 21]. Unfortunately, it
can be very challenging to prove that a protocol is composably secure, and in some settings
such protocols are in fact impossible [21]. As a first analysis of the protocol proposed in this
work, we will restrict ourselves to studying the cheating probabilities only.

Since the lowest possible bounds on PXOT
A and PXOT

B for perfectly complete XOT protocols
are asymmetric, we shall consider them in pairs and will not concern ourselves with finding
an “optimal protocol”. That is, we consider the security of XOT protocols a partial ordering.
Instead, we motivate our work by asking the following question:

“Is is possible to create quantum protocols where both PXOT
A ,PXOT

B < 1 when Alice and Bob
do not even trust their own quantum devices?”

Taken literally, this statement cannot be true, since arbitrarily malicious devices could
simply broadcast all desired information to a dishonest party. However, it turns out that
there exist quantum protocols that can be proven secure using almost no assumptions other
than ruling out this extreme scenario (which seems a rather necessary assumption in any
case). This is the notion of device-independent security, which typically exploits nonlocal
games played using entangled states. In a fully device-independent model, one only assumes
that the parties’ devices do not directly broadcast certain information to the dishonest party
and/or each other (we shall explain this in more detail in Section 1.4). In particular, one does
not assume that the states and/or measurements implemented by the devices are known, and
even the dimensions of the quantum systems are not specified. Device-independent security
analyses exist for other cryptographic tasks such as quantum key distribution [17, 3], bit
commitment [20, 2], and coin-flipping [1].

1 To contrast, the task of finding protocols with perfect soundness and the best possible completeness
was considered in [19].
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While we have described the fully device-independent framework above, one can instead
choose to trust some subset of the properties described, leading to various levels of semi-
device-independent security. For instance, Alice and Bob could trust state preparation
devices, measurement devices, quantum operations, or any combination of the above.

In this work, we examine the security of XOT quantum protocols in semi-device-
independent and device-independent scenarios. By a slight abuse of notation, we use
the same notation PXOT

A and PXOT
B to denote the cheating probabilities of Alice and Bob

in all the different scenarios, corresponding to differently defined cheating capabilities of
the dishonest party. For example, if we were to allow a dishonest Alice to control Bob’s
measurements, it may lead to a different value of PXOT

A . The cheating capabilities of cheating
parties should be clear when we discuss PXOT

A and PXOT
B .

1.1 Trivial protocols
For readers new to oblivious transfer, we present two bad classical protocols and one bad
quantum protocol.

I Protocol 1 (Bad XOT Protocol 1).
1. Alice chooses (x0, x1) uniformly at random and sends (x0, x1) to Bob.
2. Bob chooses b uniformly at random.
3. Alice outputs (x0, x1) and Bob outputs (b, xb).

A moment’s thought shows that Bob has full information (he clearly learns (x0, x1)) while
Alice has no information. Therefore, we have

PXOT
A = 1/3 and PXOT

B = 1 (1)

which is as insecure concerning cheating Bob as possible.

I Protocol 2 (Bad XOT Protocol 2).
1. Bob chooses b uniformly at random and tells Alice his choice.
2. Alice chooses and outputs (x0, x1) uniformly at random and sends xb to Bob.
3. Alice outputs (x0, x1) and Bob outputs (b, xb).

Here Alice has full information while Bob has none. Therefore, here we have

PXOT
A = 1 and PXOT

B = 1/2. (2)

I Remark 3. Surprisingly, these protocols can be useful for protocol design. For instance,
suppose Alice wishes to test Bob to see if he has been cheating, and aborts if and only if the
test fails. Then if the test passes, the parties need a way to finish executing the protocol,
which they could do using Protocol 1 (which is independent of previous steps in the tested
protocol).

1.2 A quantum protocol for XOR oblivious transfer with no
device-independent security

It is tricky creating a protocol in which Alice and Bob both cannot cheat with high probability.
To this end, we often enlist the aid of quantum mechanics. Here we present the oblivious
transfer protocol from [6] adapted to the XOT setting.
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For b ∈ {0, 1, 2}, let |ψ±b 〉 ∈ XY denote the following two-qutrit state:

|ψ±b 〉 =


1√
2 (|00〉XY ± |22〉XY) if b = 0,

1√
2 (|11〉XY ± |22〉XY) if b = 1,

1√
2 (|00〉XY ± |11〉XY) if b = 2.

(3)

Note that for every b ∈ {0, 1, 2}, we have that |ψ+
b 〉 and |ψ

−
b 〉 are orthogonal. We are now

ready to state the protocol.

I Protocol 3.
1. Bob chooses b ∈ {0, 1, 2} uniformly at random, prepares the state |ψ+

b 〉 in registers XY,
and sends the register X to Alice.

2. Alice chooses (x0, x1) uniformly at random, performs the unitary

U(x0,x1) = (−1)x0 |0〉〈0|+ (−1)x1 |1〉〈1|+ |2〉〈2| (4)

on X , and then sends it back to Bob.
3. Bob performs the 2-outcome measurement {|ψ+

b 〉〈ψ
+
b |,1 − |ψ

+
b 〉〈ψ

+
b |} and records his

outcome as c = 0 if he gets |ψ+
b 〉〈ψ

+
b | and c = 1 otherwise.

4. Alice outputs (x0, x1), Bob outputs (b, c).

Protocol 3 can be checked to be complete (i.e., Bob gets the correct outcome). The
cheating probabilities in this protocol in the cases of trusted and untrusted devices are given
by Theorem 4 below. We give a proof for the trusted case Section 3, and the relatively simple
proof for the untrusted case is given here.

I Theorem 4. In Protocol 3, the cheating probabilities are as listed in the following table.
(In the untrusted setting, Alice controls Bob’s state preparation and Bob controls Alice’s
unitary.)

PXOT
A PXOT

B

Trusted devices 1/2 3/4

Untrusted devices 1 1

We show here that this protocol breaks down when they do not trust their own devices.
For example, assume Bob has full control over Alice’s unitary. It could be a unitary which
implements a superdense coding protocol:

U cheat
(x0,x1) =


1X if (x0, x1) = (0, 0),
σX if (x0, x1) = (0, 1),
σY if (x0, x1) = (1, 0),
σZ if (x0, x1) = (1, 1).

(5)

Note that this unitary acts on a qubit (which we can assume Bob sends if he wishes), or just
define it such that it acts trivially on the |2〉 subspace. Now, if Bob creates |ψ+

2 〉, he is left
with a state from the Bell basis. In other words, he can perfectly learn (x0, x1).

In the case of cheating Alice, she can simply control Bob’s state preparation device to
prepare the state |b〉 on input b, and have Bob send that. From this state, Alice simply
measures it to learn b. Thus, we have

PXOT
A = 1 and PXOT

B = 1 [Devices are NOT trusted]. (6)
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Thus, we need a clever way to design protocols where Alice and Bob cannot cheat in
the above way. This motivates the need for device-independent XOT protocols and some
protocol design ideas that should be avoided.

1.3 XOR oblivious transfer from the magic square game – A case of
untrusted sources

Similar to device-independent protocols which exist for other cryptographic tasks, we design
our protocols using nonlocal games. In this work, we shall make use of the nonlocal game
known as the Mermin-Peres magic square game. In the magic square game,

Alice and Bob receive respective inputs a ∈ {0, 1, 2} and b ∈ {0, 1, 2} independently and
uniformly at random.
Alice outputs (x0, x1, x2) ∈ {0, 1}3 such that x0⊕x1⊕x2 = 0 and Bob outputs (y0, y1, y2) ∈
{0, 1}3 such that y0 ⊕ y1 ⊕ y2 = 1.
Alice and Bob win the game if xb = ya.

If Alice and Bob are allowed only classical strategies (using e.g. shared randomness), the
magic square game cannot be won with probability greater than 8/9. However, there exists
a quantum strategy where Alice and Bob share prior entanglement, with which the magic
square game can be won with probability 1. We shall refer to this strategy as the magic
square strategy which is detailed in Section 2.1.

Now, suppose Alice and Bob play the magic square game according to the above description.
Notice that x2 will always be equal to x0 ⊕ x1, similar to the definition of XOT, and that
(x0, x1) is uniformly distributed (see Section 2.1). Also, for each of Bob’s input choices, he
learns either x0, x1, or x2 = x0 ⊕ x1 depending on the choice of input a for Alice. Since a is
chosen uniformly at random, this is almost a proper XOT protocol (putting aside soundness
for now). The only missing ingredient is that Bob knows he has xb, but does not know which
of the bits of (y0, y1, y2) it is. To fix this small issue, we simply have Alice tell Bob which bit
it is.

We formalize this protocol below and add in a test step that helps to prevent cheating.
Strictly speaking, Protocol 4 should be thought of as a protocol framework, as we have not
specified who creates the entangled state that Alice and Bob share – either party can. We
consider different security analyses of Protocol 4, corresponding to each of these different
cases. In the trusted state analysis, the honest party (whomever that may be) creates the
state, and in the untrusted state analysis it is the cheating party who does so.

I Protocol 4 (XOR oblivious transfer from the magic square game).
1. Alice and Bob share the bipartite state used in the magic square strategy.
2. Bob chooses b ∈ {0, 1, 2} uniformly at random, performs the measurements corresponding

to b in the magic square strategy to his state to get the outcome (y0, y1, y2), and sends
(y0, y1, y2) to Alice.

3. Alice chooses a ∈ {0, 1, 2} uniformly at random and sends a to Bob.
4. Alice performs the measurement corresponding to a in her magic square strategy on her

state to get outcome (x0, x1, x2).
5. Test: If (x0, x1) = (0, 0) and Bob has sent (y0, y1) such that ya = 1, then Alice aborts.
6. Alice outputs (x0, x1) and Bob outputs (b, ya).

Intuitively, the test step in Protocol 4 serves as a weak test that the magic square winning
condition is fulfilled (though the test only occurs with somewhat small probability). This
provides a way to partially certify that Bob has measured his share of the state before
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shared state

y

a
Test(x, y, a)

Accept

Output x

Reject

Abort Output (b, ya = xb)

Figure 2 Schematic depiction of the messages sent in Protocol 4.

learning Alice’s input. (Note that if Bob has not measured his state yet, then even when the
states are trusted, he has the potential to perfectly learn Alice’s output after learning her
input, by simply performing the same measurement as Alice on his state. However, forcing
him to perform the magic square measurement “deletes” some of this information; a notion
referred to as certified deletion in [8].)

It can be checked that Protocol 4 accomplishes what XOT wants and that it never aborts
in the honest case; in other words, the protocol is complete. To prove its soundness, we
bound the cheating probabilities using appropriate SDPs, as described in the full version.
Our numerical results are shown as Theorem 5 below.

I Theorem 5. We assume Alice and Bob play the “canonical” strategy for the magic square
game (see Section 2.1). Then the cheating probabilities for Alice and Bob in Protocol 4 are
bounded by the values in the table below, rounded to 5 decimal places. The bounds for cheating
Alice are tight.

Upper bounds P XOT
A P XOT

B

Trusted state 0.83333 0.93628

Untrusted state 0.87268 0.94096

Untrusted measurement 1 1

As the last row of the table in Theorem 5 indicates, Protocol 4 is not fully device-
independent. To see this, note that if Bob were to control Alice’s measurements, he can force
(x0, x1) = (0, 1) to always occur (regardless of the state, by performing a trivial measurement),
and then he will never be tested. Moreover, he will learn (x0, x1) perfectly. Conversely, if
Alice controls Bob’s measurement, she can force the output to be such that y0 + y1 = b (note
the sum is not modulo 2). Then, Bob’s message will reveal b to Alice.

1.4 A device-independent protocol
We now aim to find an XOT protocol based on the magic square game that is fully device-
independent. We shall first clarify the premises and assumptions in such a setting. Specifically,
we shall suppose that Alice and Bob each possess one of a pair of black boxes, each of which
will accept a classical input in {0, 1, 2} and return a classical output in {0, 1}3. We shall
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only require a single use of these boxes. In the honest scenario, the boxes will simply be
implementing the ideal magic square states and measurements. If either party is dishonest,
however, we shall suppose only that the boxes’ behaviour can be modelled as follows: the
boxes share some entangled state between them, and when one of the boxes receives an
input, it returns the output of some measurement (conditioned on the input) performed on
its share of the quantum state, without broadcasting either its input or output to any party
other than the one holding the box2. While the honest party can only interact with the
box as specified, the dishonest party is able to “open” any box they possess and perform
arbitrary quantum operations or measurements on the share of the state held by that box.
However, the dishonest party cannot interact with or change the behaviour of a box while it
is in the honest party’s possession.

This describes the general device-independent setting. For the purposes of this work,
we shall impose a small additional assumption on the states and measurements the boxes
implement, namely that they are described by a tensor product of Hilbert spaces, one for
each box. More general scenarios could be considered (for instance, one could require only
that the two boxes’ measurements commute), but these are outside the scope of this work.

It would seem difficult to design a secure protocol under such weak assumptions. However,
we can exploit the fact that many nonlocal games (including the magic square game) exhibit
the important property of self-testing or rigidity: if the boxes win the game with probability
equal to the maximum quantum value, then they must be implementing the ideal state
and measurements (up to trivial isometries). A robust version of this statement is formally
expressed as Lemma 9 in the next section.

This suggests the following idea to make Protocol 4 fully device-independent: we introduce
an initial step where with some probability, either party may ask the other to send over
their box, so they can perform a single-shot test of whether the boxes win the magic square
game. To prevent a dishonest party from always calling for a test, we shall enforce that a
party calling for a test must then cede all control if the test is passed, performing a XOT
protocol that is perfectly secure against them. If a test is not called, the parties simply
perform Protocol 4. We describe this idea more formally as Protocol 5 below.

Qualitatively, Protocol 5 imposes a “tradeoff” for the cheating party between passing
the test (if it is called) and the extent to which they deviate from the ideal implementation
of Protocol 4. More specifically, if (say) Bob is dishonest, he could cheat perfectly if Alice
decides to test, by having both boxes implement the honest behaviour, and he could also
cheat perfectly if Alice decides not to test, but to do so he needs to modify Alice’s box’s
behaviour at least (since our device-dependent arguments show that perfect cheating is
impossible when Alice’s box is honest). Since Alice’s box must behaves differently in the two
scenarios and Bob cannot change how that box behaves once the protocol starts, Alice can
constrain his cheating probability by randomly choosing between testing and not testing. A
similar argument applies to cheating Alice.

Note that for this reasoning to be valid, it is important that the honest party’s box cannot
be allowed to detect whether it is being subjected to a magic square test or whether it is
being used for Protocol 4 (we are implicitly assuming that the honest party’s box behaves
the same way in both situations). An assumption of this nature is typically required in
device-independent protocols that involve performing a test with some probability, e.g. [1, 3].

2 To take a slightly different perspective (used in e.g. [3]), we could suppose that the honest party is able
to “shield” their lab in a way such that signals cannot be broadcast out of it once they have supplied
the input to their box.
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In particular, as observed in [1], we note that if the behaviour of the boxes could be time-
dependent, then the honest party must ensure they provide the input to their box at a fixed
pre-determined time, regardless of whether the box is being tested or used for Protocol 4.

I Protocol 5 (XOR oblivious transfer from the magic square game with an extra test step).
1. Alice flips a coin whose outcome is 0 with probability 1− qA, to obtain cA ∈ {0, 1}, which

she sends to Bob.
2. a. If cA = 0, Bob flips a coin whose outcome is 0 with probability 1 − qB, to obtain

cB ∈ {0, 1}, which he sends to Alice.
b. If cA = 1, Bob sends his box to Alice.

3. a. If cA = 0, cB = 0, Alice and Bob perform Protocol 4 henceforth.
b. If cA = 0, cB = 1, Alice sends her box to Bob.
c. If cA = 1, Alice receives Bob’s box, picks aA, bA ∈ {0, 1, 2} uniformly at random to

input into her and Bob’s boxes, and checks if the outputs xA, yA satisfy xA
bA = yA

aA . If
not, she aborts.

4. If cA = 0, cB = 1, Bob receives Alice’s box, picks aB , bB ∈ {0, 1, 2} uniformly at random
to input into his and Alice’s boxes, and checks if the outputs xB , yB satisfy xB

bB = yB
aB . If

not, he aborts.
5. a. If cA = 1 and Alice has not aborted, Alice and Bob perform Protocol 1 henceforth.

b. If cA = 0, cB = 1 and Bob has not aborted, Alice and Bob perform Protocol 2 henceforth.

Alice flips
a coin

cA = 0 cA = 1

Bob flips
a coin

cB = 0 cB = 1

Protocol 4

Alice sends
her box

Bob self-
tests MS

Accept

Protocol 2

Reject

Abort

Bob sends
his box

Alice self-
tests MS

Accept

Protocol 1

Reject

Abort

Figure 3 Flowchart for Protocol 5.

We have required that when either party calls for a test, the tested party must send over
their box so that the testing party supplies an input to both boxes themselves, rather than
having the tested party self-report an input-output pair for their box. This is to ensure that
the inputs to the boxes are indeed uniformly chosen. Also, while it would be convenient if
Protocol 4 did not involve Alice sending her input to Bob (thereby more closely resembling
a standard nonlocal game), it would seem this step is necessary to allow an honest Bob to
know which bit of his output he should use, as previously mentioned regarding Protocol 4.
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We give two soundness arguments for Protocol 5. The first consists of explicit numerical
bounds on the cheating probabilities, based on the family of SDPs known as the Navascués-
Pironio-Acín (NPA) hierarchy [16]. We state the results as Theorem 6 below, and give the
proof in the full version. The second is an analytic proof that the cheating probabilities
are bounded away from 1, based on the robust self-testing bounds for the magic square
game [24, 7]. We state this result formally as Theorem 8 below, and give the proof in the
full version.

I Theorem 6. Upper bounds on Alice and Bob’s cheating probabilities for Protocol 5 (the
fully device-independent scenario) with qA = 0.6, qB = 0.6 are given below, rounded to 5
decimal places.

Upper bounds PXOT
A PXOT

B

Fully Device-Independent 0.96440 0.99204

I Remark 7. The choices for qA and qB in Theorem 6 were made by computing the bounds
for different choices of qA and qB in intervals of 0.1, then simply taking the value that yields
the best bounds on the cheating probabilities. We note that the result obtained for PXOT

B is
rather close to 1; however, the significant figures shown here are within the tolerance levels
of the solver.

I Theorem 8. For any qA, qB > 0 in Protocol 5, there exists some δ > 0 such that
PXOT

A , PXOT
B ≤ 1− δ.

2 Background

In this section, we give the necessary background to prove the results mentioned in the
introduction.

2.1 The magic square game
The optimal quantum strategy for magic square can be described as follows. Alice and Bob
share the state

|ΨMS〉 = 1√
2

(|00〉X0Y0 + |11〉X0Y0) 1√
2

(|00〉X1Y1 + |11〉X1Y1) (7)

with Alice holding the registers X0X1, and Bob holding the registers Y0Y1. The measurements
of Alice and Bob are given by the following table.

On input a, Alice simultaneously performs the three 2-outcome measurements {(Π0
ab,Π1

ab)}b

in the row indexed by a in Table 1 (it can be checked that the three measurements in every
row are compatible, so they can be performed simultaneously) on her registers X0X1. Her
output (x0, x1, x2) is the outputs of the three measurements (in order). Similarly, on input
b, Bob simultaneously performs the three 2-outcome measurements {(Π0

ab,Π1
ab)}a in the

column indexed by b (the three measurements in every column are also compatible, so they
can be performed simultaneously) on his registers Y0Y1, and gives the outcomes of the three
measurements as his output (y0, y1, y2).

Clearly, the measurement Alice performs to output xb is the same as the measurement
Bob performs to output ya. Since these measurements are performed on maximally entangled
states, one can show Alice and Bob always get the same outcome for xb and ya. Also, it can
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Table 1 Possible measurements for either party in the quantum strategy for magic square.

a

b 0 1 2

0
Π0

00 = |0〉〈0| ⊗ 1 Π0
01 = 1⊗ |0〉〈0| Π0

02 = |0〉〈0| ⊗ |0〉〈0|
+ |1〉〈1| ⊗ |1〉〈1|

Π1
00 = |1〉〈1| ⊗ 1 Π1

01 = 1⊗ |1〉〈1| Π1
02 = |0〉〈0| ⊗ |1〉〈1|

+ |1〉〈1| ⊗ |0〉〈0|

1
Π0

10 = 1⊗ |+〉〈+| Π0
11 = |+〉〈+| ⊗ 1 Π0

12 = |+〉〈+| ⊗ |+〉〈+|
+ |−〉〈−| ⊗ |−〉〈−|

Π1
10 = 1⊗ |−〉〈−| Π1

11 = |−〉〈−| ⊗ 1 Π1
12 = |+〉〈+| ⊗ |−〉〈−|

+ |−〉〈−| ⊗ |+〉〈+|

2
Π0

20 = |1〉〈1| ⊗ |+〉〈+|
+ |0〉〈0| ⊗ |−〉〈−|

Π0
21 = |+〉〈+| ⊗ |1〉〈1|

+ |−〉〈−| ⊗ |0〉〈0|
Π0

22 = |+ i〉〈+i| ⊗ |+ i〉〈+i|
+ | − i〉〈−i| ⊗ | − i〉〈−i|

Π1
20 = |0〉〈0| ⊗ |+〉〈+|

+ |1〉〈1| ⊗ |−〉〈−|
Π1

21 = |+〉〈+| ⊗ |0〉〈0|
+ |−〉〈−| ⊗ |1〉〈1|

Π1
22 = |+ i〉〈+i| ⊗ | − i〉〈−i|

+ | − i〉〈−i| ⊗ |+ i〉〈+i|

be verified that these measurements always produce outcomes satisfying the parity conditions
x0 ⊕ x1 ⊕ x2 = 0 and y0 ⊕ y1 ⊕ y2 = 1 (this holds regardless of the state). Some tedious
calculation shows that in fact the output distribution is uniform over all combinations that
win the magic square game, i.e. Pr(xy|ab) = 1/8 if xb = ya (and x, y satisfy the parity
conditions), and Pr(xy|ab) = 0 otherwise.

The above description views Alice and Bob as performing 8-outcome measurements (via a
sequence of three 2-outcome measurements). However, since for any state the measurements
always produce outputs satisfying the parity conditions, we can equivalently suppose Alice
and Bob measure to determine only (x0, x1) and (y0, y1), with the last bit for each determined
by the parity conditions. (This is consistent with the way we defined the magic square
game earlier.) These are 4-outcome measurements that can be expressed in terms of the Π
operators from Table 1 as

MMS
x0x1|a = Πx0

a0Πx1
a1 NMS

y0y1|b = Πy0
0bΠy1

1b . (8)

It can be checked that eachMMS
x0x1|a and NMS

y0y1|b is a rank-1 projector. Since the measurements
for x0 and x1 (resp. y0 and y1) commute for every a (resp. b), the product of the Π operators
in each case can be taken in either order.

Certain nonlocal games exhibit the property that the quantum strategies achieving their
optimal values are essentially unique. That is, if a quantum strategy achieves within ε of
the optimal value of the game, that strategy must be δ(ε)-close to the ideal strategy for the
game, up to certain local operations. This property of rigidity or self-testing was shown first
for the CHSH game [13, 14] and has been shown for other nonlocal games since.

[24] originally gave a proof of the rigidity of a version of the magic square game which is
slightly different from ours. [7] showed that the rigidity statement also holds for the version
of the magic square game we use. However, both of these results show the self-testing of
some operators that are related to Alice and Bob’s measurement operators in the magic
square game, but not the measurement operators themselves. It is not immediately clear
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how to self-test the measurement operators themselves from their results. In the full version
we derive the following lemma for self-testing of the measurement operators of the magic
square strategy.

I Lemma 9. Consider any state |ρ〉 on registers XY and projective measurements Mx|a, Ny|b
such that Mx|a act only on X and Ny|b act only on Y. If this state and measurements win the
magic square game with probability 1− ε, then there exist local isometries VA : X → X0X1JA

and VB : Y → Y0Y1JB and a state |junk〉 on JAJB such that for all a, b, x, y,∥∥(VA ⊗ VB)|ρ〉 − |ΨMS〉 ⊗ |junk〉
∥∥

2 ≤ O(ε1/4),∥∥∥(VA ⊗ VB)(Mx|a ⊗ 1)|ρ〉 − ((MMS
x|a ⊗ 1)|ΨMS〉)⊗ |junk〉

∥∥∥
2
≤ O(ε1/4),∥∥∥(VA ⊗ VB)(1⊗Ny|b)|ρ〉 − ((1⊗NMS

y|b )|ΨMS〉)⊗ |junk〉
∥∥∥

2
≤ O(ε1/4),

where |ΨMS〉, MMS
x|a , NMS

y|b denote the ideal state and measurements in the magic square game.

2.2 Semidefinite programming
A semidefinite program is an optimization problem of the form

p∗ = sup{〈C,X〉 : Φ(X) = B, X � 0} (9)

where Φ is a linear transformation, C and B are Hermitian. When we write X � Y , it means
that X − Y is (Hermitian) positive semidefinite, noting the special case that X � 0 simply
means X is positive semidefinite. We use X � Y to mean that X − Y is positive definite.

We can define the dual of the above SDP as the optimization problem below

d∗ = inf{〈B, Y 〉 : Φ∗(Y ) = C + S, S � 0, Y is Hermitian} (10)

where use the notation Φ∗ to mean the adjoint of the linear operator Φ.
When we deal with an SDP and its dual, we refer to the original SDP as the primal SDP.

The primal is called feasible if the constraints are satisfiable, that is, if

Φ(X) = B and X � 0 (11)

has a solution. Similarly, if

Φ∗(Y ) = C + S, S � 0, and Y is Hermitian (12)

has a solution, then the dual is said to be feasible.
We can use primal and dual solutions to show weak duality, i.e. if X is primal feasible

and (Y, S) is dual feasible, then

〈C,X〉 ≤ 〈B, Y 〉. (13)

In particular, p∗ ≤ d∗. Under mild conditions, we can guarantee equality in Eq. (13). For
example, if there exists X � 0 which is primal feasible and (Y, S) which is dual feasible, then
one can show that p∗ = d∗. Alternatively, if there exists (Y, S) with S � 0 which is dual
feasible and X which is primal feasible, then we also have p∗ = d∗. Either of these conditions
is known as strong duality and the feasible solution with the positive definite solution is
known as a Slater point. We refer the reader to the book [4] for a proof of weak and strong
duality and for other useful information on the subject.
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3 A sample proof

In this section, we prove that when the devices are trusted in Protocol 3, then PXOT
A = 1/2

and PXOT
B = 3/4. Before continuing, recall that Protocol 3 is an adaptation of the protocol

in [6] where Alice’s actions are the exact same and so are the intentions of a dishonest
Bob. Therefore, we can also import PXOT

B = 3/4 directly from the security analysis of that
protocol.

The rest of this section is devoted to proving PXOT
A = 1/2. Since Bob never aborts, all

we need to ascertain is the ability for Alice to learn b from her information contained in the
first message. To do this, she must infer b from the ensemble{(

1
3 , ρb = TrY(|ψ+

b 〉〈ψ
+
b |
)

: b ∈ {0, 1, 2}
}
. (14)

This is known as the quantum state discrimination problem, and the optimal guessing
probability can be written as the following SDP:

Primal problem

sup 1
3

3∑
b=1

Tr(Ebρb)

subject to:
∑

b=0,1,2
Eb = 1

∀bEb ∈ Pos(X )

Dual problem

inf Tr(σ)

subject to: ∀b 1
3ρb � σ

σ ∈ Herm(X ).

Note that the success probability can easily be seen to be equal to the value of the primal
problem as it is a maximization over POVMs and the objective function is the success
probability of that POVM measurement.

Now, if Alice uses the POVM

{E0, E1, E2} = {|0〉〈0|+ |2〉〈2|, |1〉〈1|, 0}, (15)

we can see that

PXOT
A ≥ 1

3

3∑
b=1
〈Eb, ρb〉 = 1

3 + 1
3 ·

1
2 + 0 = 1

2 . (16)

Effectively what this measurement does is measure in the computational basis, then assign
the outcomes |0〉 and |2〉 to the guess b = 0 and the outcome |1〉 to the guess b = 1. Note
that b = 2 is never guessed in this strategy. All that remains to show is that PXOT

A ≤ 1/2.
For this, we use the dual problem. Consider the dual feasible solution

σ = 1
61X . (17)

It can be checked that σ satisfies the dual constraints, i.e., σ � 1
3ρb for all b ∈ {0, 1, 2}. Since

Tr(σ) = 1/2, we have that PXOT
A ≤ 1/2 by weak duality.

Computational platform

Computations were performed using the MATLAB packages QETLAB [9] and YALMIP [12]
with solver MOSEK [15]. Some of the calculations reported here were performed using the
Euler cluster at ETH Zürich.
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