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Abstract
The main goal of this paper is to determine the asymptotic behavior of the number Xn of cut-vertices
in random planar maps with n edges. It is shown that Xn/n→ c in probability (for some explicit
c > 0). For so-called subcritial subclasses of planar maps like outerplanar maps we obtain a central
limit theorem, too.
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1 Introduction

A planar map is a connected planar graph, possibly with loops and multiple edges, together
with an embedding in the plane. A map is rooted if a vertex v and an edge e incident with
v are distinguished, and are called the root-vertex and root-edge, respectively. Sometimes
the root-edge is considered as directed away from the root-vertex. In this sense, the face to
the right of e is called the root-face and is usually taken as the outer face. All maps in this
paper are rooted.

The enumeration of rooted maps is a classical subject, initiated by Tutte in the 1960’s.
Tutte (and Brown) introduced the technique now called “the quadratic method” in order to
compute the number Mn, n ∈ N, of rooted maps with n edges, proving the formula

Mn = 2(2n)!
(n+ 2)!n! 3

n.

This was later extended by Tutte and his school to several classes of planar maps: 2-connected,
3-connected, bipartite, Eulerian, triangulations, quadrangulations, etc.
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10:2 Cut Vertices in Random Planar Maps

Figure 1 A randomly generated planar map with 500 edges, embedded using a spring-electrical
method. Cut vertices are coloured red.

The standard random model is to assume that every map with n edges appears with the
same probabiltiy 1/Mn. Within this random setting several shape parameters of random
planar maps have been studied so far, see for example [2, 8, 10, 9]. However, the number of
cut vertices does not appear to have been studied. (A cut vertex is a vertex that disconnects
a graph when it is removed). Figure 1 displays a randomly generated planar map with cut
vertices coloured red. It is natural to expect that the number of cut vertices is asymptotically
linear – and this is in fact true.

I Theorem 1. Let Xn denote the number of cut vertices in random planar maps with n
edges. Then we have

Xn

n

p−→ 5−
√

17
4 ≈ 0.219223594.

Moreover, we have E[Xn] = (5−
√

17)/4 · n+O(1).

We provide two different approaches for Theorem 1. First, by a probabilistic approach,
that makes use of the local convergence of random planar maps re-rooted at a uniformly
selected vertex (see Section 3). Second, by a combinatorial approach based on generating
functions and singularity analysis (see Section 4). The combinatorial approach yields
additional information on related generating functions and on error terms, and one obtains
more precise information on the expected value (see Section 4).

We conjecture that the number Xn additionally satisfies a normal central limit theorem.
The intuition behind this is that Xn may be written as the sum of n seemingly weakly
dependent indicator variables. The conjecture is backed up by numerical simulations we
carried out, see the histogram in Figure 2. Sampling over 2 · 105 planar maps with n = 5 · 105

edges, we obtained an average value of approximately 0.219223677 · n cut vertices. This
value is already very close to the exact asymptotic value obtained in Theorem 1. The
variance was approximately 0.082788 · n. It is actually possible to extend our combinatorial
approach and the corresponding asymptotic analysis to second moments that leads to the
precise asympotic behavior of the variance (details will be given in the journal version of this
Extended Abstract).
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Figure 2 Histogram for the number of cut vertices in more than 2 · 105 randomly generated
planar maps with n = 5 · 105 edges each.

One important property of random planar maps that we will use in the proof of Theorem 1
is that it has a giant 2-connected component of linear size. There are, however, several
interesting subclasses of planar maps, for example outerplanar maps (that is, all vertices are
on the outer face), where all 2-connected components are (in expectation) of bounded size.
Informally this means that on a global scale the map looks more or less like a tree. Such
classes of maps are called subcritical – we will give a precise definition in Section 2.

I Theorem 2. Let Xn denote the number of cut vertices in random outerplanar (or bipartite
outerplanar) maps of size n. Then Xn satisfies a central limit theorem of the form

Xn − cn√
σ2n

d−→N(0, 1)

where c = 1/4 and σ2 = 5/32 in the outerplanar case and c = (
√

3 − 1)/2 and σ2 =
(11
√

3− 17)/12 in the bipartite outerplanar case.

We will give a generating function based proof for the case of outerplanar graphs in Section 5.
(The proof for the bipartite outerplanar case is very similar to that.)

2 Generating Functions for Planar Maps

The generating function of planar maps is given by

M(z) =
∑
n≥0

Mnz
n = 18z − 1 + (1− 12z)3/2

54z2 = 1 + 2z + 9z2 + 54z3 + · · · , (1)

This can be shown in various ways, for example by the so-called quadratic method, where it
is necessary to use an additional catalytic variable u that takes care of the root face valency.
The corresponding generating function M(z, u) (u takes care of the root face valency or
equivalently by duality of the root degree) satisfies then

M(z, u) = 1 + zu2M(z, u)2 + uz
uM(z, u)−M(z)

u− 1 (2)

AofA 2020



10:4 Cut Vertices in Random Planar Maps

which follows from a combinatorial consideration (removal of the root edge). Then this
relation can be used to obtain (1) and to solve the counting problem. We refer to [11,
Sec. VII. 8.2.].

Similarly it is possible to count also the number of non-root faces (with an additional
variable x) which leads to the relation1

M(z, x, u) = 1 + zu2M(z, x, u)2 + uzx
uM(z, x, u)−M(z, x, 1)

u− 1 .

Note that by duality M(z, x, 1) can be also seen as the generating function that is related to
edges and non-root vertices of planar maps.

A planar map is 2-connected if it does not contain cut vertices. There are various ways to
obtain relations for the corresponding generating function B(z, x, u) of 2-connected planar
maps – as above z takes care of the number of edges, x of the number of non-root faces, and
u of the valency of the root face. By using the fact, that a 2-connected planar map, where
we delete the root edge, decomposes into a sequence of 2-connected maps or single edges, we
obtain the relation

B(z, x, u) = zxu

uB(z,x,1)−B(z,x,u)
1−u + zu

1− uB(z,x,1)−B(z,x,u)
1−u − zu

. (3)

We can use, for example, the quadratic method to solve this equation or we just check that
we have

B(z, x, u) = −1
2
(
1− (1 + U − V + UV − 2U2V )u+ U(1− V )2u2) (4)

+ 1
2(1− (1− V )u)

√
1− 2U(1 + V − 2UV )u+ U2(1− V )2u2,

where U = U(x, y) and V = V (x, y) are given by the algebraic equations

z = U(1− V )2, xz = V (1− U)2. (5)

Note that in the above counting procedure we do not take the one-edge map (nor the
one-edge loop) into account. Therefore we have to add the term zu on the right hand
side in order to cover the case of a single edges that might occur in the above mentioned
decomposition into a sequence of 2-connected maps or single edges.

Sometimes it is more convenient to include the one-edge map as well as the one-edge
loop to 2-connected maps (since they have no cut-points) which leads us to the alternative
generating function

A(z, x, u) = B(z, x, u) + zxu+ zu2.

Now a general rooted planar map can be obtained from a 2-connected rooted map (including
the one-edge map as well as the one-edge loop) by adding to every corner a rooted planar
map (a corner of a planar map is the angle region between two adjacent half-edges of the
same vertex – note that there are 2n corners if there are n edges):

M(z, x, u) = 1 +A

(
zM(z, x, 1)2, x,

uM(z, x, u)
M(z, x, 1)

)
. (6)

1 By abuse of notation we will use for simplicity for M(z), M(z, u), M(z, x, u) the same symbol.
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If x = 1 then V (z, 1) (and U(z, 1)) satisfies the equation z = V (1− V )2 and, thus, the
dominant singularity of V (z, 1) (and U(z, 1)) is z0 = 4

27 , and we also have V (z0, 1) = 1
3 (as

well as U(z0, 1) = 1
3 ). Hence, from (4) it follows that the function A(z, 1, 1) has its dominant

singularity at z0 = 4
27 , too. On the other hand, by (1) M(z) has its dominant singularity at

z1 = 1
12 and we also have M(z1) = 4

3 . Since z1M(z1)2 = 4
27 = z0, the singularities of M(z)

and A(z, 1, 1) interact. We call such a situation critical.
The relation (6) can also be seen as a way how all planar maps can be constructed

(recursively) from 2-connected planar maps – which reflects the block-decomposition of a
connected graph into its 2-connected components. Actually this principle holds, too, for
several sub-classes of planar maps. As an example we consider outerplanar maps – these are
maps, in which all vertices are on the outer face. Here the generating function MO(z) of
outerplanar (rooted) maps satisfies

MO(z) = z

1−AO(M(z)) , (7)

where AO(z) is the generating function for polygon dissections (plus a single edge) where z
marks non-root vertices, which satisfies

2AO(z)2 − (1 + z)AO(z) + z = 0. (8)

Note that the dominant singularity of AO(z) is z0,O = 3 − 2
√

2, whereas the dominant
singularity of MO(z) is z1,O = 1

8 and we have MO(z1,O) = 1
18 . So we clearly have

MO(z1,O) < z0,O, (9)

so that the singularities of MO(z) and AO(z) do not interact. Such a situation is called
subcritical.

3 A probabilistic approach to cut vertices of random planar maps

We let Mn denote the uniform random planar map with n edges. It is known that Mn

and related models of random planar maps admit local limits that describe the asymptotic
vicinity of a typical corner, see [16, 1, 13, 4, 6, 15].

In a recent work by Drmota and Stufler [9, Thm. 2.1], a related limit object M∞ was
constructed that describes the asymptotic vicinity of a uniformly selected vertex vn of Mn

instead. That is, M∞ is a random infinite but locally finite planar map with a marked vertex
such that

(Mn, vn) d−→M∞ (10)

in the local topology.
In the present section we provide a probabilistic proof of Theorem 1. There are two steps.

The first proves a law of large numbers for the number Xn of cut vertices in Mn without
determining the limiting constant explicitly:

I Lemma 3. We have Xn/n
p−→ p/2, with p > 0 the probability that the root of M∞ is a cut

vertex.

The factor 1/2 originates from the fact that the number of vertices in the random map
Mn has order n/2. We prove Lemma 3 in Section 3.4 below. In the second step, we determine
this limiting probability (the proof is given in Section 3.6),

I Lemma 4. It holds that p = 5−
√

17
2 .

AofA 2020
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3.1 The local topology
We briefly recall the background related to local limits. Consider the collection M of vertex-
rooted locally finite planar maps. For all integers k ≥ 0 we may consider the projection
Uk : M→M that sends a map from M to the submap obtained by restricting to all vertices
with graph distance at most k from the root vertex. The local topology is induced by
the metric

dM(M1,M2) = 1
1 + sup{k ≥ 0 | Uk(M1) = Uk(M2)} , M1,M2 ∈M.

It is well-known that the metric space (M, dM) is a Polish space. A limit of a sequence
of vertex rooted maps in M is called a local limit. The vertex rooted map (Mn, vn) is a
random point of the space of M, and hence the standard probabilistic notions for different
types of convergence (such as distributional convergence in (10)) of random points in Polish
spaces apply.

3.2 Continuity on a subset
We consider the indicator variable f : M→ {0, 1} for the property, that the root vertex is a
cut vertex.

Note that f is not continuous on M. Therefore we consider the subset Ω ⊂ M of all
locally finite vertex-rooted maps with the property, that either the root is not a cut vertex,
or it is a cut vertex and deleting it creates at least one finite connected component.

I Lemma 5. The indicator variable f is continuous on Ω.

Proof. Let (Mn)n≥1 denote a sequence in M with a local limit M = limn→∞Mn that
satisfies M ∈ Ω. If the root of M is not a cut vertex, then there is a finite cycle containing it,
and this cycle must then be already present in Mn for all sufficiently large n. Hence in this
case limn→∞ f(Mn) = 0 = f(M). If the root of M is a cut vertex, then M ∈ Ω implies that
removing it creates a finite connected component, and this component must then also be
separated from the remaining graph when removing the root vertex of Mn for all sufficiently
large n. Thus, limn→∞ f(Mn) = 1 = f(M). This shows that f is continuous on Ω. J

Note that by similar arguments it follows that the subset Ω is closed.

3.3 Random probability measures
The collection M1(M) of probability measures on the Borel sigma algebra of M is a Polish
space with respect to the weak convergence topology.

For any finite planar map M with k vertices we may consider the uniform distribution
on the k different rooted versions of M . If the map M is random, then this is a random
probability measure, and hence a random point in the space M1(M). In particular, the
conditional law P((Mn, vn) | Mn) is a random point of M1(M). Let L(M∞) ∈M1(M) denote
the law of the random map M∞. It follows from [18, Thm. 4.1] that

P((Mn, vn) | Mn) p−→L(M∞). (11)

The explicit construction of the limit M∞ also entails that among the connected components
created when removing any single vertex of M∞ at most one is infinite. In particular,

P(M∞ ∈ Ω) = 1. (12)
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3.4 Proving Lemma 3 using the continuous mapping theorem
Let us recall the continuous mapping theorem (see, for example, the book by Billingsley [3,
Thm. 2.7]) that says that random variables X,X1, X2, . . . that take values in a Polish space X
have the property that Xn

d−→X implies g(Xn) d−→ g(X), where g : X→ Y is a measurable
map to a Polish space Y and X almost surely takes values on the subset of X, where g is
continuous.

Hence, by combining the convergence (10) with Lemma 5 and Equation (12) allows us to
apply the continuous mapping theorem with X = M and Y = {0, 1} to deduce

f(Mn, vn) d−→ f(M∞).

In other words, the probability for vn to be a cut vertex of Mn converges toward the
probability p = E[f(M∞)] that the root of M∞ is a cut vertex. Equivalently, the number of
vertices v(Mn) in the map Mn satisfies

E[Xn/v(Mn)]→ p.

Of course, it follows by the same arguments that in general for any sequence of probability
measures P1, P2, . . . ∈ M1(M) satisfying the weak convergence Pn ⇒ L(M∞), the push-
forward measures satisfy

Pnf
−1 ⇒ L(M∞)f−1. (13)

Let us now consider the setting X = M1(M), Y = R, and

g : M1(M)→ R, P 7→
∫
f dP = P (f = 1). (14)

That is, a probability measure P ∈M1(M) gets mapped to the expectation of f with respect
to P . In other words, to the P -probability that the root is a cut vertex. It follows from (13)
that g is continuous at the point L(M∞). Hence, using (11) and again the continuous
mapping theorem, it follows that

E[f(Mn, vn) | Mn] d−→ p. (15)

As p is a constant, this convergence actually holds in probability. Moreover,

E[f(Mn, vn) | Mn] = Xn/v(Mn). (16)

The number v(Mn) is known to satisfy v(Mn)/n p−→ 1/2. In fact, a normal central limit
theorem is known to hold (see, for example, [9, Lem. 4.1]). This allows us to apply Slutsky’s
theorem, yielding Xn/n

p−→ p/2. We have thus completed the proof of Lemma 3.

3.5 Structural properties of the local limit
We let M denote a random map following a Boltzmann distribution with parameter z1 = 1

12 .

That is, M attains a finite planar map M with c(M) corners with probability

P(M = M) = z
c(M)
1

M(z1) = 3
4

(
1
12

)c(M)
. (17)

The local limit M∞ exhibits a random number of independent copies of M close to its root.
This can be made more precise by the following property.

AofA 2020



10:8 Cut Vertices in Random Planar Maps

I Lemma 6. There is an infinite random planar map M∗∞ with a root vertex u∗ that is not
a cut vertex of M∗∞, such that M∞ is distributed like the result of attaching an independent
copy of M to each corner incident to u∗.

Here we use the term attach in the sense that the origin of the root-edge of the independent
copy of M gets identified with the vertex u∗. In what follows we will only use the fact that
such a (random) map M∗∞ exists. The proof of Lemma 6 (that is given in Appendix A)
provides additional information about the distribution of M∞ and M∗∞.

3.6 Proving Lemma 4 via the asymptotic degree distribution
Let q(z) =

∑
k≥1 qkz

k denote the probability generating function of the root-degree of the
map M∗∞. If we attach an independent copy of M to each corner incident to the vertex u∗ in
the map M∗∞, then u∗ becomes a cut vertex if and only if at least one of these copies has at
least one edge. The probability for M to have no edges, that is, to consist only of a single
vertex, is given by 1/M(z1) = 3/4. Hence the probability p for the root of M∞ to be a cut
vertex may be expressed by

p =
∑
k≥1

qk

(
1−

(
3
4

)k
)

= 1− q
(

3
4

)
. (18)

Hence, in order to determine p we need to determine q(z). Surprisingly, we may do so
without concerning ourselves with the precise construction of M∗∞.

It was shown in [12] that the degree of the origin of the root-edge of the random planar
map Mn admits a limiting distribution with a generating series d(z) given by

d(z) = z
√

3√
(2 + z)(6− 5z)3

. (19)

That is, dk := [zk]d(z) is the asymptotic probability for the origin of the root-edge of Mn to
have degree k. Let sk denote the limit of the probability for a uniformly selected vertex of
Mn to have degree k. It follows from [14, Prop. 2.6] that

sk = 4dk/k (20)

for all integers k ≥ 1. Setting s(z) =
∑

k≥1 skz
k, Equation (20) may be rephrased by

zs′(z) = 4d(z). (21)

Via integration, this yields the expression

s(z) = 1
2

−1 +
√

2 + z√
2− 5z

3

 (22)

As M∞ is the local limit of Mn rooted at a uniformly chosen vertex, it follows that for
each k ≥ 1 the limit sk equals the probability for the root of M∞ to have degree k. Let
r(z) denote the probability generating series of the degree distribution of the origin of the
root-edge of the Boltzmann map M. It follows from Lemma 6 that

s(z) = q(zr(z)). (23)
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We are going to compute r(z). To this end, let M(z, v) denote the generating series of
planar maps with z marking edges and v marking the degree of the root vertex. By duality,
M(z, v) coincides with the bivariate generating series where the second variable marks the
degree of the outer face. The quadratic method (see [11, p. 515] or compare with (1) and
(2)) hence yields the known expression

M(z1, u) =
−3u2 + 36u− 36 +

√
3(u+ 2)(6− 5u)3

6u2(u− 1) . (24)

The series r(z) is related to M(z, u) via

r(u) = M(z1, u)/M(z1, 1) = 3
4M(z1, u). (25)

Forming the compositional inverse of zr(z) and plugging it into Equation (23) yields the
involved expression

q(z) = 1
2


√

20z2+48z−
√

2z−27(2z−3)3/2+123
z(4z+3)+24

2
√

6−4z
−14z+5

√
2z−27

√
2z−3+51

− 1

 . (26)

Equation (26) allows us to evaluate the constant q(3/4) in the expression for p given in
Equation (18), yielding

p = 1− q(3/4) = 5−
√

17
2 . (27)

This concludes the proof of Lemma 4.

4 A combinatorial approach to cut vertices of planar maps

The goal of this section is to re-derive the constant (5−
√

17)/4 = p/2 in Theorem 1 with
the help of a combinatorial approach by deriving an asymptotic expansion for the expected
value E[Xn]. We want to emphasize again that an extension of this approach (that will be
given in the journal version of this paper) provides the asymptotic expansion of the second
moment E[X2

n] and consequently of the variance.

4.1 Generating function for the expected number of cut vertices
By extending the combinatorial approach that relates all planar maps with 2-connected maps
(see (6)) it is possible to derive the following explicit formula for the generating function

Ea(z) =
∑
n≥0

MnE[Xn]zn.

I Lemma 7. Let u1(z) denote the function u1(z) = 1/(1 − V (z, 1), where V (z, x) (and
U(z, x)) is given by (5). Then we have

Ea(z) = 1
1− 2zM(z)Az(zM(z)2, 1, 1) (28)

×
[

A(zM(z)2, 1, 1) + Ax(zM(z)2, 1, 1)

− 2zM(z)− z −B(zM(z)2, 1, 1/M(z))−B•(zM(z)2, 1/M(z))

+ 2zM(z)Az(zM(z)2, 1, 1)
(
B(zM(z)2, 1, 1/M(z))−M(z) + zM(z) + z + 1

)]
,

AofA 2020



10:10 Cut Vertices in Random Planar Maps

where

B•(z, w) = zw

u1(z)B(z,1,w)−wB(z,1,u1(z))
w−u1(z) + zwu1(z)

1− u1(z)B(z,1,w)−wB(z,1,u1(z))
w−u1(z) − zwu1(z)

. (29)

The proof is given in Appendix B. Note that all involved functions are algebraic, which
shows that the generating function Ea(z) is algebraic, too.

4.2 Asymptotics
We start with a proper representation of Bx(z, 1, 1) and Bz(z, 1, 1).

I Lemma 8. Let B(z, x, u) be given by (4) and u1(z) = 1/(1 − V (z, 1)) as in Lemma 11.
Then we have

Bx(z, 1, 1) = u1(z)− 1
u1(z) Q(z)(1−Q(z)) (30)

and

Bz(z, 1, 1) = u1(z)− 1
z u1(z) Q(z)(1−Q(z)) + u1(z)− 1 (31)

where Q(z) abbreviates

Q(z) = V (z, 1)2

u1(z)− 1 −
u1(z)B(z, 1, 1)
u1(z)− 1 + z u1(z).

The proof is an easy application of the kernel method applied to the derivative of the
defining relation (3).

I Lemma 9. We have the following local expansions in powers of
(
1− 27

4 z
)
:

Bx(z, 1, 1) = 2
27 −

2
√

3
27

√
1− 27

4 z + 2
81

(
1− 27

4 z
)

+ 19
√

3
729

(
1− 27

4 z
)3/2

+ · · · (32)

Bz(z, 1, 1) = 1−
√

3
(

1− 27
4 z
)1/2

+ 4
3

(
1− 27

4 z
)
− 35

√
3

54

(
1− 27

4 z
)3/2

+ · · · (33)

B•(z, w) = −4
w
(
−2w +

√
4w2 − 60w + 81− 9

)
243− 54w + 27

√
4w2 − 60w + 81

(34)

+
16
√

3w2 (−2w +
√

4w2 − 60w + 81 + 3
)

9
(
9− 2w +

√
4w2 − 60w + 81

)2 (2w − 3)

√
1− 27

4 z + · · ·

Proof. By inverting the equation z = V (1−V )2 it follows that V (z, 1) has the local expansion

V (z, 1) = 1
3 −

2
3
√

3
Z + 2

27Z
2 − 5

81
√

3
Z3 + · · · ,

where Z abbreviates

Z =
√

1− 27
4 z.

Consequently u1(z) = 1/(1− V (z, 1)) is given by

u1(z) = 3
2 −
√

3
2 Z + 2

3Z
2 − 35

√
3

108 Z3 · · ·
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We already know that

B(z, 1, u1(z)) = V (z, 1)2 = 1
9 −

4
√

3
27 Z + 16

81Z
2 − 34

√
3

729 Z3 + · · ·

and from (4) we directly obtain

B(z, 1, 1) = 1
27 −

4
27Z

2 + 8
√

3
81 Z3 + · · ·

Hence, the local expansion of Q(z) = Q0(z, 1, u1(z)) can be easily calculated:

Q(z) = 1
3 −

2
√

3
9 Z + 2

27Z
2 − 5

√
3

243 Z
3 + · · · ,

and, thus, (32) and (33) follow from this expansion and from (30) and (31).
Finally we have to use (29) and the expansion for B(x, 1, w) to obtain (34). J

This leads us to the following local expansion for Ea(z) and a corresponding asymptotic
relation.
I Lemma 10. The function Ea(z) has the following local expansion

Ea(z) = 11
√

17− 37
24 − (5−

√
17)
√

1− 12z + · · · (35)

which implies

E[Xn] = [zn]Ea(z)
[zn]M(z) = (5−

√
17)

4 n+O(1).

Proof. We note that several parts of (28) have a dominant singulartiy of the form (1−12z)3/2.
For those parts only the value at z1 = 1/12 influences the constant term and coefficient of√

1− 12z in the local expansion of Ea(z). In particular we have

M(z1) = 4
3 ,

A(z1M(z1)2, 1, 1) = 1
3 ,

B(z1M(z1)2, 1, 1/M(z1)) = 3
√

17− 11
72 .

The other appearing function will have a non-zero coefficient at the
√

1− 12z–term. Note
also that we have√

1− 27
4 zM(z)2 =

√
3
√

1− 12z − 2
3
√

3(1− 12z) +O((1− 12z)3/2).

Hence we get

Az(zM(z)2, 1, 1) = 3− 3
√

1− 12z + · · · ,

Ax(zM(z)2, 1, 1) = 2
9 −

2
9
√

1− 12z + · · · ,

B•(zM(z)2, 1, 1, 1/M(z)) =
(
7−
√

17
) (

5−
√

17
)

72 −
(
1 +
√

17
) (
−5 +

√
17
)2

48
√

1− 12z + · · ·

and so (35) follows.
From (35) it directly follows that

[zn]Ea(z) = 5−
√

17
2
√
π

n−3/212n · (1 +O(1/n))

By dividing that by Mn = [zn]M(z) = (2/
√
π)n−5/212n · (1 + O(1/n)) the final result

follows. J
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5 Outerplanar Maps

We give a proof of Theorem 2 for the case of (all) outerplanar maps. (The proof in the
bipartite case is very similiar.)

We recall that the generating function MO(z) of outerplanar maps satisfies (7), where
the function

AO(z) = 1
4

(
1 + z −

√
1− 6z + z2

)
is the generating function for polygon dissections (plus a single edge) has radius of convergence
z0,O = 3− 2

√
2. From this we obtain

MO(z) =
z
(
3−
√

1− 8z
)

2(1 + z) .

The radius of convergence of MO(z) is z1,O = 1
8 so that MO(z1,O) = 1

18 < z0,O. Note that
MO(z) has a squareroot singularity (as it has to be). Now let MO(z, y) denote the generating
function of outerplanar maps, where y takes care of the number of cut-vertices. We already
mentioned that MO(z, y) satisfies the functional equation

MO(z, y) = z

1−AO(z + y(MO(z, y)− z))

which gives

MO(z, y) =
z
(

3− z + yz −
√

(y − 1)z2 − (6 + 2y)z + 1
)

2(1 + yz) .

Clearly, if y is sufficiently close to 1 then the singularities of MO(z, y) and AO(z) do not
interact and so we obtain a squareroot singularity

ρ(y) = 3 + y − 2
√

2 + 2y
(y − 1)2 .

for the mapping z 7→ MO(z, y). Note that ρ(y) is actually regular at y = 1 and satisfies
ρ(1) = 1/8.

By [7, Theorem 2.25] we immediately obtain a central limit theorem with E[Xn] =
c n+O(1) and variance Var[Xn] = σ2n+O(1), where

c = −ρ
′(1)
ρ(1) = 1

4 and σ2 = −ρ
′′(1)
ρ(1) + µ+ µ2 = 5

32 .
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A Proof of Lemma 6

A direct description of the limit M∞ that uses a generalization of the Bouttier, Di Francesco
and Guitter bijection [5] was given in [18, Thm. 4.1]. Although the structure of M∞ may be
studied in this way, it will be easier to show that M∞ has the desired shape via a construction
related to limits of the 2-connected core within Mn.

Let B(Mn) ⊂ Mn denote the largest (meaning, having a maximal number of edges)
2-connected block in the map Mn. Typically B(Mn) is uniquely determined, as the number
c(n) of corners of B(Mn) is known to have order 2n/3, and the number of corners in the
second largest block has order n2/3.

Consider the random planar map M̄n constructed from the core Cn := B(Mn) by attaching
for each integer 1 ≤ i ≤ c(n) an independent copy M(i) of M at the ith corner of Cn. We use
the notation Cn instead of B(Mn) from now on to emphasize that we consider Cn always as
a part of M̄n (as opposed to Mn).

Clearly, the two models Mn and M̄n are not identically distributed. For example, the
number of edges in M̄n is a random quantity that fluctuates around n. However, analogously
as in the proof of [17, Lem. 9.2], local convergence of M̄n is equivalent to local convergence
of Mn, implying that M∞ is also the local limit of M̄n with respect to a uniformly selected
vertex un.
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The random 2-connected planar map Bn with n edges was shown to admit a local limit
B̂ that describes the asymptotic vicinity of a typical corner (equivalently, the root-edge of
Bn), see [17, Thm. 1.3]. Arguing entirely analogously as in [9], it follows that there is also a
local limit B∞ that describes the asymptotic vicinity of a typical vertex.

The number of vertices of M̄n has order n/2, and the number of vertices in Cn is known
to have order n/6. Let uB

n denote the result of conditioning the random vertex un to belong
to Cn. The probability for this to happen tends to 1/3. As uB

n is uniformly distributed
among all vertices of Cn, it follows that (Cn, u

B
n) d−→B∞ in the local topology. This implies

that (M̄n, u
B
n) converges in distribution towards the result MB

∞ of attaching an independent
copy of M to each corner of B∞. The limit MB

∞ has the desired shape.
Let uc

n denote the result of conditioning the random vertex un to lie outside of Cn.
It remains to show that the limit Mc

∞ of (M̄n, u
c
n) has the desired shape as well. Let

1 ≤ in ≤ c(n) denote the index of the corner where the component containing uc
n is attached.

It is important to note that given the maps M(1), . . . ,M(c(n)), the random integer in need
not be uniform, as it is more likely to correspond to a map with an above average number of
vertices. This well-known waiting time paradox implies that asymptotically the component
containing uc

n follows a size-biased distribution M•. That is, M• is a random finite planar
map with a marked non-root vertex, such that for any planar map M with a marked non-root
vertex v it holds that

P(M• = (M, v)) = P(M = M)/(E[v(M)]− 1),

with v(M) denoting the number of vertices in the Boltzmann planar map M.
In detail: Given the random number c(n), let i∗n be uniformly selected among the integers

from 1 to c(n). For each 1 ≤ i ≤ c(n) with i 6= i∗n let M̄(i) denote an independent copy of
M, and let M̄(i∗n) denote an independent copy of M•. Likewise, for each 1 ≤ i ≤ c(n) with
i 6= in set M∗(i) = M(i), and let M∗(in) = (M(in), uc

n). Analogously as in the proof of [17,
Lem. 9.2], it follows that

(M∗(i))1≤i≤c(n)
d
≈ (M̄(i))1≤i≤c(n).

This entails that the core Cn rooted at the corner with index in admits B̂ (and not B∞)
as local limit. Moreover, the local limit Mc

∞ of M̄n rooted at uc
n may be constructed by

attaching an independent copy of M to each corner of B̂, except for the root-corner of B̂,
which receives an independent copy of M•. The marked vertex of the limit object Mc

∞ is
then given by the marked vertex of this component.

To proceed, we need information on the shape of M•. Consider the ordinary generating
functions M(v, w) and A(v, w) of planar maps and 2-connected planar maps, with v marking
corners, and w marking non-root vertices. The block-decomposition yields

M(v, w) = A(vM(v, w), w). (36)

That is, a planar map consists of a uniquely determined block containing the root-edge,
with uniquely determined components attached to each of its corners. Let us call this block
the root block. For the trivial map consisting of a single vertex and no edges, this block is
identical to the trivial map, with nothing attached to it as it has no corners.

Marking a non-root vertex (and no longer counting it) corresponds to taking the partial
derivative with respect to w. It follows from (36) that

∂M

∂w
(v, w) = ∂A

∂w
(vM(v, w), w) + ∂A

∂v
(vM(v, w), w)v ∂M

∂w
(v, w).
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The combinatorial interpretation is that either the marked non-root vertex is part of the root
block (accounting for the first summand), or there is a uniquely determined corner of the
root block such that the component attached to this corner contains it. This is a recursive
decomposition, as in the second case we could proceed with this component, considering
whether the marked vertex belongs to its root block or not. We may do so a finite number
of times, until it finally happens that the marked vertex belongs to the root-block of the
component under consideration. That is, if we follow this decomposition until encountering
the marked non-root vertex, we have to pass through a uniquely determined sequence of
blocks, always proceeding along uniquely determined (and hence marked) corners, until
arriving at a block with a marked non-root vertex. On a generating function level, this is
expressed by

∂M

∂w
(v, w) = 1

1− ∂A
∂v (vM(v, w), w)v

∂A

∂w
(vM(v, w), w).

This allows us to apply Boltzmann principles, yielding that the random map M• may be
sampled in two steps, that may be described as follows: First, generate this sequence of
blocks by linking a geometrically distributed random number N of random independent
Boltzmann distributed blocks B◦1, . . . ,B◦N with marked corners into a chain, and attach an
extra random Boltzmann distributed block B• with a marked non-root vertex to the end of
the chain. The random number N has generating function

E[uN ] =
1− ∂A

∂v (z1M(z1, 1), 1)z1

1− u∂A
∂v (z1M(z1, 1), 1)z1

.

The corner-rooted blocks are independent copies of a Boltzmann distributed block B◦, whose
number of corners c(B◦) has generating function

E[uc(B◦)] =
∂A
∂v (uz1M(z1, 1), 1)
∂A
∂v (z1M(z1, 1), 1)

.

The distribution of B◦ is fully characterized by the fact that, when conditioning on the
number of corners, B◦ is conditionally uniformly distributed among the corner-rooted blocks
with that number of corners. The distribution of B• is defined analogously. If we attach a
block B̃ to the marked corner c of some block B, we say the resulting corner “to the right”
of B̃ corresponds to c. Hence the map obtained by linking (B◦1, . . . ,B◦N ,B•) has precisely
N corners that correspond to marked corners. We call these corners closed, and all other
corners open. The second and final step in the sampling procedure of M• is to attach an
independent copy of M to each open corner of the map corresponding to (B◦1, . . . ,B◦N ,B•).
Note that since the marked vertex of B• is a non-root vertex, all corners incident to the
marked vertex are open. Consequently, the limit Mc

∞ has the desired shape, and the proof is
complete.

B Proof of Lemma 7

First we introduce (formally) a generating function that takes care of all vertex degrees in
2-connected planar maps (including the one-edge map and the one-edge loop)

A(z;w1, w2, w3, w4, . . . ;u),

where wk, k ≥ 1, corresponds to vertices of degree k and we also take the root vertex into
account. As usual, u corresponds to the root degree.

AofA 2020
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Similarly we introduce a variant of this generating function that takes care of all vertex
degrees in 2-connected planar maps (without the one-edge map and one-edge loop) and does
not take the root vertex into account:

B(z;w2, w3, w4, . . . ;u).

It seems to be impossible to work directly with A(z;w1, w2, w3, . . .) or with
B(z;w2, w3, w4, . . . ;u), however, we have the following easy relations:

A(z;xv, xv2, xv3, . . . ;u) = xA(zv2, x, u), B(z;xv2, xv3, . . . ;u) = B(zv2, x, u/v).

This follows from the fact that every vertex of degree k corresponds to k half-edges. So
summing up these half-edges we get twice the number of edges. In particular by taking
derivatives with respect to x and v it follows that∑

k≥1
Awk

(z; v, v2, v3, . . .)vk = A(zv2, 1, 1) +Ax(zv2, 1, 1) (37)

and∑
k≥1

kAwk
(z; v, v2, v3, . . .)vk−1 = 2zvAz(zv2, 1, 1). (38)

It turns out that we will also have to deal with the sum of all derivatives which is slightly
more difficult to understand.

I Lemma 11. Let u1(z) denote the function u1(z) = 1/(1 − V (z, 1), where V (z, x) (and
U(z, x)) is given by (5). Then we have∑

k≥1
Awk

(z; v, v2, v3, . . .) = 2zv + z +B(zv2, 1, 1/v) (39)

+ zv

u1(zv2)B(zv2,1,1/v)−B(zv2,1,u1(zv2))/v
1/v−u1(zv2) + zvu1(zv2)

1− u1(zv2)B(zv2,1,1/v)−B(zv2,1,u1(zv2))/v
1/v−u1(zv2) − zvu1(zv2)

Proof. We note that the derivative with respect to wk marks a vertex of degree k and
discounts it. By substituting wk by vk we, thus, see that the resulting exponent of v is twice
the number of edges minus the degree of the marked vertex. Hence we have to cover the
situation, where we mark a vertex and keep track of the degree of the marked vertex.

Let B•(z, x, u, w) be the generating function of vertex marked 2-connected planar maps,
where the marked vertex is different from the root and where u takes care of the root degree
and w of the degree of the pointed vertex. By duality this is also the generating function of
face marked 2-connected planar maps where u takes care of the root face valency and w of
the valency of the marked face (that is different from the root face). Then we have∑

k≥1
Awk

(z; v, v2, v3, . . .) = 2zv + z +B(zv2, 1, 1/v) +B•(zv2, 1, 1, 1/v).

The term 2zv corresponds to the one-edge map, the term z to the one-edge loop, the term
B(zv2, 1/v) to the case where the root vertex is marked and the third term B•(zv2, 1, 1, 1/v)
to the case where a vertex different from the root is marked. Note that the substitution
u = 1/v (or w = 1/v) discounts the degree of the marked vertex in the exponent of v
as needed.
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Thus, it remains to get an expression for B•(z, 1, u, w). For this purpose we start with
the generating function B(z, 1, u) and determine first the generating function B̃(z, x, u, w)
(for x = 1), where the additional variable w takes care of the valency of the second face
incident to the root edge. By using the same construction as above we have

B̃(z, 1, u, w) = zuw

uB(z,1,w)−wB(z,1,u)
w−u + zuw

1− uB(z,1,w)−wB(z,1,u)
w−u − zuw

.

This gives (by again applying this construction)

B•(z, 1, u, w) = B̃(z, 1, u, w) + zu

uB•(z,1,1,w)−B•(z,1,u,w)
1−u(

1− uB(z,1,1)−B(z,1,u)
1−u − zu

)2 .

This equation can be solved with the help of the kernel method. By rewriting it to

B•(z, 1, u, w)

1 + zu

1− u
1(

1− uB(z,1,1)−B(z,1,u)
1−u − zu

)2


= B(z, 1, u, w) + zu2B•(z, 1, 1, w)

1− u
1(

1− uB(z,1,1)−B(z,1,u)
1−u − zu

)2

we observe that by setting u1(z) = 1/(1− V (z, 1)) the left hand side cancels. This implies

B(z, 1, u1(z), w) + zu1(z)2B•(z, 1, 1, w)
1− u1(z)

1(
1− u1(z)B(z,1,1)−B(z,1,u1(z))

1−u1(z) − zu1(z)
)2 = 0

and leads (after some simple algebra) finally to (39). J

Let M0(z, y) denote the generating function of planar maps with at least one edge, where
the root vertex is not a cut point and where z takes care of the number of edges and y of
the number of cut-points (that are then different from the root vertex). Next let Mr(z, y)
denote the generating function of (all) planar maps, where z takes care of the number of
edges and y of the number of non-root cut-points. Finally let Ma(z, y) denote the generating
function of (all) planar maps, where z takes care of the number of edges and y of the number
of (all) cut-points. Obviously we have the following relation between these three generating
functions:

Ma(z, y) = yMr(z, y)− (y − 1)(1 +M0(z, y)). (40)

Note that M0(z, 1) = B
(
z;M(z)2,M(z)3, . . . ; 1

)
= B(zM(z)2, 1, 1/M(z)) + zM(z) + z.

Furthermore we set

Ea(z) = ∂Ma(z, y)
∂y

∣∣∣∣
y=1

=
∑
n≥0

MnE[Xn]zn and Er(z) = ∂Mr(z, y)
∂y

∣∣∣∣
y=1

.

By differentiating (40) with respect to y and setting y = 1 we obtain

Ea(z) = Er(z) +M(z)− 1−M0(z, 1). (41)

With the help of the above notions we obtain the following (formal relation):

Ma(z, y) = 1 +A
(
z; yMr(z, y)− y + 1, yMr(z, y)2 − y + 1, . . . ; 1

)
. (42)
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The right hand side is based on the block-decompostion (similarly to (6)) and takes care
whether the vertices of the block that contains the root edge become cut-vertices or not. By
differentiating (42) with respect to y and setting y = 1 we, thus, obtain

Ea(z) =
∑
k≥1

Awk

(
z;M(z),M(z)2, . . . ; 1

) (
M(z)k − 1 + kM(z)k−1Er(z)

)
=
∑
k≥1

Awk

(
z;M(z),M(z)2, . . .

)
M(z)k −

∑
k≥1

Awk

(
z;M(z),M(z)2, . . .

)
+ Er(z)

∑
k≥1

kAwk

(
z;M(z),M(z)2, . . .

)
M(z)k−1.

By using (41) we get a proper expression for Ea(z). At this stage we can apply (37) and (38)
with v = M(z). Furthermore Lemma 11 gives∑

k≥1

Awk (z; M(z), M(z)2, . . .)

= 2zM(z) + z + B(zM(z)2, 1, 1/M(z)) + B•(zM(z)2, 1, 1, 1/M(z))

= 2zM(z) + z + B(zM(z)2, 1, 1/M(z))

+ zM(z)
u1(zM(z)2)B(zM(z)2,1,1/M(z))−B(zM(z)2,1,u1(zM(z)2))/M/z)

1/M(z)−u1(zM(z)2) + zM(z)u1(zM(z)2)

1− u1(zM(z)2)B(zM(z)2,1,1/M(z))−B(zM(z)2,1,u1(zM(z)2))/M(z)
1/M(z)−u1(zM(z)2) − zM(z)u1(zM(z)2)

This finally leads to the proposed explicit formula for Ea(z).
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