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Abstract
The random greedy algorithm for finding a maximal independent set in a graph has been studied
extensively in various settings in combinatorics, probability, computer science – and even in chemistry.
The algorithm builds a maximal independent set by inspecting the vertices of the graph one at a
time according to a random order, adding the current vertex to the independent set if it is not
connected to any previously added vertex by an edge.

In this paper we present a natural and general framework for calculating the asymptotics of the
proportion of the yielded independent set for sequences of (possibly random) graphs, involving a
useful notion of local convergence. We use this framework both to give short and simple proofs for
results on previously studied families of graphs, such as paths and binomial random graphs, and to
study new ones, such as random trees.

We conclude our work by analysing the random greedy algorithm more closely when the base
graph is a tree. We show that in expectation, the cardinality of a random greedy independent set in
the path is no larger than that in any other tree of the same order.
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1 Introduction

Algorithmic problems related to finding or approximating the independence number of a
graph, or to producing large independent sets, have long been in the focus of the computer
science community. Computing the size of a maximum independent set is known to be
NP-complete [30] and the groundbreaking work [16] on the difficulty of approximating it
even made its way to The New York Times. A natural way to try to efficiently produce a
large independent set in an input graph G is to output a maximal independent set (MIS)
in G, where a vertex subset I ⊆ V (G) is a MIS in G if I is maximal by inclusion. While
in principle a badly chosen MIS can be very small (like, say, the star center in a star), one
might hope that quite a few of the maximal independent sets will have size comparable in
some sense to the independence number of G.

In this paper, we study the random greedy algorithm for producing a maximal independent
set, which is defined as follows. Consider an input graph G on n vertices. The algorithm first
orders the vertices of G uniformly at random, and then builds an independent set I(G) by
considering each of the vertices v one by one in order, adding v to I(G) if the resulting set
does not span any edge. Observe that the set I(G) is in fact the set of vertices coloured in
the first colour in a random greedy proper colouring of G. A basic quantity to study, which
turns out to have numerous applications, is the proportion of the yielded independent set
(which we call the greedy independence ratio). In particular, it is of interest to study
the asymptotic behaviour of this quantity for natural graph sequences.

Due to its simplicity, this greedy algorithm has been studied extensively by various
authors in different fields, ranging from combinatorics [48], probability [42] and computer
science [18] to chemistry [20]. As early as 1931 this model was studied by chemists under
the name random sequential adsorption (RSA), focusing mostly on d-dimensional grids. The
1-dimensional case was solved by Flory [20] (see also [38]), who showed that the expected
greedy independence ratio tends to ζ2 = (1− e−2)/2 as the path length tends to infinity.

A continuous analogue, where “cars” of unit length “park” at random free locations on
the interval [0, X], was introduced (and solved) by Rényi [43], under the name car-parking
process. The limiting density, as X tends to infinity, is therefore called Rényi’s parking
constant, and ζ2 may be considered as its discrete counterpart (see, e.g., [17]). Following
this terminology, the final state of the car-parking process is often called the jamming limit
of the graph, and the density of this state is called the jamming constant. For dimension 2,
Palásti [39] conjectured, in the continuous case (where unit square “cars” park in a larger
square), that the limiting density is Rényi’s parking constant squared. This conjecture may
be carried over to the discrete case, but to the best of our knowledge, in both cases it remains
open. For further details see [17] (see also [15] for an extensive survey on RSA models).

In combinatorics, the greedy algorithm for finding a maximal independent set was analysed
in order to give a lower bound on the (usually asymptotic) typical independence number of
(random) graphs1. The asymptotic greedy independence ratio of binomial random graphs
with linear edge density was studied by McDiarmid [35] (but see also [25, 9]). The asymptotic
greedy independence ratio of random regular graphs was studied by Wormald [48], who
used the so-called differential equation method (see [49] for a comprehensive survey; see also
[47] for a short proof of Wormald’s result). His result was further extended in [33] for any
regular graph sequence with growing girth (see also [29, 28] for similar extensions for more
sophisticated algorithms). Recently, the case of uniform random graphs with given degree
sequences was studied (independently) in [5] and [11].

1 In this regard, the greedy algorithm has long been superseded by more sophisticated algorithms; these
algorithms often lack, however, the local properties of the greedy algorithm.
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In a more general setting, where we run the random greedy algorithm on a hypergraph,
the model recovers in particular the triangle-free process (or, more generally, the H-free
process). In this process, which was first introduced in [14], we begin with the empty graph,
and at each step add a random edge as long as it does not create a copy of a triangle (or a
copy of H). To recover this process we take the hypergraph whose vertices are the edges
of the complete graph, and whose hyperedges are the triples of edges that span a triangle
(or k-sets of edges that form a copy of H, if H has k edges). Bohman’s key result [7] is
that for this hypergraph, |I| is asymptotically almost surely Θ(n3/2

√
lnn), where n is the

number of vertices. The exact asymptotics was later found by Bohman and Keevash [8] and
by Fiz Pontiveros, Griffiths and Morris [19]. Similar results were obtained for the complete
graph on 4 vertices by Warnke [46] and for cycles independently by Picollelli [41] and by
Warnke [45]. For a discussion about the general setting, see [4].

Consider the following alternative but equivalent definition of the model. Assign an
independent uniform label from [0, 1] to each vertex of the graph, and consider it as the
arrival time of a particle at that vertex. All vertices are initially vacant, and a vertex
becomes occupied at the time denoted by its label if and only if all of its neighbours are
still vacant at that time. Clearly, we do not need to worry that two particles will arrive
at the same time. The set of occupied vertices at time 1 is exactly the greedy MIS. The
advantage of this formulation of the model is that under mild assumptions, it can be defined
on an infinite graph. We may think of the resulting MIS as a factor of iid (fiid)2, meaning,
informally, that there exists a local rule which is unaware of the “identity” of a given vertex,
that determines whether that vertex is occupied. It was conjectured (formally by Hatami,
Lovász and Szegedy [26]) that, using a proper rule, fiid can produce an asymptotically
maximum independent set in random regular graphs. However, this was disproved recently
by Gamarnik and Sudan [23]. In fact, they showed that this kind of local algorithms has a
uniformly limited power for sufficiently large degree, and later Rahman and Virág [42] showed
that the density of fiid independent sets in regular trees and in Poisson Galton–Watson
trees, with large average degree, is asymptotically at most half-optimal, concluding (after
projecting to random regular graphs or to binomial random graphs) that local algorithms
cannot achieve better.

However, on other families of graphs, local algorithms may clearly do better than that. A
trivial example is the set of stars, where the greedy algorithm typically performs perfectly. A
less trivial example is that of uniform random trees. The expected independence ratio of
a uniform random tree is the unique solution of the equation x = e−x (see [36]), which is
approximately 0.5671..., while the greedy algorithm yields an independent set of expected
density 1/2 as we will see in Section 2.3.

Finally, we note that the following parallel/distributed algorithm gives a further way to
look at the maximal independent set generated by the greedy algorithm. After (randomly)
ordering the vertices, we colour “red” all the sinks, that is, all the vertices which appear
before their neighbours in the order, and then remove them and their neighbours from the
graph and continue. Formulated this way, the algorithm is very easy to implement, and
requires only local communication between the nodes. Also, conditioning on the initial
random ordering, it is deterministic, a property which appears to be of importance (see,
e.g., [6]). A main question of interest is the number of rounds it takes the algorithm to
terminate. In [18] it was shown that with high probability (whp)3 it terminates in O(lnn)
steps on any n-vertex graph, and that this is tight. Thus, even though these algorithms may
be suboptimal, they are strikingly simple and can be surprisingly efficient.

2 The letters iid abbreviate “independent and identically distributed”.
3 That is, with probability tending to 1 as n tends to infinity.
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1.1 Our Contribution
The goal of this work is to introduce a simple and fairly general framework for calculating the
asymptotics of the greedy independence ratio for a wide variety of (random) graph sequences.
The general approach is to study a suitable limiting object, typically a random rooted infinite
graph, which captures the local view of a typical vertex, and to calculate the probability that
its root appears in a random independent set in this graph, which is created according to
some natural “local” rule, to be described later. We show that this probability approximates
the expected greedy independence ratio.

Let us formulate this more precisely. For a (random) finite graph G let I(G) be the
random greedy maximal independent set of G, let ι(G) := |I(G)|/|V (G)| be its density, and
let ῑ(G) be its expected density (taken over the distribution of G and over the random greedy
maximal independent set). Suppose (U, ρ) is a random rooted infinite graph (that is, (U, ρ)
is a distribution on rooted infinite graphs). A random labelling σ = (σv)v∈V (U) of U is
a process consisting of iid random variables σv, each distributed uniformly in [0, 1]. The
past of a vertex v, denoted Pv, is the set of vertices in U reachable from v by a monotone
decreasing path (with respect to σ). We say that (U, ρ) has nonexplosive growth if the
past of ρ is almost surely finite. For such (U, ρ) we may define

ι(U, ρ) = P[ρ ∈ I(U [Pρ])],

where P denotes the probability space of the random labellings of U and I respects the vertex
ordering induced by that random labelling.

We say that a graph sequence Gn converges locally to (U, ρ), and denote it by Gn
loc−−→

(U, ρ), if for every r ≥ 0, the ball of radius r around a uniformly chosen point from Gn
converges in distribution to the ball of radius r around ρ in U . To make this notion precise,
we need to endow the space of rooted locally finite connected graphs with a topology. This
will be done rigorously in Section 3. The following key theorem gives motivation for the
definitions above.

I Theorem 1.1. If Gn
loc−−→ (U, ρ) and (U, ρ) has nonexplosive growth then ῑ(Gn)→ ι(U, ρ).

We remark that ι(U, ρ) is almost surely positive, implying that for locally convergent
graph sequences the expected size of the random greedy maximal independent set is linear.

With some mild growth assumptions on the graph sequence, we can also obtain asymptotic
concentration of the greedy independence ratio around its mean. For a graph G let NG(r)
be the random variable counting the number of paths of length at most r from a uniformly
chosen random vertex of G. For two real numbers x, y denote by x ∧ y their minimum. Let

µ∗(r) = lim
M→∞

lim sup
n→∞

E[NGn(r) ∧M ].

We say that Gn has subfactorial path growth (sfpg) if µ∗(r) �r r!.4 Note that every
graph sequence with uniformly bounded degrees has sfpg, but there are graph sequences
with unbounded degrees, and even with unbounded average degree, which still have sfpg.
For most cases, and for all of the applications presented in this paper, requiring that
the somewhat simpler expression lim supn→∞ E[NGn(r)] is subfactorial would have sufficed;
however, requiring that µ∗(r) is subfactorial is less strict, and is more natural for the following
reason: if the graph sequence converges locally, then µ∗(r) is the expected number of paths
of length at most r in the limit. For two functions f1(n), f2(n) write f1(n) ∼ f2(n) if
f1(n) = (1 + o(1))f2(n). We are now ready to state our concentration result.

4 By g1(r)�r g2(r) we mean that limr→∞ g1(r)/g2(r) = 0.
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I Theorem 1.2. If Gn has sfpg and Gn
loc−−→ (U, ρ) then ι(Gn) ∼ ι(U, ρ) with high probability.

I Remark. Gamarnik and Goldberg [22] have established concentration of ι(Gn) around its
mean, under the assumption that the degrees of Gn are uniformly bounded. Here we relax
that assumption.
I Remark. A sequence of graphs which has sfpg does not necessarily have a local limit,
but it does have a locally convergent subsequence. Any limit of such a sequence will have
nonexplosive growth.

When the limiting object is supported on rooted trees, we call the (random) graph
sequence locally tree-like. Our next result is a general differential-equations based tool
for analysing the asymptotics of the greedy independence ratio of locally tree-like (random)
sfpg graph sequences, with the restriction that their limit may be emulated by a simple
branching process with at most countably many types. Roughly speaking, a multitype
branching process is a rooted tree, in which each node is assigned a type, and the number
and types of each node’s “children” follow a law which depends solely on the node’s type,
and is independent for distinct nodes. Such a branching process is called simple if each
such law is a product measure. Formal definitions will be given in Section 5. The following
theorem reduces the problem of calculating ι(U, ρ) in these cases to the problem of solving a
(possibly infinite) system of ODEs.

I Theorem 1.3. Let (U, ρ) be a simple multitype branching process with finite or countable
type set T , root distribution µ̇ and offspring distributions µk→j. For every x ∈ [0, 1] and
k, j ∈ T let µk→jx = Bin(µk→j , x) denote the distribution of the number of children of type j
of a node of type k with random label at most x. Then,

ι(U, ρ) =
∑
k∈T

yk(1)µ̇(k), (1)

where {yk}k∈T is a solution to the following system of ODEs:

y′k(x) =
∑
`∈NT

∏
j∈T

µk→jx (`j)
(

1− yj(x)
x

)`j
, yk(0) = 0. (∗)

We call (∗) the fundamental system of ODEs of the branching process (U, ρ). While
this system of ODEs may seem complicated, in many important cases it reduces to a fairly
simple system, as we will demonstrate in Section 2. In particular, the proof of Theorem 1.3
implies that a solution to (∗) exists, and in the presented applications it will be unique.
In the cases where (U, ρ) is either a single type branching process or a random tree with
iid degrees, we provide an easy probability generating function tool that may be used to
“skip” solving (∗). This is described in Appendix B. We mention that a somewhat related,
but apparently less applicable statement, providing differential equations for the occupancy
probability of a given vertex in bounded degree graphs, appears in [40].
I Remark. The proof of Theorem 1.3 actually yields a stronger statement. Replacing yk(1)
with yk(x) in the RHS of (1), the obtained quantity is the probability that the root is
occupied “at time x”, namely, when vertices whose label is above x are ignored.

We conclude our work with a theorem, according to which on the set of all trees of a
given order the expected size of the greedy MIS achieves its minimum on the path.

I Theorem 1.4. Let n ≥ 1, let T be a tree on n vertices and let Pn be the path on n vertices.
Then ῑ(Pn) ≤ ῑ(T ).

AofA 2020



20:6 Greedy Maximal Independent Sets via Local Limits

This theorem gives us an exact (non-asymptotic) explicit lower bound for the expected greedy
independence ratio of trees (an asymptotic upper bound is trivial). The methods used to
prove it are different from the ones used in the rest of this paper, and are more combinatorial
in nature. In particular, we make use of a transformation on trees, originally introduced by
Csikvári in [12], which gives rise to a graded poset of all trees of a given order, in which the
path is the unique minimum (say). While we are not able to show that this transformation
can only increase the expected greedy independence ratio, we show it can only increase some
other quantitative property of trees, which allows us to argue that paths indeed achieve the
minimum expected greedy independence ratio.

1.2 Organisation of the Paper
We start by a short list of important applications in Section 2, where we prove some new
results and reprove some known ones, using the machinery of Theorems 1.2 and 1.3. In
a few cases, we are assisted by the claims from Appendix B. In particular, we calculate
the asymptotics of the greedy independence ratio for paths and cycles (reproving results
from [20, 38]), binomial random graphs (reproving a result from [35]), uniform random trees
and random functional digraphs (new results) and random regular graphs or regular graphs
with high girth (reproving results from [48, 33]).

We then shift our focus to the formal definitions and proofs. We begin by introducing the
metric that is used to define the notion of local convergence in Section 3, where we also prove
Theorem 1.1. In Section 4 we prove Theorem 1.2, by essentially proving a decay of correlation
between vertices in terms of their distance, and showing that typical pairs of vertices are
distant. In fact, the results of Section 4 imply that even without local convergence, under
mild growth assumptions, the variance of the greedy independence ratio is decaying.

In Section 5 we turn our attention to locally tree-like graph sequences, define (simple,
multitype) branching processes, and prove Theorem 1.3. We enhance this in Appendix B by
introducing a probability generating functions based “trick”, which allows, in some cases, a
significant simplification. In Section 6 we focus further on tree sequences, where we prove
Theorem 1.4. To this end we pinpoint several interesting properties of the expected greedy
independence ratio of the path.

2 Applications

The goal of this section is to demonstrate the power of the introduced framework by finding
ι for several natural (random) graph sequences, via finding their local limit and solving its
fundamental system of ODEs, as described in Theorem 1.3. In some cases, we may use
probability generating functions, as described in Appendix B, to ease calculations.

2.1 Infinite-Ray Stars
For d ≥ 1, let Sd be the infinite-ray star with d branches. Formally, the vertex set of Sd is
{(0, 0)} ∪ {(i, j) : i ∈ [d], j = 1, 2, . . .}, and (i, j) ∼ (i′, j′) if |j − j′| = 1 and either i = i′ or
ii′ = 0. Note that S1 = N and S2 = Z. This is a two-type branching process, with types
d for the root and 1 for a branch vertex. The fundamental system of ODEs in this case is
y′d(x) = (1− y1(x))d, and for d = 1 we obtain the equation y′1 = 1− y1 of which the solution
is y1(x) = 1 − e−x. For d > 1 we obtain the equation y′d = e−dx of which the solution is
yd(x) = 1

d (1− e−dx). Since τ = d a.s., it follows that ι(Sd) = yd(1) = ζd := 1
d (1− e−d). In

particular, ι(N) = 1− e−1 ≈ 0.6321... and ι(Z) = 1
2 (1− e−2) ≈ 0.43233....
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As N is a single type branching process and Z is a random tree with iid degrees, we
may use the alternative approach for calculating ι(N) and ι(Z), as described in Appendix B.
Solving

∫ 1
h
dz
z = 1 gives h = e−1, hence by Claim B.1, ι(N) = 1 − e−1, and by Claim B.2,

ι(Z) = 1
2
(
1− e−2).

The local limit of the sequences Pn of paths and Cn of cycles is clearly Z. It follows from
the discussion above that ι(Pn), ι(Cn) ∼ 1

2 (1− e−2) whp. This was already calculated by
Flory [20] (who only considered the expected ratio) and independently by Page [38], and can
be thought of as the discrete variant of Rényi’s parking constant (see [17]).

2.2 Poisson Galton–Watson Trees

A Poisson Galton–Watson tree Tλ is a single type branching process with offspring distribution
Pois(λ) for some parameter λ ∈ (0,∞). The fundamental ODE in this case is y′(x) = e−λy(x).
(This can be calculated directly using (4)). The solution for this differential equation is
y(x) = ln(1+λx)/λ, hence ι(Tλ) = y(1) = ln(1+λ)/λ. The same result can be obtained using
the probability generating function of the Poisson distribution, as described in Appendix B.

Consider the binomial random graph G(n, λ/n), which is the graph on n vertices
in which every pair of nodes is connected by an edge independently with probability λ/n.
It is easy to check that it converges locally to Tλ, hence ι(G(n, λ/n)) ∼ ln(1 + λ)/λ whp,
recovering a known result (see [35]).

2.3 Size-Biased Poisson Galton–Watson Trees

For 0 < λ ≤ 1, a size-biased Poisson Galton–Watson tree T̂λ can be defined (see [34]) as a
two-type simple branching process, with types s (spine vertices) and t (tree vertices), where
a spine vertex has 1 spine child plus Pois(λ) tree children, a tree vertex has Pois(λ) tree
children, and the root is a spine vertex. The fundamental system of ODEs in this case is

y′s(x) = x

∞∑
d=0

(λx)d

eλxd!

(
1− ys(x)

x

)(
1− yt(x)

x

)d
+ (1− x)

∞∑
d=0

(λx)d

eλxd!

(
1− yt(x)

x

)d
= (1− ys(x))

∞∑
d=0

(λx)d

eλxd!

(
1− yt(x)

x

)d
= (1− ys(x))e−λyt(x),

and from Section 2.2 we obtain yt(x) = ln(1 + λx)/λ. Hence y′s(x) = (1− ys(x))/(1 + λx),
and the solution for that equation is ys(x) = 1− exp(− ln(1 + λx)/λ). Thus ι(T̂λ) = ys(1) =
1− (1 + λ)−1/λ = 1− e−ι(Tλ). In particular, ι(T̂1) = 1/2.

It is a classical (and beautiful) fact (see, e.g., [32, 24]) that if Tn is a uniformly chosen
random tree drawn from the set of nn−2 trees on (labelled) n vertices, then Tn converges
locally to T̂1, hence ι(Tn) ∼ 1/2 whp. To the best of our knowledge, this intriguing fact
was not previously known. In fact, it was shown recently in [27] that if Gn is a sequence of
connected regular graphs that converges to a nondegenerate graphon, and Tn is the uniform
spanning tree of Gn, then Tn also converges locally to T̂1, hence it follows that ι(Tn) ∼ 1/2
whp in this case as well.

It can be easily verified that the local limit of a random functional digraph ~G1(n) (the
digraph on n vertices whose edges are (i, π(i)) for a uniform random permutation π), with
orientations ignored, is also T̂1, hence ι(~G1)→ 1/2 whp.

AofA 2020



20:8 Greedy Maximal Independent Sets via Local Limits

2.4 d-ary Trees
For d > 1, let Td be the d-ary tree. It may be viewed as a (single type) branching process. It
thus immediately follows from (4) that y′(x) = (1− y(x))d. The solution for this differential
equation is y(x) = 1− ((d− 1)x+ 1)−1/(d−1). It follows that ι(Td) = y(1) = 1− d−1/(d−1).
This fact also follows easily using the generating functions approach described in Appendix B.
A remarkable example is ι(T2) = 1/2.

2.5 Regular Trees
For d ≥ 3, let Td be the d-regular tree. It may viewed as a two-type branching process
with types d for the root and 1 for the rest of the vertices. The fundamental system
of ODEs in this case is y′d(x) = (1 − y1(x))d, and from Section 2.4 we obtain y1(x) =
1− ((d−2)x+1)−1/(d−2). It follows that y′d(x) = ((d−2)x+1)−d/(d−2), of which the solution
is yd(x) = (1− ((d− 2)x+ 1)−2/(d−2))/2. Therefore,

ι(Td) = yd(1) = 1
2

(
1− (d− 1)−2/(d−2)

)
.

As with d-ary trees, here again the generating functions approach works easily: the solution
to
∫ 1
h(x) z

d−1dz = x is h(x) = (1− (2− d)x)1/(2−d), and the result follows from Claim B.2.
Remarkable examples include ι(T3) = 3/8 and ι(T4) = 1/3.

Since the random regular graph G(n, d) (a uniformly sampled graph from the set of all
d-regular graphs on n vertices, assuming dn is even) converges locally to Td (see, e.g., [50]),
the above result for this case is exactly [48, Theorem 4]. In fact, since any sequence of
d-regular graphs with girth tending to infinity converges locally to Td, we also recover [33,
Theorem 2].

3 Local Limits

In order to study asymptotics, it is often useful to construct a suitable limiting object first.
Local limits were introduced by Benjamini and Schramm [3] and studied further by Aldous
and Steele [2] (A very similar approach has already been introduced by Aldous in [1]). Local
limits, when they exist, encapsulate the asymptotic data of local behaviour of the convergent
graph sequence, and in particular, that of the performance of the greedy algorithm.

We start with basic definitions. Consider the space G• of rooted locally finite connected
graphs viewed up to root preserving graph isomorphisms. We provide G• with the met-
ric dloc((G1, ρ1), (G2, ρ2)) = 2−R, where R is the largest integer for which BG1(ρ1, R) '
BG2(ρ2, R). Here we understand BG(ρ,R) as the rooted subgraph of (G, ρ) spanned by the
vertices of distance at most R from ρ, and ' as rooted-isomorphic. It is an easy fact that
(G•, dloc) is a separable complete metric space, hence it is a Polish space. (G•, dloc), while
being bounded, is not compact (the sequence of rooted stars Sn does not have a convergent
subsequence).

Recall that a sequence of random elements {Xn}∞n=1 converges in distribution to a
random element X, if for every bounded continuous function f we have that E[f(Xn)]→
E[f(X)]. Let Gn be a sequence of (random) finite graphs. We say that Gn converges
locally to a (random) element (U, ρ) of G• if for every r ≥ 0, the sequence BGn(ρn, r)
converges in distribution to BU (ρ, r), where ρn is a uniformly chosen vertex of Gn. Since the
inherited topology on all rooted balls in G• with radius r is discrete, this implies convergence
in total variation distance.

We are now ready to prove Theorem 1.1.



M. Krivelevich, T. Mészáros, P. Michaeli, and C. Shikhelman 20:9

Proof of Theorem 1.1. Fix ε > 0. For a given labelling σ of U , let `σ be the length of the
longest decreasing sequence (w.r.t. σ) starting from ρ. Since (U, ρ) has nonexplosive growth,
there exists rε for which for every r ≥ rε, P[`σ ≥ r] < ε. For r ≥ 0, let Grn = BGn(ρn, r)
and Ur = BU (ρ, r). We couple Grn and a random permutation π on its vertices with Ur

and a random labelling σ as follows. First, since Grn converges in distribution (and hence
in total variation distance) to Ur, there exists nr such that for all n ≥ nr we have that
P[Grn 6' Ur] ≤ ε. If this event occurs, we say that the coupling has failed. Otherwise,
for some isomorphism ϕ : Grn → Ur, we let π be the permutation on the vertices of
Grn which agrees with the ordering of the labels on the vertices of the isomorphic image
(that is, πu < πv ⇐⇒ σϕ(u) < σϕ(v)). Note that under this coupling, if it succeeds,
ρn ∈ I(Grn) ⇐⇒ ρ ∈ I(Ur). However, on the event “`σ ≤ r”, ρn ∈ I(Grn) ⇐⇒ ρn ∈ I(Gn)
and ρ ∈ I(Ur) ⇐⇒ ρ ∈ I(U [Pρ]). Observing that ῑ(Gn) = P[ρn ∈ I(Gn)] we obtain that for
r ≥ rε and n ≥ nr, |ῑ(Gn)− ι(U, ρ)| < 2ε. J

4 Concentration

With some mild growth assumptions on the graph sequence, without assuming local conver-
gence, we obtain asymptotic concentration of the greedy independence ratio around its mean.
Under these assumptions we show that the dependence between the inclusion of distinct
nodes in the maximal independent set decays as a functions of their distance, a phenomenon
which is sometimes called correlation decay or long-range independence. To prove that the
model exhibits this phenomenon, we show that with high probability there are no “long”
monotone paths emerging from a typical vertex, which is the contents of the next claim. We
then observe that two independent random vertices are typically distant, and use a general
lemma about exploration algorithms to prove decay of correlation. We remark that similar
locality arguments appear in [37]. Some of the proofs are given in Appendix A.

B Claim 4.1. Suppose that Gn has sfpg. Let π be a uniform random permutation of the
vertices of Gn, and let u be a uniformly chosen vertex from Gn. Then, for every ε > 0, there
exists r > 0 such that for every large enough n, the probability that there exists a monotone
decreasing path of length r (w.r.t. π), emerging from u, is at most ε.

B Claim 4.2. Suppose that Gn has sfpg. Let u, v be two independently and uniformly
chosen vertices from Gn. Then, for every ε, r ≥ 0 we have that for every large enough n,
P[distGn(u, v) ≤ r] ≤ ε.

Let G = (V,E) be a graph. An exploration-decision rule for G is a (deterministic)
function Q, whose input is a pair (S, g), where S is a non-empty sequence of distinct vertices
of V , and g : S → [0, 1], and whose output is either a vertex v ∈ V r S or a “decision” T or
F. An exploration-decision algorithm for G, with rule Q, is a (deterministic) algorithm
A, whose input is an initial vertex v ∈ V and a function f : V → [0, 1], which outputs
T or F, and operates as follows. Set u1 = v. Suppose A has already set u1, . . . , ui. Let
x = Q((u1, . . . , ui), f �{u1,...,ui}). If x ∈ V , set ui+1 = x and continue. Otherwise stop and
return x. We call the set u1, . . . , ui at this stage the range of the algorithm’s run. We
denote the output of the algorithm by A(v, f) and its range by rngA(v, f). The radius of the
algorithm’s run, denoted radA(v, f), is the maximum distance between v and an element of
its range.

I Lemma 4.3. Let ε > 0. Let G = (V,E) be a graph, let σ be a random labelling of
its vertices, let A be an exploration-decision algorithm for G and let r ≥ 1. Let u, v be
sampled independently from some distribution over V . Suppose that w.p. at least 1− ε both
distG(u, v) ≥ 3r, and radA(u, σ), radA(v, σ) ≤ r. Then | cov[A(u, σ),A(v, σ)]| = oε(1).
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We now apply the lemma in our setting.

B Claim 4.4. Suppose that Gn has sfpg. Let u, v be two independently and uniformly chosen
vertices from Gn. Denote by Ru, Rv the events that u ∈ I(Gn), v ∈ I(Gn), respectively.
Then | cov[Ru, Rv]| = o(1).

Proof. Let ε > 0. We describe an exploration-decision algorithm A by defining its rule. Given
a vertex sequence S = (u1, . . . , ui) and labels g : S → [0, 1], the rule checks for monotone
decreasing sequences emerging from u1, in S, with respect to g. Denote by E the set of ends
of these sequences. If there are vertices in V r S with neighbours in E , return an arbitrary
vertex among these. Otherwise, perform the Greedy MIS algorithm on the past of u1 inside
S, and return T if u1 ends up in the MIS, or F otherwise. We observe that if σ is a random
labelling of Gn then for w ∈ {u, v} the event A(w, σ) = T is in fact the event Rw. We also
note that if the longest monotone decreasing sequence, w.r.t. σ, emerging from w is of length
r − 1, then radA(w, σ) ≤ r.

By Claim 4.1 there exists r > 0 such that for every large enough n the probability that
there exists a monotone decreasing path of length r − 1 from either u or v is at most ε. By
Claim 4.2, for large enough n, the probability that the distance between u and v is at most
3r is at most ε. Therefore, by Lemma 4.3, | cov[A(u, σ),A(v, σ)]| = oε(1). C

B Claim 4.5. Suppose that Gn has sfpg. Then Var[ι(Gn)] = o(1).

Proof. For a vertex w, denote by Rw the event that w ∈ I(Gn). Let u, v be two independently
and uniformly chosen vertices from Gn. Since the random variables E[Ru | u] and E[Rv | v]
are independent, by Claim 4.4,

Var[ι(Gn)] = E[cov[Ru, Rv | u, v]]
= cov[Ru, Rv]− cov[E[Ru | u]E[Rv | v]] = cov[Ru, Rv] = o(1). C

Proof of Theorem 1.2. Let ε > 0. Note that since Gn has sfpg, (U, ρ) has nonexplosive
growth, hence by Theorem 1.1 there exists n0 such that for every n ≥ n0, |ῑ(Gn)−ι(U, ρ)| ≤ ε.
Thus, by Chebyshev’s inequality and Claim 4.5,

P[|ι(Gn)− ι(U, ρ)| > 2ε] ≤ P[|ι(Gn)− ῑ(Gn)| > ε] ≤ ε−2 Var[ι(Gn)] = o(1). J

5 Branching Processes and Differential Equations

As promised, we begin with a formal definition of multitype branching processes. Let T
be a finite or countable set, which we call the type set. Let µ̇ be a distribution on T ,
which we call the root distribution, and for each k ∈ T let (µk→j)j∈T be an offspring
distribution, which is a distribution on vectors with nonnegative integer coordinates. Let
τ ∼ µ̇ and for every finite sequence of natural numbers v let (ξk→jv )j∈T ∼ (µk→j)j∈T be
a random vector, where these random vectors are independent for different indices v and
are independent of τ . A multitype branching process (Zt)t∈N with type set T , root
distribution µ̇ and offspring distributions (µk→j)j∈T is a Markov process on labelled trees,
in which each vertex is assigned a type in T , which may be described as follows. At time
t = 0 the tree Z0 consists of a single vertex of type τ , labelled by the empty sequence. At
time t + 1 the tree Zt+1 is obtained from Zt as follows. For each k ∈ T and v of length
t and type k in Zt, we add the vertices v _ i for all 0 ≤ i <

∑
j∈T ξ

k→j
v , having exactly

ξk→jv of them being assigned type j, uniformly at random, and connecting them with edges
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to v.5 If in addition (µk→j)j∈T is a product measure, namely, if ξk→jv ∼ µk→j are sampled
independently for distinct j ∈ T , the process is called simple. We often think of a multitype
branching process as the possibly infinite (random) rooted graph Z∞ =

⋃
t≥0 Zt, rooted at

the single vertex of Z0.

Proof of Theorem 1.3. Let σ be a random labelling of U . To ease notation, set ι = ι(U, ρ)
and I = I(U [Pρ]), and recall that ι = P[ρ ∈ I]. Let τ ∼ µ̇ be the type of the root. For k ∈ T
and x ∈ [0, 1], define ι(k) = P[ρ ∈ I | τ = k] and ι(k)

x = P[ρ ∈ I | σρ = x, τ = k]. Note that
this is well defined, even if the event that σρ = x has probability 0. Let further

ι
(k)
<x =

∫ x

0
ι(k)
z dz,

so ι(k) = ι
(k)
<1 , hence

ι =
∑
k∈T

ι
(k)
<1 · P[τ = k].

It therefore suffices to show that the family yk(x) := ι
(k)
<x satisfies (∗) (it clearly satisfies the

boundary conditions). The key observation is that distinct children in the past of the root
are roots to independent subtrees. Formally, conditioning on the event that v1, . . . , va are
the children of ρ in its past, the events “vi ∈ I” for i = 1, . . . , a are mutually independent.
Since ρ ∈ I if and only if vi /∈ I for every i = 1, . . . , a,

y′k(x) = (ι(k)
<x)′ = ι(k)

x =
∑
`∈NT

∏
j∈T

µk→jx (`j)(1− P[ρ ∈ I | σρ < x, τ = j])`j

=
∑
`∈NT

∏
j∈T

µk→jx (`j)
(

1− yj(x)
x

)`j
. J

6 Lower Bound on Tree Sequences

Let us focus on tree sequences. How large can the expected greedy independent ratio be? How
small can it be? The sequence of stars is a clear witness that the only possible asymptotic
upper bound is the trivial one, namely 1. Apparently, the lower bound is not trivial. An
immediate corollary of Theorems 1.1 and 1.4 is that a tight asymptotic lower bound is
ι(Z) = (1− e−2)/2 (compare with [44]). The statement of Theorem 1.4 is, however, much
stronger: paths achieve the exact (non-asymptotic) lower bound for the expected greedy
independence ratio among the set of all trees of a given order.

To prove Theorem 1.4 we will need to first understand the behaviour of the greedy
algorithm on the path.

For a graph G denote by i(G) the cardinality of its greedy independent set, and let
ī(G) = E[i(G)]. Let αn = ī(Pn). Suppose the vertices of Pn are 1, . . . , n, and let S be the
vertex which is first in the permutation of the vertices. Setting α−1 = α0 = 0, we obtain
the recursion

αn = E[E[i(Pn) | S]] = 1
n

n∑
i=1

(1 + αi−2 + αn−i−1) = 1 + 2
n

n∑
i=1

αi−2, (2)

5 By v _ i we mean the sequence obtained from v by appending the element i.
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20:12 Greedy Maximal Independent Sets via Local Limits

from which an explicit formula for αn can be derived (see [21]). We will need the following
two properties of αn, whose proofs (which are rather long and technical) we omit in this
extended abstract.

B Claim 6.1. αn is monotone increasing and subadditive.

Let ξn,` =
∑`
j=1 αn+j .

B Claim 6.2. For every `, a, b ≥ 1 it holds that ξa,` + ξb,` ≤ ξa+b,` + ξ0,`.

6.1 KC-Transformations
In this section we introduce the main tool that will be used to prove Theorem 1.4. Let T be
a tree and let x, y be two vertices of T . We say that the path between x and y is bare if for
every vertex v 6= x, y on that path, dT (v) = 2. Suppose x, y are such that the unique path
P in T between them is bare, and let z be the neighbour of y in that path. For a vertex v,
denote by N(v) the neighbours of v in T . The KC-transformation KC(T, x, y) of T with
respect to x, y is the tree obtained from T by deleting every edge between y and N(y) r z

and adding the edges between x and N(y) r z instead. Note that KC(T, x, y) ' KC(T, y, x),
so if we care about unlabelled trees, we may simply write KC(T, P ), for a bare path P in T .
The term “KC-transformation” was coined by Bollobás and Tyomkyn [10] after Kelmans,
who defined a similar operation on graphs [31], and Csikvári, who defined it in this form [12]
under the name “generalized tree shift” (GTS).

A nice property of KC-transformations, first observed by Csikvári [12], is that they induce
a graded poset on the set of unlabelled trees of a given order, which is graded by the number
of leaves. In particular, this means that in that poset, the path is the unique minimum (say)
and the star is the unique maximum. Note that if P contains a leaf then KC(T, P ) ' T ,
and otherwise KC(T, P ) has one more leaf than T . In the latter case, we say that the
transformation is proper.

Here is the plan for how to prove Theorem 1.4. For a tree T and a vertex v, denote by
T ? v the forest obtained from T by shattering T at v, that is, by removing from T the
set {v} ∪ N(v). Denote by κv(T ) the multiset of orders of trees in the forest T ? v, and
by κ(T ) the sum of κv(T ) for all vertices v in T . Note that for trees with up to 3 vertices,
Theorem 1.4 is trivial; we proceed by induction. By the induction hypothesis,

ī(T ) = 1
n

∑
v∈V (T )

∑
S∈T?v

(1 + ī(S)) ≥ 1 + 1
n

∑
v∈V (T )

∑
k∈κv(T )

αk = 1 + 1
n

∑
k∈κ(T )

αk. (3)

Therefore, it makes sense to study the quantities νv(T ) =
∑
k∈κv(T ) αk and ν(T ) =∑

k∈κ(T ) αk. In fact, it would suffice to show that for any tree T on n vertices ν(T ) ≥ ν(Pn),
since by (2) and (3) we would obtain

ī(T ) ≥ 1 + 1
n
ν(T ) ≥ 1 + 1

n
ν(Pn) = ī(Pn).

We therefore reduced our problem to proving the following theorem about KC-transformations.

I Theorem 6.3. If T is a tree and P is a bare path in T then ν(KC(T, P )) ≥ ν(T ).

It would have been nice if for every v ∈ V (T ) we would have had νv(KC(T, P )) ≥ νv(T );
unfortunately, this is not true in general. However, the following statement, whose proof can
be found in Appendix C, would suffice.
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I Theorem 6.4. Let T be a tree and let x 6= y be two vertices with the path between them
being bare. Denote T ′ = KC(T, x, y). Let A be the set of vertices v 6= x in T for which every
path between v and y passes via x, and similarly, let B be the set of vertices v 6= y in T for
which every path between v and x passes via y. Let P be the set of vertices on the bare path
between x and y, so A ∪B ∪ P is a partition of V (T ). Then
1. For v ∈ A ∪B we have that νv(T ′) ≥ νv(T ).
2.
∑
v∈P νv(T ′) ≥

∑
v∈P νv(T ).

7 Concluding Remarks and Open Questions

Non Locally Tree-Like Graph Sequences

Our local limit approach does not assume that the converging sequence is locally tree-like.
However, the differential equation tool fails completely if short cycles appear in a typical
local view. As it seems, to date, there is no general tool to handle these cases, and indeed,
even the asymptotic behaviour of the random greedy MIS algorithm on d-dimensional tori
(for d ≥ 2) remains unknown.

Better Local Rules

The random greedy algorithm presented here follows a very simple local rule. More com-
plicated local rules may yield, in some cases, larger maximal independent sets; for example,
the initial random ordering may “favour” low degree vertices. It would be nice to adapt our
framework, or at least some of its components, to other settings. For adaptive “better” local
algorithms we refer the reader to [48, 51].

The Second Colour

In this work we have analysed the output of the random greedy algorithm for producing a
maximal independent set. As already remarked, this is in fact the set of vertices in the first
colour class in the random greedy colouring algorithm. It is rather easy to see, that, after
slight modifications (in particular, in Theorem 1.3) this approach allow us to calculate the
asymptotic proportion of the size of the set of vertices in the second colour class (or in the
k’th colour class in general, for any fixed k) as well. Non-asymptotic questions about the
expected cardinality of the set of vertices in the second colour class might be also of interest.
For example, is it true that the path has the smallest expected number of vertices in the
first two colour classes among all trees of the same order? It is not hard to see that this
statement is not true for the first three colour classes (as three colours suffice to greedily
colour the path).

Monotonicity With Respect to KC-Transformations

It is likely that the expected greedy independence ratio in trees is monotone with respect
to KC-transformations, and strictly monotone with respect to proper KC-transformations.
If true, this would imply that the greedy independence ratio in trees achieves its unique
minimum on the path and its unique maximum on the star.

AofA 2020



20:14 Greedy Maximal Independent Sets via Local Limits

References
1 David Aldous. Asymptotic fringe distributions for general families of random trees. The

Annals of Applied Probability, 1(2):228–266, 1991. URL: http://links.jstor.org/sici?
sici=1050-5164(199105)1:2<228:AFDFGF>2.0.CO;2-8&origin=MSN.

2 David Aldous and J. Michael Steele. The objective method: probabilistic combinatorial optim-
ization and local weak convergence. In Probability on discrete structures, volume 110 of Encyc-
lopaedia Math. Sci., pages 1–72. Springer, Berlin, 2004. doi:10.1007/978-3-662-09444-0_1.

3 Itai Benjamini and Oded Schramm. Recurrence of distributional limits of finite planar graphs.
Electronic Journal of Probability, 6:no. 23, 13, 2001. doi:10.1214/EJP.v6-96.

4 Patrick Bennett and Tom Bohman. A note on the random greedy independent set algorithm.
Random Structures & Algorithms, 49(3):479–502, 2016. doi:10.1002/rsa.20667.

5 Paola Bermolen, Matthieu Jonckheere, and Pascal Moyal. The jamming constant of uniform
random graphs. Stochastic Processes and their Applications, 127(7):2138–2178, 2017. doi:
10.1016/j.spa.2016.10.005.

6 Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. Internally
deterministic parallel algorithms can be fast. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’12, pages 181–192,
New York, NY, USA, 2012. ACM. doi:10.1145/2145816.2145840.

7 Tom Bohman. The triangle-free process. Advances in Mathematics, 221(5):1653–1677, 2009.
doi:10.1016/j.aim.2009.02.018.

8 Tom Bohman and Peter Keevash. Dynamic concentration of the triangle-free process. In The
Seventh European Conference on Combinatorics, Graph Theory and Applications, volume 16
of CRM Series, pages 489–495. Ed. Norm., Pisa, 2013. doi:10.1007/978-88-7642-475-5_78.

9 Béla Bollobás and Paul Erdős. Cliques in random graphs. Mathematical Proceedings of the
Cambridge Philosophical Society, 80(3):419–427, 1976. doi:10.1017/S0305004100053056.

10 Béla Bollobás and Mykhaylo Tyomkyn. Walks and paths in trees. Journal of Graph Theory,
70(1):54–66, 2012. doi:10.1002/jgt.20600.

11 Graham Brightwell, Svante Janson, and Malwina Luczak. The greedy independent set in a
random graph with given degrees. Random Structures & Algorithms, 51(4):565–586, 2017.
doi:10.1002/rsa.20716.

12 Péter Csikvári. On a poset of trees. Combinatorica, 30(2):125–137, 2010. doi:10.1007/
s00493-010-2516-0.

13 Herold G. Dehling, Sjoert R. Fleurke, and Christof Külske. Parking on a random tree. Journal
of Statistical Physics, 133(1):151–157, 2008. doi:10.1007/s10955-008-9589-9.

14 Paul Erdős, Stephen Suen, and Peter Winkler. On the size of a random maximal graph. In
Proceedings of the Sixth International Seminar on Random Graphs and Probabilistic Methods
in Combinatorics and Computer Science, “Random Graphs ’93” (Poznań, 1993), volume
6(2-3), pages 309–318, 1995. doi:10.1002/rsa.3240060217.

15 James W. Evans. Random and cooperative sequential adsorption. Reviews of modern physics,
65(4):1281, 1993.

16 Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996.
doi:10.1145/226643.226652.

17 Steven R. Finch. Mathematical constants, volume 94 of Encyclopedia of Mathematics and its
Applications. Cambridge University Press, Cambridge, 2003.

18 Manuela Fischer and Andreas Noever. Tight analysis of parallel randomized greedy MIS.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2152–2160. SIAM, Philadelphia, PA, 2018. doi:10.1137/1.9781611975031.140.

19 Gonzalo Fiz Pontiveros, Simon Griffiths, and Robert Morris. The triangle-free process and
the Ramsey number R(3, k). arXiv e-prints, February 2013. arXiv:1302.6279.

20 Paul J. Flory. Intramolecular reaction between neighboring substituents of vinyl polymers.
Journal of the American Chemical Society, 61(6):1518–1521, 1939. doi:10.1021/ja01875a053.

http://links.jstor.org/sici?sici=1050-5164(199105)1:2<228:AFDFGF>2.0.CO;2-8&origin=MSN
http://links.jstor.org/sici?sici=1050-5164(199105)1:2<228:AFDFGF>2.0.CO;2-8&origin=MSN
https://doi.org/10.1007/978-3-662-09444-0_1
https://doi.org/10.1214/EJP.v6-96
https://doi.org/10.1002/rsa.20667
https://doi.org/10.1016/j.spa.2016.10.005
https://doi.org/10.1016/j.spa.2016.10.005
https://doi.org/10.1145/2145816.2145840
https://doi.org/10.1016/j.aim.2009.02.018
https://doi.org/10.1007/978-88-7642-475-5_78
https://doi.org/10.1017/S0305004100053056
https://doi.org/10.1002/jgt.20600
https://doi.org/10.1002/rsa.20716
https://doi.org/10.1007/s00493-010-2516-0
https://doi.org/10.1007/s00493-010-2516-0
https://doi.org/10.1007/s10955-008-9589-9
https://doi.org/10.1002/rsa.3240060217
https://doi.org/10.1145/226643.226652
https://doi.org/10.1137/1.9781611975031.140
http://arxiv.org/abs/1302.6279
https://doi.org/10.1021/ja01875a053


M. Krivelevich, T. Mészáros, P. Michaeli, and C. Shikhelman 20:15

21 Dave Freedman and Larry Shepp. An Unfriendly Seating Arrangement. SIAM Review,
4(2):150–150, April 1962. doi:10.1137/1004037.

22 David Gamarnik and David A. Goldberg. Randomized greedy algorithms for independent sets
and matchings in regular graphs: exact results and finite girth corrections. Combinatorics,
Probability and Computing, 19(1):61–85, 2010. doi:10.1017/S0963548309990186.

23 David Gamarnik and Madhu Sudan. Limits of local algorithms over sparse random graphs.
The Annals of Probability, 45(4):2353–2376, 2017. doi:10.1214/16-AOP1114.

24 Geoffrey R. Grimmett. Random labelled trees and their branching networks. Australian
Mathematical Society. Journal. Series A, 30(2):229–237, 1980/81.

25 Geoffrey R. Grimmett and Colin J. H. McDiarmid. On colouring random graphs. Mathem-
atical Proceedings of the Cambridge Philosophical Society, 77:313–324, 1975. doi:10.1017/
S0305004100051124.

26 Hamed Hatami, László Lovász, and Balázs Szegedy. Limits of locally-globally convergent
graph sequences. Geometric and Functional Analysis, 24(1):269–296, 2014. doi:10.1007/
s00039-014-0258-7.

27 Jan Hladký, Asaf Nachmias, and Tuan Tran. The local limit of the uniform spanning tree
on dense graphs. Journal of Statistical Physics, 173(3-4):502–545, 2018. doi:10.1007/
s10955-017-1933-5.

28 Carlos Hoppen and Nicholas Wormald. Properties of regular graphs with large girth via
local algorithms. Journal of Combinatorial Theory. Series B, 121:367–397, 2016. doi:
10.1016/j.jctb.2016.07.009.

29 Carlos Hoppen and Nicholas Wormald. Local algorithms, regular graphs of large girth, and ran-
dom regular graphs. Combinatorica, 38(3):619–664, 2018. doi:10.1007/s00493-016-3236-x.

30 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium
on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, USA, pages 85–103. Plenum, New
York, 1972.

31 Alexander K. Kelmans. On graphs with randomly deleted edges. Acta Mathematica Academiae
Scientiarum Hungaricae, 37(1-3):77–88, 1981. doi:10.1007/BF01904874.

32 Valentin F. Kolchin. Branching processes, random trees, and a generalized scheme of arrange-
ments of particles. Mathematical notes of the Academy of Sciences of the USSR, 21(5):386–394,
1977. doi:10.1007/BF01788236.

33 Joseph Lauer and Nicholas C. Wormald. Large independent sets in regular graphs of large
girth. Journal of Combinatorial Theory. Series B, 97(6):999–1009, 2007. doi:10.1016/j.jctb.
2007.02.006.

34 Russell Lyons, Robin Pemantle, and Yuval Peres. Conceptual proofs of L logL criteria for
mean behavior of branching processes. The Annals of Probability, 23(3):1125–1138, 1995.
URL: http://links.jstor.org/sici?sici=0091-1798(199507)23:3<1125:CPOLCF>2.0.CO;
2-Y&origin=MSN.

35 Colin J. H. McDiarmid. Colouring random graphs. Annals of Operations Research, 1(3):183–200,
1984. doi:10.1007/BF01874388.

36 Amram Meir and John W. Moon. The expected node-independence number of random trees.
Nederlandse Akademie van Wetenschappen. Proceedings. Series A. Indagationes Mathematicae,
76:335–341, 1973.

37 Huy N. Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local
improvements. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science,
pages 327–336, October 2008. doi:10.1109/FOCS.2008.81.

38 Ewan S. Page. The distribution of vacancies on a line. Journal of the Royal Statistical Society.
Series B., 21:364–374, 1959. URL: http://links.jstor.org/sici?sici=0035-9246(1959)21:
2<364:TDOVOA>2.0.CO;2-1&origin=MSN.

39 Ilona Palásti. On some random space filling problems. Publications of the Mathematical
Institute of the Hungarian Academy of Sciences, 5:353–359, 1960.

AofA 2020

https://doi.org/10.1137/1004037
https://doi.org/10.1017/S0963548309990186
https://doi.org/10.1214/16-AOP1114
https://doi.org/10.1017/S0305004100051124
https://doi.org/10.1017/S0305004100051124
https://doi.org/10.1007/s00039-014-0258-7
https://doi.org/10.1007/s00039-014-0258-7
https://doi.org/10.1007/s10955-017-1933-5
https://doi.org/10.1007/s10955-017-1933-5
https://doi.org/10.1016/j.jctb.2016.07.009
https://doi.org/10.1016/j.jctb.2016.07.009
https://doi.org/10.1007/s00493-016-3236-x
https://doi.org/10.1007/BF01904874
https://doi.org/10.1007/BF01788236
https://doi.org/10.1016/j.jctb.2007.02.006
https://doi.org/10.1016/j.jctb.2007.02.006
http://links.jstor.org/sici?sici=0091-1798(199507)23:3<1125:CPOLCF>2.0.CO;2-Y&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199507)23:3<1125:CPOLCF>2.0.CO;2-Y&origin=MSN
https://doi.org/10.1007/BF01874388
https://doi.org/10.1109/FOCS.2008.81
http://links.jstor.org/sici?sici=0035-9246(1959)21:2<364:TDOVOA>2.0.CO;2-1&origin=MSN
http://links.jstor.org/sici?sici=0035-9246(1959)21:2<364:TDOVOA>2.0.CO;2-1&origin=MSN


20:16 Greedy Maximal Independent Sets via Local Limits

40 Mathew D. Penrose and Aidan Sudbury. Exact and approximate results for deposition and
annihilation processes on graphs. The Annals of Applied Probability, 15(1B):853–889, 2005.
doi:10.1214/105051604000000765.

41 Michael E. Picollelli. The final size of the C`-free process. SIAM Journal on Discrete
Mathematics, 28(3):1276–1305, 2014. doi:10.1137/110824097.

42 Mustazee Rahman and Bálint Virág. Local algorithms for independent sets are half-optimal.
The Annals of Probability, 45(3):1543–1577, 2017. doi:10.1214/16-AOP1094.

43 Alfréd Rényi. On a one-dimensional problem concerning random space filling. Publications of
the Mathematical Institute of the Hungarian Academy of Sciences, 3:109–127, 1958.

44 Aidan Sudbury. Random sequential adsorption on random trees. Journal of Statistical Physics,
136(1):51–58, 2009. doi:10.1007/s10955-009-9776-3.

45 Lutz Warnke. The C`-free process. Random Structures & Algorithms, 44(4):490–526, 2014.
doi:10.1002/rsa.20468.

46 Lutz Warnke. When does the K4-free process stop? Random Structures & Algorithms,
44(3):355–397, 2014. doi:10.1002/rsa.20444.

47 Lutz Warnke. On Wormald’s differential equation method. arXiv e-prints, May 2019. arXiv:
1905.08928.

48 Nicholas C. Wormald. Differential equations for random processes and random graphs. The
Annals of Applied Probability, 5(4):1217–1235, 1995. URL: http://links.jstor.org/sici?
sici=1050-5164(199511)5:4<1217:DEFRPA>2.0.CO;2-A&origin=MSN.

49 Nicholas C. Wormald. The differential equation method for random graph processes and
greedy algorithms. In Lectures on Approximation and Randomized Algorithms, pages 73–155.
Polish Scientific Publishers PWN, 1999.

50 Nicholas C. Wormald. Models of random regular graphs. In Surveys in combinatorics, 1999
(Canterbury), volume 267 of London Math. Soc. Lecture Note Ser., pages 239–298. Cambridge
Univ. Press, Cambridge, 1999.

51 Nicholas C. Wormald. Analysis of greedy algorithms on graphs with bounded degrees.
Discrete Mathematics, 273(1-3):235–260, 2003. EuroComb’01 (Barcelona). doi:10.1016/
S0012-365X(03)00241-3.

A Proofs for Section 4
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P[Arn] ≤
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m=0
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≤ 1
r! · E[NGn(r) ∧M ] + ε ≤ 3ε. C
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P[distGn(u, v) ≤ r] = P[v ∈ BGn(u, r)]

≤
M∑
m=0

P[v ∈ BGn(u, r) | NGn(r) = m] · P[NGn(r) = m] + P[NGn(r) > M ]

≤ 1
n
· E[NGn(r) ∧M ] + ε ≤ M

n
+ ε ≤ 2ε. C

I Remark. We only used the fact that NGn(r) are uniformly integrable for every r ≥ 0.

Proof of Lemma 4.3. Let Q be the rule of the algorithm A. The r-truncated version of
Q, denoted Qr, is defined as follows. To determine Qr((u1, . . . , ui), g), Qr checks the value
x = Q((u1, . . . , ui), g). If x ∈ {T,F} or distG(u1, x) ≤ r, Q returns x. Otherwise it returns
F. The r-truncated version of the algorithm A, denoted Ar, is the exploration-decision
algorithm with rule Qr. Note that for every v and f , radAr (v, f) ≤ r.

For a vertex w ∈ {u, v}, let Xw be the event “A(w, σ) = T”, let Yw be the event
“Ar(w, σ) = T”, and let rw = radA(w, σ). Note that P[Xw∧rw ≤ r] = P[Yw∧rw ≤ r] = P[Yw],
thus P[Xw] = P[Yw] + oε(1). Since for x, y satisfying distG(x, y) ≥ 3r we have that Yx, Yy
are independent, it follows that P[Yu ∧ Yv] = P[Yu]P[Yv] + oε(1).

P[Xu ∧Xv] = P[Xu ∧Xv ∧ (max{ru, rv} ≤ r)] + P[Xu ∧Xv ∧ (max{ru, rv} > r)]
= P[Yu ∧ Yv ∧ (max{ru, rv} ≤ r)] + oε(1)
= P[Yu ∧ Yv] + oε(1) = P[Yu]P[Yv] + oε(1) = P[Xu]P[Xv] + oε(1). J

B Probability Generating Functions

The goal of this section is to demonstrate how generating functions may aid solving the
fundamental system of ODEs (∗) (and thus finding ι) for certain simple branching processes.
In the following sections, we will use the notation yk(x) as in (∗), and omit the subscript k
when the branching process has a single type.

Single Type Branching Processes

For a probability distribution p = (pd)∞d=0, let Tp be the p-ary tree, namely, it is a (single
type) branching process, for which the offspring distribution is p. The fundamental ODE in
this case is

y′(x) =
∞∑
d=0

pd

d∑
`=0

(
d

`

)
(1− x)d−`x`

(
1− y(x)

x

)`
=
∞∑
d=0

pd(1− y(x))d. (4)

This differential equation may not be solvable, but in many important cases it is, and we
will use it. Denote by gp(z) the probability generating function (pgf) of p, that is,

gp(z) =
∞∑
d=0

pdz
d. (5)

Let hp(x) be the solution to the equation∫ 1

hp(x)

dz

gp(z) = x. (6)
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B Claim B.1. y(x) = 1− hp(x).

Proof. Fix x ∈ [0, 1], let h = hp(x) and g(z) = gp(z). Define ϕ : [0, β] → [h, 1], where
β = y−1(1− h), as follows: ϕ(u) = 1− y(u). Note that by (4),

ϕ′(u) = −y′(u) = −g(ϕ(u)).

Thus

x =
∫ 1

h

dz

g(z) = −
∫ ϕ(β)

ϕ(0)

dz

g(z) = −
∫ β

0

ϕ′(z)dz
g(ϕ(z)) = β,

hence y(x) = 1− h. C

In particular, it follows from Claim B.1 that ι(Tp) = 1− hp(1).

Random Trees With IID Degrees

For a probability distribution p = (pd)∞d=1, let Tp be the p-tree, namely, it is a random tree
in which the degrees of the vertices are independent random variables with distribution p.
We may view it as a two-type branching process, with type 0 for the root and 1 for the rest
of the vertices. Let gp(z) be the pgf of p (see (5), and note that p0 = 0). The fundamental
system of ODEs in this case is

y′0(x) =
∞∑
d=1

pd

d∑
`=0

(
d

`

)
(1−x)d−`x`

(
1− y1(x)

x

)`
=
∞∑
d=1

pd(1− y1(x))d = gp(1−y1(x)), (7)

and by (4),

y′1(x) =
∞∑
d=0

pd+1(1− y1(x))d = 1
1− y1(x)

∞∑
d=1

pd(1− y1(x))d = gp(1− y1(x))
1− y1(x) . (8)

Let hp(x) be the solution to the equation∫ 1

hp(x)

zdz

gp(z) = x.

The next claim is [13, Theorem 1].6

B Claim B.2. y0(x) = 1
2
(
1− h2

p(x)
)
.

Proof. Fix x ∈ [0, 1], let h = hp(x) and g(z) = gp(z). Define ϕ : [0, β] → [h, 1], where
β = y−1

1 (1− h), as follows: ϕ(u) = 1− y1(u). Note that by (8),

ϕ′(u) = −y′1(u) = −g(ϕ(u))
ϕ(u) .

Thus

x =
∫ 1

h

zdz

g(z) = −
∫ ϕ(β)

ϕ(0)

zdz

g(z) = −
∫ β

0

ϕ′(z)ϕ(z)dz
g(ϕ(z)) = β,

hence y1(x) = 1− h. From (7) and (8) it follows that y′0(x) = g(h) = y′1(x) · h = −hh′, and
since y0(0) = 0 it follows that y0(x) = 1

2
(
1− h2). C

In particular, it follows from Claim B.2 that ι(Tp) = 1
2
(
1− h2

p(1)
)
.

6 In [13] the authors required that the the degrees of the tree are all at least 2; we do not require this here.
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C Proof of Theorem 6.4

1. It suffices to prove the claim for v ∈ A. First note that there exists a unique tree Sv
in T ? v which is not fully contained in A, and the rest of the trees are retained in the
KC-transformation. The set of trees in T ′ ? v which are not fully contained in A may
be different from Sv, but they are on the same vertex set, so the result follows from
subadditivity of αn (Claim 6.1).

2. Write |A| = a, |B| = b and |P | = `+ 1. Let A1, . . . , As be the trees of T ? x which are
fully contained in A, and denote ai = |Ai|. Let B1, . . . , Bt be the trees of T ? y which
are fully contained in B, and denote bi = |Bi|. Let αA =

∑s
i=1 αai , α

+
A =

∑s
i=1 α1+ai ,

αB =
∑t
i=1 αbi and α

+
B =

∑t
i=1 α1+bi . Denote the vertices of P by x = u0, u1, . . . , u`.

The following table summarises the values of ν in T, T ′ along vertices of P , in the case
where ` ≥ 3 (similar tables can be made for the cases ` = 1, 2).

νuj (T ) νuj (T ′)
j = 0 αA + αb+`−1 αA + αB + α`−1

j = 1 α+
A + αb+`−2 α+

A + α+
B + α`−2

2 ≤ j ≤ `− 2 αa+j−1 + αb+`−j−1 αa+b+j−1 + α`−j−1

j = `− 1 αa+`−2 + α+
B αa+b+`−2

j = ` αa+`−1 + αB αa+b+`−1

It follows (for every ` ≥ 1) that

∑
v∈P

(νv(T ′)− νv(T )) =
`−1∑
j=1

(αa+b+j + αj − αa+j − αb+j)

= ξa+b,`−1 + ξ0,`−1 − ξa,`−1 − ξb,`−1,

which is, by Claim 6.2, nonnegative. J
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