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Abstract
The disordered Chinese restaurant process is a partition-valued stochastic process where the elements
of the partitioned set are seen as customers sitting at different tables (the sets of the partition) in
a restaurant. Each table is assigned a positive number called its attractiveness. At every step a
customer enters the restaurant and either joins a table with a probability proportional to the product
of its attractiveness and the number of customers sitting at the table, or occupies a previously
unoccupied table, which is then assigned an attractiveness drawn from a bounded distribution
independently of everything else. When all attractivenesses are equal to the upper bound this
process is the classical Chinese restaurant process; we show that the introduction of disorder can
drastically change the behaviour of the system. Our main results are distributional limit theorems
for the scaled number of customers at the busiest table, and for the ratio of occupants at the busiest
and second busiest table. The limiting distributions are universal, i.e. they do not depend on the
distribution of the attractiveness. They follow from two general Poisson limit theorems for a broad
class of processes consisting of families growing with different rates from different birth times, which
have further applications, for example to preferential attachment networks.
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1 Introduction

In this paper we investigate properties of the largest family at a large but fixed time in a
sequence of growing families that have different birth times and different exponential growth
rates. The growth rates are given by a sequence F1, F2, . . . of bounded independent and
identically distributed random variables, while the birth times τ1, τ2, . . . may be random
and can depend in a general fashion on the growth processes. In the most interesting cases
the birth times are themselves arising from an exponentially growing process so that the
largest family at time t arises from a competition between the few families born early, which
have more time to grow, and the many families born late, among which the occurrence of a
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21:2 The Disordered Chinese Restaurant and Competing Growth Processes

higher birth rate is more probable. Our framework includes dynamic network models, where
the families are nodes and their size is the degree, or a disordered version of the Chinese
restaurant process, where the families are tables and their size is the number of occupants.

In the introduction, we illustrate and motivate our results in the context of the disordered
Chinese restaurant process. In Sec. 2 we introduce our general framework and main result.
Then, in Sec. 3, we show how our results apply to the Chinese restaurant process and a
further example, the preferential attachment tree with fitness. Finally, in Sec. 4, we sketch
the proofs of our main result and its corollary.

The disordered Chinese restaurant process

Fix a parameter θ ≥ 0 and a probability distribution µ on (0, 1). The disordered Chinese res-
taurant process is a Markov process (Z(n))n≥1 such that, for all n ≥ 1, Z(n) = (Z(n)

1 , Z(n)
2 , . . .)

is a sequence of integers satisfying that, for all n ≥ 1,∑∞
i=1 Z

(n)
i = n,

there exists k such that Z(n)
i = 0 for all i > k and Z(n)

i ≥ 1 for all i ≤ k.
In particular

Z̄(n) :=
( 1
nZ

(n)
1 , 1

nZ
(n)
2 , . . . , 1

nZ
(n)
k

)
are the proportions of sets in the random partition, for every n ∈ N. At time n, the vector
Z(n) can be interpreted as describing the distribution of n customers sitting at different
(ordered) tables in a restaurant; for all i ≥ 1, Z(n)

i is the number of customers sitting at
the i-th table at time n. The distribution of the process is defined as follows: we sample
a sequence (Fi)i≥1 of i.i.d. random variables (the attractivenesses or fitnesses) from the
distribution µ. We set Z(1) = (1, 0, 0, . . .) and, for all n ≥ 1, given Z(n), we define Z(n+1) as
follows: A new customer enters the restaurant, and

with probability FiZ
(n)
i /(n+ θ) the new customer sits at the i-th table, i.e. we set

Z(n+1)
j = Z(n)

j + 1j=i for all 1 ≤ j ≤ n;
otherwise, i.e. with the remaining probability

1−
∑∞
i=1 FiZ

(n)
i

n+ θ
,

the new customer sits at table k + 1 := min{i ≥ 1: Z(n)
i 6= 0}, i.e. we set Z(n+1)

k+1 = 1 and
Z(n+1)
i = Z(n)

i for all 1 ≤ i ≤ k.
Taking µ = δ1 (i.e. all fitnesses equal to one) gives the original Chinese restaurant process
of Pitman, sometimes also called temporal Dirichlet process in the context of community
detection algorithms (see e.g. [10]). In this case the sequence (Z̄(n)) with entries arranged in
decreasing order converges in distribution to the Poisson-Dirichlet distribution of parameter θ.
A corollary of our main result is that, under mild assumptions on µ, the proportion of
customers sitting at the largest table in the disordered Chinese restaurant process vanishes
asymptotically. In fact, we prove convergence of the properly-rescaled size of the busiest
table to a Fréchet distribution. We state our precise assumptions on the distribution µ before
stating our limiting theorems for the disordered Chinese restaurant process.

Assumptions on the fitness distribution

The behaviour of (Z(n))n≥1 depends on the fitness distribution µ. In this paper, we assume
that µ is supported by a bounded interval, which we may take as (0, 1). We are interested in
the largest tables in the disordered Chinese restaurant process, and fitter tables are more
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likely to get larger; therefore, records in the sequence of random fitnesses play an important
role. These records are governed by the fitness distribution µ, more precisely by its tail
near 1, and extreme value theory gives information about their behaviour.

The Fisher–Tippett–Gnedenko theorem of extreme value theory says that, if there exist
two sequences (αn)n≥1, (βn)n≥1 and a probability distribution Υ such that

max1≤i≤n Fi − βn
αn

→ Υ,

then Υ is either the Gumbel or the Weibull distribution (for unbounded random variabes
it can be either Gumbel or Fréchet). Intuitively, the Gumbel distribution corresponds to
fitness distributions µ with light, and the Weibull distribution to fitness distributions with
heavy tail near 1. In this paper, we therefore distinguish between (A) distributions µ that
are in the maximum domain of attraction of a Gumbel distribution and (B) distributions
that are in the maximum domain of attraction of a Weibull distribution.

More precisely, we assume one of the following:
(A0) The function m(x) = − logµ((x, 1)) is twice differentiable and satisfies

(A0.1) m′(x) > 0 and m′′(x) > 0 for all x ∈ (0, 1);
(A0.2) limx↑1

m′′(x)
(m′(x))2 = 0;

(A0.3) ∃κ > 0 such that limx↑1
m′′(x)m(x)x

(m′(x))2 = κ;
(A0.4) limx↑1

m(x)
m′(x) = 0.

(B0) The fitness distribution µ has a regularly varying tail in one, meaning that there
exists α > 1 and a slowly varying function ` with µ((1− ε, 1)) = εα`(ε).

I Note 1. A typical example of probability distribution satisfying (A0) is µ((x, 1)) =
exp

(
1− (1− x)−ρ

)
for all x ∈ (0, 1), ρ > 0. Heuristically, (A0) asks for a lighter tail near

the essential supremum than (B0).
I Note 2. Assumptions (A0-i) and (A0-ii) imply that the fitness distribution µ lies in the
maximum domain of attraction of the Gumbel distribution. Although most of the natural
examples satisfy Assumptions (A0-iii) and (A0-iv), some probability distributions in the
maximum domain of attraction of the Gumbel distribution do not fall into our framework.
One example is m(x) = log

( e
1−x

)
log log

( e
1−x

)
(see [9, 8] for details).

Limiting theorems for the disordered Chinese restaurant process

We first state a result on the number of tables occupied after n steps.

I Proposition 3. The number Kn of occupied tables when there are n customers satisfies

lim
n→∞

Kn

n
=
(∫

µ(dx)
1− x

)−1
almost surely.

This result is in contrast to the classical Chinese restaurant process where the number of
tables grows only logarithmically. The next two propositions follow from our main result,
which we state in Section 2 in the much more general context of competing growth processes.

First, we look at the rescaled occupancy of the largest table. Other than in the classical
Chinese restaurant process the occupancy of tables turns out not to be macroscopic and
the proportions (Z̄(n)) do not converge to a limiting partition. This is not surprising, as the
probability of the n-th customer starting a new table is of constant order in this case but of
order 1/n in the classical case.

AofA 2020
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I Proposition 4. If µ satisfies either (A0) or (B0), then the number of occupants at the
largest table satisfies

lim
n→∞

1
n

(
max
i≥1

Z(n)
i

)
= 0 almost surely.

Under Assumption (B0), we further have that, in distribution when n→∞,

(logn)α

n`( 1
logn )

(
max
i≥1

Z(n)
i

)
⇒W,

where W is a standard Fréchet distribution.

I Note 5. In the context of our main result we also provide a limit theorem under assumption
(A0), which reveals the universal nature of the limiting Fréchet distribution, see Corollary 12.

Second, we look at the ratio of the sizes of the two busiest tables and again see universal
behaviour, irrespective of whether µ is from the maximum domain of attraction of the
Gumbel or Weibull distribution.

I Proposition 6. For all integers n, we denote by Rn ≥ 1 the ratio of the sizes of the largest
and second largest tables at time n. If µ satisfies (A0) or (B0), then

lim
n→∞

P(Rn ≥ x) = 1/x for all x ≥ 1.

2 General framework and main result

We now describe our general framework (in a slightly less general version than in [5]), which is
a continuous time process defined as follows: Given µ a probability distribution on (0, 1), let

(Fn)n≥1 be a sequence of i.i.d. µ-distributed random variables;
(τn)n≥1 be a non-decreasing sequence of positive random variables with τ1 = 0;
for all n ≥ 1 and t ≥ τn, Zn(t) = Yn(Fn(t− τn)) for a family (Yn(t) : t ≥ 0)n≥1 of i.i.d.
non-decreasing integer-valued processes independent of (Fn)n≥1.

Define M(t) := max{n : τn ≤ t} and N(t) :=
∑M(t)
n=1 Zn(t). We view this as a population of

immortal individuals and we refer to Zn(t) as the size of the n-th family, M(t) the number of
families in the system and N(t) the total size of the population respectively, at time t. From
this perspective τn represents the foundation time of the n-th family. We see Fn as a fitness
parameter of the n-th family, determining the rate at which new offsprings are born into it.

In this paper we aim at proving convergence results for the maximal family in the
population. For this we require the following assumptions (A1), (A3), (A4) on the growth
processes, in addition to Assumption (A0) or (B0) on the fitness distribution (a condition
called (A2) is only needed in the more general setup of [5]).

Assumptions

(A1) Families’ foundation times: There exists λ > 0 such that, for all n ∈ N,

τn = τ∗n + T + εn,

where τ∗n := 1
λ logn, T is a finite random variable, and εn → 0 almost surely as n→∞.
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(A3) Growth rate: There exists γ > 0 and an integrable random variable ξ with
density ν defined on [0,∞), such that

e−γtY1(t) −→ ξ, almost surely as t→∞.

(A4) Concentration of growth: There exist c0, η > 0 such that

P
(

max
u≥0

Y1(u)e−γu ≥ x
)
≤ c0e−ηx, for all x ≥ 0.

I Note 7. These three assumptions all have the same aim: our results rely on controlling
the growth rates of the population and of each of the families. Assumption (A1) gives some
control over the growth of the process in terms of numbers of families; λ can be interpreted
as the “Malthusian” parameter of the process (see, e.g. [6], where the concept of Malthusian
growth is studied in the context of Crump-Mode-Jagers processes). Assumptions (A3) and
(A4) gives some control over the growth of each of the families.

To state our main result, we need to define σt, which approximates the birth time of the
family that is the largest at time t.

Under Assumption (A0) on µ, we define σt as the unique solution of

(log g)′(λσt) = 1
λ(t− σt)

, (1)

where g(x) = m−1(x), see [5, Lemma 5] for a proof of existence and uniqueness of σt.
Under Assumption (B0) on µ, we set σt := τn(t), where n(t) = dµ(1− t−1, 1)−1e. Then
logn(t) ∼ α log t− log `(1/t) and Assumption (A1) implies that

σt = 1
λ

logn(t) + T + o(1) = α

λ
log t− 1

λ
log `(1/t) + T + o(1) (2)

Main result under Assumption (B0)

We now state our results, first in the easier case of µ satisfying Assumption (B0). For all
t ≥ 0, we define the point process

Γt =
M(t)∑
n=1

δ
(
τn − σt, t(1− Fn), e−γ(t−σt)Zn(t)

)
, (3)

on (−∞,∞)× (0,∞)× (0,∞), where δ(x) is the Dirac mass at x.

I Theorem 8 (Poisson limit). Under Assumptions (B0) and (A1), (A3), (A4), the point
process (Γt)t≥0 converges vaguely1 on the space [−∞,∞] × [0,∞] × (0,∞] to the Poisson
point process with intensity measure

dζ(s, f, z) = αfα−1λeλseγ(s+f)ν(zeγ(s+f)) ds df dz,

where ν is defined in (A3).

Observe that the compactification of the intervals in Theorem 8 ensures that the point with
the largest z-component in the Poisson point process corresponds asymptotically to the
family of maximal size. Theorem 8 therefore implies the following distributional limit.

1 We say that a sequence of measures (µn)n∈N on a topological space X converges vaguely to µ iff∫
fdµn →

∫
fdµ, as n→∞, for all continuous functions f : X→ R with compact support.
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I Corollary 9. Let V (t) be the fitness of the family of maximal size at time t. Then,

t(1− V (t))⇒ V as t→∞,

where V is Gamma distributed with shape parameter α and scale parameter λ.

Theorem 8 and Corollary 9 are proved in [9]. The proofs are based on similar ideas as the
proofs outlined here, but the execution of these ideas is much simpler. A similar result in a
different, less general setup can be found in [3].

Main result under Assumption (A0)

To now state our main results we look at fitness distributions satisfying Assumption (A0).
For all t ≥ 0, we define

Γt =
M(t)∑
n=1

δ
(τn − σt√

σt
,
Fn − g

(
log(n√σt)

)
g′
(

log(n√σt)
) , e−γg(λσt)(t−σt)−a1g(λσt) logσt+γTZn(t)

)
, (4)

where δ(x) is the Dirac mass at x, and a1 := γ
2λ .

I Theorem 10 (Poisson limit). Under Assumptions (A0), (A1), (A3), (A4), the point
process (Γt)t≥0 converges vaguely on the space [−∞,∞]× [−∞,∞]× (0,∞] to the Poisson
point process with intensity measure

dζ(s, f, z) = λe−fes
2a2−fa3ν(zes

2a2−fa3) ds df dz,

where a2 := γ
2κ, a3 := γ

λ and ν is as in (A3).

I Note 11. The existence of a density for the random variable ξ is assumed in Assump-
tion (A3) for convenience only. For example, Theorem 8 and 10 continue to hold if ν = δ1.

The technical difference between Theorems 8 and 10 is that in the latter the first
(birthtime) coordinate needs to be scaled. As a result the scaling of the second (fitness)
component depends on the birth rank n of the family as well as on the observation time
t. Therefore we cannot derive a general scaling limit for the fitness of the largest family as
in Corollary 9. However, results for the size of this family are still possible and allow an
interesting comparison.

I Corollary 12.
(i) Under Assumption (B0), asymptotically as t→∞,

e−γt+
γα
λ log t− γλ log `(1/t)+γT max

n∈N
Zn(t)⇒W,

where W is Fréchet-distributed with shape parameter λ/γ and scale parameter s, where

s
λ
γ = Γ(α+ 1)λ−α

∫ ∞
0

ν(w)w
λ
γ dw.

(ii) Under Assumption (A0), asymptotically as t→∞,

e−γg(λσt)(t−σt)−a1g(λσt) log σt+γT max
n∈N

Zn(t)⇒W,

where W is Fréchet-distributed with shape parameter λ/γ and scale parameter s, where

s
λ
γ =

√
2πλ
κ

∫ ∞
0

ν(w)w
λ
γ dw.

I Note 13. Observe that irrespective of whether µ is in the maximum domain of attraction
of the Weibull or Gumbel distribution, the size of the largest family scaled by a deterministic
function of time and the random factor eγT converges to a Fréchet distribution.



C. Mailler, P. Mörters, and A. Senkevich 21:7

3 Applications of our main results

Embedding the disordered Chinese restaurant process

The key to the application of our main result to a discrete process such as the disordered
Chinese restaurant process is a clever choice of embedding into continuous time. Customers
now enter the restaurant at some random times 0 =: T0 < T1 < T2, . . . defined inductively as
follows. At time Tn we start n+1 independent exponential clocks, one clock of parameter one
for each of the n customers seated in the restaurant and one additional clock of parameter
θ for the creation of an additional table. We let Tn+1 be the time when the first of these
clocks rings.

If it is the clock corresponding to customer m sitting at table j we toss a coin with success
probability Fj .

If there is a success the (n+ 1)-th customer joins this table,
if there is no success the (n+ 1)-th customer seats at a new table which, if it is the
(k + 1)-th occupied table, gets fitness Fk+1.

If it is the clock for the creation of additional tables, the (n+ 1)-th customer also sits at
a new table which, if it is the (k + 1)-th occupied table, gets fitness Fk+1.

Suppose F1, F2, . . . are given. We note that, as required, the overall probability that a new
table is created at time Tn+1 is∑k

j=1 Zj(Tn)(1− Fj) + θ

n+ θ
= 1−

∑k
j=1 Zj(Tn)Fj
n+ θ

,

where Zj(Tn) is the number of occupants at the j-th table at time Tn, and the probability
that the (n + 1)-th customer joins the j-th table is Zj(Tn)Fj/(n + θ). Therefore this
continuous-time processes taken at the successive times T0, T1, . . . is equal in distribution to
the disordered Chinese restaurant process defined in Section 1, as required.

Looking at the j-th table, we let τj be the time when it is first occupied. If at time t
this table is occupied by m customers the rate at which new customers join this table is
mFj , independently of the occupancy of other tables. The processes (Zj(t+ τj) : t ≥ 0) are
therefore independent Yule processes with rate Fj . Hence Assumptions (A3), (A4) are
satisfied for γ = 1. To check Assumption (A1) we note that the process of introduction
of new tables is a general branching process with immigration. The immigration process
corresponds to the creation of the additional tables, which is a homogeneous Poisson process
with rate θ. The point process of creation of tables by unsuccessful coin tossing is a Cox
process (Π(t) : t ≥ 0), i.e. a Poisson process with random intensity. Its intensity is given
by (1 − F )Y (t) dt where F has distribution µ and given F the process (Y (t) : t ≥ 0) is a
Yule process with parameter F . The relevant results for general branching processes can be
found in [6] with the case of branching processes with immigration treated in [7]. The crucial
assumption is the existence of a Malthuisan parameter α ≥ 0 such that

1 =
∫

e−αt EΠ(dt) =
∫ ∫ ∞

0
(1− w)e−αtewt dt µ(dw) =

∫ 1− w
α− w

µ(dw),

which is always satisfied for α = 1. Under an additional x log x condition on
∫

e−tΠ(dt),
which can be checked by straightforward but long calculations, we get from [6, Theorem 5.4]
for general branching processes without immigration (our case θ = 0) and modifications

AofA 2020
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described in [7, Theorem 4.2] for the general case (stated there only for convergence in L1)
that there exists a positive random variable Nθ such that the total nnumber M(t) of tables
occupied by time t satisfies

e−tM(t) −→ Nθ almost surely,

from which we infer that τn = logn− logNθ + o(1), implying that (A1) holds with λ = 1.

Disordered Chinese restaurant process – proof of Proposition 3

We first find the limit of the empirical fitness distributions. This can be accomplished using
the stochastic approximation technique of Dereich and Ortgiese [4] and does not require
continuous time embedding. Suppose for illustration that µ has finite support {f1, . . . , fm}
and let Xn(i) be the proportion of customers sitting at a table with attractiveness fi and
(Gn)n≥1 be the natural filtration. Then we have the equality

E
[
Xn+1(i)−Xn(i)

∣∣Gn] = 1
n+ 1

(
µ({fi})

[
1− n

n+ θ
F̄n

]
+ nfi
n+ θ

Xn(i)−Xn(i)
)
,

where F̄n =
∑m
j=1 fjXn(j) = 1

n

∑Kn
i=1 FiZ

(n)
i . Using stochastic approximation techniques

developed by [4] (these techniques also work without our illustrative assumption), one can
show that if lim sup F̄n ≤ η (resp. lim inf F̄n ≥ η), then for all 0 ≤ a ≤ b ≤ 1,

lim inf 1
n

Kn∑
i=1

1Fi∈(a,b]Z
(n)
i ≥

∫ b

a

1− η
1− x µ(dx) (5)

(
resp. lim sup 1

n

Kn∑
i=1

1Fi∈(a,b]Z
(n)
i ≤

∫ b

a

1− η
1− x µ(dx)

)
.

Iterating, e.g. the upper bound, we get

lim sup F̄n ≤ (1− η)
∫

x

1− x µ(dx) =: T (η),

and eventually convergence of (F̄n) to the fixed point η∗ ∈ (0, 1) of T , which is

η∗ = 1−
(∫ µ(dx)

1− x

)−1
.

Together with Equation (5), this implies that, for all 0 ≤ a ≤ b ≤ 1,

lim
n→∞

1
n

Kn∑
i=1

1Fi∈(a,b]Z
(n)
i =

∫ b

a

1− η∗

1− x µ(dx) almost surely.

By construction, the conditional probability that a newly arriving customer establishes a
new table is therefore converging to∫

(1− x)1− η∗

1− x µ(dx) =
(∫ µ(dx)

1− x

)−1
,

which is also the asymptotic ratio of tables per customer, as claimed.
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Disordered Chinese restaurant process – proof of Proposition 4

This follows from Corollary 12 (recall that in this case λ = γ = 1). In both parts, plugging
t = τn shows that the leading term in the scaling is 1

n and all further factors together go to
infinity. Under Assumption (B0), we get that

exp(−τn + α log τn − log `(1/τn) + T )

= exp
(
− logn− T − log `( 1

logn ) + α log logn+ T + o(1)
)

= (logn)α

n`( 1
logn )

(1 + o(1)),

and thus, by Corollary 12(i), (logn)α maxZ(n)
i /(n`( 1

logn )) converges in distribution to a
Fréchet as claimed. Under Assumption (A0), we have that, asymptotically when t ↑ ∞,

−g(σt)(t− σt)− g(σt) log σt = −t+ σt + h(σt)t+ o(σt) + o(h(σt)t),

where h(x) = 1 − g(x) ↓ 0 when x ↑ ∞. Taking t = τn = logn + T + εn thus gives
eun maxZ(n)

i /n⇒W, where un = (στn +h(στn)τn)(1 + o(1)) ↑ ∞, which concludes the proof.

Disordered Chinese restaurant process – proof of Proposition 6

We denote by R(t) the ratio of the sizes of the largest and second largest tables (i.e. families in
the competing growth process) at time t. Let us first assume that µ satisfies Assumption (A0).
By Theorem 10, we have, for all x > 1,

lim
t→∞

P
(
R(t) ≥ x

)
=
∫∫∫

exp
(
− ζ
(
(−∞,∞)× (−∞,∞)× (z/x,∞)

))
ζ(ds df dz).

Using that ν(x) = e−x and a3 = 1 in the first equality and the change of variable v = f− log y
in the second, we get that

ζ
(
(−∞,∞)× (−∞,∞)× (z/x,∞)

))
=
∫∫

ds df es
2a2−2f

∫ ∞
z/x

e−yes
2a2−f dy

=
∫∫

ds dv es
2a2−2ve−es

2a2−v
∫ ∞
z/x

y−2 dy = a5
x

z
,

where a5 is a positive constant. Hence, substituting f by f + log x in the final step,

lim
t→∞

P
(
R(t) ≥ x

)
=
∫∫

ds df
∫ ∞

0
dz e−fes

2a2−fe−z(es
2a2−f )−a5

x
z

=
∫∫

ds df
∫ ∞

0
dw e−fe−w−a5

1
w es

2a2−f+log x
= 1
x
.

Similarly, if µ satisfies Assumptions (B0), we have ζ
(
(−∞,∞)× (0,∞)× (z/x,∞)

))
= a6

x
z ,

and hence by Theorem 8 (and using the change of variable z → z/x in the second equality),

lim
t→∞

P
(
R(t) ≥ x

)
=
∫

ds
∫ ∞

0
df
∫ ∞

0
dz αfα−1e2s+fe−zes+f−a6

x
z

=
∫

ds
∫ ∞

0
df
∫ ∞

0
dz xαfα−1e2s+fe−zes+f+log x−a6

1
z = 1

x
,

substituting s by s+ log x in the final step. This concludes the proof of Proposition 6.

AofA 2020



21:10 The Disordered Chinese Restaurant and Competing Growth Processes

Preferential attachment networks with fitness

In this subsection, we show how our results can be used to get asymptotic information about
the node of largest degree in preferential attachment networks with fitness. We focus on the
Bianconi-Barabási model, first introduced by Bianconi and Barabási in [1], but one can also
find an application of our main results to the model of Dereich [2] in [5, Sec. 2.2.2]. In the
Bianconi and Barabási model, nodes join a network one by one and create a link with an
existing node chosen at random with probability proportional to its degree in the network
times its fitness. The process starts with two vertices connected by an edge. The fitness of
each node is a positive number sampled according to a distribution µ, independently from
the rest of the process. Although generalisations exists, we only treat the tree-version of
this model: each node creates only one extra edge when joining the network. We show that
under a Malthusian condition the continuous-time embedding of the Bianconi and Barabási
tree is a competing growth process and that our main results apply to this model.

In this embedding, τn is the birthtime of the n-th vertex, Fn its fitness and Zn(t) its
degree at time t. One can show (see [5, Sec. 5.1]) that under the Malthusian condition∫ 1

0

µ(dx)
1− x > 2,

the process satisfies (A1), (A3), (A4) with γ = 1 and λ > 1 the unique solution of∫ 1

0

x

λ− x
µ(dx) = 1.

Our main results thus apply and give, for example, precise asymptotic estimates for the
largest degree in the network.

I Proposition 14. Assume that there exists % ∈ (0, 1) such that, for all x ∈ (0, 1), µ((x, 1)) =
exp(1− (1− x)−%). Denote by Dn the largest degree in the Bianconi and Barabási tree with
n vertices. Then, as n→∞, we have, in probability,

Dn = exp
( 1
λ

logn− a4

λ
(logn)

%
%+1 − a5

λ
log logn+O(1)

)
,

where a4 = %−
%
%+1 + %

1
%+1 and a5 = %

2(%+1) .

Proof. First recall that this fitness distribution satisfies Assumption (A0), and thus The-
orem 10 and Corollary 12(ii) apply. We estimate σt as defined in Equation (1). Since
g(x) = m−1(x) = 1− (x+ 1)−1/%, we have that x = λσt is the unique solution of

(log g)′(x) = 1
λt+ 1− (x+ 1) = 1

%(x+ 1)
%+1
% − %(x+ 1)

,

which implies σt = λ−
1
%+1 (t/%)

%
%+1 +O

(
t
%−1
%+1
)
. By definition of κ in Assumption (B0) we get

κ = lim
x↑1

m′′(x)m(x)x
(m′(x))2 = lim

x↑1

(%+ 1)x
(
1− (1− x)%

)
%

= %+ 1
%

.

By Corollary 10(ii), we get that, asymptotically when t→∞,

e−
(
t−a4λ

− 1
1+% t

%
%+1 + 1

λ

)
− 1
λa5 log t+T max

n∈N
Zn(t)⇒W,

where W is a Fréchet-distributed random variable with shape parameter λ and scale para-
meter s given by sλ =

√
2π%
%+1 Γ(λ+ 1). To get a result for discrete-time process we need

to estimate the time τn when the (n + 1)-th vertex is introduced to the network. By
Assumption (A1), we know that τn = 1

λ logn+ T + εn, which concludes the proof. J
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4 Sketch of the proofs

We give sketches of the proofs in the case of Assumption (A0); the proofs under Assump-
tion (B0) are similar but easier (these proofs are detailed in [9, Ch. 3]).

Sketch of the proof of Corollary 12(ii)

We fix x > 0 and B := [−∞,∞]× [−∞,∞]× [x,∞]. By Theorem 10, we get that, as t ↑ ∞,

M(t)∑
n=1

1B
(
τn−σt√

σt
,
Fn−g(log(n√σt))
g′(log(n√σt)) , e−γg(λσt)(t−σt)−a1g(λσt) logσt+γTZn(t)

)
⇒ Poisson

(∫
B

dζ
)
,

since B is a compact set. Hence, as t ↑ ∞,

P
(

e−γg(λσt)(t−σt)−a1g(λσt) logσt+γT max
n∈{1,...,M(t)}

Zn(t) ≥ x
)

(6)

→ P
(
Poisson

(∫
B

dζ
)
≥ 1
)

= 1− P
(
Poisson

(∫
B

dζ
)

= 0
)

= 1− exp
(
−
∫
B

dζ
)
.

One can check that∫
B

dζ = λ

√
π
a3

a2

(∫ ∞
0

ν(w)w
1
a3 dw

)
x−

1
a3 . (7)

Recall that a2 = γκ/2 and a3 = γ/λ. Thus the right hand side in (6) is 1− exp(−sηx−η), for

sη =
√

2πλ
κ

∫ ∞
0

ν(w)w
λ
γ dw, and η = λ

γ
.

In summary, for all x > 0, we have

P
(

e−γg(λσt)(t−σt)−a1g(λσt) logσt+γT max
n∈{1,...,M(t)}

Zn(t) ≤ x
)
→ e−(x/s)−

λ
γ = P

(
W ≤ x

)
,

where W ∼ Fréchet
(
λ
γ , s
)
, which concludes the proof.

Sketch of the proof of Theorem 10 (for details see [5, Sec. 4])

The idea of the proof is to first give convergence of the point process on the domain
(−∞,∞)× (−∞,∞)× [0,∞] and second get the “right” shapes of the brackets by showing
that all the families that are born either too early or too late, or have a fitness that is too
small have a renormalised size that goes to zero. First we prove the following result, which
we sketch-proof in the next paragraph:

I Proposition 15. The point process

Γt =
M(t)∑
n=1

δ
(τn − σt√

σt
,
Fn − g

(
log(n√σt)

)
g′
(

log(n√σt)
) , e−γg(λσt)(t−σt)−a1g(λσt) logσt+γTZn(t)

)
,

converges vaguely in distribution on (−∞,∞)×(−∞,∞)× [0,∞] to the Poisson point process
with intensity

ζ(ds, df, dz) = λe−fes
2a2−fa3ν(zes

2a2−fa3) ds df dz.
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The main difference between Proposition 15 and Theorem 10 is the shape of the brackets in
the domain of convergence. To get the “right” shapes, we show that all the families that are
born either too early or too late, or have a fitness that is too small have a renormalised size
that goes to zero. More precisely:

I Lemma 16. Let η, ε > 0. There exists κ1 = κ1(ε, η) such that

lim
t→∞

inf P
(

Γt
(
[−∞,∞]× [−∞,−κ1]× (ε,∞]

)
= 0
)
≥ 1− η.

There exists v = v(ε, η) > 1 such that

lim
t→∞

inf P
(

Γt
(
[−∞,−v] ∪ [v,∞]× [−∞,∞]× (ε,∞]

)
= 0
)
≥ 1− η.

And, finally, there exists κ2 = κ2(ε, η) such that

lim
t→∞

inf P
(

Γt
(
[−v, v]× [κ2,∞]× (ε,∞]

)
= 0
)
≥ 1− η.

This lemma is proved in [5, Sec. 4]. Proposition 15 then gives that Γt converges on (−v, v)×
(−κ1, κ2) × (ε,∞] to the Poisson process with intensity measure ζ. Combining this with
Lemma 16 and using that η > 0 is arbitrarily small, we get convergence on [−∞,∞] ×
[−∞,∞]× (ε,∞]. The fact that this holds for all ε > 0 concludes the proof.

Sketch of the proof of Proposition 15

The proof of Proposition 15 is done in two steps: First we prove convergence of the following
Poisson process, whose only difference with Γt is the last coordinate, which has been replaced
by a quantity that, by Assumption (A3), converges almost surely to a ν-distributed random
variable:

I Proposition 17. We have vague convergence in distribution of the point process

Ψt =
M(t)∑
n=1

δ
(τn − σt√

σt
,
Fn − g

(
log(n√σt)

)
g′
(

log(n√σt)
) , e−γFn(t−τn)Zn(t)

)
to the Poisson point process on (−∞,∞)× (−∞,∞]× [0,∞] with intensity

ζ∗(ds, df, dz) = λe−fν(z)ds df dz.

This is enough to imply convergence of Γt because Γt is the image of Ψt by a continuous
function: we show (see [5, Sec. 3.3]) that, if φ : (s, f, z)→ (s, f, e−s2a2+fa3z), then Ψt ◦ φ−1

is asymptotically equivalent to Γt, i.e. for all Lipschitz continuous compactly-supported
functions f : (−∞,∞)× (−∞,∞)× [0,∞]→ R,∣∣∣∣ ∫ fdΨt ◦ φ−1 −

∫
fdΓt

∣∣∣∣→ 0 in probability, as t ↑ ∞.

This, together with Proposition 17, implies that Γt converges to the Poisson point process of
intensity ζ = ζ∗ ◦ φ, as claimed in Proposition 15.
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Sketch of the proof of Proposition 17. The advantage of Ψt over Γt is that, because of
Assumption (A3), the third coordinate converges almost surely to a ν-distributed random
variable. In fact, using also the fact that, by Assumption (A1), τn is close to (logn)/λ, one
can show (see [5, Lemma 9]) that Ψt is asymptotically equivalent to

Ψ∗t =
∑
n∈N

δ

(
(logn)/λ− σt√

σt
,
Fn − g

(
log(n√σt)

)
g′
(

log(n√σt)
) , ξn

)
,

where the ξn’s are i.i.d. random variables of distribution ν. This implies that to prove
Proposition 17 it is enough to prove convergence of Ψ∗t to the Poisson point process of
intensity ζ∗. The advantage of Ψ∗t over Ψt is that the three coordinates are three independent
sequences of independent random variables: one can thus apply Kallenberg’s theorem (see
[8, Proposition 3.22]), which says that it is enough to prove that for every precompact
relatively-open box B ⊂ (−∞,∞)× (−∞,∞]× [0,∞],
(a) P(Ψ∗t (B) = 0)→ exp(−ζ∗(B)), as t ↑ ∞, and
(b) E[Ψ∗t (B)]→ ζ∗(B), as t ↑ ∞.

Conditions (a) and (b) are checked in [5, Sec. 3.2]: this concludes the proof of Proposi-
tion 17 and thus of Proposition 15. J
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