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Abstract
In this extended abstract a general framework is developed to bound rates of convergence for
sequences of random variables as they mainly arise in the analysis of random trees and divide-and-
conquer algorithms. The rates of convergence are bounded in the Zolotarev distances. Concrete
examples from the analysis of algorithms and data structures are discussed as well as a few examples
from other areas. They lead to convergence rates of polynomial and logarithmic order. Our results
show how to obtain a significantly better bound for the rate of convergence when the limiting
distribution is Gaussian.
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1 Introduction and notation

In this extended abstract we consider a general recurrence for (probability) distributions
which covers many instances of complexity measures of divide-and-conquer algorithms and
parameters of random search trees. We consider a sequence (Yn)n≥0 of d-dimensional random
vectors satisfying the distributional recursion

Yn
d=

K∑
r=1

Ar(n)Y (r)
I

(n)
r

+ bn, n ≥ n0, (1)

where (A1(n), . . . , AK(n), bn, I(n)), (Y (1)
n )n≥0, . . . , (Y (K)

n )n≥0 are independent, the coefficients
A1(n), . . . , AK(n) are random (d× d)-matrices, bn is a d-dimensional random vector, I(n) =
(I(n)

1 , . . . , I
(n)
K ) is a random vector in {0, . . . , n}K , n0 ≥ 1 and (Y (r)

n )n≥0
d= (Yn)n≥0 for

r = 1, . . . ,K. Moreover, K ≥ 1 is a fixed integer, but extensions to K being random and
depending on n are possible.

This is the framework of [14] where some general convergence results are shown for
appropriate normalizations of the Yn. The content of the present extended abstract is to
also study the rates of convergence in such limit theorems.

We define the normalized sequence (Xn)n≥0 by

Xn := C−1/2
n (Yn −Mn), n ≥ 0,

where Mn is a d-dimensional vector and Cn a positive definite (d× d)-matrix. Essentially,
we choose Mn as the mean and Cn as the covariance matrix of Yn if they exist or as the
leading order terms in expansions of these moments as n→∞. The normalized quantities
satisfy the following modified recursion:
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22:2 Convergence Rates in the Probabilistic Analysis of Algorithms

Xn
d=

K∑
r=1

A(n)
r X

(r)
I

(n)
r

+ b(n), n ≥ n0, (2)

with

A(n)
r := C−1/2

n Ar(n)C1/2
I

(n)
r

, b(n) := C−1/2
n

(
bn −Mn +

K∑
r=1

Ar(n)M
I

(n)
r

)
(3)

and independence relations as in (1).
In the context of the contraction method the aim is to establish transfer theorems of the

following form: After verifying the assumptions of appropriate convergence of the coefficients
A

(n)
r → A∗r , b

(n) → b∗ then convergence in distribution of random vectors (Xn) to a limit X
is implied. The limit distribution L(X) is identified by a fixed-point equation obtained from
(2) by considering formally n→∞:

X
d=

K∑
r=1

A∗rX
(r) + b∗.

Here (A∗1, . . . , A∗K , b∗), X(1), . . . , X(K) are independent and X(r) d= X for r = 1, . . . ,K.
The aim of the present extended abstract is to endow such general transfer theorems

with bounds on the rates of convergence. As a distance measure between (probability)
distributions we use the Zolotarev metric. For various of the applications we discuss, bounds
on the rate of convergence have been derived one by one for more popular distance measures
such as the Kolmogorov–Smirnov distance. However, the transfer theorems of the present
paper in terms of the smoother Zolotarev metrics are easy to apply and cover a broad range
of applications at once. A crucial role is played by a factor 3 in the exponent of these orders
in cases where the normal distribution is the limiting distribution, see Remark 4.

In the rest of this section we fix some notation. Regarding norms of vectors and (random)
matrices we denote for x ∈ Rd by ‖x‖ its Euclidean norm and for a random vector X and
some 0 < p < ∞, we set ‖X‖p := E[‖X‖p](1/p)∧1. Furthermore, for a (d × d)-matrix A,
‖A‖op := sup‖x‖=1 ‖Ax‖ denotes the spectral norm of A and for a random such A we define
‖A‖p := E[‖A‖pop](1/p)∧1 for a random square matrix and 0 < p < ∞. Note that for a
symmetric (d × d)-matrix A, we have ‖A‖op = max{|λ| : λ eigenvalue of A}. By Idd the
d-dimensional unit matrix is denoted. For multilinear forms the norm is defined similarly.

Furthermore we define by Pd the space of probability distributions in Rd (endowed with
the Borel σ-field), by Pds := {L(X) ∈ Pd : ‖X‖s < ∞} and for a vector m ∈ Rd, and a
symmetric positive semidefinite (d× d)-matrix C the spaces

Pds (m) := {L(X) ∈ Pds : E[X] = m}, s > 1, (4)
Pds (m,C) := {L(X) ∈ Pds : E[X] = m,Cov(X) = C}, s > 2.

We use the convention Pds (m) := Pds for s ≤ 1 and Pds (m,C) := Pds (m) for s ≤ 2.
The Zolotarev metrics ζs, [19], are defined for probability distributions L(X),L(Y ) ∈ Pd

by

ζs(X,Y ) := ζs(L(X),L(Y )) = sup
f∈Fs

|E(f(X)− f(Y ))|,

where for s = m+ α, 0 < α ≤ 1,m ∈ N0,

Fs := {f ∈ Cm(Rd,R) : ‖f (m)(x)− f (m)(y)‖ ≤ ‖x− y‖α}.

Note that these distance measures may be infinite. Finite metrics are given by ζs on Pds for
0 ≤ s ≤ 1, by ζs on Pds (m) for 1 < s ≤ 2, and by ζs on Pds (m,C) for 2 < s ≤ 3, cf. (4).
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2 Results

We return to the situation outlined in the introduction, where we have normalized (Yn)n≥0
in the following way:

Xn := C−1/2
n (Yn −Mn), n ≥ 0, (5)

where Mn is a d-dimensional random vector and Cn a positive definite (d× d)-matrix. As
recalled in Section 1, for s > 1, we may fix the mean and covariance matrix of the scaled
quantities to guarantee the finiteness of the ζs-metric. Therefore, we choose Mn = E[Yn]
for n ≥ 0 and s > 1. For s > 2, we additionally have to control the covariances of Xn. We
assume that there exists an n1 ≥ 0 such that Cov(Yn) is positive definite for n ≥ n1 and
choose Cn = Cov(Yn) for n ≥ n1 and Cn = Idd for n < n1. For s ≤ 2, we just assume that
Cn is positive definite and set n1 = 0 in this case.

The normalized quantities satisfy the modified recursion

Xn
d=

K∑
r=1

A(n)
r X

(r)
I

(n)
r

+ b(n), n ≥ n0,

with A(n)
r and b(n) given in (3). The following theorem discusses a general framework to

bound rates of convergence for the sequence (Xn)n≥0. For the proof, we need some technical
conditions which guarantee that the sizes I(n)

r of the subproblems grow with n. More precisely,
we will assume that there exists some monotonically decreasing sequence R(n) > 0 with
R(n)→ 0 such that∥∥1{I(n)

r <`}A
(n)
r

∥∥
s

= O(R(n)), n→∞, (6)

for all ` ∈ N and r = 1, . . . ,K and that∥∥1{I(n)
r =n}A

(n)
r

∥∥
s
→ 0, n→∞, (7)

for all r = 1, . . . ,K.

2.1 A general transfer theorem for rates of convergence
Our first result is a direct extension of the main Theorem 4.1 in [14], where we essentially
only make all the estimates there explicit. The main result of the present extended abstract
is contained in Section 2.2.

I Theorem 1. Let (Xn)n≥0 be Ls-integrable, 0 < s ≤ 3, and satisfy recurrence (5) with the
choices for Mn and Cn specified there. We assume that there exist s-integrable A∗1, . . . , A∗K , b∗
and some monotonically decreasing sequence R(n) > 0 with R(n)→ 0 such that, as n→∞,

∥∥b(n) − b∗
∥∥
s

+
K∑
r=1

∥∥A(n)
r −A∗r

∥∥
s

= O(R(n)). (8)

If conditions (6) and (7) are satisfied and if

lim sup
n→∞

E
K∑
r=1

(
R(I(n)

r )
R(n)

∥∥A(n)
r

∥∥s
op

)
< 1, (9)

then we have, as n→∞,

ζs(Xn, X) = O(R(n)),

AofA 2020
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where L(X) is given as the unique fixed point in Pds (0, Idd) of the equation

X
d=

K∑
r=1

A∗rX
(r) + b∗, (10)

with (A∗1, . . . , A∗K , b∗), X(1), . . . , X(K) independent and X(r) d= X for r = 1, . . . ,K.

I Remark 2. In applications, the convergence rate of the coefficients (conditions (6) and (8))
is often faster than the convergence rate of the quantities Xn, see, e.g., Section 4.4. In these
cases, it is often possible to perform the induction step in the proof of Theorem 1 although
condition (9) does not hold. To be more precise, we may assume∥∥1{I(n)

r <`}A
(n)
r

∥∥
s

+
∥∥b(n) − b∗

∥∥
s

+
∥∥A(n)

r −A∗r
∥∥
s

= O(R̃(n))

for every ` ≥ 0, r = 1, . . . ,K and n→∞. Then, instead of condition (9), it is sufficient to
find some K > 0 such that

E
[ K∑
r=1

1{n1≤I(n)
r <n}

R(I(n)
r )

R(n) ‖A
(n)
r ‖sop

]
≤ 1− pn −

R̃(n)
KR(n)

for all large n with pn := E
[∑K

r=1 1{I(n)
r =n}‖A

(n)
r ‖sop

]
.

2.2 An improved transfer theorem for normal limit distributions
We now consider the special case where the sequence (Xn)n≥0 has finite third moments and
satisfies recursion (2) with (A(n)

1 , . . . , A
(n)
K , b(n)) L3−→ (A∗1, . . . , A∗K , b∗) for some coefficients

A∗1, . . . , A
∗
K , b

∗ with finite third moments and

b∗ = 0,
K∑
r=1

A∗r(A∗r)T = Idd

almost surely. Corollary 3.4 in [14] implies that, if E[
∑K
r=1 ‖A∗r‖3

op] < 1, equation (10) has a
unique solution in the space Pd3 (0, Idd). Furthermore, e.g., using characteristic functions, it
is easily checked that this unique solution is the standard normal distribution N (0, Idd).

In this special case of normal limit laws, it is possible to derive a refined version of
Theorem 1. Instead of the technical condition (6), we now need the weaker condition∥∥1{I(n)

r <`}A
(n)
r

∥∥3
3 = O(R(n)), n→∞, (11)

for all ` ∈ N and r = 1, . . . ,K. Moreover, condition (8) concerning the convergence rates of
the coefficients can be weakened, which is formulated in the following theorem.

I Theorem 3. Let (Xn)n≥0 be given as in (5) with finite third moments. We assume that
for some R(n) > 0 monotonically decreasing with R(n)→ 0 as n→∞ we have∥∥∥ K∑

r=1
A(n)
r (A(n)

r )T − Idd
∥∥∥3/2

3/2
+
∥∥b(n)∥∥3

3 = O(R(n)), (12)

and the technical conditions (7) and (11) being satisfied for s = 3. If

lim sup
n→∞

E
K∑
r=1

(
R(I(n)

r )
R(n)

∥∥A(n)
r

∥∥3
op

)
< 1, (13)

then we have, as n→∞,

ζ3(Xn,N (0, Idd)) = O(R(n)).
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Proof. (Sketch) We define an accompanying sequence (Z∗n)n≥0 by

Z∗n :=
K∑
r=1

A(n)
r T

I
(n)
r
N (r) + b(n), n ≥ 0,

where (A(n)
1 , . . . , A

(n)
K , I(n), b(n)), N (1), . . . , N (K) are independent, L(N (r)) = N (0, Idd) for

r = 1, . . . ,K and TnT
T
n = Cov(Xn) for n ≥ 0. Hence, Z∗n has a finite third moment,

E[Z∗n] = 0 and Cov(Z∗n) = Idd for all n ≥ n1. By the triangle inequality, we have

ζ3(Xn,N (0, Idd)) ≤ ζ3(Xn, Z
∗
n) + ζ3(Z∗n,N (0, Idd)).

Then, the assertion follows inductively if one has shown the bound ζ3(Z∗n,N (0, Idd)) =
O(R(n)): Using the convolution property of the multidimensional normal distribution, we
obtain the representation

Z∗n =
K∑
r=1

A(n)
r T

I
(n)
r
N (r) + b(n) d= GnN + b(n),

where GnGTn =
∑K
r=1 A

(n)
r T

I
(n)
r
TT
I

(n)
r

(A(n)
r )T , L(N) = N (0, Idd) and N is independent of

(Gn, b(n)). As Cov(Z∗n) = Idd for all n ≥ n1, we have E[GnGTn +b(n)(b(n))T ] = Idd for n ≥ n1.
Furthermore, we have

∥∥b(n)
∥∥3

3 = O(R(n)) and

∥∥GnGTn − Idd
∥∥3/2

3/2 =
∥∥∥ K∑
r=1

A(n)
r T

I
(n)
r
TT
I

(n)
r

(A(n)
r )T − Idd

∥∥∥3/2

3/2

= O
(∥∥∥ K∑

r=1
1{I(n)

r <n1}
A(n)
r (T

I
(n)
r
TT
I

(n)
r
− Idd)(A(n)

r )T
∥∥∥3/2

3/2

+
∥∥∥ K∑
r=1

A(n)
r (A(n)

r )T − Idd
∥∥∥3/2

3/2

)

= O
(

K∑
r=1

∥∥1{I(n)
r <n1}

A(n)
r

∥∥3
3 +

∥∥∥ K∑
r=1

A(n)
r (A(n)

r )T − Idd
∥∥∥3/2

3/2

)
= O(R(n)).

Thus, the following Lemma 5 implies ζ3(Z∗n,N (0, Idd)) = O(R(n)). Lemma 5 is the main
part of the present proof. J

I Remark 4. Theorem 3, when applicable, often improves over Theorem 1 by a factor 3 in
the exponent, see Remark 9 for an example. This is caused by the additional exponents in
(12) in comparison to (8).

I Lemma 5. Let (Z∗n)n≥0 be a sequence of d-dimensional random vectors satisfying Z∗n
d=

GnN + b(n) with some random (d× d)-matrix Gn and some random vector b(n) such that
E[Z∗n] = 0, Cov(Z∗n) = Idd and N ∼ N (0, Idd) is independent of (Gn, b(n)). Furthermore, we
assume that, as n→∞,∥∥GnGTn − Idd

∥∥3/2
3/2 +

∥∥b(n)∥∥3
3 = O(R(n))

for appropriate R(n). Then, we have, as n→∞,

ζ3(Z∗n,N (0, Idd)) = O(R(n)).

The proof of Lemma 5 builds upon ideas of [15].

AofA 2020
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3 Expansions of moments

In applications to problems arising in theoretical computer science, where the recurrence
(1) is explicitly given, one usually has no direct means to identify the orders of the terms
‖b(n) − b∗‖s and ‖A(n)

r − A∗r‖s. This is due to the fact that the mean vector Mn and the
covariance matrix Cn, for the cases 1 < s ≤ 2 and 2 < s ≤ 3 respectively, which are used
for the normalization (5) are typically not exactly known or too involved to be amenable
to explicit calculations. As a substitute one usually has asymptotic expansions of these
sequences as n→∞.

In the present section we assume the dimension to be d = 1 and Ar(n) = 1 for all
r = 1, . . . ,K and provide tools to apply the general Theorems 1 and 3 on the basis of
expansions of the mean and variance. We assume that

E[Xn] = µ(n) = f(n) + O(e(n)), Var(Xn) = σ2(n) = g(n) + O(h(n)), (14)

with e(n) = o(f(n)) and h(n) = o(g(n)). To connect Theorems 1 and 3 to recurrences with
known expansions we use the following notion.

I Definition 6. A sequence (a(n))n≥0 of non-negative numbers is called essentially non-
decreasing if there exists a c > 0 such that a(m) ≤ ca(n) for all 0 ≤ m < n.

The scaling introduced in (5) with the special choices Ar(n) = 1 for all r = 1, . . . ,K leads to
the scaled recurrence for (Xn) given in (2) with

A(n)
r = σ(I(n)

r )
σ(n) , b(n) = 1

σ(n)

(
bn − µ(n) +

K∑
r=1

µ(I(n)
r )

)
. (15)

Additionally, we consider the corresponding quantities

A
(n)
r = g1/2(I(n)

r )
g1/2(n)

, b
(n) = 1

g1/2(n)

(
bn − f(n) +

K∑
r=1

f(I(n)
r )

)
. (16)

Then we have:

I Lemma 7. With A(n)
r , b(n) given in (15), A(n)

r , b(n) given in (16), and the expansions for
µ(n), σ2(n) given in (14) the following holds.
If the sequence h/g1/2 is essentially non-decreasing then∥∥A(n)

r −A∗r
∥∥
s
≤
∥∥A(n)

r −A∗r
∥∥
s

+ O
(h(n)
g(n)

)
. (17)

If the sequence h is essentially non-decreasing then∥∥∥ K∑
r=1

(A(n)
r )2 − 1

∥∥∥
s
≤
∥∥∥ K∑
r=1

(A(n)
r )2 − 1

∥∥∥
s

+ O
(h(n)
g(n)

)
. (18)

If the sequence e is essentially non-decreasing then∥∥b(n) − b∗
∥∥
s
≤
∥∥b(n) − b∗

∥∥
s

+ O
(h(n)
g(n) + e(n)

g1/2(n)

)
. (19)

If the sequence g/h is essentially non-decreasing and

T (n) := E
K∑
r=1

gs/2−1(I(n)
r )h(I(n)

r )R(I(n)
r )

gs/2(n)R(n)

then we have

E
K∑
r=1

σs(I(n)
r )R(I(n)

r )
σs(n)R(n) ≤ E

K∑
r=1

gs/2(I(n)
r )R(I(n)

r )
gs/2(n)R(n)

+ O(T (n)). (20)
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Proof. We show (17), the other bounds can be shown similarly. Note that σ2(n) = g(n) +
O(h(n)) implies σ(n) = g1/2(n)+O(h(n)/g1/2(n)) and that for any essentially non-decreasing
sequence (a(n))n≥0 we have ‖a(I(n)

r )‖∞ = O(a(n)). Since h/g1/2 is essentially non-decreasing
we obtain

A(n)
r = σ(I(n)

r )
σ(n) = g1/2(I(n)

r ) + O(h(I(n)
r )/g1/2(I(n)

r ))
σ(n)

= g1/2(I(n)
r ) + O(h(n)/g1/2(n))

g1/2(n)
· g

1/2(n)
σ(n)

=
(
g1/2(I(n)

r )
g1/2(n)

+ O
(
h(n)
g(n)

))(
1 + O

(
h(n)
g(n)

))

= g1/2(I(n)
r )

g1/2(n)
+ O

(
h(n)
g(n)

(
1 + g1/2(I(n)

r )
g1/2(n)

))
.

Hence, we obtain

‖A(n)
r −A∗r‖s ≤ ‖A

(n)
r −A∗r‖s + O

(
h(n)
g(n)

(
1 +

∥∥∥A(n)
r

∥∥∥
s

))
.

Since A(n)
r → A∗r in Ls we have ‖A(n)

r ‖s = O(1), hence

‖A(n)
r −A∗r‖s ≤ ‖A

(n)
r −A∗r‖s + O

(
h(n)
g(n)

)
,

which is bound (17). J

Note that in applications the terms on the right hand side in the estimates (17)–(20) can
easily be bounded when expansions as in (14) with explicit functions e, f, g, h are available.

4 Applications

We start by deriving a known result to illustrate in detail how to apply our framework of the
previous sections.

4.1 Quicksort: Key comparisons
The number of key comparisons Yn needed by the Quicksort algorithm to sort n randomly
permuted (distinct) numbers satisfies the distributional recursion

Yn
d= YIn

+ Y ′n−1−In
+ n− 1, n ≥ 1, (21)

where Y0 := 0 and (Yk)k=0,...,n−1, (Y ′k)k=0,...,n−1, In are independent, In is uniformly distrib-
uted on {0, . . . , n− 1}, and Yk

d= Y ′k, k ≥ 0. Hence, equation (21) is covered by our general
recurrence (1). For the expectation and variance of Yn exact expressions are known which
imply the asymptotic expansions

EYn = 2n log(n) + (2γ − 4)n+ O(logn),
Var(Yn) = σ2n2 − 2n log(n) + O(n),

where γ denotes Euler’s constant and σ :=
√

7− 2π2/3 > 0. We introduce the normalized
quantities X0 := X1 := X2 := 0 and

Xn := Yn − EYn√
Var(Yn)

, n ≥ 3.

AofA 2020
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To apply Theorem 1 we need to find an 0 < s ≤ 3 and a sequence (R(n)) with (8) and (9).
Note that the Yn are bounded, thus Ls-integrable for any s > 0. To bound the Ls-norms
appearing in (8) we use Lemma 7 and choose

f(n) = 2n log(n) + (2γ − 4)n, e(n) = logn,
g(n) = σ2n2, h(n) = n logn.

With these functions we obtain for the quantities defined in (16) that

A
(n)
1 = In

n
, A

(n)
2 = n− 1− In

n
,

b
(n) = 1

σ

(
2In
n

log In
n

+ 2n− 1− In
n

log n− 1− In
n

+ n− 1
n

+ O
(

logn
n

))
.

With the embedding In = bnUc with U uniformly distributed over the unit interval [0, 1] we
have

A∗1 = U, A∗2 = 1− U, b∗ = 1
σ

(2U log(U) + 2(1− U) log(1− U) + 1) =: 1
σ
ϕ(U).

The limit theorem Xn → X has been derived by different methods by Régnier [16] and
Rösler [17]. Rösler [17] also found that the scaled limit Y := σX satisfies the distributional
fixed-point equation

Y
d= UY + (1− U)Y ′ + ϕ(U).

Lower and upper bounds for the rate of convergence in Xn → X have been studied for
various metrics in Fill and Janson [6] and Neininger and Rüschendorf [13].

Now, we apply the framework of the present paper: For r = 1, 2 and any s ≥ 1 we
find that

‖A(n)
r −A∗r‖s = O

( 1
n

)
.

Using Proposition 3.2 of Rösler [17] we obtain

‖b(n) − b∗‖s = O
( logn

n

)
.

Moreover, we have
h(n)
g(n) = O(R(n)) and e(n)

g1/2(n)
= O(R(n)) with R(n) := logn

n
,

thus Lemma 7 implies that condition (8) is satisfied for our choice of the sequence R. To
verify condition (9) by use of (20) we obtain that for T (n) given in Lemma 7 we find
T (n) = O(log(n)/n)→ 0 and that

E
2∑
r=1

gs/2(I(n)
r )R(I(n)

r )
gs/2(n)R(n)

= E
2∑
r=1

(
I

(n)
r

n

)s−1
log I(n)

r

logn .

Note that the latter expression has a limit superior of less than 1 if and only if s > 2. Hence,
Theorem 1 is applicable for s > 2 and yields that

ζs(Xn, X) = O
(

logn
n

)
, for 2 < s ≤ 3. (22)

The bound (22) had previously been shown for s = 3 in [13], where also the optimality of
the order was shown, i.e., that ζ3(Xn, X) = Θ (log(n)/n).

In the planned full paper version we also discuss bounds on rates of convergence for
various cost measures of the related Quickselect algorithms under various models for the
rank to be selected.
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4.2 Size of m-ary search trees
The size of m-ary search trees satisfies the recurrence (1) with K = m ≥ 3, A1(n) = · · · =
Am(n) = 1, n0 = m, bn = 1, i.e., we have

Yn
d=

m∑
r=1

Y
(r)
I

(n)
r

+ 1, n ≥ m.

For a representation of I(n) we define for independent, identically unif[0, 1] distributed random
variables U1, . . . , Um−1 their spacings in [0, 1] by S1 = U(1), S2 = U(2) − U(1), . . . , Sm :=
1− U(m−1), where U(1), . . . , U(m−1) denote the order statistics of U1, . . . , Um−1. Then I(n)

has the mixed multinomial distribution:

I(n) d= M(n−m+ 1, S1, . . . , Sm).

By this we mean that given (S1, . . . , Sm) = (s1, . . . , sm) we have that I(n) is multinomial
M(n −m + 1, s1, . . . , sm) distributed. Expectations, variances and limit laws for Yn have
been studied, see [12, 4]. We have

EYn = µn+ O(1 + nα−1), m ≥ 3, (23)
Var(Yn) = σ2n+ O(1 + n2α−2), 3 ≤ m ≤ 26, (24)

Here, the constants µ, σ > 0 depend on m and α ∈ R depends on m such that α < 1 for
m ≤ 13, 1 ≤ α ≤ 4/3 for 14 ≤ m ≤ 19, and 4/3 ≤ α ≤ 3/2 for 20 ≤ m ≤ 26, see, e.g.,
Mahmoud [12, Table 3.1] for the values α = αm depending on m. It is known that Yn
standardized by mean and variance satisfies a central limit law for m ≤ 26, whereas the
standardized sequence has no weak limit for m > 26 due to dominant periodicities, see
Chern and Hwang [4]. The rate of convergence in the central limit law for m ≤ 26 for the
Kolmogorov metric has been identified in Hwang [9]. Our Theorem 3 implies the central limit
theorem for Yn with m ≤ 26 with the same (up to an ε for 3 ≤ m ≤ 19) rate of convergence
for the Zolotarev metric ζ3:

I Theorem 8. The size Yn of a random m-ary search tree with n items inserted satisfies,
for m ≤ 26 and any ε > 0,

ζ3

( Yn − EYn√
Var(Yn)

,N (0, 1)
)

=
{

O
(
n−1/2+ε), 3 ≤ m ≤ 19,

O
(
n−3(3/2−α)), 20 ≤ m ≤ 26,

as n→∞.

Proof. In order to apply Theorem 3 we have to estimate the orders of ‖
∑m
r=1(A(n)

r )2− 1‖3/2

and ‖b(n)
∥∥

3 with A(n)
r and b(n) defined in (3). For this we apply Lemma 7. From (23) and

(24) we obtain that for the quantities appearing in Lemma 7 we can choose f(n) = µn,
e(n) = 1 ∨ nα−1, g(n) = σ2n, and h(n) = 1 ∨ n2(α−1). Hence we obtain

∥∥∥ m∑
r=1

(A(n)
r )2 − 1

∥∥∥
3/2

=
∥∥∥ m∑
r=1

I
(n)
r

n
− 1
∥∥∥

3/2
= m− 1

n
= O

(
n−1)

and O(h(n)/g(n)) = O(n−(1∧(3−2α))). This implies∥∥∥ m∑
r=1

(A(n)
r )2 − 1

∥∥∥3/2

3/2
= O

(
n−((3/2)∧(3(3/2−α)))).
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Similarly we obtain

∥∥b(n)∥∥
3 = 1

σ
√
n

∥∥∥1− µn+
m∑
r=1

µI(n)
r

∥∥∥
3

= 1
σ
√
n

∥∥1− µ(m− 1)
∥∥

3 = O
(
n−1/2)

and O(e(n)/g1/2(n)) = O(n−(1/2∧(3/2−α))). This implies∥∥b(n)∥∥3
3 = O

(
n−((3/2)∧(3(3/2−α)))).

Hence, condition (12) is satisfied with R(n) = n−((3/2)∧(3(3/2−α))). J

I Remark 9. Using Theorem 1 instead of Theorem 3 in the latter proof is also possible
but leads to a bound O(n−(3/2−α)) for 20 ≤ m ≤ 26, missing the factor 3 appearing in
Theorem 8.

In the full paper version we also discuss rates of convergence for the number of leaves of
d-dimensional random point quadtrees in the model of [7, 3, 8] where a similar behavior
as in Theorem 8 appears. A technically related example is the number of maxima in right
triangles in the model of [1, 2], where the order n−1/4 appears. Our framework also applies.

4.3 Periodic functions in mean and variance

We now discuss some applications where the asymptotic expansions of the mean and the
variance include periodic functions instead of fixed constants. This is the case for several
quantities in binomial splitting processes such as tries, PATRICIA tries and digital search
trees. Throughout this section, we assume that we have a sequence (Yn)n≥0 with finite third
moments satisfying the recursion

Yn
d= Y

(1)
I

(n)
1

+ Y
(2)
I

(n)
2

+ bn, n ≥ n0, (25)

with (I(n), bn), (Y (1)
n )n≥0 and (Y (2)

n )n≥0 independent and (Y (r)
n )n≥0

d= (Yn)n≥0 for r = 1, 2.
Furthermore, I(n)

1 has the binomial distribution Bin(n, 1
2 ) and I

(n)
2 = n − I(n)

1 or I(n)
1 is

binomially Bin(n−1, 1
2 ) distributed and I(n)

2 = n−1−I(n)
1 . Mostly, these binomial recurrences

are asymptotically normally distributed, see [10, 11, 14, 18] for some examples.
Our first theorem covers the case of linear mean and variance, i.e. we assume that, as

n→∞,

E[Yn] = nP1(log2 n) + O(1), (26)
Var(Yn) = nP2(log2 n) + O(1), (27)

for some smooth and 1-periodic functions P1, P2 with P2 > 0. Possible applications would
start with the analysis of the number of internal nodes of a trie for n strings in the symmetric
Bernoulli model and the number of leaves in a random digital search tree, see, e.g., [10].

I Theorem 10. Let (Yn)n≥0 have finite third moments and satisfy (25) with ‖bn‖3 = O(1),
(26) and (27). Then, for any ε > 0 and n→∞, we have

ζ3

(Yn − E[Yn]√
Var(Yn)

,N (0, 1)
)

= O(n−1/2+ε).
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We now consider the case where our quantities Yn satisfy recursion (25) with bn being
essentially n. We assume that, as n→∞, we have

E[Yn] = n log2(n) + nP1(log2 n) + O(1), (28)
Var(Yn) = nP2(log2 n) + O(1), (29)

for some smooth and 1-periodic functions P1, P2 with P2 > 0. This covers, for example, the
external path length of random tries and related digital tree structures constructed from n

random binary strings under appropriate independence assumptions.

I Theorem 11. Let (Yn)n≥0 have finite third moments and satisfy (25) with ‖bn−n‖3 = O(1),
(28) and (29). Then, for any ε > 0 and n→∞, we have

ζ3

(Yn − E[Yn]√
Var(Yn)

,N (0, 1)
)

= O(n−1/2+ε).

4.4 A multivariate application
We consider a random binary search tree with n nodes built from a random permutation of
{1, . . . , n}. For n ≥ 0, we denote by L0n the number of nodes with no left descendant and
by L1n the number of nodes with exactly one left descendant. Defining Yn := (L0n, L1n), we
have Y0 = (0, 0) and we obtain the following distributional recurrence:

Yn
d= Y

(1)
I

(n)
1

+ Y
(2)
I

(n)
2

+ bn, n ≥ 1,

where (Y (1)
j )j≥0 and (Y (2)

j )j≥0 are independent copies of (Yj)j≥0, I(n)
1 is uniformly distributed

on {0, . . . , n − 1} and independent of (Y (1)) and (Y (2)), I(n)
2 = n − 1 − I

(n)
1 and bn =

(1{I(n)
1 =0},1{I(n)

1 =1}). In Devroye [5] it is shown that, for n ≥ 2,

E[L0n] = 1
2(n+ 1), E[L1n] = 1

6(n+ 1),

and that the standardized quantities have a limiting normal distribution. Using Devroye’s
description with local counters one also obtains the covariance structure:

I Lemma 12. For n ≥ 4, we have Cov(Yn) = (n+ 1) Γ with

Γ = 1
360

(
30 −15
−15 28

)
.

For n ≥ 0, we now set Mn := E[Yn], Cn = Id2 for n ≤ 3, Cn := Cov(Yn) for n ≥ 4 and
define Xn := C

−1/2
n (Yn −Mn) for n ≥ 0. Note that the matrix Γ in Lemma 12 is symmetric

and positive definite, which implies, for n ≥ 4,

C1/2
n =

√
n+ 1 Γ1/2 and C−1/2

n = 1√
n+ 1

Γ−1/2.

The normalized quantities satisfy X0 = (0, 0) and recursion (2) with K = 2, n0 = 1,

A(n)
r = C−1/2

n C
1/2
I

(n)
r

= 1{I(n)
r ≥4}

√
I

(n)
r + 1
n+ 1 Id2 + 1{I(n)

r <4}
1√
n+ 1

Γ−1/2

for r = 1, 2 and

b(n) = C−1/2
n (bn −Mn +M

I
(n)
1

+M
I

(n)
2

).
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Modeling all quantities on a joint probability space such that I(n)
1 /n converges almost surely

to a uniform random variable U in [0, 1], we have the L3-convergences A(n)
1 →

√
U Id2,

A
(n)
2 →

√
1− U Id2 and b(n) → 0 as n → ∞. Thus, we are in the situation of Section 2.2

and obtain the limiting equation

X
d=
√
UX(1) +

√
1− UX(2),

with U uniformly distributed on [0, 1] and X(1), X(2) and U independent. We now check the
conditions of Theorem 3. Since A(n)

1 (A(n)
1 )T +A(n)

2 (A(n)
2 )T = Id2 on the event {I(n)

1 , I
(n)
2 ≥ 4},

we obtain, as n→∞,

∥∥∥ 2∑
r=1

A(n)
r (A(n)

r )T − Id2

∥∥∥3/2

3/2
= O

(∥∥∥1{I(n)
1 <4}

( 1
n+ 1 Γ−1 + I

(n)
2 + 1
n+ 1 Id2 − Id2

)∥∥∥3/2

3/2

)

= O
(
E
[
1{I(n)

1 <4}

∥∥∥ 1
n+ 1 Γ−1 − I

(n)
1 + 1
n+ 1 Id2

∥∥∥3/2

op

])
= O

(
n−5/2).

Similarly, we obtain∥∥b(n)∥∥3
3 = O(n−5/2).

Since we have ‖1{I(n)
r <`}A

(n)
r ‖3

3 = O(n−5/2) for ` ∈ N and r = 1, 2, the technical conditions
are satisfied. We now use Theorem 3 with R(n) = n−1/2. Note that condition (13) is not
satisfied for R(n) = n−1/2, but we can use the weakened condition stated in Remark 2 to
obtain the following result.

I Theorem 13. Denoting by Yn := (L0n, L1n) the vector of the numbers of nodes with no
and with exactly one left descendant respectively in a random binary search tree with n nodes
we have, for n→∞, that

ζ3
(
Cov(Yn)−1/2(Yn − E[Yn]),N (0, Id2)

)
= O(n−1/2).
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