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Abstract
Given a positive integer n and a real number p ∈ [0, 1], let D(n, p) denote the random digraph
defined in the following way: each of the

(
n
2

)
possible edges on the vertex set {1, 2, 3, . . . , n} is

included with probability 2p, where all edges are independent of each other. Thereafter, a direction
is chosen independently for each edge, with probability 1

2 for each possible direction. In this paper,
we study the probability that a random instance of D(n, p) is acyclic, i.e., that it does not contain a
directed cycle. We find precise asymptotic formulas for the probability of a random digraph being
acyclic in the sparse regime, i.e., when np = O(1). As an example, for each real number µ, we find
an exact analytic expression for ϕ(µ) = limn→∞ n

1/3P
{

D
(
n, 1

n
(1 + µn−1/3)

)
is acyclic

}
.
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1 Introduction

By a simple digraph, we mean a digraph (directed graph) without loops, (directed) 2-cycles
or multiple edges. Such a digraph is called acyclic if it has no directed cycles, i.e., cycles
that follow the direction of the edges. One easily observes that the only strongly connected
components of an acyclic digraph are its vertices. Acyclic digraphs form an important class of
digraphs that occurs naturally in many applications, such as scheduling or Bayesian networks.

The enumeration of acyclic digraphs is a classical combinatorial problem that was first
considered in the 1970s, see Harary and Palmer [17], Liskovec [23, 24], Robinson [31, 32]
and Stanley [34]. It is based on a recursion for the number of acyclic digraphs, which we
briefly recall here. Let an denote the number of acyclic digraphs on n (labelled) vertices.
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25:2 Acyclic Digraphs

Distinguishing by the number of sinks (vertices without an outgoing edge; equivalently, one
can also consider sources, which are vertices without an incoming edge) and applying an
elegant inclusion-exclusion argument, one finds that

an =
n∑
k=1

(−1)k−1
(
n

k

)
2k(n−k)an−k

for n > 1, with initial value a0 = 1. This can be rewritten as

n∑
k=0

(−1)k

k!(n− k)!2
−(k2)−(n−k2 )an−k =

{
1 n = 0,
0 n > 0.

Introducing the special generating function A(x) =
∑
n≥0

1
n!2
−(n2)anxn, one finds that

A(x) = 1∑
n≥0

(−1)n
n! 2−(n2)xn

.

It can be shown that this function is meromorphic, and that the pole with minimum modulus
occurs at x ≈ 1.48808. From this, one can derive the asymptotic formula

an
n! 2−(n2) ∼ C ·Bn,

where C ≈ 1.74106 and B ≈ 0.67201. These results can be found in the work of Robinson [31]
(see also Liskovec [23] and Stanley [34]).

It is not difficult to include the number of edges in the count: let an,m denote the number
of labelled acyclic digraphs with n vertices and m edges, and set

A(x, y) =
∑
n,m≥0

1
n! (1 + y)−(n2)an,mxnym. (1)

Then, we can also write this bivariate generating function in a reciprocal form:

A(x, y) = 1
φ(x, y) , where φ(x, y) =

∞∑
k=0

(−x)k

k! (1 + y)(
k
2)
. (2)

This was already observed by Robinson in [31]. Bender, Richmond, Robinson and Wormald [1]
exploited this generating function identity to prove asymptotic formulas for the number of
acyclic digraphs with a given number of vertices and edges if the number of edges is “large”
(i.e., quadratic in the number of edges). In particular, it is shown in [1] that the number of
edges in a random acyclic digraph with n vertices satisfies a central limit theorem with mean
∼ n2

4 and variance ∼ n2

8 .
Next, let us discuss models of random digraphs. D(n, p) denotes a directed digraph on n

labelled vertices in which each of the n(n− 1) directed edges is present with probability p,
independently of the others, as described in [20,26]. The model exhibits a phase transition
that is somewhat similar to the binomial model G(n, p) of undirected graphs. This phase
transition was, among others, studied by Karp [20] and Łuczak [25]. They proved the
following: if np is fixed with np < 1 then every strong component has at most ω(n) vertices,
for any sequence ω(n) tending to infinity arbitrarily slowly, and all strong components
are either cycles or single vertices. If np is fixed with np > 1, then there exists a unique
strong component of linear size, while all the other strong components are of logarithmic
size (see also [15, Chapter 13]). Recently, Łuczak and Seierstad [26] obtained more precise
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results about the width and behaviour of the window where the phase transition occurs.
They established that the scaling window is given by np = 1 + µn−1/3, where µ is fixed.
There, the largest strongly connected components have size of order n1/3. Bounds on the
tail probabilities of the distribution of the size of the largest component are also given by
Coulson [7].

We use a slightly different model of random digraphs that has already been considered
in similar contexts: first, we generate a random undirected graph according to the classical
Erdős-Rényi model, where each of the possible

(
n
2
)
edges between n fixed vertices is inserted

with the same probability 2p and all edges are independent of each other. Thereafter, each
edge is given a direction, where each of the two directions has probability 1

2 and all choices
are made independently again. Note that each possible directed edge is present in the
graph with the same probability p in this model. The result is a random digraph without
loops, multiple edges and 2-cycles (the latter is relevant since the presence of 2-cycles would
immediately mean that the digraph is not acyclic). The random digraph generated in this
way is denoted by D(n, p), and we ask the simple question: with what probability is D(n, p)
acyclic? Throughout this paper, this probability will be denoted by P(n, p). In the case
where p is of constant order, the asymptotic behaviour of P(n, p) can be inferred from the
aforementioned results of Bender, Richmond, Robinson and Wormald. In this paper, however,
we will be interested in the sparse regime, where p = λ/n for some fixed real λ. In this
case, the number of edges is only linear in n, resulting in a much higher probability of being
acyclic. There is no particular reason why we chose to work with D(n, p) in this paper. Both
models have appeared in the literature, but due to lack of space we only treat one model
here. We will include D(n, p) in the long version of this paper.

Before we get to the statement of our main result, let us also review some related works.
The model D(n, p) of simple random digraphs was used by Subramanian in [30], where the
author studied induced acyclic subgraphs in random digraphs for fixed p. Following this
work, there are also some relatively recent results on the related question of the largest
acyclic subgraph in random digraphs in the stated range [9–11,33].

The structure of the strong components of a random digraph for the D(n, p) model has
been studied by many authors in the dense case, i.e., when np → ∞ as n → ∞. The
largest strong components in a random digraph with a given degree sequence are studied
by Cooper and Frieze [4] and the strong connectivity of an inhomogeneous random digraph
was studied by Bloznelis, Göetze and Jaworski in [3]. The hamiltonicity of D(n, p) was
investigated by Hefetz, Steger and Sudakov [18] and by Ferber, Nenadov, Noever, Peter
and Škorić [13], by Cooper, Frieze and Molloy [5] and by Ferber, Kronenberg and Long [12].
Krivelevich, Lubetzky and Sudakov [21] also proved the existence of cycles of linear size with
high probability (w.h.p.) when np is large enough.

Interestingly, since the enumeration of acyclic digraphs by Robinson [31] and the asymp-
totic results on acyclic digraphs by Bender et al. [1, 2], dense random graphs have been
the focus of research in this context. However, a forthcoming independent approach of De
Panafieu and Dovgal [8] gives a characterization of the probability that a digraph is acyclic
inside the critical window using techniques from analytic combinatorics and the uniform
model for digraphs.

Returning to the functional equation relating A(x, y) and φ(x, y) in (2), it is clear that
the behaviour of the zeros of φ(x, y) plays an important role in the study of acyclic digraphs.
Here, by a zero of φ(x, y) we mean a function x = x(y) that satisfies φ(x, y) = 0. The
properties of these zeros are certainly interesting in their own right. There are some known
results in this direction. It is, for example, known that all zeros of φ are real, positive and
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distinct when y > 0, see [22, 29]. For a given y > 0 and j ∈ N, let %j(y) be the j-th smallest
solution to the equation φ(x, y) = 0. So, as mentioned before, we have %1(1) ≈ 1.48808.
Grabner and Steinsky [16] studied the behaviour of the other zeros of φ(x, 1), extending the
work of Robinson. Our first result provides asymptotic formulas for the zeros of φ as y → 0+.

I Theorem 1. Let φ(x, y) be the function defined in (2). For a given y, let %j(y) be the
solution to the equation φ(x, y) = 0 that is the j-th closest to zero. If j ∈ N is fixed, then
we have

%j(y) = 1
e
y−1 − aj

21/3e
y−1/3 − 1

6e +O(y1/3), as y → 0+, (3)

where aj is the zero of the Airy function Ai(z) that is j-th closest to 0. Furthermore, we
have the following estimate for the partial derivative of φ(x, y) at %j(y):

φx(%j(y), y) ∼ −κj y1/6 exp
(
− 1

2y
−1 + 2−1/3aj y

−1/3
)

as y → 0+, (4)

where

κj = π1/227/6e11/12Ai′(aj).

Using Theorem 1, we are able to obtain the following result on the probability that D(n, p)
has no directed cycles.

I Theorem 2. Let p = λ/n with λ ≥ 0 fixed. Then, the probability P(n, p) that a random
digraph D(n, p) is acyclic satisfies the following asymptotic formulas as n→∞:

P(n, p) ∼


(1− λ)eλ+λ2/2 if 0 ≤ λ < 1,
γ1n
−1/3 if λ = 1,

γ2n
−1/3e−c1n−c2n

1/3 if λ > 1,
(5)

where

γ1 = 2−1/3e3/2

2π

∫ ∞
−∞

1
Ai(−i21/3t)

dt ≈ 2.19037,

γ2 = 2−2/3

Ai′(a1)λ
5/6e−λ

2/4+8λ/3−11/12,

c1 = λ2−1
2λ − log λ,

c2 = 2−1/3a1λ
−1/3(1− λ),

and a1 is the zero of the Airy function Ai(z) with the smallest modulus.

We are also able to determine an asymptotic formula for the probability P(n, p) in the
critical window, i.e., when np = 1 + µn−1/3 and µ is bounded. This result is formulated in
the next theorem.

I Theorem 3. If np = 1 + µn−1/3 such that µ is contained in a fixed bounded real interval,
then

P(n, p) = (ϕ(µ) + o(1))n−1/3, as n→∞, (6)

where

ϕ(µ) = 2−1/3e3/2−µ3/6 × 1
2πi

∫ i∞

−i∞

e−µs

Ai(−21/3s)
ds. (7)



D. Ralaivaosaona, V. Rasendrahasina, and S. Wagner 25:5

The term that follows after “×” in Equation (7) is an inverse (two-sided) Laplace transform.
Hence, the function 21/3eµ

3/6−3/2ϕ(µ) can be interpreted as the inverse (two-sided) Laplace
transform of the function Ai(−21/3s)−1. We provide a numerical plot of ϕ(µ) in Figure 1.
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Figure 1 Numerical plot of ϕ(µ).

Throughout this paper, we use the Vinogradov notation � interchangeably with the
O-notation, i.e., as x→ a (resp. x→∞), f(x)� g(x) and f(x) = O(g(x)) both mean that
there exists C > 0 independent of x such that |f(x)| ≤ Cg(x) for all x sufficiently close to a
(resp. all sufficiently large x > 0).

2 Estimates of φ(x, y) and its zeros

The main ingredients in the proofs of our theorems are asymptotic estimates for φ(x, y)
as y → 0+, for various ranges of x, including complex values. These estimates are given
in Proposition 4 and Proposition 7. The proofs of these propositions are long and rather
technical, so we will not include them in this extended abstract. However, sketched proofs
are provided in the Appendix. The proofs are based on the saddle-point method as it is
possible to express φ(x, y) in an integral form via a formula due to Mahler [27].

2.1 Mahler’s transformation
The function φ(x, y) can be expressed in terms of the function F (z) in [27, Equation (6)]. In
fact, they are equal if we set z = −x and q = (1 + y)−1. Thus using the integral form of F (z)
in [27, Equation (4)] we obtain the following formula:

φ(x, y) =
√

log(1 + y)
2π

∫ ∞
−∞

exp
(
−1

2 log(1 + y)z2 − x(1 + y)1/2−iz
)

dz. (8)

It is worth noting that this equation can also derived from [14, Lemma 1]. To simplify this
expression, from now on, we shall use the abbreviations

α := log(1 + y) and β :=
√

1 + y. (9)

Moreover, by making the change of variable z 7→ z/α, we can rewrite Equation (8) as

φ(x, y) = 1√
2πα

∫ ∞
−∞

ef(z)dz, where f(z) := − 1
2αz

2 − xβe−iz. (10)

The function f depends on the variables x and y, but we drop these dependencies in the
notation for easy reading. In addition, when we say derivative of f , we always mean derivative
with respect to z. In the rest of this section, we assume that x is real.

AofA 2020



25:6 Acyclic Digraphs

2.2 Saddle-point method
The integral in the formula for φ(x, y) in (10) is an integral over the real line. However, since
the function f is entire as a function of z, we can change this path of integration without
affecting the validity of the equation (Figure 2 in the appendix shows the paths that we
considered). This allows us to apply the saddle-point method to the integral (10). The
objective is to find a path that goes through a saddle-point, i.e., a solution of f ′(z) = 0.
Since the derivative of f is f ′(z) = − 1

αz + ixβe−iz, we can see that f ′(z) = 0 if and only if

izeiz = −xαβ. (11)

Hence, the solutions can be expressed in terms of the branches of the Lambert-W function,
which is implicitly defined by the equation W(s)eW(s) = s. We choose a solution to
Equation (11) that is given by the principal branch of W. So, set

w := W0(−xαβ) and z0 := −iw, (12)

where W0 is the principal branch of the Lambert function. Note that z0 still depends on the
variables x and y. The fact that the Lambert function W0(z) has a singularity at z = −1/e
suggests that we should consider x to be a function of y such that xαβ is close to 1/e.
Motivated by this, let us define x0 and δ such that

x0 = 1
eαβ

and x = (1 + δ)x0. (13)

With this setting, we are now able to give asymptotic estimates of φ(x, y) when y → 0+ for
several ranges of δ. This result is summarized in the following proposition.

I Proposition 4. If x is of the form x = (1 + δ)x0, then φ(x, y) satisfies the following
asymptotic formulas as y → 0+:

(a) If δ ≥ −1 and δ = −1 + o(1), then

φ(x, y) ∼ e 1
2α (w2+2w). (14)

(b) If δ < 0 and α2/3 � |δ| ≤ 1− ε for some constant ε > 0, then

φ(x, y) ∼ 25/6π1/2α−1/6|w|−1/3Ai(R)e 2
3R

3/2+ 1
2α (w2+2w) (15)

where

R = 2−2/3(1 + w)2w−4/3α−2/3.

(c) If we let δ = θα2/3, then

φ(x, y) = 2−1/2π−1/2α−1/6
(
K1(θ) +K2(θ)α1/3 +O(α2/3)

)
e−

1
2α
−1−θα−1/3

, (16)

uniformly for θ in any fixed bounded closed interval, where

K1(θ) = π24/3Ai(−21/3θ),

K2(θ) = 5
3π 21/3θ2Ai(−21/3θ)− 1

3π22/3Ai′(−21/3θ).

Proof. A sketch of the proof is given in the appendix. J
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Observe that there is an overlap in the conditions of Part (b) and Part (c), but one can
show that the asymptotic formulas (15) and (16) agree in the overlap. To check this, one
needs to use the classic asymptotic formula for the Airy function Ai(z) as well as the
asymptotic formula for W0(z) near its singularity −1/e. These are well known facts, see for
example [28, (9.7.5)] and [6, (4.22)]. Since these estimates will be referred to quite often in
this paper, let us state them here. For any ε > 0,

Ai(z) ∼ e−
2
3 z

3/2

2
√
πz1/4 as |z| → ∞, and |Arg(z)| ≤ π − ε. (17)

As for the Lambert function, as z → −1/e, we have

W0(z) = −1 + p− 1
3p

2 + 11
72p

3 + · · · (18)

where p =
√

2(ez + 1) (here,
√
· denotes the principal branch of the square root function).

We are now ready to prove Theorem 1.

2.3 Proof of Theorem 1
Proof. We already know that the zeros of φ(x, y) are real and positive. Observe that the
main terms of φ(x, y) in Part (a) and Part (b) of Proposition 4 cannot vanish (in Part (b),
R is always positive, which implies Ai(R) 6= 0). However for Part (c), the term K1(θ) in (16)
can be zero, and this happens precisely when θ = −2−1/3aj , where aj is one of the zeros of
Ai(z).

If we let x = (1 + θα2/3)x0, and make θ vary in a small interval around −2−1/3aj , then
the main term of φ(x, y) changes sign. So by the intermediate value theorem there must be a
zero close to (1− 2−1/3ajα

2/3)x0. The asymptotic formula of such a zero can be obtained by
a simple bootstrapping argument using (16). This eventually gives an asymptotic formula of
the form

1
e
y−1 − aj

21/3e
y−1/3 − 1

6e +O(y1/3), as y → 0+. (19)

To show that there is only one zero that satisfies this asymptotic formula for every aj , we
make use of the functional equation

φx(x, y) = −φ
(
(1 + y)−1x, y

)
,

which follows easily from the definition of φ(x, y) in (2). Now, suppose that there are two
different zeros %′ and %′′ that both satisfy (19) for the same j. Then by Rolle’s theorem,
there exists C between %′ and %′′ (which also means that C satisfies the asymptotic formula
(19)) such that (1 + y)−1C is a zero of φ. This leads to a contradiction, because if C satisfies
(19) then (1 +y)−1C does not (not even if aj is replaced by another zero of the Airy function)
if y is sufficiently small. So (1 + y)−1C cannot be a zero of φ(x, y).

Now that we have established that there is only one zero of φ(x, y) that satisfies (19) for
each fixed j ∈ N and sufficiently small y, we name it %j(y). Finally, to estimate φx(%j(y), y)
as y → 0+, we make use of the above functional equation again, which gives us

φx(%j(y), y) = −φ
(
(1 + y)−1%j(y), y

)
.

Then, we use (19) and (16) to estimate the right-hand side. J
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25:8 Acyclic Digraphs

3 Proving Theorem 2 and Theorem 3

3.1 Case 0 ≤ λ < 1
I Lemma 5. Consider the random digraph D (n, p) with p = λ/n and 0 ≤ λ < 1 fixed. Let
Xn be the total number of (directed) cycles in this graph. Then,
(a) w.h.p., all strong components of D(n, p) are either cycles or single vertices.
(b) the number of vertices on a cycle is at most ω, for any ω(n)→∞.
(c) Xn converges in distribution to Po(− log(1− λ)− λ− λ2

2 ).

Proof. If there is a strong component that is not a cycle or a single vertex, then there are
three internally disjoint paths connecting two vertices u and v such that two of them do
not have the same orientation or there are two directed cycles with a common vertex. The
expected number of such components is bounded above by

2
(
n

2

) n∑
i=1

n∑
j=1

n∑
k=1

(
n

i

)
i!pi+1

(
n

j

)
j!pj+1

(
n

k

)
k!pk+1 +

(
n

1

) n∑
i=2

n∑
j=2

(
n

i

)
i!pi+1

(
n

j

)
j!pj+1

≤ λ3

n

∞∑
i=0

∞∑
j=0

∞∑
k=0

λi+j+k + λ2

n

∞∑
i=0

∞∑
j=0

λi+j = O(n−1).

By the Markov inequality, this means that there are, w.h.p., no such components.
For (b), we can bound the expected number of cycles of length larger than ω by
n∑

k=ω

(
n

k

)
(k − 1)!pk =

n∑
k=ω

∏k−1
i=0 (n− i)
nk

λk

k
≤

n∑
k=ω

λk = O (λω) .

As 0 < λ < 1, (b) follows from the Markov inequality.
Now to tackle (c), we compute first the expectation of Xn. Here, we have

E [Xn] =
n∑
k=3

(
n

k

)
(k − 1)!pk.

It follows that

lim
n→∞

E(Xn) = lim
n→∞

n∑
k=3

∏k−1
i=0 (n− i)
nk

λk

k
∼
∞∑
k=3

λk

k
= − log(1− λ)− λ− λ2

2 = a(λ).

Since the falling factorial (Xn)r = Xn(Xn− 1) · · · (Xn− r+ 1) counts the number of ordered
r-tuples of r disjoint cycles, the r-th factorial moment of Xn is

E [(Xn)r] =
n∑

k1=3

n−k1∑
k2=3

. . .

n−
∑r−1

i=1
ki∑

kr=3

(
n

k1, k2, . . . , kr, n− k1 − · · · − kr

) r∏
i=1

(ki − 1)!pki .

Without going into the technical details, one can now use the statement in (b) to show that
the summations can be taken to ∞. One finds that for fixed r ≥ 2, the r-th factorial moment
E [(Xn)r] is asymptotically equivalent to a(λ)r as n→∞. So by means of [19, Corollary 6.8],
we have convergence to a Poisson distribution of parameter a(λ). J

Now, the case 0 ≤ λ < 1 of Theorem 2 is a simple consequence of Lemma 5. Indeed Part (c)
of Lemma 5 implies that

lim
n→∞

P(n, p) = lim
n→∞

P (Xn = 0) = e−a(λ) = (1− λ)eλ+λ2/2.
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3.2 Case λ ≥ 1

3.2.1 Preliminaries
Let us begin with a crucial lemma which relates the probability P(n, p) to the coefficient
[xn]A(x, y).

I Lemma 6. The probability P(n, p) that a random digraph D(n, p) is acyclic is given by

P(n, p) = n!(1− p)(
n
2)[xn]A

(
x, p

1−2p

)
. (20)

Proof. Define An(y) =
∑(n2)
m=0 an,my

m where an,m is the number of acyclic digraphs with n
vertices and m edges defined in (1). Therefore, we have

A(x, y) =
∑
n≥0

An(y)(1 + y)−(n2)xn

n! and An(y) = n!(1 + y)(
n
2)[xn]A(x, y) . (21)

Since P(n, p) is defined to be the probability that D(n, p) is acyclic, we can express it as
P(n, p) =

∑
D P(D(n, p) = D), where the sum runs over all acyclic digraphs on n fixed

vertices. The probability P(D(n, p) = D) does not depend on the structure of D but only on
its number of edges. Hence, by distinguishing the number of edges, we have

P(n, p) =
(n2)∑
m=0

an,mp
m(1− 2p)(

n
2)−m

= (1− 2p)(
n
2)

(n2)∑
m=0

an,m

(
p

1− 2p

)m
= (1− 2p)(

n
2)An

(
p

1− 2p

)
.

Applying (21) with y replaced by p/(1− 2p), we get after a bit of algebra that the last term
is the same as the right-hand side of Equation (20). J

By Lemma 6, it suffices to estimate the coefficient [xn]A(x, y) when y is of order n−1. To
this end, we use the Cauchy integral formula

[xn]A(x, y) = 1
2πi

∮
|x|=ρ

A(x, y)
xn+1 dx = 1

2πi

∮
|x|=ρ

1
φ(x, y)xn+1 dx, (22)

where 0 < ρ < %1(y). Notice that x here is a complex variable, so in order to estimate
[xn]A(x, y) via the above integral, we need an estimate of φ(x, y) where x is complex and
y → 0+. This is done in the next proposition.

I Proposition 7. Let θ be a fixed real number which satisfies Ai(−21/3θ) 6= 0 and let
δ = θα2/3. Moreover, let

x = (1 + δ)x0e
iu, and w = W0(−(1 + δ)eiu−1).

Then, we have the following asymptotic formulas for φ(x, y) as y → 0+:
(a) If α1/2 � |u| ≤ π, then

φ(x, y) ∼ e
1

2α (w2+2w)
√

1 + w
. (23)
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(b) If u = tα2/3 and 1� |t| � α−1/6, then

φ(x, y) ∼ π1/2 25/6α−1/6Ai(−21/3(θ + it))e− 1
2α
−1−(θ+it)α−1/3− 5

6α
1/3t2 . (24)

(c) If u = tα2/3, then the estimate

φ(x, y) ∼ π1/2 25/6α−1/6Ai(−21/3(θ + it))e− 1
2α
−1−(θ+it)α−1/3

(25)

holds uniformly for t in any bounded closed interval on R.

Proof. A sketch of the proof is given in the appendix. J

I Remark 8. Once again, one can verify that these asymptotic formulas agree in those regions
where conditions overlap.

The next lemma is a direct consequence of Proposition 7, which will be useful to estimate
the integral in (22).

I Lemma 9. Let θ be a fixed real number such that Ai(−21/3θ) 6= 0, and let ρ = (1+θα2/3)x0.

Then, as y → 0+,

1
2πi

∮
|x|=ρ

1
φ(x, y)xn+1 dx� α2/3|Ai(−21/3θ)|

2πφ(ρ, y)ρn

∫ ∞
−∞

1
|Ai(−21/3(θ + it))|

dt, (26)

where the implied constant is independent of n. If we assume further that n and α are
connected by a relation of the form n = α−1 + bα−2/3, where b can be a function of α but
with b = O(1), then we have

1
2πi

∮
|x|=ρ

1
φ(x, y)xn+1 dx = α2/3Ai(−21/3θ)

2πφ(ρ, y)ρn

(∫ ∞
−∞

e−ibt

Ai(−21/3(θ + it))
dt+ o(1)

)
. (27)

Proof. We will only present the proof of the second estimate, which is the harder one, the
idea of the proof of the first estimate will be very similar but simpler since it is only an upper
bound. First, we have

1
2πi

∮
|x|=ρ

1
φ(x, y)xn+1 dx = 1

2πφ(ρ, y)ρn

∫ π

−π

φ(ρ, y)e−iun

φ(ρeiu, y) du.

Next, we choose a fixed constant c ∈ (1/2, 2/3), and we split the integral on the right-
hand side into three pieces corresponding to each of the following ranges of u: |u| ≤ αc,
αc < |u| ≤ α1/2, and α1/2 < |u| ≤ π. Let us now treat these cases separately.

If α1/2 < |u| ≤ π, then we can use Part (a) of Proposition 7 to estimate |φ(ρeiu, y)| and
Part (c) of Proposition 4 to estimate |φ(ρ, y)|. We get∣∣∣∣φ(ρ, y)e−iun

φ(ρeiu, y)

∣∣∣∣� α−1/6
√
|1 + w| e− 1

2α
−1Re((1+w)2)−θα−1/3

,

with w as defined in (12). Note that w is bounded in this case. Moreover, one can show
(see Lemma 10 in the appendix) that Re((1 + w)2) remains positive if u is bounded away
from zero, and by means of (18) (with p =

√
2(1− (1 + θα2/3)eiu)), one gets

Re((1 + w)2) = −2θα2/3 + (1 + o(1))4
3 |u|

3/2, (28)

if u→ 0 and |u| ≥ α1/2. Hence, we have

−1
2α
−1Re((1 + w)2)− θα−1/3 = −( 2

3 + o(1))α−1|u|3/2 � α−1/4

uniformly for α1/2 < |u| ≤ π. This implies that the contribution from α1/2 < |u| ≤ π to
the above integral tends to zero exponentially quickly.
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If αc < |u| ≤ α1/2, then we use Part (b) of Proposition 7 to estimate |φ(ρeiu, y)|. We
obtain∣∣∣∣φ(ρ, y)e−iun

φ(ρeiu, y)

∣∣∣∣ ∼ e
5
6α

1/3t2

|Ai(−21/3(θ + it))|
,

where t = uα−2/3. So, in particular |t| > αc−2/3. But since we chose c < 2/3, we have
|t| → ∞. Since θ is fixed, we have |Arg(−21/3(θ + it))| → π/2. Therefore, by the
asymptotic formula (17) for the Airy function, the contribution from αc < |u| ≤ α1/2 to
the integral above is also tending to zero exponentially fast in α.
If |u| ≤ αc, then we let u = tα2/3. So α1/3t2 = O(α2c−1), which tends to zero. Also by
the assumption on n in the statement of the lemma, we have

−iun = −itα−1/3 − ibt.

Using Part (c) of Proposition 7 and n = α−1 + bα−2/3, we get

φ(ρ, y)e−iun

φ(ρeiu, y) ∼ Ai(−21/3θ)e−ibt

Ai(−21/3(θ + it))
.

By making the change of variable u = tα2/3, we obtain∫ αc

−αc

φ(ρ, y)e−iun

φ(ρeiu, y) du ∼ α2/3Ai(−21/3θ)
∫ αc−2/3

−αc−2/3

e−ibt

Ai(−21/3(θ + it))
dt.

Once again, by the asymptotic formula (17) for the Airy function, the integral on the
right-hand side can be extended to infinity with an exponentially small error term,
uniformly in b.

The proof of the asymptotic formula (27) is complete. J

We now have everything we need to complete the proof of Theorem 2 and to prove
Theorem 3. Since the case λ = 1 in Theorem 2 is a particular case of Theorem 3, it does not
need to be treated separately. Let us begin with a proof of Theorem 3.

3.2.2 Case λ = 1 + µn−1/3

Let np = 1 + µn−1/3, where µ is contained in a fixed bounded interval. In view of Lemma 6
we set y = p/(1− 2p), and with α = log(1 + y), we can show that n satisfies

n = α−1 + µα−2/3 +O(α−1/3).

We choose ρ = x0 = 1
eαβ (which is smaller than %1(y)). Hence, by Equation (27) of Lemma 9

(with θ = 0), we have

[xn]A(x, y) = α2/3Ai(0)
2πφ(ρ, y)ρn

(∫ ∞
−∞

e−iµt

Ai(−21/3it)
dt+ o(1)

)
.

Thus Lemma 6 yields

P(n, p) = n!(1− p)(
n
2) α2/3Ai(0)

2πφ(ρ, y)ρn

(∫ ∞
−∞

e−iµt

Ai(−21/3it)
dt+ o(1)

)
.

We apply Part (c) of Proposition 4 (or Part (c) of Proposition 7) to estimate φ(ρ, y), then
write everything in terms of n. With the help of a computer algebra system (we used
asymptotic expansions in SageMath [35]) we obtain the asymptotic formula

P(n, p) = 2−1/3e3/2−µ3/6 n−1/3 × 1
2π

(∫ ∞
−∞

e−iµt

Ai(−21/3it)
dt+ o(1)

)
as n→∞, which is equivalent to the estimate of P(n, p) in Theorem 3.
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3.2.3 Case λ > 1
Let λ > 1 be a fixed real number, and let np = λ. We follow the same argument as above, but
we choose ρ = (1 + θα2/3)x0, where θ is fixed and satisfies −a1 < 21/3θ < −a2. This implies
that Ai(−21/3θ) 6= 0 and that %1(y) < ρ < %2(y). Hence, by the residue theorem, we have

[xn]A(x, y) = − 1
%1(y)n+1φx(%1(y), y) + 1

2πi

∮
|x|=ρ

1
φ(x, y)xn+1 dx. (29)

Then, we use (26) of Lemma 9 to estimate the integral on the right-hand side, so we get

[xn]A(x, y) = − 1
%1(y)n+1φx(%1(y), y) +O

(
α2/3

|φ(ρ, y)|ρn

)
.

In view of the formula P(n, p) = n!(1 − p)(
n
2)[xn]A(x, y), we can express the contribution

to P(n, p) from each of the terms above in terms of n: we use Theorem 1 to estimate %1(y)
and φx(%1(y), y) and Part (c) of Proposition 4 to estimate φ(ρ, y). Then, with the help of a
computer algebra system, we obtain

− n!(1− p)(
n
2)

%1(y)n+1φx(%1(y), y) ∼ γ2n
−1/3e−c1n+21/3a1λ

−1/3(λ−1)n1/3
, (30)

n!(1− p)(
n
2)α2/3

|φ(ρ, y)|ρn � n−1/3e−c1n−θλ−1/3(λ−1)n1/3
, (31)

where the constants γ2 and c1 are precisely as defined in Theorem 2. Since we chose θ in
such a way that θ > −2−1/3a1, the left-hand side of (31) is exponentially (in n1/3) smaller
than that of (30) as n→∞. Therefore, the right-hand side of (30) is indeed the main term
of P(n, p).
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A Sketched Proof of Proposition 4

The proof is based on the saddle-point method applied to the integral in the formula for
φ(x, y) in (10). Recall that we set x = (1 + δ)x0, where x0 = (eαβ)−1. Note that the case
δ = −1 corresponds to x = 0, and so it immediately follows from the definition of φ(x, y)
in (2) that φ(0, y) = 1. Hence, we may assume that δ > −1, but it can be a function of α.
Recall the saddle-point z0 defined in (12), z0 = −iw, where w = W0(−(1 + δ)e−1). One
can see that if δ goes from −1 to 0, then w goes from 0 to −1. So if δ ∈ (−1, 0], then the
point z0 lies on the segment [0, i]. The Taylor series around z0 is

f(z) = f(z0) + f ′(z0)(z − z0) + f ′′(z0) (z − z0)2

2! + f ′′′(z0) (z − z0)3

3! + · · ·

where

f(z0) = − 1
2αz

2
0 + iz0

α
= 1

2α (w2 + 2w) (32)

f ′′(z0) = − 1
α

(1 + iz0) = − 1
α

(1 + w) (33)

f ′′′(z0) = −z0

α
= i

α
w (34)

|f (k)(η + z0)| = |w|
α
≤ 1
α

for every η ∈ R and k ≥ 4. (35)

Looking at the first few terms in the Taylor series above, note that the quadratic term
f ′′(z0)(z − z0)2 also vanishes when z0 = i. So we proceed as follows: if z0 is sufficiently far
from i (for our case it means |z0 − i| � α2/3), then we shift the path of integration to the
horizontal line passing through z0, and if |z0 − i| � α2/3, then we take the path Γ on the
right in Figure 2.

i

z0

Horizontal Path.

−
√

3
√

3

i

Path Γ.

Figure 2 Two Paths.

We can use the path Γ in the integral (10) since f(z) is an entire function. But we can
also shift the path of integration to any horizontal line. To see this, for any real numbers
a, b, (assuming that x is real for now) we have

Re(f(a+ ib)) = − 1
2α (a2 − b2)− xβeb cos(a).

This implies that |ef(z)| = eRe(f(z)) tends to zero exponentially fast as |Re(z)| → ∞ on any
fixed horizontal strip for α > 0. Hence we can shift the path of integration within this strip.

Before we begin proving each part of Proposition 4, let us adopt some terminology. The
dashed circles in the two graphs in Figure 2 represent circles of radius αc, where c is a positive
constant. But c will be chosen separately for each range of x. The part of the integral from
the path within the circle will be called the local integral and the rest will be called the tail.
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A.1 Part (a)
Here, we assume that δ > −1, but that the asymptotic formula δ = −1 + o(1) is satisfied as
α→ 0+. Then, we choose c ∈ (1/3, 1/2). To estimate the local integral, we have

f(t+ z0) = f(z0) + f ′′(z0) t
2

2 +O(α3c−1),

for |t| ≤ αc, where the implicit constant in the O term is independent of t. This implies that∫ αc

−αc
ef(t+z0)dt = (1 +O(α3c−1))ef(z0)

∫ αc

−αc
ef
′′(z0)t2/2dt.

The condition δ = −1 + o(1) implies that w = o(1), hence f ′′(z0) ∼ −α−1. This allows us
to extend the range of integration in the integral above to infinity at the expense of an
exponentially small error term. Thus, we have∫ αc

−αc
ef(t+z0)dt ∼ ef(z0)

∫ ∞
−∞

ef
′′(z0)t2/2dt ∼

√
2π

−f ′′(z0)e
f(z0).

Now for the estimate of the tail. From the definition of the function f(z), we can show
that

Re(f(t+ z0))− f(z0) = − 1
2α
(
t2 + 2(1− cos t)w

)
≤ − 1

2α (1 + w)t2. (36)

The last line follows using the well known inequality 1− cos t ≤ t2/2 for all t ∈ R and
the fact that w < 0. Thus, we have∫

|t|>αc
ef(t+z0)dt ≤ ef(z0)

∫
|t|≥αc

eRe(f(t+z0))−f(z0)dt ≤ 2ef(z0)
∫ ∞
αc

e−(1+w)α−1t2/2dt.

Again, since w = o(1) the rightmost integral tends to zero faster than any power of α. Thus,
we deduce that∫ ∞

−∞
ef(t+z0)dt ∼

√
2π

−f ′′(z0)e
f(z0).

Therefore, from (10), we get φ(x, y) ∼ ef(z0), which is equivalent to Part (a) of Proposition 4.

A.2 Part (b)
In this case, δ ∈ (−1, 0) is assumed to satisfy the condition α2/3 � |δ| � 1− ε for some fixed
ε > 0. We proceed in the same manner as in the previous case, but since w can be very close
to −1, f ′′(z0) can be small. We can still use the horizontal line passing through z0 as our
path of integration. However, this time, we do not ignore the term with f ′′′(z0) in the local
integral. We choose c ∈ (1/4, 1/3), and the Taylor approximation gives

f(t+ z0) = f(z0) + f ′′(z0) t
2

2 + f ′′′(z0) t
3

6 +O(α4c−1),

uniformly for |t| ≤ αc. Thus,∫ αc

−αc
ef(t+z0)dt = (1 +O(α4c−1))ef(z0)

∫ αc

−αc
ef
′′(z0)t2/2+f ′′′(z0)t3/6dt.
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Let us denote the integral on the right-hand side by J . Making use of the values of f ′′(z0)
and f ′′′(z0) in (33) and (34) respectively, and with the change of variable t 7→ α1/3t, we can
rewrite J in the following way:

J = 2α1/3
∫ αc−1/3

0
e−(1+w)α−1/3t2/2 cos

(
w t3

6

)
dt.

The term 1 + w is always positive, and since δ � α2/3, we can show from the asymptotic
estimate (18) of the LambertW function that 1+w � α1/3. This implies that (1+w)α−1/3 �
1. Adding the fact that αc−1/3 →∞, we can extend the range of integration of J to infinity
at the expense of a negligible error term. So we have

J ∼ 2α1/3
∫ ∞

0
e−(1+w)α−1/3t2/2 cos

(
w t3

6

)
dt.

With an appropriate change of variable, the right-hand side can be written in terms of the
Airy function Ai(z) (here we can use the integral representation of Ai(z) in [28, (9.5.7)]).
Skipping the calculations, we have

J ∼ 24/3π|w|−1/3α1/3e2R3/2/3Ai(R),

where R = 2−2/3(1 + w)2w−4/3α−2/3.

Now for the estimates of the tail, we use the same argument as in the previous case.
Inequality (36) is valid in this case as well, so we still have∫

|t|≥αc
ef(t+z0)dt ≤ 2ef(z0)

∫ ∞
αc

e−(1+w)α−1t2/2dt.

With 1+w � α1/3 and c > 1/3 the integral on the right-hand side tends to zero faster than any
power of α. Hence, the main contribution would come from the local integral if we can show
that e2R3/2/3Ai(R) is bounded below by some power of α. But the definition of R given above
guarantees that R is always positive, and it is bounded above by a function that is O(α−2/3).
Hence, by the asymptotic formula of the Airy function e2R3/2/3Ai(R) � R−1/4 � α−1/6.

Therefore, we deduce that

φ(x, y) ∼ 25/6π1/2|w|−1/3Ai(R)α−1/6e2R3/2/3+f(z0).

The latter gives the formula in Part (b) of Proposition 4.

A.3 Part (c)
This case is slightly different from the previous two. The saddle-point z0 is too close to i so
we choose the path of integration Γ shown in Figure 2. For the local integral, we consider
up to the 5-th term in the Taylor approximation of the function f(z) around i. We have
f ′(i) = iδα−1, f ′′(i) = δα−1, f ′′′(i) = −i(1 + δ)α−1 and f (4)(i) = −(1 + δ)α−1. We choose
c ∈ (1/5, 1/3). For |z − i| ≤ αc and z ∈ Γ, we can write

ef(z) = ef(i)+µ1(z−i)+µ3(z−i)3 (
1 + ζ2(z − i)2 + ζ4(z − i)4 +O(α5c−1)

)
,

where µ1 = iθα−1/3, µ3 = − 1
6 iα
−1, ζ2 = 1

2θα
−1/3, ζ4 = − 1

24 (1 + θα2/3)α−1 (we used the
fact that δ = θα2/3). Let us denote by Γc the part of Γ that lies in the disk |z − i| ≤ αc. For
each integer k ≥ 0, let

Ik :=
∫

Γc
(z − i)keµ1(z−i)+µ3(z−i)3

dz.
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We parametrize Γc and show that the the two half-segments of Γc can be extended to∞ with
an error smaller than any power of α. Then, with some suitable change of variable, (skipping
all details) we can express Ik in terms of the k-th derivative of the Airy function as follows

Ik = −ik+2 π 2(k+4)/3(1 + δ)−(k+1)/3α(k+1)/3Ai(k)(R) + · · ·

where by “· · · ” we mean an exponentially small term, and

R = iµ1(3iµ3)−1/3 = −21/3δ(1 + δ)−1/3δα−2/3 = −21/3θ (1 + δ)−1/3.

Thus, we obtain

ζ0 I0 = π 24/3(1 + δ)−1/3α1/3Ai(R) + · · ·

ζ2 I2 = −2πθ (1 + δ)−1α2/3Ai(2)(R) + · · ·

ζ4 I4 = − 1
3π 2−1/3(1 + δ)−2/3α2/3Ai(4)(R) + · · ·

The higher derivatives of the Airy function can be written in terms of Ai(z) and Ai′(z) using
the well known Airy differential equation as we can easily show by induction on k that

Ai(k+3)(z) = (k + 1) Ai(k)(z) + zAi(k+1)(z) for k ≥ 0.

Reducing all higher derivatives of the Airy function and using Taylor approximation to
estimate each of the Ai(k)(R)’s, we get∫

Γc
ef(z)dz ∼ ef(i)

(
K1(θ)α1/3 +K2(θ)α2/3 +O(α)

)
,

where K1(θ) and K2(θ) are precisely as defined in Proposition 4.
Now we estimate the contribution of the tail. First, if t is real and |t| ≥

√
3, then we have

Re(f(t))− f(i) = − 1
2α (t2 − 1)− cos t

eα
+ δ

α

(
1− cos t

e

)
≤ − |t|2α

(
1 +O(α2/3)

)
,

where the constant in the O term is independent of t. The inequality follows from the fact
that if |t| ≥

√
3 then we have ((t2 − 1)/2 − cos(t)/e) ≤ 0.5|t|, which is not too difficult to

verify. The above estimate is enough to show that the contribution from the real half-lines
|t| ≥

√
3 is negligible.

If z = i+ teiπ/6 and t ∈ [−2,−αc]}, then we let ξ(t) = 2et/2 cos(
√

3t/2) so that we have

Re(f(i+ teπi/6))− f(i) = − 1
2α

(
ξ(t)− 2− t+ t2

2 + δ (ξ(t)− 2)
)
.

We can show (e.g., using a Taylor approximation of ξ(t)) that there exist positive absolute
constants C1 and C2 such that |ξ(t) − 2| ≤ C1|t| and ξ(t) − 2 − t + t2

2 ≥ C2|t|3, for any
t ∈ [−2, 0]. Hence, uniformly for t ∈ [−2,−αc],

Re(f(i+ teπi/6))− f(i) ≤ − 1
2α

(
C2|t|3 +O(α2/3|t|)

)
≤ −C2

|t|3

2α (1 +O(α2/3−2c)).

In particular, Re(f(i+teπi/6))−f(i) is negative for sufficiently small α and |Re(f(i+teπi/6))−
f(i)| � α3c−1 uniformly for t ∈ [−2,−αc]. This is enough to show that the contribution
from the segment {i+ teiπ/6 : t ∈ [−2,−αc]} is also negligible. The contribution from the
segment {i+ te−iπ/6 : t ∈ [αc, 2]} can also be dealt with in the same way.
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B Idea of the Proof of Proposition 7

We are unable to give much detail here due to lack of space. But the proof of Proposition 7
is essentially the same as the one above. The main difference is, of course, that x is complex.
Let x = (1 + δ)x0e

iu where u ∈ (−π, π], δ = θα2/3 and θ is a fixed number that satisfies
Ai(−21/3θ) 6= 0. This implies that the number w, which is now defined as W0(−(1 + δ)eiu−1),
is no longer real.

The proof of Part (c) above proceeds in essentially the same way as δ and u are both
O(α2/3). But for Part (a) and Part (b) to work, we need the following result about w.

I Lemma 10. The functions Re((1+w)2), Re(1+w) and 1−|w| are all positive and nonzero
if u is bounded away from 0. Moreover, if |u| → 0 as α→ 0+, but |u| � α2/3, then

w = −1 + α1/3
√
−2(θ + it) + 2

3α
2/3(θ + it) +O(|u|3/2), (37)

where t = uα−2/3, and the implied constant does not depend on u. In particular, we have
Re(1 + w)� α1/3 uniformly for α2/3 � |u| ≤ π.

Proof. The asymptotic formula (37) follows easily from (18). Now to show that Re(1 + w)
and 1 − |w| stay positive, we just need to show that this is the case for 1 − |w| since
Re(1 + w) ≥ 1− |w|.

If |w| = 1, then from the definition of w we have

|w|eRe(1+w) = eRe(1+w) = 1 +O(α2/3).

This implies that Re(1 +w)→ 0, which means w = −1 + o(1). The latter forces u to tend to
zero.

Similarly if Re((1 + w)2) = 0, then w must be of the form w = −1 + a(1 ± i), where
a ∈ R. This implies that

|w|eRe(1+w) =
√
a2 + (a− 1)2 ea = 1 +O(α2/3).

This is only possible if a→ 0 as α→ 0. J

This lemma will be very useful in proving Part (a) and Part (b). It shows, for example, that
Re(−f ′′(z0)) is positive and it satisfies Re(−f ′′(z0)) = Re((1 + w)α−1)� α−2/3 uniformly
for α2/3 � |u| ≤ π. This will make the proofs of Part (a) and Part (b) above work in this
case as well.
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