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—— Abstract

The balanced hypergraph partitioning problem is to partition a hypergraph into k£ disjoint blocks of
bounded size such that the sum of the number of blocks connected by each hyperedge is minimized.
We present an improvement to the flow-based refinement framework of KaHyPar-MF, the current
state-of-the-art multilevel k-way hypergraph partitioning algorithm for high-quality solutions. Our
improvement is based on the recently proposed HyperFlowCutter algorithm for computing bipartitions
of unweighted hypergraphs by solving a sequence of incremental maximum flow problems. Since
vertices and hyperedges are aggregated during the coarsening phase, refinement algorithms employed
in the multilevel setting must be able to handle both weighted hyperedges and weighted vertices —
even if the initial input hypergraph is unweighted. We therefore enhance HyperFlowCutter to handle
weighted instances and propose a technique for computing maximum flows directly on weighted
hypergraphs.

We compare the performance of two configurations of our new algorithm with KaHyPar-MF
and seven other partitioning algorithms on a comprehensive benchmark set with instances from
application areas such as VLSI design, scientific computing, and SAT solving. Our first configuration,
KaHyPar-HFC, computes slightly better solutions than KaHyPar-MF using significantly less running
time. The second configuration, KaHyPar-HFC*, computes solutions of significantly better quality
and is still slightly faster than KaHyPar-MF. Furthermore, in terms of solution quality, both
configurations also outperform all other competing partitioners.

2012 ACM Subject Classification Mathematics of computing — Hypergraphs; Mathematics of
computing — Network flows; Mathematics of computing — Graph algorithms

Keywords and phrases Hypergraph Partitioning, Maximum Flows, Refinement
Digital Object Identifier 10.4230/LIPIcs.SEA.2020.11

Related Version https://arxiv.org/abs/2003.12110

Supplementary Material Source code https://github.com/larsgottesbueren/WHFC

Funding This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under grants WA654/19-2, WA654/22-2, and SA933/11-1. The authors acknowledge
support by the state of Baden-Wiirttemberg through bwHPC.
© Lars Gottesbiiren, Michael Hamann, Sebastian Schlag, and Dorothea Wagner;

37 licensed under Creative Commons License CC-BY

18th International Symposium on Experimental Algorithms (SEA 2020).
Editors: Simone Faro and Domenico Cantone; Article No. 11; pp. 11:1-11:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:lars.gottesbueren@kit.edu
mailto:michael.hamann@kit.edu
mailto:sebastian.schlag@kit.edu
mailto:dorothea.wagner@kit.edu
https://doi.org/10.4230/LIPIcs.SEA.2020.11
https://arxiv.org/abs/2003.12110
https://github.com/larsgottesbueren/WHFC
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2

Advanced Flow-Based Multilevel Hypergraph Partitioning

1 Introduction

Graphs are a common way to model pairwise relationships (edges) between objects (vertices).
However, many real-world problems involve more complex interactions [7, 29]. Hypergraphs
are a generalization of graphs, where each hyperedge can connect an arbitrary number of
vertices. Thus, hypergraphs are well-suited to model such higher-order relationships.

The balanced k-way hypergraph partitioning problem (HGP) asks to compute a partition
of the vertices into & disjoint blocks of bounded weight (at most (1+¢) times the average block
weight) such that few hyperedges are cut, i.e., connect vertices in different blocks [7, 5, 35].
Since hyperedges can connect more than two vertices, several notions of cuts exit in the
literature [5]. In this work, we consider the connectivity objective, which aims to minimize
Y ecpw(e)(A(e) — 1), where E is the set of hyperedges, w(e) denotes the weight of hyperedge
e, and A(e) denotes the number of blocks connected by hyperedge e. Well-known applications
of hypergraph partitioning include VLSI design [5], the parallelization of sparse matrix-vector
multiplications [9], and storage sharding in distributed databases [25]. We refer to a survey
chapter [39, Ch. 3] and two survey articles [5, 35] for an extensive overview.

Since HGP is NP-hard [31], heuristic algorithms are used in practice. The most successful
heuristic for computing high-quality solutions is the three-phase multilevel paradigm. In
the coarsening phase, multilevel algorithms first successively contract the input hypergraph
to obtain a hierarchy of smaller, structurally similar instances. After applying an initial
partitioning algorithm to the smallest hypergraph, the contractions are undone and, at each
level, refinement algorithms are used to improve the partition induced by the coarser level.

Related Work. The most well-known and practically relevant multilevel hypergraph parti-
tioners from different application areas are PaToH [9] (scientific computing), hMetis [26, 27]
(VLSI design), KaHyPar [24, 23, 2, 40] (general purpose, n-level), Zoltan [13, 41] (scientific
computing, parallel), Mondriaan [45] (sparse matrices), and Parkway [42] (parallel). Addi-
tionally there are MLPart [4] (restricted to bipartitioning), and HYPE [33], a single-level
algorithm that grows k blocks using a neighborhood expansion [46] heuristic.

With the exception of KaHyPar-MF [24], all multilevel HGP algorithms solely employ
variations of Kernighan-Lin [28] (KL) or Fiduccia-Mattheyses [17] (FM) heuristics in the
refinement phase. These algorithms repeatedly move vertices between blocks prioritized by
the improvement in the objective function. While they perform well for hypergraphs with
small hyperedges, their performance deteriorates in the presence of many large hyperedges [44].
In this case, many single-vertex moves have no immediate effect on the objective function
because the vertices of large hyperedges are likely to be distributed over multiple blocks.
KaHyPar-MF [24] therefore additionally employs a refinement algorithm based on maximum-
flow computations between pairs of blocks. Since flow algorithms find minimum s-¢ cuts, this
refinement technique does not suffer the drawbacks of move-based approaches.

The flow-based refinement framework is a generalization of the approach used in the
graph partitioner KaFFPa [38]. To refine a pair of blocks of a k-way partition, KaHyPar first
extracts a subhypergraph induced by a set of vertices around the cut of these blocks. This
subhypergraph is then transformed into a graph-based flow network, using techniques due to
Lawler [30], and Liu and Wong [32], on which a maximum flow is computed. The vertices of
the subhypergraph are reassigned according to the corresponding minimum cut. The size of
the subhypergraph (and thus the size of the flow network) is chosen adaptively, depending on
the outcome of the previous refinement. While larger flow networks may produce better but
potentially imbalanced solutions, the smallest flow network guarantees a balanced partition.
We further discuss KaHyPar and its flow-based refinement framework in Section 2.
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HyperFlowCutter (HFC) [22] computes bipartitions of unweighted hypergraphs by solving
a sequence of incremental maximum flow problems. Its advantage over computing a single
maximum flow is that it does not reject almost balanced solutions, but systematically trades
cut-size for increased balance. ReBaHFC [22] uses HFC as postprocessing to improve an
initial bipartition computed with PaToH. HFC computes unit-capacity flows directly on the
hypergraph (i.e., without using a graph-based flow network) using a technique of Pistorius
and Minoux [37] extended to Dinic’s flow algorithm [14].

Contribution and Outline. Multilevel refinement algorithms must be able to handle both
weighted hyperedges and weighted vertices because vertices and hyperedges are aggregated
during the coarsening phase. In this work, we improve KaHyPar’s flow-based refinement
framework — with regard to both running time and solution quality — by using a weighted
version of HFC instead of the maximum flow computations on differently-sized graph-based
flow networks. After introducing notation and briefly presenting additional details about
KaHyPar and HFC refinement in Section 2, we discuss how HFC can simulate an approach
of KaHyPar and KaFFPa for balancing partitions, extend HFC’s existing balancing approach
to weighted instances, and propose a heuristic for guiding its incremental maximum flow
problems in Section 3. In Section 4, we present our approach for computing maximum flows
on weighted hypergraphs, generalizing the technique of Pistorius and Minoux [37] to weighted
hypergraphs and arbitrary flow algorithms.

In our experiments (Section 5), we compare two configurations of our new approach with
KaHyPar-MF, and seven other partitioning algorithms on a large benchmark set containing
hypergraphs from the VLSI, SAT solving, and scientific computing community [23]. While
our first configuration, KaHyPar-HFC, computes slightly better solutions than KaHyPar-MF
using significantly less running time, the second configuration, KaHyPar-HFC* computes
solutions of significantly better quality and is still slightly faster than KaHyPar-MF. Fur-
thermore, in terms of solution quality, both configurations outperform all other competing
partitioners. We conclude the paper in Section 6 and suggest future work.

2 Preliminaries

Hypergraphs. A hypergraph H = (V, E) consists of a set of vertices V and a set of hyperedges
E, where a hyperedge e is a subset of the vertices V. Additionally, we associate weights
w: E — Nt ©: V — NT with the hyperedges and vertices. A vertex v € V is incident to
hyperedge e € E if v € e. The vertices incident to a hyperedge e are called the pins of e. We
denote the pin w in hyperedge e as (u,e). By H[V'] = (V',{eNV' | e € E}), we denote the
hypergraph induced by the vertex set V’. The star expansion of H represents the hypergraph
as a bipartite graph G = (VUE, {(v,e) € V x E | v € e}) with bipartite node set VUE and
an edge for every pin. To avoid confusion, we use the terms vertices, hyperedges, and pins
for hypergraphs, and the terms nodes and edges for graphs. We extend functions to sets

using f(X) =Y, cx f(x) for some function f.

Hypergraph Partitioning. A k-way partition 7(H) of a hypergraph H = (V, E) is a partition
of its vertices into non-empty disjoint blocks Vy,..., Vi C V, i.e., Ule V=V, V; #0 for
i=1,...,kand V;NV; = 0 for i # j. For some parameter ¢ € [0,1) we call 7(H)
e-balanced, if each block V; satisfies the balance constraint o(V;) < (1 + 8)@. Let
Ale) ={V; enm(H) | V;Ne # 0} denote the blocks that are connected by hyperedge e € E.
The connectivity of a hyperedge e is defined as A(e) := |A(e)|. Given parameters ¢ and k, and
an input hypergraph H, the balanced k-way hypergraph partitioning problem asks for an
e-balanced k-way partition of H that minimizes the connectivity-metric ) ., w(e)(A(e) —1).

11:3

SEA 2020



11:4

Advanced Flow-Based Multilevel Hypergraph Partitioning

Maximum Flows. A flow network is a symmetric, directed graph N' = (V, &) with two
disjoint non-empty terminal node sets S, T C V), the source and target node set, as well
as a capacity function c: £ — Ny. A flow is a function f: £ — Z subject to the capacity
constraint f(e) < c(e) for all edges e, flow conservation 3, , ce f(u,v) =0 for all non-
terminal nodes v, and skew symmetry f(u,v) = —f(v,u) for all edges (u,v). The value
of a flow [f| =} cq (5.u)ee f(5,u) is the amount of flow leaving S. The residual capacity
rr(e) := c(e) — f(e) is the additional amount of flow that can pass through e without
violating the capacity constraint. The residual network with respect to f is the directed
graph Ny = (V,&y), where &f := {e € E|ry(e) > 0}. A node v is source-reachable if there is a
path from S to v in Ny, it is target-reachable if there is a path from v to T in Ny. We denote
the source-reachable and target-reachable nodes by S,. and 7)., respectively. An augmenting
path is an S-T path in Ny. The flow f is a mazimum flow if | f| is maximal of all possible
flows in N. This is the case if and only if there is no augmenting path in Ny. An S-T edge
cut is a set of edges whose removal disconnects S and 7. The value of a maximum flow
equals the weight of a minimum-weight S-T edge cut [18]. The source-side cut consists of
the edges from S, to V \ S, and the target-side cut consists of the edges from T, to V \ 7.
The bipartition (S,,V \ S,) is induced by the source-side cut and (V \ T}, T;.) is induced by
the target-side cut. Note that V'\ S, \ T, is not necessarily empty. We also call S, and T,
the cutsides of a maximum flow.

Maximum Flows on Hypergraphs. Lawler [30] uses maximum flows to compute minimum
S-T hyperedge cuts. On the star expansion, the construction to model node capacities
as edge capacities [1] is applied to the hyperedge-nodes. A hyperedge e is expanded into
an in-node e; and an out-node e, joined by a directed bridge edge (e;,e,) with capacity
c(eq, €0) = w(e). For every pin u € e there are two directed external edges (u,e;), (€,,u) with
infinite capacity. The transformed graph is called the Lawler network. A minimum S-T edge
cut in the Lawler network consists only of bridge edges, which directly correspond to S-T'
cut hyperedges in H. Via the Lawler network, the above notions translate naturally from
graphs to hypergraphs, and we use the same terminology and notation for hypergraphs.

The KaHyPar Framework. Since our algorithm is integrated into the KaHyPar framework,
we briefly review its core components and outline its k-way flow-based refinement. In contrast
to traditional multilevel HGP algorithms that contract matchings or clusterings and therefore
work with a coarsening hierarchy of O(logn) levels, KaHyPar removes only a single vertex
between two levels, resulting in almost n levels. Coarsening is restricted to clusters found
with a community detection algorithm [23]. Initial partitions of the coarsest hypergraph are
computed using a portfolio of simple algorithms [40]. During uncoarsening, it employs a
combination of localized FM local search [2, 40] and flow-based refinement [24].

Given a k-way partition w(k) = {V4,..., Vi } of a hypergraph H = (V, E, p,w), the flow-
based refinement works on pairs (V;,V;) of blocks that share cut hyperedges. The blocks
are scheduled for refinement as long as this improves the solution (better connectivity, or
equal connectivity and less imbalance). To construct a flow problem for a pair of blocks,
the algorithm performs two randomized weight-constrained breadth-first searches (BFS)
restricted to H[V;] and H[Vj], respectively. The BFSs are initialized with the vertices of
Vi (resp. Vj;) that are incident to hyperedges in the cut between V; and V;. The first BFS
stops if the weight of the visited vertices would exceed (1 + « - ¢€) f#] — ¢(V;), where the
scaling parameter « is used to control size of the flow problem. The second BFS visits the
vertices of V; analogously. The hypergraph induced by the visited vertices is then used to
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(a) Compute minimum S-T cuts. (b) Add S, to S and choose a piercing vertex.

Figure 1 Flow augmentation and computing S, T, in Fig.1la; adding S, to S and piercing the

source-side cut in Fig.1b. S in blue, S, \ S in yellow, T in green, T, \ T in red, V' \ S, \T» in white.

Taken from Gottesbiiren et al. [22] with minor adaptations.

build the Lawler network, with size optimizations due to Liu and Wong [32] and Heuer [24].

A minimum S-T cut in the Lawler network induces a bipartition of H[V; U Vj|. If the flow
computation resulted in an e-balanced partition, the improved solution is accepted and « is
increased to min(2a, ') for a predefined upper bound of o’ = 16. Otherwise, « is decreased
to max(a/2,1). This scaling scheme continues until a maximal number of rounds is reached
or a feasible partition that did not improve the cut is found. KaHyPar runs flow-based
refinement on exponentially spaced levels, i.e., after 2¢ uncontractions for increasing i, since
flow-based refinement is too expensive to be run after every uncontraction.

ReBaHFC. ReBaHFC avoids the need for Lawler networks and the corresponding size
optimizations [32, 24] by directly constructing a flow hypergraph by contracting vertices not
visited by a BFS to S or T. Furthermore, it does not require adaptive rescaling because
HFC guarantees balanced partitions.

3 Weighted HyperFlowCutter

To keep this paper self-contained, we briefly explain the core HFC algorithm in Section 3.1.

Subsequently, we discuss further details of multilevel refinement with HFC in Section 3.2
and our approach for adapting two balancing strategies in Section 3.3.

3.1 The Core Algorithm

The core HFC algorithm computes bipartitions with monotonically increasing cut size and
balance by solving a sequence of incremental maximum flow problems, until both blocks
satisfy the balance constraint. Given some initial terminal vertex sets S and T, HFC first
computes a maximum flow and derives the cutsides S, and T;.. If either the source-side cut or

the target-side cut induces blocks that fulfill the balance constraint, the algorithm terminates.

Otherwise, it adds all vertices on the smaller cutside to its corresponding terminal side, i.e.,
S = S, if |S;| < |T,| and T := T, otherwise. Then, one additional vertex — the piercing
verter — is added to the terminal side and the previous flow is augmented to respect the new
terminals. This ensures that HFC finds a different cut with each new maximum flow. By
growing the smaller side, the algorithm ensures that it finds a balanced partition after at
most |V| iterations. Figure 1 illustrates the HFC phases. HFC selects piercing vertices for S
from the boundary vertices of the source-side cut, i.e., the vertices incident to hyperedges in
the source-side cut that are not already contained in S. Analogously, the candidates for T'
are the boundary vertices of the target-side cut. Note that the previous flow still satisfies the
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flow constraints, and only the piercing vertex can break the maximality of the flow. HFC
prefers piercing vertices that maintain the maximality of the current flow, i.e., do not create
an augmenting path. This strategy is called the avoid-augmenting-paths piercing heuristic.
Adding a vertex u to S creates an augmenting path if and only if v € T;..

3.2 Multilevel Refinement Using HyperFlowCutter

For multilevel k-way refinement with HyperFlowCutter we use the block-pair scheduling
of KaHyPar-MF and the flow model construction of KaHyPar-MF and ReBaHFC. Unlike
ReBaHFC, we do not explicitly contract unvisited vertices to S (resp. T'). Instead, we build
the flow hypergraph during the BFS and mark pins that will not be in the flow hypergraph as
terminals. Hyperedges containing both terminals are removed as they cannot be eliminated
from the cut. Subsequently, our weighted HFC algorithm is run on the weighted flow
hypergraph. We stop once the flow exceeds the weight of the remaining hyperedges from the
original cut. The difference between the weight of the original cut hyperedges and the flow
value equals the decrease in connectivity.

Distance-Based Piercing. We can use the original cut to guide HFC. To avoid that bad
piercing decisions make it impossible for HFC to recover parts of the original cut, we use
BFS-distances from the original cut as an additional piercing heuristic. We prefer larger
distances, secondary to avoiding augmenting paths. Vertices from the other side of the
original cut are rated with distance —1, i.e., chosen only after one side has been entirely
added to the corresponding terminal vertices. This is similar to the flow network rescaling
of KaHyPar, as we first use vertices as terminals that could only be contained in larger
flow networks. We maintain the boundary vertices in a bucket priority queue and select
candidates uniformly at random from the highest-rated non-empty bucket. New terminal
vertices are removed lazily.

3.3 Improved Balance

KaHyPar uses both flows and FM local search to refine a partition. Because FM only
considers moves that maintain the balance constraint, partitions with small imbalance tend
to give FM more leeway for improving the current solution. In this section, we discuss two
approaches to improve the balance during HFC refinement. These can also improve the
solution quality, since HFC would otherwise trade better balance for a larger cut.

Keep Piercing. Given a maximum flow and minimum cut, finding a most balanced cut of
the same weight is NP-hard [8]. All vertices of a strongly connected component (SCC) of the
residual network belong to the same side in a minimum cut. Hence, finding a most balanced
minimum cut corresponds to a knapsack problem with partial order constraints induced by
the directed acyclic graph (DAG) obtained from contracting all SCCs [36]. Each topological
ordering of the DAG corresponds to a series of minimum cuts. KaHyPar computes several
random topological orderings to find a cut with the same weight and less imbalance, which
considerably improved solution quality [24].

Using the avoid-augmenting-paths piercing heuristic, we can perform such a sweep without
the need to explicitly construct the DAG and to compute a topological ordering. Instead
of stopping at the first balanced partition, we continue to pierce as long as no augmenting
path is created. Since this process is fast and piercing decisions are randomized, we repeat it
several times and select the partition with the smallest imbalance.
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Reassigning Isolated Vertices. A vertex v ¢ SUT is called isolated if all of its incident
hyperedges have pins in both S and T'. An isolated vertex v can be moved without affecting
the cut, because v ¢ S, UT, and its incident hyperedges remain in both the source- and
target-side cut over the course of the algorithm. Using the terminology above, v is not
affected by partial order constraints. This reduces the optimal assignment problem for
isolated vertices to a subset sum problem. With unweighted vertices, we can easily distribute
the total weight |L| of a set L of isolated vertices among the two sides to achieve optimum
balance. Introducing vertex weights makes the subset sum problem non-trivial, because
arbitrary divisions of the total weight ¢(L) are not necessarily possible. Since isolated vertices
remain isolated, the problem instances are incremental. To solve the problem, we use the
pseudo-polynomial dynamic program (DP) for subset sum [10, Section 35.5]. It maintains a
lookup table of partition weights that are summable with isolated vertices. After obtaining a
new cut, we update the DP table to incorporate potential new isolated vertices. For each
new isolated vertex v, we iterate over the subset sums x in the table and insert ¢(v) + x
if it was not yet a subset sum. As an optimization, we maintain a list of ranges that are
summable (consecutive entries). The balance check takes constant time per range. To merge
ranges efficiently, we store a pointer from each DP table entry to its range in the list. When
a new subset sum x is obtained, we check whether x — 1 and x + 1 are also subset sums, and
extend or merge ranges as appropriate. Since entries in the DP table cannot be reverted
easily, we do not add isolated vertices to the DP after the first balanced partition is found.

As the DP is only pseudo-polynomial, its running time may become prohibitive on
instances with very large vertex weights. In our experiments, non-unit vertex weights are
only the result of contractions during coarsening. Hence, the DP is polynomial in the size
of the unit-weight input hypergraph. We plan to implement a simple classifier to decide
whether the running time can be harmful, and deactivate the DP accordingly.

4 Maximum Flows on Weighted Hypergraphs

In this section, we present our technique for computing maximum flows on weighted hy-
pergraphs. It generalizes the approach of Pistorious and Minoux [37] (which computes
maximum flows directly on unweighted hypergraphs using the Edmonds-Karp algorithm [16])
to weighted hypergraphs and to arbitrary flow algorithms.

Let P denote the set of pins, and let f(u,e): P — Z denote the amount of flow that vertex

u sends into hyperedge e. Negative values indicate that u receives flow from e. Let f(u,e)™ :=

max(f(u,e),0) denote the net flow u sends into e and f(u,e)” := max(—f(u,e),0) the net
flow u receives from e. Then, f(e) can also be written as ) .. flu,e)t = D uce flu,e)~.
We can push up to c(e) — f(e) + f(u,e)™ + f(v,e)* flow from u via e to another pin v € e.
The advantage of implementing flow algorithms directly on the hypergraph is the ability to
identify and skip cases in which we cannot push any flow. If c(e) — f(e) = 0 and f(u,e) > 0,
we only need to iterate over the pins v € e with f(v, e) > 0. A graph-based flow algorithm on
the residual Lawler network would scan the edge (e;, v) for every pin v € e. For unweighted
hypergraphs, each e € FE has at most one pin v € e with f(v, e) > 0, which can be stored in
a separate array of size |E|. Since HFC needs to compute flows in forward and backward
direction, an additional array is needed for pins v/ € e with f(v’ ,e) < 0. A weighted
hyperedge can have many such pins, which would require arrays of size \PN\ Instead, we

divide the pins of e into subranges f(v,e){< 0,=0,> 0}. When the sign of f(v,e) changes,
we insert pin v into the correct subrange by performing swaps with the range boundaries.
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Figure 2 Example illustrating the four steps for pushing A = 19 units of flow from u via hyperedge
e = {u,v,w} to v. Black edges show the direction of the flow, dashed red arrows the direction we
want to push flow in the Lawler network. The edge (eo, w) is omitted for readability. Current values

of A, f(u,e), f(v,e), f(e), and A" are shown at the bottom for each state.

In addition to scanning hyperedges like vertices, pushing flow over a hyperedge is the
elementary operation necessary to implement any flow algorithm on hypergraphs. Let A be

the amount of flow to push. We update the values f(u,e), f(v, e), and f(e) in four steps (see
Figure 2 for an example). These steps correspond to paths p1 = (u, €., €;,v), p2 = (u, e, v),
p3s = (u,e;,v), ps = (u, €;,€,,v) in the residual Lawler network. The order of these steps is

important to correctly update f(e). First, we push A’ := min(A, f(u,e)”, f(v,e)") along p;

by setting f(e) := f(e) — A/, ft(u,e) = f(u,e)+ A, f(v, e) ::~f(v, e): A’,and A= A - A
Then, we push A’ := min(A, f(u,e)”) along ps, by updating f(u,e), f(v,e), and A as before.
Note that we do not update f(e) since the bridge edge (e;, e,) is not in pa. Analogously to

p2, we push A’ := min(A, f(v,e)™) along p3. Finally, we push the remaining A along p4 and

update f(e), f(u,e), f(v,e), and A as for p;.

Note that the Lawler network is just used as a means of illustration. In our implementation,

we only update the f(u,e), f(v,e), and f(e) values as shown at the bottom of Figure 2.

Flow Algorithm. We chose to implement Dinic’s flow algorithm [14] with capacity scaling,
because the flow problems for HFC refinement on our benchmark set predominantly have
a small diameter (due to the BFS-based construction). Dinic’s algorithm consists of two
alternating phases: assigning hop-distance labels to vertices by performing a BFS on the
residual network, and using DFS to find edge-disjoint augmenting paths with distance labels
increasing by one along the path. In addition to vertex distance labels, we maintain hyperedge
distance labels. For a vertex u, we only traverse those incident hyperedges e whose distance
label matches that of u. The pins v € e are only traversed if the distance of v is 1 plus the
distance of e. To distinguish the case that we can only push flow to pins v with f(v, e) >0,
we actually maintain two different distance labels per hyperedge.



L. Gottesbiiren, M. Hamann, S. Schlag, and D. Wagner

Optimizations. It suffices to initialize the BFS and DFS with the last piercing vertex p of
a side, since only p can lead to newly reachable vertices. When Dinic’s algorithm terminates,
we already know S, or T, (depending on which side was pierced) and thus only compute
the reachable vertices of the other side. While computing this set, we also compute the
corresponding distance labels, so that the next flow computation can directly start with the
DFS phase. Additionally, we infer the sets S,, T}, S, and T from the distance labels.

5 Experimental Evaluation

The C++17 source code for Weighted HyperFlowCutter! and KaHyPar-HFC? are available
as open-source software. Experiments are performed sequentially on a cluster of Intel Xeon
E5-2670 Sandy Bridge nodes with two Octa-Core processors clocked at 2.6 GHz with 64 GB
RAM, 20 MB L3- and 8x256 KB L2-Cache, using only one core of a node.

We consider two configurations which differ in the constraint for vertices from V; in the
flow hypergraph. KaHyPar-HFC uses £ - ¢(V;) (as used for RebaHFC [22]), while KaHyPar-
HEC* uses (14 16 -¢) f#} — ¢(V;) (as used for KaHyPar-MF [24]). In the TR [21] we
assess the impact of the algorithmic components on the solution quality of KaHyPar-HFC.
Both configurations use all components.

Benchmark Set. We use a comprehensive benchmark set of real-world hypergraphs compiled
by Schlag [23].3 It consists of 488 unit-weight hypergraphs from four sources: the ISPD98
VLSI Circuit Benchmark Suite [3] (ISPD98, 18 hypergraphs), the DAC 2012 Routability-
Driven Placement Benchmark Suite [34] (DAC, 10), the SuiteSparse Matrix Collection [12]
(SPM, 184) and the international SAT Competition 2014 [6] (Literal, Primal, Dual, 92
hypergraphs each). Refer to the TR [21] for hypergraph sizes and refer to [23] for infor-
mation on how the hypergraphs were derived. We compute partitions for ¢ = 3% and
k€ {2,4,8,16,32,64,128}. Each combination of a hypergraph and a value of k constitutes
one instance, resulting in a total of 3416 instances.

Methodology. In addition to the KaHyPar configurations, we consider hMetis [26, 27] in
both recursive bisection (-R) and direct k-way (-K) mode, PaToH [9] with default (-D) and
quality preset (-Q), Zoltan-AlgD [41], Mondriaan [45], as well as HYPE [33].

For each instance and partitioner, we perform ten runs with different random seeds. The
only exception is HYPE [33] which produced worse solutions when randomized [24]. Hence,
we report only one non-randomized run of HYPE. Running times and connectivity values
per instance are aggregated using the arithmetic mean, while running times across instances
are aggregated using the geometric mean to give instances of different sizes a comparable
influence. To compare running times we use a combination of a scatter plot, which shows the
arithmetic mean time per instance, and a box-and-whiskers plot [43]. Because small running
times are more frequent, we use a fifth-root scale [11] on the y-axis. Runs that exceeded the
8 hour time limit count as 8 hours in the reported aggregates and plots.

! https://github.com/larsgottesbueren/WHFC

2 https://github.com/SebastianSchlag/kahypar
3 https://algo2.iti.kit.edu/schlag/sea2017/
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Figure 3 Performance profiles comparing our new variants with KaHyPar-MF.

For comparing solution quality we use performance profiles [15]. Let A denote a set of
algorithms, 7 a set of instances and obj(a,?) denote the objective value computed by a € A
on i € Z — in our case the arithmetic mean connectivity of 10 runs. The performance ratio

B obj(a, )
~ min{obj(a’,i) | a’ € A}

r(a,i)

indicates by what factor a deviates from the best solution on instance i¢. In particular,
algorithm « found the best solution on instance i if r(a,¢) = 1. The performance profile

HieZ]|r(a,i) <t}

pa: [1,00) = [0,1],7 —
IZ]

of a is the fraction of instances for which it is within a factor of 7 from the best solution.
Runs that did not finish within the time limit or resulted in an error (balance violation or
crash) are excluded. If this concerns all runs of an algorithm on an instance, we report the
corresponding fractions as the steps at special symbols (%, X respectively).

5.1 Comparison with KaHyPar-MF

KaHyPar-HFC computes solutions with better, equal, or worse quality than KaHyPar-MF
on 1933, 367, 1056 instances, respectively. On the remaining 60 instances neither finished
within the time limit. As Figure 3 (left) shows, the performance ratios are consistently
better, though not by a large margin. The median fraction of flow-based refinement time of
KaHyPar-HFC vs KaHyPar-MF is 0.18, the 75th percentile is 0.26, and the 90th percentile
is 0.51. Hence, the flow-based refinement of KaHyPar-HFC is significantly faster than that
of KaHyPar-MF. Flow-based refinement constitutes about 40% of KaHyPar-MF’s overall
running time [24]. With a mean overall running time of 44.84s, KaHyPar-HFC is about
33% faster than KaHyPar-MF at 67.07s. The improved running time is partially due to
faster flow computation and partially due to smaller flow hypergraphs. Since KaHyPar-
HFC uses smaller flow hypergraphs, the improved solution quality can be attributed to
the HyperFlowCutter approach. With 62.49s, KaHyPar-HFC* is moderately faster than
KaHyPar-MF and computes solutions of better, equal, or worse quality on 2776, 381, 198
instances, respectively (with 61 instances on which neither the -HFC* nor the -MF variant
finished within the time limit). Hence, the faster flow computation more than compensates
the additional work incurred by HFC. Figure 4 shows box plots for the different phases of
KaHyPar. The running times of preprocessing, coarsening, and initial partitioning remain
unchanged, as they are not influenced by the refinement phase. During the refinement phase,
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Figure 5 Performance profiles of all considered partitioners.

local search and flow-based improvement both modify the solution and thus influence one
another. The plots show that the running time of local search remains largely unchanged,
while our variants reduce the running time of flow-based refinement.

5.2 Comparison with other Partitioners

We now compare the three KaHyPar variants with the other state-of-the-art algorithms.
Figure 5 shows that KaHyPar-HFC* outperforms all competing algorithms, and that hMetis-
R emerges as the best competitor outside the KaHyPar variants. KaHyPar-HFC* computes
the best solutions on 63% of all instances, KaHyPar-HFC on 14%, and hMetis-R on 18%, as
shown by their p, (1) values. Note that these values alone do not permit a ranking between
the algorithms. Both KaHyPar-MF and KaHyPar-HFC compete with KaHyPar-HFC* for
the best solutions on similar instances, and thus end up with a lower p,(1) value. Compared
individually, KaHyPar-HFC is better than hMetis-R on 69.9% of the instances. Additionally,
KaHyPar-HFC and KaHyPar-MF approach the profile of KaHyPar-HFC* much faster. The
KaHyPar variants are all within a factor of 1.1 of the best solution on over 90% of the
instances, and within 1.4 on over 97%, whereas hMetis-R achieves 76% and 90%. PaToH-Q
and PaToH-D solve more instances than hMetis-R within factors of roughly 1.2 and 1.4, and
more instances than hMetis-K within 1.1 and 1.2. Mondriaan is similar to PaToH-D and
Zoltan-AlgD settles between PaToH-D and PaToH-Q. The only non-multilevel algorithm
HYPE is considerably worse, with only 5.7% of solutions within a factor 2 of the best.
Figure 6 shows running times for each instance. We categorize the algorithms into two
groups. Algorithms in the first group, consisting of KaHyPar, hMetis and Zoltan-AlgD,
invest substantial running time to aim for high-quality solutions. On the other hand, PaToH,
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Figure 6 Box and scatter plots of arithmetic mean running times per instance.

Mondriaan and HYPE aim for fast running time and reasonable solution quality. The results
show that while PaToH gives the best time-quality trade-off, KaHyPar-HFC* is the best
algorithm for high-quality solutions, whereas KaHyPar-HFC offers a better time-quality
trade-off than other algorithms from the first group.

In the TR [21] we report aggregate running times, timeouts and imbalanced solutions,
present performance profiles for different values of k, the different instance classes of the
benchmark set and a plot with only the best algorithm from each family of partitioning
algorithms. The performance difference between KaHyPar and the other algorithms increases
with &, which can be explained by the fact that all other partitioners except hMetis-K use
recursive bisection. Furthermore, the improvement of KaHyPar-HFC* over KaHyPar-MF is
especially pronounced on dual SAT instances, which have many large hyperedges.

6 Conclusion and Future Work

We leverage the powerful HyperFlowCutter refinement algorithm in the multilevel setting
for k-way partitioning by integrating it into KaHyPar. For this, we extend unweighted
HyperFlowCutter to weighted hypergraphs by adapting its balancing heuristics and presenting
an approach to compute flows directly on weighted hypergraphs. Furthermore, we propose
a distance-based piercing heuristic and use the existing avoid-augmenting-paths piercing
heuristic to find partitions with small imbalance.

The most pressing area of research is to reduce the running time when using large
flow hypergraphs, e. g., by further pruning of scheduled block pairs or more advanced flow
algorithms like (E)IBFS [20, 19]. Furthermore, the impact of HFC refinement with small flow
hypergraphs on fast and medium-quality partitioners such as PaToH could be a promising
direction, since previous work on bipartitioning [22] already gave promising results.
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