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Abstract
We consider the problem of identifying patterns of interest in colored strings. A colored string is a
string in which each position is colored with one of a finite set of colors. Our task is to find substrings
that always occur followed by the same color at the same distance. The problem is motivated by
applications in embedded systems verification, in particular, assertion mining. The goal there is to
automatically infer properties of the embedded system from the analysis of its simulation traces. We
show that the number of interesting patterns is upper-bounded by O(n2) where n is the length of the
string. We introduce a baseline algorithm with O(n2) running time which identifies all interesting
patterns for all colors in the string satisfying certain minimality conditions. When one is interested
in patterns related to only one color, we provide an algorithm that identifies patterns in O(n2 logn)
time, but is faster than the first algorithm in practice, both on simulated and on real-world patterns.
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1 Introduction

In recent years, embedded systems have become increasingly pervasive and are becoming
fundamental components of everyday life. In line with this, embedded systems are required
to perform increasingly demanding tasks, and in many circumstances, peoples’ lives are now
dependent on the correct functioning of these devices. This, in turn, has led to an increasingly
complex design process for embedded systems, where a major design task is to evaluate and
check the correctness of the functionality from the early stages of the development process.
This functionality checking is usually done using assertions – logic formulae expressed in
temporal logic such as Linear Temporal Logic (LTL) or Computation Tree Logic (CTL) –
that provide a way to express desirable properties of the device. Assertions are typically
written by hand by the designers and it might take months to obtain a set of assertions
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12:2 Pattern Discovery in Colored Strings

(a) Simulation trace.

T i1 i2 i3 o1 o2

1 0 1 0 0 0
2 1 1 0 1 0
3 0 1 0 0 0
4 1 1 0 1 1
5 0 1 0 0 0
6 1 1 0 1 0
7 1 0 1 1 1
8 0 1 0 1 0
9 1 1 0 0 0

10 0 1 0 0 0
11 1 0 1 1 1

(b) Mapping of the input and output alphabet.

Input alphabet.
i1 i2 i3 Σ
0 1 0 a
1 0 1 b
1 1 0 c

Output alphabet.
o1 o2 Γ
0 0 x
1 0 y
1 1 z

(c) The colored string associated with the simulation trace.

x y x z x y z y x x z
a c a c a c b a c a b

1 2 3 4 5 6 7 8 9 10 11

Figure 1 Example of a simulation trace of a device with input ports I = {i1, i2, i3} and output
ports O = {o1, o2} and the associated colored string.

that is small and effective (i.e. it covers all functionalities of the device) [15]. In order to
help designers with the verification process, methodologies and tools have been developed
which automatically generate assertions from simulation traces of an implementation of the
device [22, 32, 8, 7]. The objective is to provide a small set of assertions that cover all
behaviors of the device, in order to extend the basic manually-defined set of assertions.

A simulation trace can be viewed as a table that records, for every simulation instant T ,
the value assumed by the input and output ports of the device. Figure 1a shows an example
of a simulation trace of a device with three input ports I = {i1, i2, i3} and two output ports
O = {o1, o2}. An assertion is a logic formula expressed in temporal logic that must remain
true in the whole trace. The simplest assertions involve only conditions occurring at the
same simulation instant. In the simulation trace in Figure 1a, from the solid and dashed
shaded boxes, we can assert that each time we have i1 = 1, i2 = 0, and i3 = 1, then o1 = 1
and o2 = 1. On the other hand, we cannot assert that each time we have i1 = 1, i2 = 1, and
i3 = 0, then o1 = 1 and o2 = 1, because there is a counterexample in the simulation trace,
namely at instant T = 9, where o1 = 0 and o2 = 0. Note assertions need not contain all
input and output variables, e.g. we can assert that i1 = 0 and i3 = 0 implies o2 = 0.

Among all possible types of assertions that can be expressed in temporal logic, an
important one is given by chains of next: sequences of consecutive input values that, when
provided to the device, uniquely determine their output, after a certain number of simulation
instants. For example, in the simulation trace in Figure 1a, we can assert that each time we
have, for (i1, i2, i3), values (0, 1, 0), (1, 1, 0), (0, 1, 0) in consecutive simulation instants, then,
three instants later, we will see o1 = 1 and o2 = 0.

We model simulation traces with colored strings. A colored string is a string over an
alphabet Σ, where each position is additionally assigned a color from an alphabet Γ. We will
set Σ as the set of tuples of possible values for the input ports i1, . . . , ik and Γ as that of the
output traces o1, . . . , or. The objective is to identify patterns in the string whose occurrence
is always followed by the same color at some given distance.

Related Work. Pattern mining, with the seminal Apriori algorithm [1], arose from the
desire to discover frequent itemsets and association rules in shopping basket data, i.e. items
that were frequently bought together. Time relationhips, e.g., between entries of the database
in which the basket data are stored, were later considered in so-called sequential pattern
mining [2]. In sequential pattern mining, episodes are partially ordered sequences of events
that appears close to each other in the sequence [25]. Given episodes of the sequence, it is
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possible to build episode rules that establish antecedent-consequent relations among episodes.
Sequential pattern mining has many applications (see, e.g., [4, 21, 10]) and has been surveyed
extensively [28, 23, 16]. Unfortunately, the above setting is not applicable to our problem,
since time is given only in a relative sense, i.e., whether an event happens before (or after)
another, while we need to count exactly the instants occurring between two events.

In the string mining problem [13, 12, 14, 9, 31], one aims to discover strings that appear as
a substring in more than ω strings in a collection, where ω is a user-defined parameter called
the support of the string. The problem has been extended to mining frequent subsequences [19]
and distinguishing subsequence patterns with gap constraints [20, 27, 33, 34]. String mining,
however, has only superficial similarity to the colored string problems we consider.

In assertion mining, the two existing tools, GoldMine [32] and A-Team [7], are based
on data mining algorithms. In particular, GoldMine [32] extracts assertions that predicate
only on one instant of the simulation trace – i.e. they do not involve any notion of time – ,
using decision tree based mining or association mining [1]. Furthermore, using static analysis
techniques together with sequential pattern mining, it extracts temporal assertions. The
tool A-Team [7], requires the user to provide the template of the temporal assertions that
they want to extract. For example, in order to extract the properties of our example in
Fig. 1a, one needs to provide a template stating that we want a property of the form: “a
property p1, at the next simulation instant a property p2, at the next simulation instant a
property p3, then after three simulation instants a property p4”. Given a set of templates,
the software, using an Apriori algorithm, extracts propositions (logic formulae containing the
logical connectives ¬, ∨, and ∧) from the trace. Once the propositions have been extracted,
the tool generates the assertion by instantiating the extracted propositions in the templates,
using a decision-tree-based algorithm to find formulas that fit in the template and are verified
in the simulation trace, i.e. if the trace contains no counterexample.

Our Contribution. We introduce colored strings, and propose and analyze a pattern dis-
covery problem on colored strings which corresponds to a useful simplification of pattern
mining w.r.t. assertion mining. Given a colored string and a color as input, we must find all
minimal substrings that occur followed always at a the same distance by the given color. We
define this problem formally in Section 2. Although this problem is simpler than the original
assertion mining problem, the solution to our problem contains all the information, possibly
filtered, to recover the desired set of minimal assertions in a second stage.

We first upper bound the number of minimal patterns by O(n2). We then describe a
suffix-tree-based algorithm to find all minimal patterns, when only one color is of interest.
We go on to describe several refinements to this algorithm that significantly improve its
performance in practice. Finally, we consider (practically motivated) restrictions on the
patterns and show that under these restrictions performance is further improved.

2 Basics

Let S = S[1, n] be a string of length |S| = n on a finite ordered alphabet Σ. ε denotes
the empty string of length 0. S[i] denotes the i’th character of S and S[i, j] the substring
S[i] · · ·S[j], if i ≤ j, while S[i, j] = ε if i > j. A substring T of S is called proper if T 6= S.
Srev = S[n]S[n− 1] · · ·S[1] denotes the reverse of S. For 1 ≤ i ≤ n, Prefi(S) = S[1, i] is the
i’th prefix of S, and Sufi(S) = S[i, n] is the i’th suffix of S.
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12:4 Pattern Discovery in Colored Strings

Colored strings. Given two finite sets Σ (the alphabet) and Γ (the colors), a colored string
over (Σ,Γ) is a string S = S[1, n] over Σ together with a coloring function fS : {1, . . . , n} → Γ.
We denote by σ = |Σ| and γ = |Γ| the number of characters resp. of colors. Given a colored
string S of length n, its reverse is denoted Srev, and its coloring function fSrev is defined by
fSrev(i) = fS(n− i+ 1), for i = 1, . . . , n. When S is clear from the context, we write f for
fS and f rev for fSrev .

We are interested in those substrings which are always followed by a given color y, at a
given distance d. For example, let S = acacacbacab, with colors xyxzxyzyxxz (see Fig. 1c).
Substring aca occurs 3 times in S, at positions 1, 3, and 8. In positions 1 and 3 it is followed
by y at distance 3, while at position 8, the corresponding position is beyond the end of S.
This leads to the following definition.

I Definition 1 (y-good, y-unique, minimal). Let S be a colored string over (Σ,Γ), y ∈ Γ a
color, d ≤ n a non-negative integer, and T = T [1,m] a substring of S.
1. An occurrence i of T is called y-good with delay d (or (y, d)-good) if f(i+m−1+d) = y.
2. T is called y-unique with delay d (or (y, d)-unique) if for every occurrence i of T , i is

(y, d)-good or i+m− 1 + d > n.
3. T is called minimally (y, d)-unique if there exists no proper substring U of T which is

y-unique with delay d′, for some d′ s.t. U = T [i, j] and d′ = d+ |T | − j.

In the example, the occurrence of aca in position 1 is (y, 3)- and (y, 5)-good, that in 3 is
(y, 1)- and (y, 3)-good, while that in 8 is not (y, d)-good for any d. Therefore, the substring
T = aca is a (y, 3)-unique substring of S, since every occurrence i of aca is either (y, 3)-good
or i+m− 1 + d > n. But aca is not minimal, since its substring ca is also (y, 3)-unique.

The introduction of minimally (y, d)-unique substrings serves to restrict the output size.
Let T = aXb be (y, d)-unique, with a, b ∈ Σ and X ∈ Σ∗. We call T left-minimal if Xb is
not (y, d)-unique, and right-minimal if aX is not (y, d+ 1)-unique. We make the following
simple observations about (y, d)-unique substrings. (Note that 2 is a special case of 3.)

I Observation 1. Let S ∈ Σ∗ and let T be a (y, d)-unique substring of S.
1. T is minimal if and only if it is left- and right-minimal.
2. If T is a suffix of T ′, then T ′ is also (y, d)-unique.
3. If T ′ = UTV is a superstring of T such that |V | ≤ d, then T ′ is (y, d− |V |)-unique.

We are now ready to formally state the problem treated in this paper.

I Problem 1 (Pattern Discovery Problem). Given a colored string S and a color y, report all
pairs (T, d) such that T is a minimally (y, d)-unique substring of S.

We next give an upper bound on the number of minimally (y, d)-unique substrings.

I Lemma 2. Given string S of length n, the number of minimally (y, d)-unique substrings
of S, over all y ∈ Γ and d = 0, . . . , n, is O(n2).

Suffix trees and indexed priority queue. We assume some familiarity with the suffix tree
data structure, (see e.g. [18, 30, 24]). We denote by T (S) the suffix tree of S$. T (S) has
exactly n + 1 leaves, each labeled by a position from {1, . . . , n + 1}, denoted ln(v). For
node v in T (S), L(v) denotes the string represented by v, i.e., the concatenation of edge
labels on the path from the root to v. We denote by td(v) the treedepth of node v and
by sd(v) = |L(v)| its stringdepth. For internal node v, parent(v) denotes v’s parent and
for character c ∈ Σ, child(v, c) denotes the child of v reached by following the edge whose



Zs. Lipták, S. J. Puglisi, and M. Rossi 12:5

label starts with c (if it exists). Given a node u with parent v, a locus is a pair (u, t) s.t.
sd(v) < t ≤ sd(u). Let [i, j] be the label of edge (v, u) and k = t− sd(v). We define L(u, t)
as the string L(v) · S[i, i+ k − 1], the substring represented by locus (u, t). The one-to-one
correspondence between loci of T (S) and substrings of S$ allows us to define, for a substring
T of S, the locus of T , loc(T ) = loc(T, T (S)) as the unique locus (u, t) in T (S) with the
property that L(u, t) = T . Given loc(T ) = (u, t), the set of occurrences of T is the set
{ln(v) | v is leaf in the subtree rooted in u}. Let u be a node and L(u) = cT , where c ∈ Σ
and T ∈ Σ∗. The suffix link of u is defined as slink(u) = loc(T ). We also define (implicit)
suffix links for loci: for locus (u, t) with L(u, t) = cT , define slink(u, t) = loc(T ). See Figure 2.

Given a suffix tree T (S) with k nodes, and a node u of T (S), let r be the rank of the
node u in the breath-first search traversal of the tree. We define the reverse index BFS of u
as iBFS(u) = k − r.

A maximum-oriented indexed priority queue [29, Sec. 2.4] denoted by IPQ, is a data
structure that collects a set of m items with keys k1, . . . , km respectively, and provides
operations: insert(i,k) (insert the element at index i with key ki = k); demote(i,k)
(decreases the value of the key ki, associated with i, to k ≤ ki); (i, k) ←max() (returns
the index i and the value k of the item with maximum key ki, breaking ties by index);
k ←keyOf(i) (returns the value of the key ki associated with index i). Operations insert and
demote run in O(log(m)) time, while the operations max, keyOf and isEmpty are performed
in O(1) time. We also use a function b←allNegative() that returns true if all key values
are negative, and false otherwise. We use the IPQ to store keys associated to nodes u
of a suffix tree T (S) using iBFS(u) as index. For ease of presentation, in slight abuse of
notation, we will use u and iBFS(u) interchangeably.

3 Pattern discovery in colored strings using the suffix tree

Our main tool will be the suffix tree of the reverse string, T = T (Srev). Note that loci in T
correspond to ending positions of substrings of S: given a locus (u, t) of T , let U = L(u, t)rev.
Then U is a substring of S, and its occurrences are exactly the positions i− |S|+ 1, where
i = n− ln(v) + 1 for some leaf v in the subtree rooted in u. In the next lemma we show how
to identify (y, d)-unique substrings of S with T .

I Lemma 3. Let U be a substring of S, T = T (Srev), and (u, t) = loc(U rev, T ). Then
U is y-unique with delay d in S if and only if for all leaves v in the subtree rooted in u,
Srev[ln(v)− d] is colored y under f rev. In particular, U is y-unique with delay 0 in S if and
only if all leaves in the subtree rooted in u are colored y under f rev.

In the following, we will refer to a node u of T as (y, d)-unique if L(u)rev is a (y, d)-unique
substring of S. We can now state the following corollary:

I Corollary 4. Let U be a substring of S, T = T (Srev), and (u, t) = loc(U rev, T ) s.t. u is
an inner node of T (S). Then U is (y, d)-unique in S iff all children of u are (y, d)-unique.

3.1 Finding all (y, d)-unique substrings
Our first algorithm Algo1 uses the suffix tree T of the reverse string to identify all (y, d)-
unique substrings of S, not only the minimal ones, for fixed y and d. It marks the (y, d)-unique
nodes of T in a postorder traversal of the tree. Note that if i > n − d, then i cannot be
(y, d)-good, because the position in which we would expect a y lies beyond the end of string
S. These positions are treated as if they were (y, d)-good (see Def. 1).

The function g(u) : V (T )→ {0, 1} is defined as follows:
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12:6 Pattern Discovery in Colored Strings

for a leaf u with leaf number ln(u) = i: g(u) =
{

1 if either i ≤ d or f(i− d) = y,
0 otherwise,

for an inner node u: g(u) =
{
y if g(v) = 1 for all children v of u,
0 otherwise.

The algorithm computes g(u) for every node u in a bottom-up fashion. If g(u) = 1, in
addition it outputs all strings represented along the incoming edge of u, except for substrings
which contain the $-sign, i.e. suffixes of Srev$, see Algorithm 1.

Algorithm 1 Algo1.
input :A colored string S, the suffix tree T of Srev, and y ∈ Γ.
output :All pairs (T, d) such that T is a (y, d)-unique substring of S.

1 for d← 0 to n do
2 Unique(root, y, d)

3 procedure:
4 Unique(u, y, d)
5 if u is a leaf then // u is a leaf
6 i← ln(u)
7 if i ≤ d or f rev(i− d) = y then
8 g(u)← 1
9 else

10 g(u)← 0

11 else // u is an inner node
12 g(u)← ∧v child of uUnique(v, y, d)
13 if g(u) = 1 then
14 if u is a leaf then // do not output $-substrings
15 output L(u, t)rev for every t = sd(parent(u)) + 1, . . . , sd(u)− 1
16 else
17 output (L(u, t)rev, d) for every t = sd(parent(u)) + 1, . . . , sd(u)

18 return g(u)

Analysis: For fixed d, computing g takes amortized O(n) time over the whole tree, since
computing g(u) is linear in the number of children of u, and therefore, charging the check
whether for a child v, g(v) = 1, to the child node, we get constant time per node. So, for
fixed d, we have O(n+K) = O(n2) time, where K is the number of (y, d)-unique substrings.
Altogether, for d = 0, . . . , n, the algorithm takes O(n3) time.

In the running example (Fig. 2), for color y and delay d = 3, the leaf nodes 9, 2, 7, 1,
and 3 are marked with 1, thus the only inner node u which gets g(u) = 1 is the parent of
leaves number 9, 2, 7. Algo 1 outputs baca, cbaca, acbaca, cacbaca, acacbaca, cacacbaca,
acacacbaca, caca, acaca, ca, aca, ab, cab, acab, bacab, cbacab, acbacab, cacbacab,
acacbacab, cacacbacab, bac, cbac, acbac, cacbac, acacbac, cacacbac, acacacbac.

Remark: Note some of these substrings do not occur even once in a position such that the
last character is followed by a y with delay d = 3. For instance, the only occurrence of the
substring bac in S is at position 7, so we would expect to see color y at position 9 + 3 = 12,
but the string S ends at position 11. We treat this and similar questions in Section 5.

3.2 Outputting only minimally (y, d)-unique substrings
We next modify Algorithm Algo1 to output only minimally (y, d)-unique substrings. In the
suffix tree T of Srev, minimality translates into conditions on the parent node and on the
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suffix link parent node (equivalently: the suffix link) in T . We first need another definition:

I Definition 5 (Left-minimal nodes, left-minimal labels). Let u be a node of T = T (Srev),
different from the root, and let v = parent(u). We call u left-minimal for (y, d) if u is
(y, d)-unique but v is not and the label of the edge (v, u) is not equal to $. If u is (y, d)-unique
and left-minimal, then we can define Left-min(u) = x1 ·L(v)rev, the left-minimal (y, d)-unique
substring of S associated to u, where x = x1 · · ·xk ∈ Σ+ is the label of edge (v, u).

In our running example, let u = loc(T , aca). Then u is left-minimal, since it is (y, 3)-
unique but its parent is not. Its left-minimal label is Left-min(u) = ca. See Fig. 2.

It is easy to modify Algorithm 1 to output only left-minimal substrings: Whenever for an
inner node u we get g(u) = 0, then for every child v of u with g(v) = 1, we output Left-min(v)
(if defined). This means replacing lines 13 to 17 in Algorithm 1 (details left to the reader).

In the example, we would now output, for color y and d = 3, the left-minimal substrings
ca,ab,bac. However, we are interested in substrings which are both left- and right-minimal.
For right-minimality, Obs. 1 part (3) tells us that we need to check whether the string without
the last character is (y, d+ 1)-unique. In T , this translates to checking the suffix link of the
locus of the left-minimal substring Left-min(u).

I Proposition 6. Let u be an inner node of T = T (Srev), different from the root, s.t. L(u)rev

is (y, d)-unique in S. Let v = parent(u), and x1 be the first character on the edge (v, u).
Further, let t = sd(v) + 1, and (u′, t′) = slink(u, t). Then the substring U = x1 · L(v)rev is
minimally (y, d)-unique in S iff v is not (y, d)-unique and u′ is not (y, d+ 1)-unique.

We can use Prop. 6 as follows. Once a left-minimal (y, d)-unique node u has been found,
check whether u′ is (y,d+1)-unique, where u′ is the node below the locus slink(u,sd(parent(u))+
1). It is easy to find node u′ by noting that u′ = child(slink(parent(u)), x1), where x1 is
the first character of the edge label leading to u. To know whether u′ is (y, d+ 1)-unique,
we process the distances d in descending order, from d = n down to d = 0. At the end
of the iteration for d, we retain the information, keeping a flag on every node u which is
(y, d)-unique. See Algorithm 2.

In the running example, we know from the previous round for d = 4 that the only
nodes that are (y, 4)-unique are the leaves number 4, 2, 1, 10, 3, and 8. We can now de-
duce that the substring ca is right-minimal, because u = loc(ca) is not (y, 4)-unique, and
slink(loc(T , carev)) = (u, 1). Looking at the string S we see that ca is indeed right-minimal,
since c is not (y, 3)-unique: it has an occurrence, in position 6, which is not followed by a y
but by an x at position 10 = 6 + 4 (delay 4). Similarly, the other two left-minimal substrings
ab and bac are also right-minimal, because their respective suffix links are not (y, 4)-unique.

For fixed d, the time spent on each leaf is constant (lines 5 to 10 in Algo2); we charge
the check of g(v) in line 12 to the child v, as well the work in lines 14 to 18 (computing
Left-min(v) and checking the flag on v′ from the previous round); these are all constant-time
operations, and so we have O(n) time for fixed d and O(n2) in total.

4 Skipping Algorithm

We now focus on discovering minimal (y, d)-unique substrings. As before, we build T (Srev)
and traverse it, discovering all left-minimal (y, d)-unique substrings as we go, reporting
only those that are minimal. Thus, by Proposition 6, we have to discover all left-minimal
(y, d+ 1)-unique substrings before discovering left-minimal (y, d)-unique ones.

To this end, fixing `, for each node u of T (Srev), we determine the largest delay d smaller
than ` such that L(u)rev can be (y, d)-unique, denoted by h(u, `). We consider four cases:
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12:8 Pattern Discovery in Colored Strings

Algorithm 2 Algo2.
input : a colored string S, the suffix tree T of Srev with suffix links, and y ∈ Γ.
output : all pairs (T, d) such that T is a minimally (y, d)-unique substring of S.

1 for d← n downto 0 do
2 MinUnique(root, y, d)

3 procedure:
4 MinUnique(u, y, d)
5 if u is a leaf then // u is a leaf
6 i← ln(u)
7 if i ≤ d or f rev(i− d) = y then
8 g(u)← 1
9 else

10 g(u)← 0

11 else // u is an inner node
12 g(u)← ∧v child of uMinUnique(v, y, d)
13 if g(u) = 0 then // outputting minimal substrings for children
14 for each child v with g(v) = 1 do
15 if Left-min(v) is defined then
16 (v′, t)← slink(v, sd(u) + 1)
17 if v′ is not (y, d+ 1)-unique then // flag from previous round
18 output (Left-min(v), d)

19 return g(u)
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Figure 2 The suffix tree T of the reverse string Srev = bacabcacaca, where S = acacacbacab
(our running example). For clarity, the edges carry the label itself rather than a pair of pointers
into the string. Suffix links are drawn as dotted directed edges. The nodes are colored according to
function g for the character y, for d = 3 (dashed) and for d = 4 (solid).
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If u is a leaf, then L(u)rev is the j-prefix of S, where j = n− ln(u) + 1 = |L(u)|
If ln(u) < `, then j + `− 1 > n thus L(u)rev is (y, `− 1)-unique since the position of
the color is beyond the end of the string, thus h(u, `) = `− 1.
If ln(u) ≥ ` and there exists an i < ` such that f(j + i) = y, then the highest possible
value d < ` such that L(u)rev is (y, d)-unique is given by the position of the furthest
occurrence of y within a distance of `−1 from j, thus h(u, `) = max{i < ` | f(j+i) = y}.
Otherwise, if such i does not exists, we set h(u, `) = −1.

If u is an internal node of T (Srev), then let k = min{h(v, `) | v child of u}, since it is not
possible that L(u)rev is (y, d′)-unique, for any k < d′ < `, thus h(u, `) = k.

When u is an inner node, in general, we do not know if L(u)rev is (y, d)-unique for
d = h(u, `), unless for all nodes v in the subtree rooted at u, there exists an `v such that
h(u, `) < `v ≤ ` and h(v, `v) = h(u, `). This is true if h(v, d+ 1) = h(u, `) for all v.

I Lemma 7. Let u be a node of T (Srev), fix d, h(u, d+1) = d if and only if u is (y, d)-unique.

To evaluate h(u, `) = max{i < ` | f(j + i) = y} when u is a leaf and such i exists, we define
a bitvector by[1, 2n] such that by[i] = 1 only if f(i) = y or i > n. We preprocess by for
O(1)-time rank and select queries [5]. Given node u with ln(u) ≥ `, let j = n− ln(u) + 1.
We have that h(u, `) = max{select(by, rank(by, j + `))− j,−1}.

We use the h(u, `) function in the following way, during the discovery process of all
(y, d)-unique substrings of S, provided that we have already discovered all (y, d+ 1)-unique
substrings of S. Let ` = d + 1 , for all nodes u of T (Srev) we store the values h(u, `).
We discover the minimally (y, d)-unique substrings of S, finding all nodes u such that
h(u, `) = d. Among those, the nodes that are also left-minimal are those nodes u such that,
h(parent(u), `) < d. We then check if u is also right-minimal by checking if its suffix-link
parent is (y, d+ 1)-unique, as in Algorithm 2.

The key idea of the skipping algorithm is to keep the values h(u, `) updated during the
process. Let H(u) be the array that, at the beginning of the discovery of all (y, d)-unique
substrings of S, stores the values h(u, `). We want to keep the array H updated in a way such
that, after we discovered all (y, d)-unique substrings of S, for all nodes u, H(u) = h(u, `− 1).
Thus, once we discover that a node u is left-minimal (y, d)-unique, we update the value of
H(u) = h(u, `− 1). We then update the following values:

for all nodes v in the subtree rooted in u, we update the values H(u) = h(u, `− 1).
for all nodes p ancestors of u, we update the values H(p) = min(H(p), h(u, `− 1))

I Lemma 8. Given T (Srev), fix d, for all nodes u of T (Srev), let H(u) = h(u, d+ 1). If for
all nodes u such that H(u) = d we (i) set H(u) = h(u, d), and (ii) for all ancestors p of u,
set H(p) = min{H(p), h(u, d)}, then, for all nodes u of T (Srev), H(u) = h(u, d).

In order to efficiently find all nodes u such that h(u, `) = d and h(parent(u), `) < d, we
use a maximum-oriented indexed priority queue, storing the values of H(u) as keys and
iBFS(u) as index. Under this condition, if two nodes have the same key value, then parents
have higher priority than their children in IPQ. We keep the priority queue updated using
a demote operation while we discover left-minimal nodes and we update the values of the
array H stored as keys of IPQ. Algorithm 3 shows how to compute h(u, `) for a given node
u, and how we update the values of the keys in the IPQ for all children v of u.

The skipping algorithm (see Algorithm 4), initializes priority queue IPQ by inserting
all nodes of T (Srev) with key n+ 1. We then repeat the following until there exists a node
with non-negative key: extract the max element (u, `) of IPQ, decide whether it has to be
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Algorithm 3 h(u, d).
input :A node u in suffix tree T (Srev)

and integer `.
output :Maximum delay d < ` s.t.

L(u)rev can be (y, d)-unique.
1 mind ← `− 1
2 if u is a leaf then
3 j ← n− ln(u) + 1
4 mind ← max{select(by, rank(by, j +

`))− j,−1}
5 else
6 forall children v of u do
7 d = h(v, `)
8 if mind < d then
9 mind ← d

10 IPQ.demote(u,mind)
11 return mind

Algorithm 4 Skipping.
input :A colored string S, and a color

y ∈ Γ
output :All minimal (y, d)-unique

substrings of S.
1 forall nodes v of T (Srev) do
2 IPQ.insert(v, n+ 1)

3 while IPQ.allNegative()= false do
4 (u, d)← IPQ.max()
5 (u′, t) = slink(u, sd(parent(u)) + 1)
6 if u′ is not (y, d+ 1)-unique then

// flag from previous round
7 output (d,Left-min(u))
8 mind = h(u, d)
9 forall ancestors v of u do

10 if IPQ.keyOf(v) > mind then
11 IPQ.demote(v,mind)

reported, i.e. if it is right-minimal; apply Algorithm 3 to update the key values of all nodes
in the subtree at u and then update the values of the keys of all ancestors of u.

For all nodes u in T (Srev), the key value associated to u in IPQ is initially n+ 1. Each
time Algorithm 4 and Algorithm 3 visit a node, the key value of u in IPQ is decreased
(via demote()) until it becomes negative. Thus, for each node we perform at most n + 1
demote() operations. Since the number of nodes in T (Srev) is linear in n, Algorithm 4 runs
in O(n2 log(n)) time.

5 Output restrictions and algorithm improvement

We now discuss some practically-minded output restrictions. These could be implemented as
a filter to the output, thus discarding some solutions, but when considered as part of the
problem, they lead to an improvement for the skipping algorithm.

Note that our definition of (y, d)-unique allows that a substring occurs only once, or that
none of its occurrences is followed by a y with delay d, because they are all close to the end
of string. We restrict our attention to (y, d)-unique substrings with at least two occurrences
followed by y with delay d. Given a colored string S, let T be minimally (y, d)-unique. Now
we report (T, d) if and only if the following holds: 1) there are at least two occurrences of T
in S; 2) let i be the second smallest occurrence of T in S, then i+ |T | − 1 + d ≤ n.

A substring T that satisfies the above conditions is called real type minimally (y, d)-unique
substring. In order to satisfy those conditions, it is enough to perform the output operations
at line 7 of Algorithm 4 and at line 18 of Algorithm 2 if the node u is not a leaf and the
value of the second greatest suffix of Srev in the subtree rooted in u is greater than or equal
to d. Since each node u in the suffix tree T (Srev), corresponds to an interval [i, j] of the
suffix array of Srev, we can find the second greatest suffix using a range maximum query
rMq data structure [11] built on the suffix array of Srev. Then, the second greatest suffix
can be found in O(1) time, using 2n+ o(n) bits of extra space.

The h(u, `) function is used in Algorithm 4 in order to find left-minimal nodes in the
suffix tree. If we consider the output restrictions as part of the problem, then we do not
have to report minimally (y, d)-unique substrings that occur only once, i.e., leaves in T (Srev).
Then, for all nodes u such that all children of u are leaves, we can directly compute the
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Table 1 Real-world datasets used in the experiments. In columns 1 and 2, we report names and
descriptions of the hardware designs used to generate the simulation traces. In columns 3 and 4,
we give the number of primary inputs resp. of primary outputs. In column 5 we report the length
of the simulation trace, and in columns 6 and 7 the size of the alphabet and the number of colors,
respectively. For each design we fixed a color y, and report in col. 8 number ny of y characters.

Design Description PIs POs n σ γ ny

b03 Resource arbiter [6] 6 4 100 000 17 5 3210
b06 Interrupt handler [6] 4 6 100 000 5 4 44 259
s386 Shynthetized controller [3] 9 7 100 000 129 2 8290
camellia Symmetric key block cypher [26] 262 131 103 615 70 224 2292
serial Serial data transmitter 11 2 100 000 118 2 16 353
master Wishbone bus master [26] 134 135 100 000 417 80 759

highest value of d < ` such that L(u)rev is (y, d)-unique. This leads to the definition of the
fast_h(u, `) function for a node u of T (Srev). The function fast_h(u, `) is defined similarly
to the function h(u, `) with the additional following case: If all children of u are leaves, we
can directly compute the highest value of d < ` such that L(u)rev is (y, `)-unique as the
largest value d < ` such that, for each child v of u, h(v, d+ 1) = d. In other words, we want
the largest d < ` such that all children of v are (y, d)-unique.

6 Experimental results

We implemented the algorithms1 and measured their performance on randomly generated
datasets and real-world datasets. Experiments were performed on a 3.4GHz Intel Core i7-6700
CPU with 8MiB L3 cache and 16GiB of DDR4 RAM running Ubuntu 16.04 (64bit, kernel
4.4.0). The compiler was g++ version 5.4.0 with -O3 -DNDEBUG -funroll-loops -msse4.2
options. Runtimes were recorded with the C++11 high_resolution_clock facility.

We used two different datasets, one consisting of randomly generated data and one
consisting of real-world data. Randomly generated data varied string length n = 100, 1000,
10 000, 100 000, alphabet size σ = 2, 4, 8, 16, 32, and number of colors γ = 2, 4, 8, 16, 32.
Strings were generated one character (and color) at a time, i.e. fixing σ and γ, the string of
length n = 1000 is a prefix of the string n = 10 000. Characters and colors follow a uniform
distribution. We report only on experiments for n = 1000, 10 000, 100 000, σ = 2, 8, 32,
color number γ = 2, 8, 32, and seed 0, which are representative of the trend we observed
for all settings. The real-world data is the result of a simulation on a set of established
benchmarks in embedded systems verification [3, 6, 26], reported in Table 1. The benchmarks
are descriptions of hardware design at the register-transfer level of abstraction.

We compared implementations base (the baseline, Algorithm 2); skip (the skipping
algorithm in Algorithm 4, using the h function in Algorithm 3); and real (as skip, but
using the fast_h function). All algorithms report minimally (y, d)-unique substrings only
if they are real type. We used the sdsl-lite library [17] for compressed suffix trees and
supporting data structures.

We performed all experiments five times and report the average. Results are reported in
Figure 3 and Table 2. Figure 3 shows the results for base, skip and real on the random
data set. We observe how the algorithms scale with respect to increasing the number of colors,
which has the effect of reducing the number of y-colored characters; increasing alphabet size;

1 Available online at: https://github.com/maxrossi91/colored-strings-miner.
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and increasing the length of the text. In summary, for all algorithms: running time decreases
with increasing number of colors and increases with alphabet size. We observe a quadratic
dependence on n in line with our asymptotic analysis.

Figure 3 Results of the execution of algorithms base (color blue), skip (color orange) and real
(color green) over the randomly generated data for N = 103, 104, and 105. The x axis represents
the values of σ = {2, 8, 32}, and the different markers represents the values of γ = {2, 8, 32} (resp.
circles, crosses, and boxes). The three plots in the first row report execution times. The plots in the
second row report speedups of skip and real with respect to algorithm base represented as the
dashed blue line at constant 1.0.

Figure 3 shows that the skip algorithm is almost always faster than the base algorithm,
and that the average speedup is 1.30, with a maximum of 1.75. Moreover, we have that
the the real algorithm is almost always faster than the skip algorithm, and the average
speedup is 1.25, with a maximum of 1.64. Finally, the average speedup between real and
base is 1.65, with a maximum of 2.60 in the case of N = 100 000, σ = 32 and γ = 32.

Table 2 shows the results for base, skip and real algorithms on the real dataset. Here,
we observe a similar trend to the random data, but the speedup of real with respect to base
is much higher – 3.40 on average, with a maximum of 11.88 on the master device. However,
on three of the six datasets, base is faster than skip, and faster than real on one.

7 Conclusion

We studied pattern discovery problems on colored strings motivated by applications in
embedded system verification. To the best of our knowledge this is the first principled

Table 2 Results of the execution of algorithms base, skip and real over the real-world dataset.
The first column reports the name of the design from which the simulation trace is retrieved.

Execution Time (sec) Speedup (ratio)
Design base skip real base/skip

skip/real
base/real

b03 2258.94 3925.08 3149.46 0.58 1.25 0.72
b06 3575.78 5463.50 4511.97 0.65 1.21 0.79
s386 3285.55 5347.90 3719.14 0.61 1.44 0.88
camellia 3015.91 1098.77 1071.75 2.74 1.03 2.81
serial 3325.84 989.98 1003.72 3.36 0.99 3.31
master 3365.56 284.19 283.24 11.84 1.00 11.88
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algorithmic treatment of these problems. Our fastest algorithm stores, during the discovery
process, for each distinct substring the next delay value which is (y, d)-unique, using a priority
queue to find these values and to identify minimally (y, d)-unique substrings. The algorithm
is especially fast on real-world instances. Under a variant of the minimality condition oriented
toward real-world instances the algorithm becomes even faster. We are currently working with
colleagues in embedded systems to integrate these algorithms into their analysis workflows.
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