Faster Fully Dynamic Transitive Closure in
Practice

Kathrin Hanauer
University of Vienna, Faculty of Computer Science, Austria
kathrin.hanauerQunivie.ac.at

Monika Henzinger
University of Vienna, Faculty of Computer Science, Austria
monika.henzinger@Qunivie.ac.at

Christian Schulz
University of Vienna, Faculty of Computer Science, Austria
christian.schulzQunivie.ac.at

—— Abstract

The fully dynamic transitive closure problem asks to maintain reachability information in a di-

rected graph between arbitrary pairs of vertices, while the graph undergoes a sequence of edge
insertions and deletions. The problem has been thoroughly investigated in theory and many spe-
cialized algorithms for solving it have been proposed in the last decades. In two large studies
[Frigioni ea, 2001; Krommidas and Zaroliagis, 2008|, a number of these algorithms have been
evaluated experimentally against simple, static algorithms for graph traversal, showing the competi-
tiveness and even superiority of the simple algorithms in practice, except for very dense random
graphs or very high ratios of queries. A major drawback of those studies is that only small
and mostly randomly generated graphs are considered.

In this paper, we engineer new algorithms to maintain all-pairs reachability information which
are simple and space-efficient. Moreover, we perform an extensive experimental evaluation on
both generated and real-world instances that are several orders of magnitude larger than those in
the previous studies. Our results indicate that our new algorithms outperform all state-of-the-art
algorithms on all types of input considerably in practice.

2012 ACM Subject Classification Theory of computation — Dynamic graph algorithms
Keywords and phrases Dynamic Graph Algorithms, Reachability, Transitive Closure

Digital Object ldentifier 10.4230/LIPIcs.SEA.2020.14

Related Version A full version of the paper is available at [12], https://arxiv.org/abs/2002.00813.

Supplementary Material Source code and instances are available at https://dyreach.
taa.univie.ac.at/transitive-closure.

Funding The research leading to these results has received funding from the FEuropean
Research Council under the European Union’s Seventh Framework Programme (FP/2007-
2013) / ERC Grant Agreement no. 340506.

1 Introduction

Complex graphs are useful in a wide range of applications from technological networks to
biological systems like the human brain. These graphs can contain billions of vertices and
edges. Analyzing these networks aids us in gaining new insights about our surroundings.
One of the most basic questions that arises in this setting is whether one vertex can reach
another vertex via a directed path. This simple problem has a wide range of applications
such program analysis [28], protein-protein interaction networks [10], centrality measures,
and is used as subproblem in a wide range of more complex (dynamic) algorithms such as
? Kathrin Hanauer, Monika Henzinger, and Christian Schulz;
5v icensed under Creative Commons License CC-BY

18th International Symposium on Experimental Algorithms (SEA 2020).
Editors: Simone Faro and Domenico Cantone; Article No. 14; pp. 14:1-14:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5945-837X
mailto:kathrin.hanauer@univie.ac.at
https://orcid.org/0000-0002-5008-6530
mailto:monika.henzinger@univie.ac.at
https://orcid.org/0000-0002-2823-3506
mailto:christian.schulz@univie.ac.at
https://doi.org/10.4230/LIPIcs.SEA.2020.14
https://arxiv.org/abs/2002.00813
https://dyreach.taa.univie.ac.at/transitive-closure
https://dyreach.taa.univie.ac.at/transitive-closure
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2

Faster Fully Dynamic Transitive Closure in Practice

in the computation of (dynamic) maximum flows [8, 6, 11]. Often, the underlying graphs
or input instances change over time, i.e., vertices or edges are inserted or deleted as time
is passing. In a social network, for example, users sign up or leave, and relations between
them may be created or removed over time. Terminology-wise, a problem is said to be fully
dynamic if the update operations include both insertions and deletions of edges, and partially
dynamic if only one type of update operations is allowed. In this context, a problem is called
incremental, if only edge insertions occur, but no deletions, and decremental vice versa.

Recently, we studied an extensive set of algorithms for the single-source reachabil-
ity problem in the fully dynamic setting [13]. The fully dynamic single-source reacha-
bility problem maintains the set of vertices that are reachable from a given source ver-
ter, subject to edge deletions and insertions. In particular, we designed several fully
dynamic variants of well-known approaches to obtain and maintain reachability infor-
mation with respect to a distinguished source.

This yields the starting point of this paper: our goal was to transfer recently engineered
algorithms for the fully dynamic single-source reachability problem [13] to the more general
fully dynamic transitive closure problem (also known as fully dynamic all-pairs reachability
problem). In contrast to the single-source problem, the fully dynamic transitive closure
problem consists in maintaining reachability information between arbitrary pairs of vertices
s and t in a directed graph, which in turn is subject to edge insertions and deletions. If the
graph does not change, i.e., in the static setting, the question whether an arbitrary vertex
s can reach another arbitrary vertex ¢ can either be answered in linear time by starting a
breadth-first or depth-first search from s, or it can be answered in constant time after the
transitive closure of the graph, i.e., reachability information for all pairs of vertices, has been
computed. The latter can be obtained in O(n*), where w is the exponent in the running
time of the best known fast matrix multiplication algorithm (currently, w < 2.38 [24]), or
combinatorially in O(n - m) or O(n3) time by either starting a breadth-first or depth-first
search from each vertex or using the Floyd-Warshall algorithm [7, 38, 3].

In the dynamic setting, the aim is to avoid such costly recomputations from scratch after
the graph has changed, especially if the update was small. Hence, the dynamic version of
the problem has been thoroughly studied in theory and many specialized algorithms for
solving it have been proposed in the last decades. However, even the insertion or deletion
of a single edge may affect the reachability between §2(n?) vertex pairs, which is why one
cannot hope for an algorithm with constant query time that processes updates in less
than O(n?) worst-case time if the transitive closure is maintained explicitly. Furthermore,
conditional lower bounds [15] suggest that no faster solution than the naive recomputation
from scratch is possible after each change in the graph.

Whereas the static approach to compute the transitive closure beforehand via graph
traversal can be readily adapted to the incremental setting, yielding an amortized update
time of O(n) [17], a large number of randomized and deterministic algorithms [16, 18, 14,
20, 19, 21, 4, 5, 31, 29, 34, 27] has been devised over the last years for the decremental and
the fully dynamic version of the problem. The currently fastest algorithm in the deletions-
only case is deterministic, has a total update time of O(n - m), and answers queries in
constant time [27]. In the fully dynamic setting, updates can be processed deterministically
in O(n?) amortized time with constant query time [5], or, alternatively in O(m+/n) amortized
update time with O(y/n) query time [31]. An almost exhaustive set of these algorithms
has been evaluated experimentally against simple, static algorithms for graph traversal
such as breadth-first or depth-first search in two large studies [9, 22]. Surprisingly, both
have shown that the simple algorithms are competitive and even superior to the specialized

K. Hanauer, M. Henzinger, and C. Schulz

algorithms in practice, except for dense random graphs or, naturally, very high ratios
of queries. Only two genuinely dynamic algorithms could challenge the simple ones: an
algorithm developed by Frigioni et al. [9], which is based on Italiano’s algorithms [17, 18]
as well as an extension of a decremental Las Vegas algorithm proposed by Roditty and
Zwick [31], developed by Krommidas and Zaroliagis [22]. Both rely on the computation and
maintenance of strongly connected components, which evidently gives them an advantage
on dense graphs. Nevertheless, they appeared to be unable to achieve a speedup of a factor
greater than ten in comparison to breadth-first and depth-first search.

In this paper, we engineer a family of algorithms that build on recent experimental
results for the single-source reachability problem [13]. Our algorithms are very easy to
implement and benefit from strongly connected components likewise, although they do not
(necessarily) compute them explicitly. In an extensive experimental evaluation on various
types of input instances, we compare our algorithms to all simple algorithms from [9, 22] as
well as a modified, bidirectional breadth-first search. The latter already achieves a speedup
of multiple factors over the standard version, and our new algorithms outperform the simple
algorithms on all types of input by several orders of magnitude in practice.

2 Preliminaries

Basic Concepts. Let G = (V, E) be a directed graph with vertex set V' and edge set FE.
Throughout this paper, let n = [V| and m = |E|. The density of G is d = 7*. An edge
(u,v) € E has tail v and head v and u and v are said to be adjacent. (u,v) is said to be
an outgoing edge or out-edge of u and an incoming edge or in-edge of v. The outdegree
deg® (v)/indegree deg™ (v)/degree deg(v) of a vertex v is its number of (out-/in-) edges. The
out-neighborhood (in-neighborhood) of a vertex u is the set of all vertices v such that (u,v) € E
((v,u) € E). A sequence of vertices s — --- — t such that each pair of consecutive vertices is
connected by an edge is called an s-t path and s can reach t. A strongly connected component
(5CC) is a maximal subset of vertices X C V such that for each ordered pair of vertices
s,t € X, s can reach t. The condensation of a directed graph G is a directed graph G¢
that is obtained by shrinking every SCC of G to a single vertex, thereby preserving edges
between different SCCs. A graph is strongly connected if it has only one SCC. In case
that each SCC is a singleton, i.e., G has n SCCs, G is said to be acyclic and also called a
DAG (directed acyclic graph). The reverse of a graph G is a graph with the same vertex
set as G, but contains for each edge (u,v) € E the reverse edge (v, u).

A dynamic graph is a directed graph G along with an ordered sequence of updates,
which consist of edge insertions and deletions. In this paper, we consider the fully dynamic
transitive closure problem: Given a directed graph, answer reachability queries between
arbitrary pairs of vertices s and ¢, subject to edge insertions and deletions.

Related Work. Due to space limitations, we only give a brief overview over related work
by listing the currently best known results for fully dynamic algorithms on general graphs
in Table 1. For details and partially dynamic algorithms, see the full version [12].

In large studies, Frigioni et al. [9] as well as Krommidas and Zaroliagis [22] have imple-
mented an extensive set of known algorithms for dynamic transitive closure and compared
them to each other as well as to simple, static algorithms such as breadth-first and depth-first
search. The set comprises the original algorithms in [17, 18, 39, 14, 19, 21, 29, 31, 33, 4, 5]
as well as several modifications and improvements thereof. The experimental evaluations
on random Erddés-Renyi graphs, instances constructed to be difficult on purpose, as well

14:3

SEA 2020

14:4

Faster Fully Dynamic Transitive Closure in Practice

Table 1 Currently best results for fully dynamic transitive closure. All running times are
asymptotic (O-notation).

Query Time Update Time

m 1 naive
1 n? Demetrescu and Italiano [5], Roditty [29], Sankowski [34]
vn my/n Roditty and Zwick [31]
m?43 m®%n Roditty and Zwick [31]
n0-58 nt-58 Sankowski [34]
nt-495 nt-495 Sankowski [34]
n m+ nlogn Roditty and Zwick [33]
nt-407 nt-407 van den Brand et al. [37]

as two instances based on real-world graphs, showed that on all instances except for dense
random graphs or a query ratio of more than 65 %, the simple algorithms outperformed
the dynamic ones distinctly and up to several factors. Their strongest competitors were
the fully dynamic extension [9] of the algorithms by Italiano [17, 18], as well as the fully
dynamic extension [22] of the decremental algorithm by Roditty and Zwick [31]. These
two algorithms also were the only ones that were faster than static graph traversal on
dense random graphs, by a factor of at most ten.

3 Algorithms

We propose a new and very simple approach to maintain the transitive closure in a fully
dynamic setting. Inspired by a recent study on single-source reachability, it is based solely
on single-source and single-sink reachability (SSR) information. Unlike most algorithms
for dynamic transitive closure, it does not explicitly need to compute or maintain strongly
connected components — which can be time-consuming — but, nevertheless, profits indirectly
if the graph is strongly connected. Different variants and parameterizations of this approach
lead to a family of new algorithms, all of which are easy to implement and — depending
on the choice of parameters — extremely space-efficient.

In Section 4, we evaluate this approach experimentally against a set of algorithms
that have been shown to be among the fastest algorithms in practice so far. This set
includes the classic simple, static algorithms for graph traversal, breadth-first search and
depth-first search. For the sake of completeness, we will start by describing the practical
state-of-the-art algorithms, and then continue with our new approach. Each algorithm for
fully dynamic transitive closure can be described by means of four subroutines: initialize(),
insertEdge((u,v)), deleteEdge((u,v)), and query(s,t), which define the behavior during the
initialization phase, in case that an edge (u,v) is added or removed, and how it answers
a query of whether a vertex s can reach a vertex t, respectively.

Table 2 provides an overview of all algorithms in this section along with their abbreviations.
All algorithms considered are combinatorial and either deterministic or Las Vegas-style ran-
domized, i.e., their running time, but not their correctness, may depend on random variables.

K. Hanauer, M. Henzinger, and C. Schulz

3.1 Static Algorithms

In the static setting or in case that a graph is given without further (reachability) information
besides its edges, breadth-first search (BFS) and depth-first search (DFS) are the two
standard algorithms to determine whether there is a path between a pair of vertices or not.
Despite their simplicity and the fact that they typically have no persistent memory (such as
a cache, e.g.), experimental studies [9, 22] have shown them to be at least competitive with
both partially and fully dynamic algorithms and even superior on various instances.

BFS, DFS. We consider both BFS and DFS in their pure versions: For each query(s,t),
a new BFS or DFS, respectively, is initiated from s until either ¢ is encountered or the
graph is exhausted. The algorithms store or maintain no reachability information whatsoever
and do not perform any work in initialize(), insertEdge((u,v)), or deleteEdge((u,v)). We
refer to these algorithms simply as BFS and DFS, respectively.

In addition, we consider a hybridization of BFS and DFS, called DBFS, which was introduced
originally by Frigioni et al. [9] and is also part of the later study [22]. In case of a query(s,t),
the algorithm visits vertices in DFS order, starting from s, but additionally checks for each
vertex that is encountered whether ¢ is in its out-neighborhood.

Bidirectional BFS. To speed up static reachability queries even further, we adapted a well-
established approach for the more general problem of finding shortest paths and perform two
breadth-first searches alternatingly: Upon a query(s,t), the algorithm initiates a customary
BFS starting from s, but pauses already after few steps, even if ¢ has not been encountered
yet. The algorithm then initiates a BFS on the reverse graph, starting from ¢, and also
pauses after few steps, even if s has not been encountered yet. Afterwards, the first and
the second BFS are resumed by turns, always for a few steps only, until either one of them
encounters a vertex v that has already encountered by the other, or the graph is exhausted.
In the former case, there is a path from s via v to ¢, hence the algorithm answers the query
positively, and otherwise negatively. We refer to this algorithm as BiBFS (Bidirectional BF'S)
and use the respective out-degree of the current vertex in each BFS as step size, i.e., each
BF'S processes one vertex, examines all its out-neighbors, and then pauses execution. Note
that the previous experimental studies [9, 22] do not consider this algorithm.

3.2 A New Approach

General Overview. Let v be an arbitrary vertex of the graph and let R*(v) and R~ (v) be
the sets of vertices reachable from v and that can reach v, respectively. To answer reachability
queries between two vertices s and ¢, we use the following simple observations:

(01) If s € R~ (v) and t € R*(v), then s can reach t.
(02) If v can reach s, but not ¢, i.e., s € R*(v) and ¢t € R*(v), then s cannot reach t.
(03) If t can reach v, but s cannot, i.e., s € R~ (v) and ¢t € R~ (v), then s cannot reach ¢.

Whereas the first observation is widely used in several algorithms, we are not aware of
any algorithms making direct use of the others. Our new family of algorithms keeps a list
Lsy of length k of so-called supportive vertices, which work similarly to cluster centers in
decremental shortest paths algorithms [32]. For each vertex v in Lgy, there are two fully
dynamic data structures maintaining the sets R*(v) and R~ (v), respectively. In other words,
these data structures maintain single-source as well as single-sink reachability for a vertex
v. We give details on those data structures at the end of this section. All updates to the

14:5

SEA 2020

14:6

Faster Fully Dynamic Transitive Closure in Practice

graph, i.e., all notifications of insertEdge(-) and deleteEdge(-), are simply passed on to these
data structures. In case of a query(s,t), the algorithms first check whether one of s or ¢
is a supportive vertex itself. In this case, the query can be answered decisively using the
corresponding data structure. Otherwise, the vertices in Lgy are considered one by one
and the algorithms try to apply one of the above observations. Finally, if this also fails,
a static algorithm serves as fallback to answer the reachability query.

Whereas this behavior is common to all algorithms of the family, they differ
in their choice of supportive vertices and the subalgorithms used to maintain SSR
information as well as the static fallback algorithm.

Note that it suffices if an algorithm has exactly one vertex v; from each SCC C; in Lgy
to answer every reachability query in the same time as a query to a SSR data structure,
e.g., O(1): If s and ¢ belong to the same SCC C;, then the supportive vertex v; is reachable
from s and can reach ¢, so the algorithm answers the query positively in accordance with
observation (O1). Otherwise, s belongs to an SCC C; and ¢ belongs to an SCC Cj, j # i.
If C; can reach C; in the condensation of the graph, then also v; can reach t and v; is
reachable from s, so the algorithm again answers the query positively in accordance with
observation (O1). If C; cannot reach C; in the condensation of the graph, then v; can reach s,
but not ¢ so the algorithm answers the query negatively in accordance with observation (02).
The supportive vertex representing the SCC that contains s or t, respectively, may be found
in constant time using a map; however, updating it requires in turn to maintain the SCCs
dynamically, which incurs additional costs during edge insertions and deletions.

Choosing Supportive Vertices. The simplest way to choose supportive vertices consists
in picking them uniformly at random from the set of all vertices in the initial graph and
never revisiting this decision. We refer to this algorithm as SV(k) (k-Supportive Vertices).
During initialize(), SV(k) creates Lgy by drawing k non-isolated vertices uniformly at random
from V. For each v € Lgy, it initializes both a dynamic single-source as well as a dynamic
single-sink reachability data structure, each rooted at v. If less than k vertices have been
picked during initialization because of isolated vertices, Lgy is extended as soon as possible.
Naturally, the initial choice of supportive vertices may be unlucky, which is why we also
consider a variation of the above algorithm that periodically clears the previously chosen
list of supportive vertices after ¢ update operations and re-runs the selection process. We
refer to this algorithm as SVA(k, ¢) (k-Supportive Vertices with c-periodic Adjustments).
As shown above, the perfect choice of a set of supportive vertices consists of exactly one
per SCC. This is implemented by the third variant of our algorithm, SVC (Supportive Vertices
with SCC Cover). However, maintaining SCCs dynamically is itself a non-trivial task and has
recently been subject to extensive research [27, 30]. Here, we resolve this problem by waiving
exactness, or, more precisely, the reliability of the cover. Similar to above, the algorithm takes
two parameters z and c¢. During initialize(), it computes the SCCs of the input graph and
arbitrarily chooses a supportive vertex in each SCC as representative if the SCC’s size is at
least z. In case that all SCCs are smaller than z, an arbitrary vertex that is neither a source
nor a sink, if existent, is made supportive. The algorithm additionally maps each vertex to
the representative of its SCC, where possible. After ¢ update operations, this process is re-run
and the list of supportive vertices as well as the vertex-to-representative map is updated
suitably. However, we do not de-select supportive vertices picked in a previous round if they
represent an SCC of size less than z, which would mean to also destroy their associated
SSR data structures. Recall that computing the SCCs of a graph can be accomplished in
O(n +m) time [36]. For a query(s,t), the algorithm looks up the SCC representative of s in
its map and checks whether this information, if present, is still up-to-date by querying their
associated data structures. In case of success, the algorithm answers the query as described

K. Hanauer, M. Henzinger, and C. Schulz

Table 2 Algorithms and abbreviations overview.

Algorithm Long name Algorithm Long name

DFS / BFS static DFS / BFS SV Supportive Vertices

DBFS static DFS-BF'S hybrid SvVA Supportive Vertices with Adjustments
BiBFS static bidirectional BFS SvC Supportive Vertices with SCC Cover

in the ideal scenario by asking whether the representative of s can reach t. Otherwise, the
algorithm analogously tries to use the SCC representative of t. Outdated SCC representative
information for s or ¢ is deleted to avoid further unsuccessful checks. In case that neither s
nor t have valid SCC representatives, the algorithm falls back to the operation mode of SV.

Algorithms for Maintaining Single-Source/Single-Sink Reachability. To access fully dy-
namic SSR information, we consider the two single-source reachability algorithms that have
been shown to perform best in an extensive experimental evaluation on various types of
input instances [13]. In the following, we only provide a short description and refer the
interested reader to the original paper [13] for details.

The first algorithm, SI, is a fully dynamic extension of a simple incremental algorithm
and maintains a not necessarily height-minimal reachability tree. It starts initially with
a BFS tree, which is also extended using BFS in insertEdge((u,v)) only if v and vertices
reachable from v were unreachable before. In case of deleteEdge((u, v)), the algorithm tries
to reconstruct the reachability tree, if necessary, by using a combination of backward and
forward BFS. If the reconstruction is expected to be costly because more than a configurable
ratio p of vertices may be affected, the algorithm instead recomputes the reachability tree
entirely from scratch using BFS. The algorithm has a worst-case insertion time of O(n + m),
and, unless p = 0, a worst-case deletion time of O(n - m).

The second algorithm, SES, is a simplified, fully dynamic extension of Even-Shiloach
trees [35] and maintains a (height-minimal) BFS tree throughout all updates. Initially, it
computes a BFS tree for the input graph. In insertEdge((u,v)), the tree is updated where
necessary using a BFS starting from v. To implement deleteEdge((u,v)), the algorithm
employs a simplified procedure in comparison to Even-Shiloach trees, where the BFS level of
affected vertices increases gradually until the tree has been fully adjusted to the new graph.
Again, the algorithm may abort the reconstruction and recompute the BFS tree entirely
from scratch if the update cost exceeds configurable thresholds p and 8. For constant [, the
worst-case time per update operation (edge insertion or deletion) is in O(n + m).

Both algorithms have O(n + m) initialization time, support reachability queries in O(1)
time, and require O(n) space. We use the same algorithms to maintain single-sink reachability
information by running the single-source reachability algorithms on the reverse graph.

4 Experiments

Setup. For the experimental evaluation of our approach and the effects of its parameters,
we implemented® it together with all four static approaches mentioned in Section 3 in

! Source code and instances are available at https://dyreach.taa.univie.ac.at/transitive-closure.

14:7

SEA 2020

https://dyreach.taa.univie.ac.at/transitive-closure

14:8

Faster Fully Dynamic Transitive Closure in Practice

C++417 and compiled the code with GCC 7.4 using full optimization (-03 -march=native
-mtune=native). We would have liked to include the two best non-static algorithms from
the earlier study [22]; unfortunately, the released source code is based on a proprietary
algorithm library. Nevertheless, we are able to compare our new algorithms indirectly to
both by relating their performance to DFS and BFS, as happened in the earlier study. All
experiments were run sequentially under Ubuntu 18.04 LTS with Linux kernel 4.15 on an Intel
Xeon E5-2643 v4 processor clocked at 3.4 GHz, where each experiment had exclusive access
to one core and could use solely local memory, i.e., in particular no swapping was allowed.

For each algorithm (variant) and instance, we separately measured the time spent by the
algorithm on updates as well as on queries. We specifically point out that the measured times
exclude the time spent on performing an edge insertion or deletion by the underlying graph
data structure. This is especially of importance if an algorithm’s update time itself is very
small, but the graph data structure has to perform non-trivial work. We use the dynamic
graph data structure from the open-source library Algora [1], which is able to perform edge
insertions and deletions in constant time. Our implementation is such that the algorithms are
unable to look ahead in time and have to process each operation individually. To keep the
numbers easily readable, we use k and m as abbreviations for x10% and x10°, respectively.

Instances. We evaluate the algorithms on a diverse set of random and real-world in-
stances, which have also been used in [13].

ER Instances. The random dynamic instances generated according to the Erdés-Renyi
model G(n,m) consist of an initial graph with n = 100k or n = 10m vertices and m =d - n
edges, where d € [1.25...50]. In addition, they contain a random sequence of 100k operations
o consisting of edge insertions, edge deletions, as well as reachability queries: For an insertion
or a query, an ordered pair of vertices was chosen uniformly at random from the set of
all vertices. Likewise, an edge was chosen uniformly at random from the set of all edges
for a deletion. The resulting instances may contain parallel edges as well as loops and
each operation is contained in a batch of ten likewise operations.

Kronecker Instances. Our evaluation uses two sets of size 20 each: kronecker-csize
contains instances with n ~ 130k, whereas those in kronecker-growing have n ~ 30 initially
and grow to n &~ 130k in the course of updates. As no generator for dynamic stochastic
Kronecker graph exists, the instances were obtained by computing the differences in edges in
a series of so-called snapshot graphs, where the edge insertions and deletions between two
subsequent snapshot graphs were shuffled randomly. The snapshot graphs where generated
by the krongen tool that is part of the SNAP software library [26], using the estimated
initiator matrices given in [25] that correspond to real-world networks. The instances
in kronecker-csize originate from ten snapshot graphs with 17 iterations each, which
results in update sequences between 1.6m and 702m. As they are constant in size, there
are roughly equally many insertions and deletions. Their densities vary between 0.7 and
16.4. The instances in kronecker-growing were created from thirteen snapshot graphs
with five up to 17 iterations, resulting in 282k to 82m update operations, 66 % to 75 %
of which are insertions. Their densities are between 0.9 and 16.4.

Real-World Instances. Our set of instances comprises all six directed, dynamic instances
available from the Koblenz Network Collection KONECT [23], which correspond to the
hyperlink network of Wikipedia articles for six different languages. In case of dynamic graphs,
the update sequence is part of the instance. However, the performance of algorithms may be
affected greatly if an originally real-world update sequence is permuted randomly [13]. For
this reason, we also consider five “shuffled” versions per real-world network, where the edge

K. Hanauer, M. Henzinger, and C. Schulz

~o— BFS ~- DFS ~u- SV(2) - SVA(L,1k) ~s- SVC(25,10k)
~— Bi-BFS “.g DBFS ~y— SV(1) " SV(3) ~s- SVA(1,10k) ~— SVC(25,00)
(a) (b) (d)

eration time,

a
o
2
7]

100

10

Mean total update time (s)

lean total of

RS R 1 R R a1 = "
Density d Density d

5 10 20 10
Density d

Figure 1 Random instances: n = ¢ = 100k and equally many insertions, deletions, and queries.

insertions and deletions have been permuted randomly. We refer to the set of original instances
as konect and to the modified ones as konect-shuffled. Removals of non-existing edges
have been ignored in all instances. In each case, the updates are dominated by insertions.

Experimental Results

We ran the algorithms SV, SVA, and SVC with different parameters: For SV(k), we looked
at k =1, k = 2, and k = 3, which pick one, two, and three supportive vertices during
initialization, respectively, and never reconsider this choice. We evaluate the variant that
periodically picks new supportive vertices, SVA(k,c), with k = 1 and ¢ = 1k, ¢ = 10k, and
¢ = 100k. Preliminary tests for SVC revealed z = 25 as a good threshold for the minimum SCC
size on smaller instances and z = 50 on larger. The values considered for ¢ were again 10k
and 100k. BiBFS served as fallback for all Supportive Vertices algorithms. Except for random
ER instances with n = 10m, all experiments also included BFS, DFS, and DBFS; to save space,
the bar plots only show the result for the best of these three. We used SES as subalgorithm on
random instances, and SI on real-world instances, in accordance with the experimental study
for single-source reachability [13]. More plots are available in the full version of this paper [12].

ER Instances. We start by assessing the average performance of all algorithms by looking
at their running times on random ER instances. For n = 100k and equally many insertions,
deletions, and queries, Figure 1 shows the mean running time needed to process all updates,
all queries, and their sum, all operations, absolutely as well as the relative performances
for all operations, where the mean is taken over 20 instances per density. As there are
equally many insertions and deletions, the density remains constant. Note that all plots
for random ER instances use logarithmic axes in both dimensions.

It comes as no surprise that SV(2) and SV(3) are two and three times slower on updates,
respectively, than SV(1) (cf. Figure 1a). As their update time consists solely of the update
times of their SSR data structures, they inherit their behavior and become faster, the
denser the instance [13]. The additional work performed by SVA(1,1k) and SVA(1,10k),
which re-initialized their SSR data structures 66 and six times, respectively, is plainly
visible and increases also relatively with growing number of edges, which fits the theoretical
(re-)initialization time of O(n + m). Computing the SCCs only initially, as SVC(25, c0) does,
led to higher update times on very sparse instances due to an increased number of supportive
vertices, but matched the performance of SV(1) for d > 2.5. As expected, re-running the
SCC computation negatively affects the update time. In contrast to SVA(1,10k), however,
SVC (25, 10k) keeps a supportive vertex as long as it still represents an SCC, and thereby saves

14:9

SEA 2020

14:10

Faster Fully Dynamic Transitive Closure in Practice

‘\y Bi-BFS ~y— SV(1) ~sp- SV(2) “ SV(3) “s SVA(L,1k) ~s- SVA(L,10k) ~— SVC(25/50%),00) ~sk- SVC(25/500),10k)

(@ o) @

1000}#-

operation time (s)

to SVC(25, 00)

Mean operation time

Mean total operation time (s)

Mean total

20 0

5 10 20 10 2 2 5 5 25 5 10
Density d Density d Density d Density d

10 10 20 10 125

Figure 2 Random instances: n = ¢ = 100k and 50 % queries (a, b); n = 10m, ¢ = 100k, and
equally many insertions, deletions, and queries (c, d).
() 8vC parameter: 25 for n = 100k, 50 for n = 10m.

the time to destroy the old SSR data structures and re-initialize the new ones. Evidently,
both SVA algorithms used a single supportive vertex for d > 2.5.

Looking at queries (cf. Figure 1b), it becomes apparent that SVC(25,10k) can make
use of its well-updated SCC representatives as supportive vertices and speed up queries up
to a factor of 54 in comparison to SVA and SV. Up to d = 3, it also outperforms SVC(25, c0).
For larger densities, the query times among all dynamic algorithms level up progressively
and reach at least equality already at d = 2.5 in case of SV(2) and SV(3), at d = 5 in case
of SV(1), and at d = 10 at the latest for all others. This matches a well-known result from
random graph theory that simple ER graphs with m > nlnn are strongly connected with
high probability [2]. The running times also fit our investigations into the mean percentage
of queries answered during the different stages in query(-) by the algorithms: For d = 2,
SV (1) could answer 80 % of all queries without falling back to BiBFS, which grew to almost
100 % for d = 5 and above. SV(2) answered even more than 95 % queries without fallback
for d = 2, and close to 100 % already for d = 3. The same applied to SVC(25, c0), which
could use SCC representatives in the majority of these fast queries. SV(1) and SV(2) instead
used mainly observation (01), but also (02) and (03) in up to 10% of all queries. As
all vertices are somewhat alike in ER graphs, periodically picking new supportive vertices
does not affect the mean query performance. In fact, SV and SVA are up to 20 % faster than
SVC on the medium and denser instances, which can be explained by the missing overhead
for maintaining the map of representatives. All Supportive Vertices algorithms process
queries considerably faster than BiBFS. The average speedup ranges between almost 7 on
the sparsest graphs in relation to SVC(25,10k) and more than 240 in relation to SV(1) on
the densest ones. The traditional static algorithms BFS, DFS, as well as the hybrid DBFS were
distinctly slower by a factor of up to 31k (BFS) and almost 70k (DFS, DBFS) in comparison
to SV(1), and even 53 to 130 and 290 times slower than BiBFS.

In sum over all operations, if there are equally many insertions, deletions, and queries
(cf. Figures 1c,d), SVC(25,00) and SV(1) were the fastest algorithms on all instances,
where SVC(25,00) won on the sparser and SV(1) won on the denser instances. For d = 1.25,
BiBFS was almost as fast, but up to 45 times slower on all denser instances. SV(2) and
SV(3) could not compensate their doubled and tripled update costs, respectively, by their
speedup in query time, which also holds for SVC(25,10k). BFS, DFS, and DBFS were be-
tween 54 and 13k times slower than SVC(25,00) and SV(1), despite the high proportion
of updates, and are therefore far from competitive.

We repeated our experiments with n = 100k and 50 % queries among the operations
and equally many insertions and deletions, as well as with n = 10m and equal ratios of

K. Hanauer, M. Henzinger, and C. Schulz

Timeout £
(30 min) 3 P
P n = f = 0 = Yo
. g . y £ & :
z < E 8 g z
z £ o - £
§2z28338 2 D 553:5 - :
fmlmme | : []] | i L L
answers bio-proteins blog-nat05-6m ca-dblp email-inside

Figure 3 Total update (dark color) and query (light color) times on selected kronecker-csize
instances.

insertions, deletions, and queries. The results, shown in Figure 2, confirm our findings
above. In case of 50 % queries, a second supportive vertex as in SV(2) additionally stabilized
the mean running time in comparison to SV(1), up to d = 5 (cf. Figures 2a,b), but none
of them could beat SVC(25,00) on sparse instances. On denser graphs, SV(1) was again
equally fast or even up to 20% faster. As expected due to the higher ratio of queries,
BiBFS lost in competitiveness in comparison to the above results and is between 1.6 and
almost 80 times slower than SVC(25,00) on dense instances. On the set of larger instances
with n = 10m (cf. Figures 2c,d), SVA(1,1k) reached the timeout set at 2h on instances
with d > 20. The fastest algorithms on average across all densities were again SV(1) and
SVC (50, 00). BiBFS won for d = 1.25, where it was about 20 % faster than SVC(50, c0) and
10 % faster than SV(1). Its relative performance then deteriorated with increasing density
up to a slowdown factor of 91. Except for d = 1.25, SVC(50, co) outperformed SV(1) on very
sparse instances and was in general also more stable in performance, as can be observed
for d = 8: Here, SV(1) picked a bad supportive vertex on one of the instances, which
resulted in distinctly increased mean, median, and maximum query times. On instances
with density around Inn and above, SV(1) was slightly faster due to its simpler procedure
to answer queries and also more stable than on sparser graphs.

In summary, SVC with ¢ = oo clearly showed the best and most reliable performance on
average, closely followed by SV(1), which was slightly faster if the graphs were dense.

Kronecker Instances. In contrast to ER instances, stochastic Kronecker graphs were de-
signed to model real-world networks, where vertex degrees typically follow a power-law
distribution and the neighborhoods are more diverse. For this reason, the choice of sup-
portive vertices might have more effect on the algorithms’ performances than on ER in-
stances. Figure 3 shows six selected results for all dynamic algorithms as well as BiBFS
on kronecker-csize instances with a query ratio of 33 %: Each bar consists of two parts,
the lower, darker one depicts the total update time, the lighter one on top the total query
time, which is comparatively small for most dynamic algorithms and therefore sometimes
hardly discernible. In case that an algorithm reached the timeout, we only use the darker
color for the bar. The description next to each bar states the total operation time. By
and large, the picture is very similar to that for ER instances. On 13 and 14 out of the
20 instances, BFS/DBFS and DFS, respectively, did not finish within six hours. As on the
previous sets of instances, these algorithms are far from competitive. The performance
of BiBFS was ambivalent: it was the fastest on two instances, but lagged far behind on
others. SV(1) and SV(2) showed the best performance on the majority of instances and
were the only ones to finish within six hours on the largest instance of the set, email-inside.
On some graphs, the total operation time of SV(1) was dominated by the query time,

14:11

SEA 2020

14:12

Faster Fully Dynamic Transitive Closure in Practice

B svc(50,100k) B SvC(50,10k) B SVA(1,100k) E8 SVA(1,10k) EE Sv(2) BN Sv(1) B Bi-BFS B DFS

Timeout = E
(24h) TTTUETIRS TTTTU TR TTTTTTTTTTottoggettottottossooggessosssssssssogg

8h 29min

B 2h 31min

B 5h 24min

Figure 4 Total update (dark color) and query (light color) times on konect instances.

e.g., on bio-proteins, whereas SV(2) was able to reduce the total operation time by more
than half by picking a second supportive vertex. However, SVC(25,100k) was even able
to outperform this slightly and was the fastest algorithm on half of the instances. As
above, recomputing the SCCs more often (SVC(25,10k)) or periodically picking new support
vertices (SVA(1,1k), SVA(1,10k)) led to a slowdown in general.

On kronecker-growing, SV(1) was the fastest algorithm on all but one in-
stance. The overall picture is very similar.

Real-World Instances. In the same style as above, Figure 4 shows the results on the
six real-world instances with real-world update sequences, konect, again with 33 % queries
among the operations. We set the timeout at 24h, which was reached by BFS, DFS, and
DBFS on all but the smallest instance. On the largest instance, DE, they were able to process
only around 6 % of all updates and queries within this time. The fastest algorithms were
SV(1) and SV(2). If SV(1) chose the single support vertex well, as in case of FR, IT, and
SIM, the query costs and the total operation times were low; on the other instances, the
second support vertex, as chosen by SV(2), could speed up the queries further and even
compensate the cost for maintaining a second pair of SSR data structures. Even though the
instances are growing and most vertices were isolated and therefore not eligible as supportive
vertex during initialization, periodically picking new supportive vertices, as SVA does, did
not improve the running time. SVC (50, 00) performed well, but the extra effort to compute
the SCCs and use their representatives as supportive vertices did not pay off; only on SIM,
SVC(50,00) was able to outperform both SV(1) and SV(2) marginally.

Randomly permuting the sequence of update operations, as for the instance set
konect-shuffled, did not change the overall picture.

5 Conclusion

Our extensive experiments on a diverse set of instances draw a somewhat surprisingly
consistent picture: The most simple algorithm from our family, SV(1), which picks a single
supportive vertex, performed extremely well and was the fastest on a large portion of the
instances. On those graphs where it was not the best, SV(2) could speed up the total running
time by picking a second supportive vertex, i.e., the faster query time could compensate for
the doubled update time. Additional statistical evaluations showed that already for sparse
graphs, SV(1) and SV(2) answered a great majority of all queries in constant time using only
its supportive vertices. Recomputing the strongly connected components of the graph in very
large intervals and using them for the choice of supportive vertices yielded a comparatively
good or marginally better algorithm on random instances, but not on real-world graphs.

K. Hanauer, M. Henzinger, and C. Schulz

The classic static algorithms BFS and DFS, which were competitive or even superior

to the dynamic algorithms evaluated experimentally in previous studies, lagged far behind
the new algorithms and were outperformed by several orders of magnitude.

—— References

1
2

10

11

12

13

14

15

16

17

18

19

20

Algora — a modular algorithms library. https://libalgora.gitlab.io.

B. Bollobéds. Random graphs. Number 73 in Cambridge Studies in Advanced Mathematics.

Cambridge University Press, 2001.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, chapter
Elementary Data Structures. MIT Press, 3rd edition, 2009.

C. Demetrescu and G. F. Italiano. Trade-offs for fully dynamic transitive closure on dags:
Breaking through the O(n?) barrier. J. ACM, 52(2):147-156, March 2005. doi:10.1145/
1059513.1059514.

C. Demetrescu and G. F. Italiano. Mantaining dynamic matrices for fully dynamic transitive
closure. Algorithmica, 51(4):387-427, 2008.

J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network

flow problems. Journal of the ACM, 19(2):248-264, April 1972. doi:10.1145/321694.321699.

R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, June 1962. doi:
10.1145/367766.368168.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399-404, 1956. doi:10.4153/CIM-1956-045-5.

D. Frigioni, T. Miller, U. Nanni, and C. Zaroliagis. An experimental study of dynamic
algorithms for transitive closure. Journal of Exzperimental Algorithmics (JEA), 6:9, 2001.

A. Gitter, A. Gupta, J. Klein-Seetharaman, and Z. Bar-Joseph. Discovering pathways
by orienting edges in protein interaction networks. Nucleic Acids Research, 39(4):e22—e22,
November 2010.

A. V. Goldberg, S. Hed, H. Kaplan, R. E. Tarjan, and R. F. Werneck. Maximum flows

by incremental breadth-first search. In Furopean Symposium on Algorithms, pages 457-468.

Springer, 2011.

K. Hanauer, M. Henzinger, and C. Schulz. Faster fully dynamic transitive closure in practice,
2020. arXiv:2002.00813.

K. Hanauer, M. Henzinger, and C. Schulz. Fully dynamic single-source reachability in practice:
An experimental study. In Proceedings of the Symposium on Algorithm Engineering and
Ezxperiments, ALENEX 2020, Salt Lake City, UT, USA, January 5-6, 2020, pages 106—119,
2020. doi:10.1137/1.9781611976007.9.

M. Henzinger and V King. Fully dynamic biconnectivity and transitive closure. In 36th Annual
Symposium on Foundations of Computer Science (FOCS), pages 664—-672. IEEE, 1995.

M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and strengthening
hardness for dynamic problems via the online matrix-vector multiplication conjecture. In 47th
ACM Symposium on Theory of Computing, STOC’15, pages 21-30. ACM, 2015.

T. Ibaraki and N. Katoh. On-line computation of transitive closures of graphs. Information
Processing Letters, 16(2):95-97, 1983. doi:10.1016/0020-0190(83)90033-9.

G. F. Ttaliano. Amortized efficiency of a path retrieval data structure. Theoretical Computer
Science, 48:273-281, 1986. doi:10.1016/0304-3975(86)90098-8.

G. F. Ttaliano. Finding paths and deleting edges in directed acyclic graphs. Information
Processing Letters, 28(1):5-11, 1988.

V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive
closure in digraphs. In Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, FOCS 99, page 81, USA, 1999. IEEE Computer Society.

V. King and G. Sagert. A fully dynamic algorithm for maintaining the transitive closure. Journal
of Computer and System Sciences, 65(1):150-167, 2002. doi:10.1006/jcss.2002.1883.

14:13

SEA 2020

https://libalgora.gitlab.io
https://doi.org/10.1145/1059513.1059514
https://doi.org/10.1145/1059513.1059514
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://doi.org/10.4153/CJM-1956-045-5
http://arxiv.org/abs/2002.00813
https://doi.org/10.1137/1.9781611976007.9
https://doi.org/10.1016/0020-0190(83)90033-9
https://doi.org/10.1016/0304-3975(86)90098-8
https://doi.org/10.1006/jcss.2002.1883

14:14

Faster Fully Dynamic Transitive Closure in Practice

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

V. King and M. Thorup. A space saving trick for directed dynamic transitive closure and
shortest path algorithms. In Proceedings of the 7Tth Annual International Conference on
Computing and Combinatorics, COCOON 01, page 268-277, Berlin, Heidelberg, 2001. Springer-
Verlag.

I. Krommidas and C. D. Zaroliagis. An experimental study of algorithms for fully dynamic
transitive closure. ACM Journal of Experimental Algorithmics, 12:1.6:1-1.6:22, 2008. doi:
10.1145/1227161.1370597.

J. Kunegis. Konect: the Koblenz network collection. In 22nd International Conference on
World Wide Web, pages 1343-1350. ACM, 2013.

F. Le Gall. Powers of tensors and fast matrix multiplication. In K. Nabeshima, K. Nagasaka,
F. Winkler, and A. Szanté, editors, International Symposium on Symbolic and Algebraic
Computation, ISSAC 14, Kobe, Japan, July 23-25, 2014, pages 296—-303. ACM, 2014. doi:
10.1145/2608628.2608664.

J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani. Kronecker graphs:
An approach to modeling networks. Journal of Machine Learning Research, 11:985-1042,
March 2010. URL: http://dl.acm.org/citation.cfm?id=1756006.1756039.

J. Leskovec and R. Sosi¢. Snap: A general-purpose network analysis and graph-mining library.
ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1, 2016.

J. Lacki. Improved deterministic algorithms for decremental transitive closure and strongly
connected components. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’11, page 1438-1445, USA, 2011. Society for Industrial and
Applied Mathematics.

T. Reps. Program analysis via graph reachability. Information and software technology,
40(11-12):701-726, 1998.

L. Roditty. A faster and simpler fully dynamic transitive closure. ACM Trans. Algorithms,
4(1), March 2008. doi:10.1145/1328911.1328917.

L. Roditty. Decremental maintenance of strongly connected components. In Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, page
1143-1150, USA, 2013. Society for Industrial and Applied Mathematics.

L. Roditty and U. Zwick. Improved dynamic reachability algorithms for directed graphs.
SIAM Journal on Computing, 37(5):1455-1471, 2008. doi:10.1137/060650271.

L. Roditty and U. Zwick. Dynamic approximate all-pairs shortest paths in undirected graphs.
SIAM J. Comput., 41(3):670-683, 2012. doi:10.1137/090776573.

L. Roditty and U. Zwick. A fully dynamic reachability algorithm for directed graphs with an
almost linear update time. SIAM Journal on Computing, 45(3):712-733, 2016.

P. Sankowski. Dynamic transitive closure via dynamic matrix inverse. In 45th Symposium on
Foundations of Computer Science (FOCS), pages 509-517. IEEE, 2004.

Y. Shiloach and S. Even. An on-line edge-deletion problem. Journal of the ACM, 28(1):1-4,
1981.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146-160, 1972. doi:10.1137/0201010.

J. van den Brand, D. Nanongkai, and T. Saranurak. Dynamic matrix inverse: Improved
algorithms and matching conditional lower bounds. In 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,
2019, pages 456—480, 2019. doi:10.1109/F0CS.2019.00036.

S. Warshall. A theorem on boolean matrices. J. ACM, 9(1):11-12, January 1962. doi:
10.1145/321105.321107.

D. M. Yellin. Speeding up dynamic transitive closure for bounded degree graphs. Acta
Informatica, 30(4):369-384, 1993.

https://doi.org/10.1145/1227161.1370597
https://doi.org/10.1145/1227161.1370597
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664
http://dl.acm.org/citation.cfm?id=1756006.1756039
https://doi.org/10.1145/1328911.1328917
https://doi.org/10.1137/060650271
https://doi.org/10.1137/090776573
https://doi.org/10.1137/0201010
https://doi.org/10.1109/FOCS.2019.00036
https://doi.org/10.1145/321105.321107
https://doi.org/10.1145/321105.321107

	Introduction
	Preliminaries
	Algorithms
	Static Algorithms
	A New Approach

	Experiments
	Conclusion

