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—— Abstract

In this paper, we explore the correlation between the quality of initial assignments provided to local
search heuristics and that of the corresponding final assignments. We restrict our attention to the
Max r-Sat problem and to one of the leading local search heuristics — Configuration Checking Local
Search (CCLS). We use a tailored version of the Method of Conditional Expectations (MOCE) to
generate initial assignments of diverse quality.

We show that the correlation in question is significant and long-lasting. Namely, even when we
delve deeper into the local search, we are still in the shadow of the initial assignment. Thus, under
practical time constraints, the quality of the initial assignment is crucial to the performance of local
search heuristics.

To demonstrate our point, we improve CCLS by combining it with MOCE. Instead of starting
CCLS from random initial assignments, we start it from excellent initial assignments, provided by
MOCE. Indeed, it turns out that this kind of initialization provides a significant improvement of this
state-of-the-art solver. This improvement becomes more and more significant as the instance grows.
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1 Introduction

In the Maximum Satisfiability (Max Sat) problem [31], we are given a sequence of clauses
over some boolean variables. Each clause is a disjunction of literals over different variables.
A literal is either a variable or its negation. We seek a truth (true/false) assignment for
the variables, maximizing the number of satisfied (made true) clauses.

In the Max r-Sat problem, each clause is restricted to consist of at most 7 literals. Here we
restrict our attention to instances with clauses consisting of exactly r literals each (sometimes
called Max Er-Sat). We denote by n the number of variables and by m the number of clauses.
The density of the instance is « = m/n. As is customary in the literature, we focus on the
case where r and « are constant.
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As Max r-Sat (for r > 2) is NP-hard [5], it cannot be exactly solved in polynomial time
(unless P = N P), and one must resort to approximation algorithms and heuristics. Numerous
methods have been suggested for solving Max r-Sat, e.g. [20, 44, 43, 32, 14, 37, 3, 19, 29], and
an annual competition of solvers has been held since 2006 [4]. Satisfiability related questions
attracted a lot of attention from the scientific community. As an example, one may consider
the well-studied satisfiability threshold question for random instances [15, 25, 2, 35, 16, 21].
For a comprehensive overview of the whole domain of satisfiability we refer to [7, 22].

1.1 Local search

Local search heuristics [30] explore the assignment space. They usually start from a randomly
generated assignment, and traverse the search space by flipping variables, usually one at
a time. The leading solver Configuration Checking Local Search (CCLS) [32] follows this
scheme and flips variables until some predefined number of flips is executed or the allotted
time has been used up. Of course, if a satisfying assignment has been found, the execution is
stopped as well.

CCLS performs two types of flips: random ones, with some predefined probability p, and
greedy ones, with probability 1 — p. Random flips just flip a randomly selected variable from
a randomly selected unsatisfied clause. Greedy flips are ones that flip the seemingly best
possible variable among all the variables whose configuration has been changed [32] and who
satisfy at least one currently unsatisfied clause. This variable is the one with the maximum
score out of those variables, i.e., the one whose flipping will lead to the maximum number of
satisfied clauses. Ties are broken randomly.

Recent works, related to local search, configuration checking, CCLS, and algorithms of
the same spirit, include [38, 11, 10, 33, 34, 1, 8, 9, 12, 42, 36, 45, 13, 24].

1.2 The Method of Conditional Expectations

The simple randomized approximation algorithm, which assigns to each variable a uniformly
random truth value, independently of all other variables, satisfies 1 —1/2" of all clauses on the
average. Furthermore, this simple algorithm can be easily derandomized using the Method
of Conditional Expectations (MOCE) [23, 47], yielding an assignment that is guaranteed to
satisfy at least this proportion of clauses.

In a sense, this method is optimal for Max 3-Sat, as no polynomial-time algorithm for
Max 3-Sat can achieve a performance ratio exceeding 7/8 unless P = N P [28]. We note that,
typically, this method yields assignments that are much better than this worst-case bound.

MOCE iteratively constructs an assignment by going over the variables in some (arbitrary)
order. At each iteration, it sets the seemingly better truth value to the currently considered
variable. This is done by comparing the expected number of satisfied clauses under each of
the two possible truth values it may set to the current variable.

For a given truth value, the expected number of satisfied clauses is the sum of three
quantities. The first is the number of clauses already satisfied by the values assigned to the
previously considered variables. The second is the additional number of clauses satisfied by
the assignment of the given truth value to the current variable. The third is the expected
number of clauses that will be satisfied by a random assignment to all currently unassigned
variables. The truth value, for which the sum in question is larger, is the one selected for the
current variable. Ties are broken arbitrarily or randomly. The whole process is repeated
until all variables are assigned.

Recent theoretical and empirical works related to MOCE, and algorithms of the same
spirit, include [17, 39, 41, 40, 18].
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1.3 Overview

In Section 2, we explore the correlation between the quality of the initial assignments provided
to local search heuristics and the quality of the final assignments resulting from them. We
restrict our attention to CCLS, and use a tailored version of MOCE to generate initial
assignments of diverse quality, to accommodate the exploration of the correlation.

We show that there is a strong long-lasting correlation between the quality of the initial
assignment, from which the local search heuristic starts, and the quality of the final assignment
provided by it. This implies that, even when we delve deeper into the local search, we are
still in the shadow of the initial assignment. Thus, the quality of the initial assignment is
crucial under practical time constraints. The observed correlation decays slower for denser
instances, and faster for sparser ones. We show that the correlation is statistically significant,
and estimate the impact of the improvement in the quality of the initial assignment on the
quality of the final assignment.

In Section 3, we demonstrate our point by improving CCLS. Instead of starting CCLS
from a random initial assignment, we start it from excellent initial assignments, provided by
MOCE. This kind of initialization provides a significant improvement of this state-of-the-art
solver. Moreover, the improvement becomes more and more significant as the instance grows.
It has been noticed in other problems, such as TSP and QAP, that local search heuristics
yield excellent results when started from initial solutions selected greedily with respect to
expectation [27, 26]. A summary and conclusions are presented in Section 4.

2 Correlation between the quality of initial and final assignments

In this section, we explore the correlation between the number of clauses unsatisfied by an
initial assignment and the number of those unsatisfied by the corresponding final assignment,
where the transition is by CCLS. We explore the ongoing correlation during the execution as
well. We have chosen CCLS for its excellent performance; a local search heuristic of lower
quality may well be expected to yield an even stronger correlation.

To generate initial assignments of diverse quality, we manipulate MOCE by adding to it
a parameter that allows us to invert its decision regarding the truth value for the current
variable. This parameter, to which we refer as the inversion probability, is the probability to
assign to a variable the truth value opposite to the one chosen by MOCE. Namely, for a given
inversion probability 0 < p < 1, at each step, we assign to the current variable the truth
value chosen by MOCE with probability 1 — p, and the opposite truth value with probability
p. Thus, for p = 0 the algorithm is simply MOCE, while for p =1 it is “anti-MOCE”. We
refer to this tailored algorithm as PMOCE.

We have generated a benchmark, consisting of 5 families of instances of Max 3-Sat. Each
of the families consists of 150 instances over 100,000 variables. The densities of the 5 families
are 5, 7, 9, 12, 15. The instances in each family were generated uniformly at random as
follows. The clauses of an instance were generated independently of each other. Each of
the clauses was generated by selecting 3 distinct variables uniformly at random, and then
negating each of them with probability 1/2, independently.

2.1 End-to-end correlation

In the following, we describe what we have done in the experiment for each family. For each
instance in the family, we executed PMOCE with 51 inversion probabilities, ranging from
0 to 1 in steps of 0.02. Thus, we obtained 51 initial assignments with presumed diverse
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Table 1 End-to-end correlation coefficients and regression slopes.

correlation coefficient regression slope
density mean std p-value mean std
5 052 0.1 1.7-100®* 0.5-107%* 0.1-1073
7 0.74 0.06 3.6-1007 1.5-107% 0.2-1073
9 079 012 21-107% 22.107®* 0.5-1073
12 0.73 017 1.2-107% 24.107® 1.0-1073
15 0.83 0.08 1.1-107° 34-107% 0.7-1073

quality. From each of these initial assignments, we started a local search using CCLS, and
thus obtained 51 final assignments. By the end of the 51 executions, we had 51 pairs of
numbers. Each pair consisted of the number of clauses unsatisfied by the initial assignment
generated by PMOCE, and the number of unsatisfied clauses at the end of the search done
by CCLS. The cutoff time of CCLS was set to 30 minutes, measured in CPU time.

For each instance, we calculated the correlation coefficient over the corresponding 51 pairs.
After going over the whole family, we had 150 correlation coefficients — one for each instance.
Then, we calculated the mean and standard deviation of these 150 values of correlation
coefficients.

For each of the correlation coefficients, we also calculated the p-value. The p-value is
the probability that we would have found this correlation, or a higher one, if the correlation
coefficient was in fact zero (null hypothesis). If this probability is lower than the conventional
5% (i.e., the p-value is less than 0.05), the correlation coefficient is considered statistically
significant. For each family, we calculated the average p-value over the 150 correlation
coefficients as a measure of the statistical significance of the results.

To measure the impact of the improvement of the quality of an initial assignment on the
quality of the corresponding final assignment, we applied regression analysis. Specifically,
we calculated the regression line of each of the instances of a family, and took its slope as a
measure of the strength of the impact. We took the average of these 150 slopes as a measure
of the strength of this impact in a given family.

The results are provided in Table 1. Each line summarizes the results of one family. For
example, the first line summarizes the results of the family with density 5. In this family,
instances are of 100,000 variables and 500,000 clauses. The mean correlation coefficient
measured (over 150 random instances) was 0.52, with a standard deviation of 0.11. The
mean p-value was 1.7 - 1072, and the mean and standard deviation of the regression slope
were 0.5 - 1073 and 0.1 - 103, respectively.

Figure 1 depicts histograms of the 150 end-to-end correlation coefficients of the family of
density 5 (Figure 1a) and for the family of density 15 (Figure 1b).

The results show a strong positive correlation between the quality of the initial and final
assignment for all densities. The correlation is stronger for denser families. The p-value
is lower by far than the conventional 0.05, which indicates that the correlation coefficients
obtained in the experiments are statistically very significant.

While the correlation is strong, the regression slope suggests that a large improvement in
the initial assignment yields only a small improvement in the final assignment. As CCLS
eventually converges to the optimal solution, there is little room for improvement by the end
of its execution, so that this regression slope makes sense. Moreover, it is to be expected
that the slope becomes even smaller as one runs CCLS longer.



D. Berend and Y. Twitto

B [
o 1=}
L L

w
o
L

count (instances)
count (instances)

N
o

—
o
!

T u u
0.3 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.8 0.9

correlation coefficient correlation coefficient
(a) Family of density 5. (b) Family of density 15.

Figure 1 Histograms of end-to-end correlation coefficients.

Note that, after 30 minutes of execution, CCLS is way beyond its rapid improvement
stage. In fact, it is deep in its convergence stage and shows relatively minor improvements as
time goes by. This validates the correlation observed as meaningful.

Figure 2 depicts the number of unsatisfied clauses as a function of the number of flips
made, for an arbitrary (but representative) instance from the family of density 15. The graph
shows this number for inversion probability of 0 (MOCE) and 1 (anti-MOCE). We see that
CCLS enters its convergence stage quite early in the execution.

We also emphasize the two phases seen in the graphs. The first phase is the rapid
improvements phase. In this phase, the number of unsatisfied clauses is decreasing rapidly.
This phase ends after about 100,000 flips. The second phase, which we call the convergence
phase, continues from there onward. In this phase, the improvements are rarer and smaller.

2.2 Ongoing correlation

Besides the end-to-end correlation, we explored the ongoing correlation during the experiment.
To this end, for each initial assignment, we recorded the minimum number of unsatisfied
clauses found so far, not only at the end of the execution, but also after every 1000 flips
made by CCLS. Then we calculated the correlation coefficient between the number of clauses
unsatisfied by the initial assignment and the number of unsatisfied clauses recorded at each
1000 flips snapshot.

The number of flips made during the execution is very different for different families. In
a denser instance, a flip takes longer, so that less flips are made. Even for instances of the
same family, the number of flips varies. We provide statistics only up to the minimal number
of flips made, over all instances in the family.

Figure 3 depicts the decay in the correlation as a function of time, where time is measured
in number of flips made from the beginning of the local search. It seems that the number of
flips is the natural time scale to measure the correlation decay. While the graphs are noisy,
the trend is clear — the correlation gradually decays as a function of the number of flips
made, and it does so slower for denser families. Moreover, as the density grows larger, the
differences in the decay seem to be smaller and the graphs are almost overlapping.

Figure 3a shows the full results. It provides the graphs of correlation decay of all the
families. In the figure, one may observe that the number of flips made in denser families
is much smaller than the number of flips made in sparser ones. For example, the minimal
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Figure 2 Number of unsatisfied clauses as function of the number of flips.

number of flips over all instances and inversion probabilities for the family of density 5 was
about 20,600,000, while for the family of density 15 it was about 1,500,000. The reason is
that, in denser families, each variable appears in a larger number of clauses, and a flip makes
a larger number of variables available for selection subsequently. Thus, at each step, CCLS
has to deal with a larger pool of candidates for flipping, which consumes more time per flip.

Figure 3b depicts the same graphs, but only up to about 1,500,000 flips, which is the
place where the graph of the family of density 15 ends. In this figure, we see clearly the
faster decay of the correlation in sparser families, as well as the smaller differences between
the decay in denser families.

Figure 3c zooms in on the first 150,000 flips. During this stage, we observe a phenomenon
of phase transition in the decay of the correlation. The empirical results suggest two phases
of decay. The first phase starts at the beginning and ends after about 60,000-80,000 flips.
In this phase, the correlation decays very slowly. This phase is characterized by a rapid
decrease in the number of unsatisfied clauses, and is aligned with the rapid decrease shown
in Figure 2.

The second phase is from about 60,000-80,000 flips onward. This phase is characterized
by a faster decay in the correlation. It is aligned with the convergence stage of CCLS, shown
in Figure 2, in which the number of unsatisfied clauses is decreasing slowly over time.

The position of the phase transition around 60,000-80,000 flips may be explained by the
fact that the initial assignment provided by MOCE is expected to be at a distance of about
50,000 flips from an optimal solution. So the first 50,000 flips are significant. But, as about
30% of the flips of CCLS are random, and not all the flips are useful in general, this area
stretches further to about 60,000-80,000 flips.
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Figure 3 Ongoing correlation decay as a function of the number of flips.

During the first phase, the initial assignment is very important in determining the
correlation. In all the executions, the decrease in the number of satisfied clauses is rapid and
considerable at this phase. Thus, the different executions maintain their relative positions,
which leads to a very slow decrease in the correlation. Afterward, the correlation decays at
about the same speed, as can be seen in Figure 3c.

2.3 Experimentation information

The experiments described in this section were executed on a Sun Grid Engine (SGE) [46]

managed cluster of 31 identical IBM m4 servers with Intel Xeon E5-2620@2.0GHz processors.

Each of the servers consists of 24 computation cores and 64GB of working memory. Thus,
we had 744 computation cores and 1984GB of working memory at hand.

We limited each of the jobs submitted to the cluster to use up to 3GB of working memory.

Provided the load on the cluster, we managed to achieve a parallelization of about 300 times,
thus reducing the experiments overall sequential time of approximately 2.18 years to around
2.66 days of parallel execution.
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3 Improving CCLS

In this section, we study the improvement obtained by letting CCLS start its execution from
good initial assignments, versus starting it from a random assignment (as done originally).
Specifically, the good initial assignments we use are assignments provided by MOCE. We
refer to the algorithm that starts from the assignment provided by MOCE as MOCE-CCLS.
To emphasize the fact that the original CCLS algorithm starts from a random assignment,
we will call it RAND-CCLS.

We first conducted experiments on several families of random instances. The families
have been selected in a systematic way, so as to reveal trends in the performance, and
connect it to the parameters of the family. Afterward, we conducted experiments on some
public benchmarks. We show that MOCE-CCLS scales much better than RAND-CCLS. In
particular, as the instance size grows, so does the performance improvement provided by
MOCE-CCLS over RAND-CCLS.

MOCE-CCLS
RAND-CCLS r

RAND $

Figure 4 Performance diagram. Higher is better.

MOCE

In Figure 4, we summarize qualitatively what we have observed in the experiments.
The higher the algorithm appears in the diagram, the better it is. Inspecting the diagram,
one can see that MOCE-CCLS performs much better than MOCE, which in turn shows
performance very far away from the baseline reference RAND. MOCE-CCLS performs better
than RAND-CCLS as well. The last statement holds significantly for large instances, while
for small and medium instances MOCE-CCLS maintains or slightly improves the performance
of RAND-CCLS.

3.1 Comparative performance on structured benchmarks

In this section we focus on random instances, for which the clauses are of length 3, the
number of variables ranges from 10,000 to 1,000,000, and the density from 3 to 9. Such
ranges allow us to systematically study the performance of the algorithms at hand on diverse
families. For each family, we selected 100 instances uniformly at random, in the same way
elaborated in Section 2.

For Max r-Sat, the reference baseline RAND unsatisfies m/2" clauses on average, with
an approximate standard deviation of \/m(1 —1/27)/2" clauses [6]. For convenience, the
(theoretical) average number of clauses unsatisfied by RAND for the families we studied
(namely, m/8), is provided in Table 2. The rows correspond to the various numbers of
variables, n, and the columns to the various densities, a.
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Table 2 The number of clauses unsatisfied by RAND and MOCE.

o 3 ) 7 9
n RAND | MOCE | RAND | MOCE | RAND | MOCE | RAND | MOCE
10000 3750 412 6250 1500 8750 2889 11250 4442
50000 18750 2078 31250 7459 43750 14409 56250 22209
100000 37500 4149 62500 14944 87500 28861 112500 44436
500000 | 187500 20790 | 312500 74702 | 437500 | 144296 562500 | 222074
1000000 | 375000 41559 | 625000 | 149383 | 875000 | 288572 | 1125000 | 444174
% unsat 12.5% 1.4% 12.5% 3% 12.5% 4.1% 12.5% 4.9%

Table 3 The improvement by executing CCLS after RAND and MOCE.

o 3 5 7 9
n (R-RC)/R | (M—MC)/M | (R—RC)/R | (M—MC)/M | (R—RC)/R | (M—MC)/M | (R—RC)/R | (M—-MC)/M
10000 100.0% 100.0% 96.0% 83.6% 85.5% 56.2% 77.4% 42.9%
50000 100.0% 100.0% 95.5% 81.2% 84.8% 54.1% 76.7% 41.2%

100000 100.0% 100.0% 95.1% 79.9% 84.3% 52.9% 76.2% 40.2%
500000 100.0% 100.0% 90.4% 69.4% 77.1% 42.4% 68.3% 31.3%
1000000 80.6% 100.0% 48.7% 49.6% 37.4% 27.1% 31.6% 18.3%

Table 2 also presents the average number of clauses unsatisfied by MOCE. It turns out
that this number scales linearly with the number of clauses, and thus can be described as
a proportion of the number of clauses, for any fixed density. The proportion of clauses
unsatisfied by MOCE, out of all clauses, was 1.4%, 3%, 4.1%, and 4.9% for the densities 3, 5,
7, and 9, respectively. For each family, the percentage of clauses unsatisfied by each of the
algorithms is provided in the last line of the table.

MOCE is a linear time algorithm, and is extremely fast in practice. In fact, its execution
time is but a few seconds for the larger instances we studied, and less than a second for the
small and medium size instances.

Although MOCE returns excellent solutions, it benefits a lot from supplementing it with
a highly performing local search. In fact, executing the local search part of CCLS (which we
simply call CCLS), starting from the solution returned by MOCE, we obtained a significant
improvement. Namely, the number of unsatisfied clauses is significantly reduced at the local
search stage.

This improvement is summarized in Table 3. In this table, the columns shortly named
“(M—MC)/M” present the relative improvement of MOCE-CCLS over MOCE. This relative
improvement is the difference between the number of clauses unsatisfied by MOCE and the
number of those unsatisfied by MOCE-CCLS, divided by the number of clauses unsatisfied by
MOCE. In the table, we also present the improvement of supplementing RAND with CCLS
(which is simply the standard version of CCLS), under the columns named “(R—RC)/R”.

It is worth mentioning that this significant improvement comes with a caveat — a significant
increase in the execution time. In fact, the results shown in Table 3 are based on 30 minutes
executions of CCLS, after the initial solution (by either RAND or MOCE) has been obtained
in just a few seconds. One more caveat is due to the fact that, as the instances grow larger,
this improvement decreases. As the instance grows larger, the number of flips CCLS can
perform during the allotted time decreases, and with it decreases the obtained improvement
as well.
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Table 4 MOCE-CCLS vs. RAND-CCLS.

« 3 5
n RC MC % improve RC MC % improve
10000 0 0 NaN 248 246 0.81%
50000 0 0 NaN 1417 1403 0.99%
100000 0 0 NaN 3038 3002 1.18%
500000 0 0 NaN 29976 22894 23.63%
1000000 72642 0 100.00% | 320674 75260 76.53%

« 7 9
n RC MC % improve RC MC % improve
10000 1265 1264 0.08% 2546 2537 0.35%
50000 6647 6617 0.45% 13122 13052 0.53%
100000 13717 13588 0.94% 26770 26554 0.81%
500000 99976 83163 16.82% | 178234 | 152512 14.43%
1000000 | 548044 | 210440 61.60% | 769640 | 363037 52.83%

We conclude this section by comparing MOCE-CCLS and RAND-CCLS head to head.
The comparison is provided in Table 4 (which is wrapped for readability). For each density, we
provide the number of clauses unsatisfied by RAND-CCLS, the number of clauses unsatisfied
by MOCE-CCLS, and the relative improvement of MOCE-CCLS over RAND-CCLS. The
latter number is the difference between the number of clauses unsatisfied by RAND-CCLS
and the number of those unsatisfied by MOCE-CCLS, divided by the number of clauses
unsatisfied by RAND-CCLS.

The results demonstrate our point regarding the importance of the initial solution. Even
after 30 minutes of local search, and using the excellent local search heuristics CCLS, the
initialization with MOCE instead of RAND yields better solutions. Moreover, MOCE-CCLS
proved to be much more scalable than RAND-CCLS. As the instance grows larger, the
improvement, of MOCE-CCLS over RAND-CCLS becomes more significant. Whereas, for
small instances, MOCE-CCLS improves RAND-CCLS by less than 1%, for large instances
the improvement exceeds 50%.

In view of the above, when using a local search algorithm for Max Sat, one should strive
to start the search from very good assignments. This holds as long as it is not too much
time consuming to attain such assignments.

3.1.1 Experimentation information

The experiments described in this section were carried out on the same infrastructure as in
Section 2.3. Here as well, we limited each of the jobs submitted to the cluster to use up
to 3GB of working memory. Provided the load on the cluster, we managed to achieve a
parallelization of about 100 times, thus reducing the experiment overall sequential time of
approximately 4.11 months to around 1.25 days of parallel execution.
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3.2 Comparative performance on public benchmarks

The random instances of Maximum Satisfiability Evaluation 2016 were tailored mainly for
complete solvers. Thus, they are very small and less adequate for evaluation of local search
heuristics. Indeed, most of the solvers participating in that evaluation found solutions with
the same number of unsatisfied clauses most of the time; the ranking was only according to
the time they consumed to reach their best solutions. In our comparison of RAND-CCLS
and MOCE-CCLS, the situation was no different.

In the following, we consider three additional benchmarks in the same spirit as the 2016
Evaluation — but larger ones. As we wanted to keep the exact same blend of instances, we
created the new benchmarks by blowing up the original ones. We enlarged the number of
variables and that of clauses in each instance, while keeping the density the same as in the
evaluation. We created three expanded benchmarks by enlarging the original one by factors
of 10, 100, and 1000.

We compared MOCE-CCLS and RAND-CCLS on the enlarged instances using the
Instance Won measure. This measure is the one used in the Max Sat Evaluation [4] held
in 2016, from which we took the original instances. We ran each of the two competitors on
each of the instances for a few minutes (CPU time). For each instance, the winner is the
competitor that provides the smaller number of unsatisfied clauses. Ties are broken by the
time it took each competitor to arrive at its best solution. The overall winner is the heuristic
that wins more instances.

While RAND-CCLS wins on the competition instances, it is enough to blow up the
instances tenfold to have MOCE-CCLS achieve an overall draw. When scaling the instances
by a factor of 100, MOCE-CCLS wins decisively, and when scaling by a factor of 1000, it
beats RAND-CCLS by a knockout. In fact, MOCE-CCLS wins on the expanded benchmarks
in terms of the number of unsatisfied clauses, and not merely by time. Namely, MOCE-CCLS
provides solutions with a strictly smaller number of unsatisfied clauses.

Finally, we note that MOCE alone is not enough. It is the value from the combined
solver MOCE-CCLS that leads to the extra satisfied clauses. Moreover, CCLS provides a
significant improvement to the excellent initial solutions of MOCE. Thus, the state-of-the-art
performance of MOCE-CCLS is attributed to both its ingredients: MOCE and CCLS.

4 Summary and conclusions

In this paper, we have explored the correlation between the quality of initial assignments
provided to local search heuristics and that of the corresponding final assignments. We
have shown that this correlation is significant and long-lasting. Thus, under practical time
constraints, the quality of the initial assignment is crucial to the performance of local search
heuristics.

We demonstrated our point by improving the state-of-the-art solver CCLS, by combining
it with MOCE. Instead of starting CCLS from random initial assignments, we started it
from excellent initial assignments, provided by MOCE. The combined MOCE-CCLS solver
provided a significant improvement over CCLS. Moreover, MOCE-CCLS proved to be much
more scalable. Namely, it handles larger instances better, and shows superior performance
on them.

Given the above, we recommend MOCE-CCLS over RAND-CCLS. Furthermore, we
recommend starting CCLS from solutions even better than those provided by MOCE, as
long as such may be obtained in linear time or slightly longer (say, by a logarithmic factor).
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