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Abstract
A k-anticover of a string x is a set of pairwise distinct factors of x of equal length k, such that
every symbol of x is contained into an occurrence of at least one of those factors. The existence of
a k-anticover can be seen as a notion of non-redundancy, which has application in computational
biology, where they are associated with various non-regulatory mechanisms. In this paper we address
the complexity of the problem of finding a k-anticover of a string x if it exists, showing that the
decision problem is NP-complete on general strings for k ≥ 3. We also show that the problem
admits a polynomial-time solution for k = 2. For unbounded k, we provide an exact exponential
algorithm to find a k-anticover of a string of length n (or determine that none exists), which runs in
O∗(min{3

n−k
3 , ( k(k+1)

2 )
n

k+1 }) time using polynomial space.
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1 Introduction

The notion of periodicity in strings is well studied in many fields like combinatorics on
words, pattern matching, data compression and automata theory (see [16], [17]), because it
is of paramount importance in several applications, not to talk about its theoretical aspects.
Algorithms and data structures for finding repeating patterns or regularities in strings (see
[9], [12]) are central to several fields of computer science including computational biology,
pattern matching, data compression, and randomness testing. The nature and extent of
periodicity in strings is also of immense combinatorial interest in its own right [17].

The notion of cover belongs to the area of quasiperiodicity, that is, a generalization of
periodicity in which the occurrences of the period may overlap [3]. We call a proper factor
u of a nonempty string y a cover of y, if every letter of y is within some occurrence of u

in y. A cover u of y needs to be a border (i.e. a prefix and a suffix) of y. A cover of a
string s is a string that covers all positions of s with its occurrences. Intuitively, s can be
generated by overlapping/concatenating copies of its cover u. Covers in strings were already
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2:2 Finding the Anticover of a String

extensively studied. A linear-time algorithm finding the shortest cover of a string was given
by Apostolico et al. [4] and later on improved into an on-line algorithm by Breslauer [20].
A linear-time algorithm computing all the covers of a string was proposed by Moore and
Smyth [19]. Afterwards an on-line algorithm for the all-covers problem was given by Li and
Smyth [15]. Similar combinatorial covering problems have been studied on graphs [8, 21], and
other types of quasiperiodicities include seeds [13], as well as variants including approximate
and partial covers and seeds.

A power of order k is defined by a concatenation of k identical blocks of symbols, where k

is at least 2: it is evident how a covers are generalizations of powers. Powers in various forms
later came to be important structures in computational biology, where they are associated
with various regulatory mechanisms and play an important role in genomic fingerprinting (for
further reading see, e.g., [14] and references therein). Antipowers are an orthogonal notion to
that of powers, that were introduced recently by Fici et al. in [6, 10]. In contrast to powers,
antipowers insist instead on the diversity of consecutive blocks: an antipower (antiperiod) of
order k is a concatenation of k pairwise distinct strings of equal length. A linear algorithm
for computing the antiperiods was given in [1], and online algorithms are given in [2].

We define an anticover as a generalization of the notion of antipower: an anticover of
a string x is a set of pairwise distinct factors of x of equal length, such that every symbol
of x is within some occurrence of one of those factors. Equivalently, x can be generated by
overlapping/concatenating a set of pairwise distinct strings of equal length. Some practical
motivation for this problem can be found in Mincu and Popa [18], that considers the similar
problem of partitioning a string into distinct factors: they show that this problem is motivated
by an application in the DNA compositions, a short DNA fragment can be obtained that
can be self-united into the desired DNA structure. They present that to produce the wanted
DNA structure, it is mandatory that no two fragments are equal.

In this paper we show that the computation of a 2-anticover of a string x of length n

over an alphabet Σ, if it exists, can be done in O(n|Σ|) time and space. For the general
case, given k ≥ 3, we show that checking whether a tring x has a k-anticover is NP-complete.
Moreover, we provide an exact exponential algorithm to find a k-anticover of x (or determine
that none exists), which runs in O∗(min{3 n−k

3 , ( k(k−1)
2 ) n

k+1 }) time using polynomial space.
In the literature Condon et al. [7] studied the complexity of partitioning problems for

strings. In particular, they introduced the Equality-Free String Partition problem, which
requires to partition a string x into factors f1f2 · · · f`, each factor fi of length at most k, so
that factors are pairwise different fi 6= fj for i 6= j. Among the results, they proved that this
problem is NP-complete for k = 2 and unbounded alphabet. We observe that our notion of
k-anticover requires the factors to be of length exactly k, and thus the problem of finding
an anticover is different from Equality-Free String Partition problem. First, checking if a
partition of factors of length k is equality-free can be trivially done in nearly linear time.
Second, there are strings that admit a solution for one of the two problems, but not the other
(e.g., ababa for k = 3 admits the equality-free partition ab · a · ba, but not an anticover).

2 Preliminaries

Let Σ be a finite ordered alphabet. A string is defined as a sequence of zero or more symbols
from Σ. An empty string is a string of length 0, denoted by ε. A string x of length n is
represented by the sequence x = x1x2 · · ·xn. We use the notation x[i . . . j] as a shorthand
for xixi+1 · · ·xj and call it a factor or substring of x with length j − i + 1. We also say that
a nonempty string s is a factor or substring of x with length k ≤ n if s = x[i . . . i + k− 1] for
an integer i ∈ [1, n− k + 1]; in that case, s occurs in x at position i. The factor x[1 . . . j] is a
prefix of x and the factor x[j . . . n] is a suffix of x.
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I Definition 1. Given an integer k ≥ 2 and a string x of length n ≥ k, let S = {i1, i2, . . . i`}
be an ordered set of positions in x chosen from {1, 2, . . . , n − k + 1}. We say that S is a
k-anticover of x if
(i) any two factors x[ij . . . ij + k − 1] and x[ih . . . ih + k − 1] are different, for j 6= h, and
(ii) any position in x is covered, namely, i1 = 1, i` = n − k + 1, and ij+1 − ij ≤ k for

1 ≤ j ≤ n− k.

I Example 2. For x = abbbaaaaabab and k = 3, the ordered set S = {1, 3, 5, 9, 11} denotes
a 3-anticover of x: abbbaaaaabab. We remark that the indices i1 = 1 and i` = n − k + 1
must be part of any k-anticover, as they represent the only ways of covering the first and
last symbol of x.

In this paper we consider the following problem.

k-AntiCover
Input: A string x = x1x2 . . . xn and an integer k ≥ 2, where n ≥ k.
Output: Does a k-anticover S of x exist?

It is obvious that any k-length substring that only occurs once in x can be included “for
free” in any k-anticover without risk of redundancy. We call free factors the corresponding
factors, and remark that we can consider trivially covered the symbols that they span.

In the following, we identify ij ∈ S with its factor x[ij . . . ij + k − 1], and sometimes we
say that x[ij . . . ij + k − 1] belongs to an anticover S, actually meaning that ij ∈ S.

3 Hardness of k-Anticover for k ≥ 3

In this section we show that solving k-AntiCover, namely, deciding whether a string x of
length n has a k-anticover, is NP-complete for k ≥ 3.

Firstly, observe that we can easily test in polynomial time whether S is a k-anticover,
by checking that each pair of corresponding factors is distinct and, for each position p ∈
{1, . . . , n}, that S contains a factor that covers x (i.e., some ij ∈ {p− k + 1, . . . , p}); thus
k-AntiCover ∈ NP.

We prove its completeness for k = 3 by a polynomial time reduction from 3-SAT to
3-AntiCover, i.e., given a 3-CNF boolean formula F , we build a string X (in polynomial
time) that admits a 3-anticover if and only if F is satisfiable. For k > 3, we remark that the
techniques utilized could be adapted to reduce a k-SAT instance to k-AntiCover, although
we omit this analysis for space reasons.

More in detail, we focus on a peculiar variant of 3-SAT, still NP-complete, where each
literal in F is restricted to appear at most 3 times. This variant has been addressed in [22,
Theorem 2.1], where it is shown that SAT “is NP-complete when restricted to instances with
2 or 3 variables per clause and at most 3 occurrences per variable”. Hence 3-SAT with at
most 3 occurrences per variable is NP-complete.1

In the following, let C1, . . . , Cl be the clauses of F , and v1, . . . , vm its variables. For a
variable vi, we refer to the 3 occurrences of its positive literal as v1

i , v2
i , and v3

i , and the ones
of its negative literal as ¬v1

i , ¬v2
i , and ¬v3

i , meaning that each vj
i (and each ¬vj

i ) appears at
most once in F .

1 For the sake of completeness, we observe that 3-SAT with exactly 3 occurrences per variable is always
satisfiable as consequence of [22, Theorem 2.4].

CPM 2020



2:4 Finding the Anticover of a String

3.1 Overview of the reduction
We here introduce the structure and components of the reduction, which we then explain in
detail.

The string X is divided in two parts:
The first one models the clauses of F , where literals correspond to specific factors, and
using a factor in the cover of X means using the corresponding literal in F . In essence,
each clause contains three factors corresponding to the occurrences of its literals (where
the three different occurrences of the same literal will correspond to different factors),
and in order to cover all elements of a clause gadget we will need to use at least one of
such factors.
The second one contains coherence gadgets, which in essence enforce us to use factors in
a way coherent with truth assignments (i.e., if factors i and j in the first part correspond
to vh and ¬vh, then i and j cannot be used at the same time in the cover). Say we want
to cover a clause using the factor corresponding to v2

1 : the coherence gadgets will force
us to use the strings corresponding to ¬v1

1 , ¬v2
1 , and ¬v3

1 to cover the second part of the
string, meaning they cannot be used anymore in the first one (or they would break the
non-redundancy constraint of the anticover).

We present X as a collection of smaller strings corresponding to gadgets, delimited by
what we call jolly characters: these allow us to essentially ignore the order in which the
pieces of the strings are re-combined and prevent any interaction between adjacent gadgets.

Jolly characters. To simplify the explanation, we use the jolly character “?”: in essence,
each single ? represents a unique character that does not appear anywhere else in the string,
i.e., we can imagine that at the end of the reduction each ? is then iteratively replaced with
a unique distinct character not appearing in the string.

Jolly characters give us 2 useful properties for k = 3:
All factors including ? are free factors, so the k− 1 symbols preceding and succeeding a ?

are trivially covered by free factors.
In the string A ? B, then the k-length factors of A and B that are not free do not overlap:
if ? occurs at X [i], the right-most factor of A and left-most of B that could be non-free
are, respectively, at positions i− k + 1 and i + 1.
As a corollary, A ? B and B ? A have the same answer to k-AntiCover. More in general,
if we have a collection of strings of the form ?A? (starting and ending in ?), and we want
to append them to create a single string (X ), the order we chose does not impact the
answer of k-AntiCover on the string.

3.2 The clauses part
We now detail the clause gadget of X . Firstly, let pi

j and ni
j be symbols in Σ representing,

respectively, the literals vj
i and ¬vj

i .
Let Ch be an arbitrary clause of F , say, (¬v3

1 ∨ v1
5 ∨ v1

7), corresponding to the third
occurrence of the negative literal of v1, and the first occurrences of the positive literals of v5
and v7. Then the corresponding gadget is

Ch = ?##hhn3
1 ? ##hhp1

5 ? ##hhp1
7?

where
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n3
1, p1

5, and p1
7 are the characters representing the corresponding occurrences of the literals,

as described above.
h is a character representing Ch (i.e., is different in every clause), whereas the character
# is the same across all clauses, and ? are jolly characters.

Now observe that the only characters we need to cover are the first h of each pair hh:
Indeed the 2 symbols following and preceding each ? can be trivially covered by free factors,
as shown in the example below:

?##hhn3
1?##hhp1

5?##hhp1
7?

As k = 3, we have 3 possible factors we can use to cover each of these h symbols; in
particular, the first with {##h, #hh, hhn3

1}, the second with {##h, #hh, hhp1
5}, and the

third with {##h, #hh, hhp1
7}.

As h is clause-specific, the two strings ##h and #hh in each set only appear here, and
no constraint is imposed on their usage. However, as the anticover can contain each string at
most once, it will have to include at least one string among hhn3

1, hhp1
5, and hhp1

7.
In essence, adding this occurrence of hhp1

7 to the anticover will correspond to assigning
“true” to v7.

The first part of X will thus correspond to the gadgets corresponding to all clauses
C1, . . . , Cl appended after each other in sequence (as discussed above, the order is irrelevant).

In the second part of X , we will then enforce coherence of assignments, i.e., using hhp1
7

to cover Ch must forbid us from using the factors corresponding to the literal ¬v7 in the rest
of the clause part.

3.3 Auxiliary gadgets
In order to explain the coherence part, we first detail the auxiliary gadgets that compose it.

Gadget forbid(abc). Suppose we want to make sure that some string of length 3, say, abc,
cannot be used to cover rest of the string. Then we can place the following gadget in X :

forbid(abc) = ?$abc$ ? $abc$ ? $abc$?

where again the ? are jolly characters, but $ is a gadget-specific character, i.e., each occurrence
of a forbidding gadget has a unique character in place of the $.

Similarly to above, we can observe that all characters are covered by free factors except
the b characters in the middle, which can be covered by the strings $ab, abc, bc$: as we need
to cover 3 characters, we must use all three of these strings. In turn, this means the string
abc can not be used anywhere else in X . We refer to this gadget as forbid(abc).

An important observation is that all factors used except for abc are either free factors, or
contain the character $, meaning those strings will not appear anywhere else and thus not
affect our choices while covering the rest of the string.

Gadget one-of(abc, def ). Suppose now we have two strings abc and def , and we want to
make sure that at most one of the two may be used in the cover of the rest of the string.
Then we can place the following gadget in X :

one-of(abc, def ) = forbid(c€d) ? bc€de ? abc€def ?

CPM 2020



2:6 Finding the Anticover of a String

Here too, € is a gadget-specific character which is used only in this specific instance of this
gadget (same as the $ above, we differentiate so as to avoid confusion with the forbid(c€d)
gadget).

Let’s analyze it from left to right. Firstly, we forbid the string c€d so it cannot be used
in the rest of the string. Then, to cover the € in the central part ... ? bc€de ? ..., we must
use either bc€ or €de. Finally, in the right part ... ? abc€def ? we need to cover the three
symbols ...c€d...: if bc€ was used in the central part, we cannot use it now, and since we
cannot use c€d either, to cover the c symbol we must use abc (while we can use €de to cover
the remaining two symbols). Symmetrically, if we used €de in the central part of the gadget
instead, we must use def to cover the right part.

It follows that to cover one-of(abc, def ) we must use either abc or def , meaning we can
only use one of them in the rest of the string.

As above, all other factors used are either free or include €, so they do not impact the
rest of the string.

Gadget amplifier(abc, def ). Finally, the amplifier gadget is the core of our coherence
enforcement. It corresponds to the following string:

amplifier(abc, def ) = forbid(cde) ? abcdef ?

Differently from the gadgets above, this one does affect strings other than the input ones:
we call bcd the trigger of the amplifier. Specifically this is the word made from the last two
characters of the first string abc, and the first of the second string def . Furthermore, note
how the string cde made of the third character of the first string, and the first two of the
second, becomes forbidden.2

Focus now on the right part: in ... ? abcdef ? only the symbols ...cd... are not covered by
free factors. Since cde is forbidden, to cover them we have two ways:

use the trigger string bcd.
use both abc and def .

As the name suggests, this gadget amplifies the effects of using the trigger cde elsewhere
in X , as it will then force us to use both abc and def to cover amplifier(abc, def ). Note
that this gadget does create and affect factors that are not free and may occur somewhere
else, so we will analyze its usage carefully.

3.4 The coherence part
Let vi be a variable of F . In the clauses part, its literals can appear in up to six clauses. Let
w.l.o.g. the symbols 1 . . . 6 represent the identifiers of these clauses: the factors representing
the literals will thus be {11p1

i , 22p2
i , 33p3

i } for the positive ones, and {44n1
i , 55n2

i , 66n3
i } for

the negative.3
As explained above, say that the gadget of clause Ch contains an occurrence of the factor

22p2
i : we want to say that using this occurrence of the factor in the anticover means that

vi is set to true (thus Ch is satisfied by vi). In order to enforce coherence, and make the
anticover correspond to a satisfying assignment, we must then make it impossible to use a
factor corresponding to a negative value of vi anywhere in the clauses part.

2 Note that amplifier(def , abc) is a different gadget: it will forbid fab and its trigger will be efa.
3 If a literal, say pj

i , does not appear in a clause of F , let it be represented by ? ? pj
i .
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More formally, we want to create a gadget for a variable vi which, to be covered, forces
us to use either all of {11p1

i , 22p2
i , 33p3

i }, or all of {44n1
i , 55n2

i , 66n3
i } (this way, one set of

strings is fully “burned” to cover this gadget, and only elements from the other set may be
used in the rest of the string).

Gadget enforce(vi). We do so by using the one-of gadget and a nested use of the
amplifier gadget, with the following gadget made of 5 parts, which we call enforce(vi):
1. amplifier(11p1

i , 2p2
i 3)

2. amplifier(22p2
i , 33p3

i )
3. amplifier(44n1

i , 5n2
i 6)

4. amplifier(55n2
i , 66n3

i )
5. one-of(1p1

i 2, 4n1
i 5)

Now, key observations are that 2p2
i 3 in gadget 1 is the trigger of gadget 2, while 5n2

i 6 in
gadget 3 is the trigger of gadget 4, and finally, the arguments of gadget 5 are the triggers of
gadgets 1 and 3.

In order to cover one-of(1p1
i 2, 4n1

i 5) we must use (at least) one between 1p1
i 2 and 4n1

i 5.
If we choose 1p1

i 2 to cover gadget 5, this triggers gadget 1, so to cover gadget 1 we must use
both 11p1

i and 2p2
i 3; in turn, this triggers gadget 2, forcing us to use both 22p2

i and 33p3
i ; on

the other hand, gadgets 3 and 4 can be covered using their respective triggers, meaning that
all strings corresponding to positive literals {11p1

i , 22p2
i , 33p3

i } are used by the cover, but it
is not necessary to use any of the negative ones {44n1

i , 55n2
i , 66n3

i }, which can be used in the
clauses part. If, instead, we cover gadget 5 using 4n1

i 5, the situation is exactly symmetrical:
we burn all the negative literals {44n1

i , 55n2
i , 66n3

i } on gadgets 3 and 4, but we may cover
1 and 3 using the triggers, and using the positive literals {11p1

i , 22p2
i , 33p3

i } in the clauses
part.4 We have thus proven the following result.5

I Theorem 3. F is satisfiable if an only if X has a 3-anticover. As a consequence, problem
k-AntiCover is NP-complete for k ≥ 3.

4 Polynomial-Time Algorithm for k = 2

In this section, we show that that 2-AntiCover can be reduced to 2-SAT in O(n|Σ|) time
and space, obtaining the following result.

I Theorem 4. Problem 2-AntiCover can be solved in O(n|Σ|) time and space.

Proof. We run first a preliminary test to see if the input string x contains a factor of length 3
that occurs three or more times in it. A 2-anticover cannot exist a 2-AntiCover in this
case, and we answer no. Indeed, let abc be a a factor that occurs three or more times in x.
Since the position corresponding to b can be covered either by the factors of length 2, ab or
bc, when we find the third occurrence of abc, we cannot use ab or bc as it would be chosen
twice. Hence, there is no way to cover the position of b in the third occurrence of abc in any
2-AntiCover. Running this test can be easily done in O(n log |Σ|) time [12].

4 For completeness, we remark that it is crucial to use amplifier(11p1
i , 2p2

i 3) instead of
amplifier(2p2

i 3, 11p1
i ): the latter one forbids the string 311, which does not contain ? nor char-

acters representing the literal and might affect other coherence gadgets. Instead amplifier(11p1
i , 2p2

i 3)
forbids p1

i 2p2
i , which is safe as it may not appear in other coherence gadgets.

5 Again, we remark that all the gadgets in this reduction can be extended to any k rather than just 3,
although we omit this for space reasons.

CPM 2020



2:8 Finding the Anticover of a String

Instead, if this preliminary test is positive, we build a 2-SAT formula as follows. Let i be
any position in the string x, and pi the Boolean variable denoting whether or not the factor
x[i . . . i + 1] is chosen in the 2-AntiCover.

We have a first group of clauses Ci, for 1 ≤ i ≤ n, where Ci says that the first (i = 1) and
last (i = n) positions must be covered by the only possible factors x[1 . . . 2] and x[n− 1 . . . n],
respectively, and any other position must be covered by the factor(s) of length k = 2 starting
at position i− 1 or i:

C1 = (p1) (1)
Cn = (pn−1) (2)
Ci = (pi−1 ∨ pi) 2 ≤ i ≤ n− 1 (3)

Furthermore, when x[i . . . i + 1] = x[j . . . j + 1] for i 6= j, we should take at most one of
them, and so we cannot take both, giving the second group Bij of clauses:

Bij = (¬pi ∨ ¬pj) 1 ≤ i < j ≤ n such that x[i . . . i + 1] = x[j . . . j + 1] (4)

Let F be the 2-SAT formula obtained by putting the clauses Ci and Bij in logical ∧. We
observe that F contains n clauses Ci and O(n|Σ|) clauses Bij . Recall that each factor of
length 3 can occur at most twice in x. Thus, given any position i, we claim that there are
at most 2|Σ| + 1 positions j 6= i such that x[i . . . i + 1] = x[j . . . j + 1]. Indeed, any other
occurrence of s = x[i . . . i + 1] is followed by a third symbol, say, c (unless that occurrence is
a suffix of x). But s c is a factor of length 3, and can appear at most twice. Since we have at
most |Σ| choices for c plus the end of string case, this gives the desired upper bound. As
there are at most n positions i, and for each of them there are at most 2|Σ|+ 1 positions j

where the same factor of length 2 occurs, we conclude that there are O(n|Σ|) clauses Bij .
Summing up, F has O(n|Σ|) size and it can be built O(n|Σ|) time.

It is straightforward to see that F is satisfied if and only if there is a 2-AntiCover for
string x. Since 2-SAT can be solved in linear time in the size of the formula F [5], we obtain
the bounds stated in the theorem. J

5 Exact Exponential-Time algorithms for k ≥ 3

In this section we consider a better algorithm than a brute-force algorithm for solving
k-AntiCover. The task of k-AntiCover is finding a subset of positions satisfying the
given constraint. By trying all subsets of positions, we can solve k-AntiCover. Since
the number of subset of positions is O(2n−k), the brute-force algorithm runs in O∗(2n−k)
time, where the O∗(·) notation ignores poly(n) factors. Note that |Σ| and k is bounded by
n. Thus, O∗(·) notation ignores poly(|Σ|) and poly(k) factors. In this section, we give two
exponential time algorithms. The former algorithm breaks the trivial 2n−k-barrier for any
k ≥ 3. The latter algorithm is clearly better than the brute-force algorithm and, in addition,
it outperforms the former algorithm when k > 9.

5.1 Breaking the trivial barrier
Let x be a string with length n and k be an integer. We consider a set of positions of x

from 1 to n− k + 1. We partition this set as follows: Let S = {S1, . . . , S`} be a partition of
positions 1, 2, . . . , n− k + 1. For any two substring y, y′ with length k starting from position
j and j′ respectively, both j and j′ are in Si if and only if y = y′. That is, each partition
corresponds to some substring with length k in x. For example, given a string abcabca and
k = 3, S = {{1, 4} , {2, 5} , {3}}.
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We describe our proposed algorithm. Let S1 ∈ S be the set containing position 1. We
first pick position 1 to cover the 1-st character on x. Hence, after choosing 1, we need to
solve at most |S1| subproblems. Note that for each subproblem, the first k letters are already
covered, and thus, we have k options for covering the (k + 1)th letter in each subproblem.

Since we cannot pick positions which already are picked, the time complexity T (·) of this
algorithm satisfies the following inequality: T (n− k + 1) ≤ cT (n− k + 1− c), where c is the
size of partition from which we pick a substring. Since the sum of the size of the partitions
is n− k, the time complexity is O∗(c n−k+1

c ).
It is known that this formula takes its maximum when c = 3 [11]. Hence, the time

complexity of this algorithm is O∗(3 n−k+1
3 ) = O∗(3 n−k

3 ) time.

I Theorem 5. k-AntiCover can be solved in O∗(3 n−k
3 ) time and polynomial space.

5.2 A better upper bound for large k

In this subsection, we give a faster algorithm when k is large. Now we first introduce some
terminologies. A set S = {s1, . . . , s`} is a k-cover if

⋃
i=1,...,` {si, . . . , si + k} = {1, . . . , n}.

Hence, a trivial k-cover is {1, 1 + k, 1 + 2k, . . . }. Note that each si corresponds to a position
of x but a k-cover may have two positions which derives from the same substring. A k-cover
S is minimal if there is no subset of S which is a k-cover. We say that si is redundant in S

if S \ {si} is also a k-cover.

I Lemma 6. Let x be a string and k be an integer. Then, if x has a k-anticover, then there
is a minimal k-cover S such that S is also a k-anticover.

Proof. Let S = {s1, . . . , s`} be a k-anticover. Since S is a k-anticover, S \ {si} is also
k-anticover if S \ {si} is a k-cover of x. Hence, S becomes a minimal cover by removing
redundant elements one by one. Hence, the statement holds. J

From Lemma 6, we can determine whether x has a k-anticover by enumerating all minimal
k-covers. Hence, in the following, we propose an enumeration algorithm for all minimal
k-covers.

We firstly give an upper bound of the number of all minimal k-covers of substrings with
length k + 1 such that each minimal k-cover has no redundant positions. Assume that by
concatenating these dn/(k + 1)e substrings, we can reconstruct the input string. Let us
consider the following problem Cover(x, k): given a string x of length k + 1, the task is to
enumerate all minimal k-covers in it under the assumption, for 0 ≤ i ≤ k − 1, that we can
select the length of a first interval s1 between 1 to k and we can pick the last k− 1 characters.
For example, we consider an instance x = abcd and k = 3. The subproblem Cover(x, 3) has
the following six solutions: abcd, abcd, abcd, abcd, abcd, and abcd. The next lemma shows
the upper bound:

I Lemma 7. Problem Cover(x, k) has at most k(k+1)
2 minimal k-covers.

Proof. Let i be the length of a first interval. Since we cover all characters, we have to choose
a position 1. In addition, we pick the second position between 2 and i + 1. Since the length
of x is k + 1, then it is a minimal k-cover. Hence, we have i choices for each i. Therefore, we
have

∑
1≤i≤k i = k(k+1)

2 solutions and the statement holds. J

From the above lemma, the number of solutions in each subproblem is at most k(k+1)
2 .

In addition, the number of subproblems is n
k+1 + 1. Now, we can obtain all minimal k-covers

which have no redundant positions between c(k + 1) + 1 to (c + 1)(k + 1) for any non-negative
integer c by trying all the combinations of concatenating solutions of all the subproblems.
Because any k-anticover has no redundant positions, the following theorem holds.

CPM 2020



2:10 Finding the Anticover of a String

Table 1 The list of values of
(

k(k+1)
2

) 1
k+1 . We round the base of the exponent up to the fourth

digit after the decimal point. Note that 3 1
3 is approximately equal to 1.4423.

k 3 5 9 10 20 30(
k(k+1)

2

) 1
k+1 1.5651 1.5705 1.4633 1.4396 1.2900 1.2192

I Theorem 8. There is an algorithm solving k-AntiCover in O∗
((k(k+1)

2
) n

k+1
)
time and

polynomial space.

From Theorem 8 and Table 1, the latter algorithm is better than the former algorithm if k is
larger than 9. Combining two theorems, we obtain the following theorem.

I Theorem 9. Problem k-AntiCover can be solved in O∗
(
min

{
3 n−k

3 ,
(k(k+1)

2
) n

k+1
})

time,
using polynomial space.

6 Concluding remarks

In this paper we proposed the k-AntiCover problem, a natural combinatorial problem
on strings with applications to fields such as computational biology. We have shown that
finding whether a string of length n can be covered by (possibly overlapping) distinct factors
of length k is polynomial for k = 2, and NP-complete otherwise.

We have also shown how to design exact exponential algorithms for general k, which
improve upon a trivial brute-force approach and get progressively more efficient for larger
values of k.

A question that remains open is whether the proposed algorithms match the inherent
computational complexity of the problem or whether faster solutions exist. Another is
whether the problem remains NP-complete under natural restrictions, such as an alphabet of
constant size.
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