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Abstract
Many consensus string problems are based on Hamming distance. We replace Hamming distance
by the more flexible (e.g., easily coping with different input string lengths) dynamic time warping
distance, best known from applications in time series mining. Doing so, we study the problem of
finding a mean string that minimizes the sum of (squared) dynamic time warping distances to a
given set of input strings. While this problem is known to be NP-hard (even for strings over a
three-element alphabet), we address the binary alphabet case which is known to be polynomial-time
solvable. We significantly improve on a previously known algorithm in terms of worst-case running
time. Moreover, we also show the practical usefulness of one of our algorithms in experiments with
real-world and synthetic data. Finally, we identify special cases solvable in linear time (e.g., finding a
mean of only two binary input strings) and report some empirical findings concerning combinatorial
properties of optimal means.
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1 Introduction

Consensus problems are an integral part of stringology. For instance, in the frequently studied
Closest String problem one is given k strings of equal length and the task is to find a
center string that minimizes the maximum Hamming distance to all k input strings. Closest
String is NP-hard even for binary alphabet [11] and has been extensively studied in context
of approximation and parameterized algorithmics [6, 9, 7, 8, 13, 15, 17, 20]. Notably, when
one wants to minimize the sum of distances instead of the maximum distance, the problem is
easily solvable in linear time by taking at each position a letter that appears most frequently
in the input strings.

Hamming distance, however, is quite limited in many application contexts; for instance,
how to define a center string in case of input strings that do not all have the same length?
In context of analyzing time series (basically strings where the alphabet consists of rational
numbers), the “more flexible” dynamic time warping distance [18] enjoys high popularity and
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28:2 Fast Binary DTW-Mean

can be computed for two input strings in subquadratic time [12, 14], essentially matching
corresponding conditional lower bounds [1, 3]. Roughly speaking (see Section 2 for formal
definitions and an example), measuring the dynamic time warping distance (dtw for short)
can be seen as a two-step process: First, one aligns one time series with the other (by
stretching them via duplication of elements) such that both time series end up with the
same length. Second, one then calculates the Euclidean distance of the aligned time series
(recall that here the alphabet consists of numbers). Importantly, restricting to the binary
case, the dtw distance of two time series can be computed in O(n1.87) time [1], where n is
the maximum time series length (a result that will also be relevant for our work).

With the dtw distance at hand, the most fundamental consensus problem in this (time
series) context is, given k input “strings” (over rational numbers), compute a mean string that
minimizes the sum of (squared) dtw distances to all input strings. This problem is known as
DTW-Mean in the literature and only recently has been shown to be NP-hard [4, 5]. For
the most basic case, namely binary alphabet (that is, input and output are binary), however,
the problem is known to be solvable in O(kn3) time [2]. By way of contrast, if one allows
the mean to contain any rational numbers, then the problem is NP-hard even for binary
inputs [5]. Moreover, the problem is also NP-hard for ternary input and output [4].

Formally, in this work we study the following problem:

Binary DTW-Mean (BDTW-Mean)
Input: Binary strings s1, . . . , sk of length at most n and c ∈ Q.
Question: Is there a binary string z such that F (z) :=

∑k
i=1 dtw(si, z)2 ≤ c?

Herein, the dtw function is formally defined in Section 2. The study of the special case of
binary data may occur when one deals with binary states (e.g., switching between the active
and the inactive mode of a sensor); binary data were recently studied in the dynamic time
warping context [16, 19]. Clearly, binary data can always be generated from more general
data by “thresholding”.

Our main theoretical result is to show that BDTW-Mean can be solved in O(kn1.87)
and O(k(n+m(m− µ))) time, respectively, where m is the maximum and µ is the median
condensation length of the input strings (the condensation of a string is obtained by repeatedly
removing one of two identical consecutive elements). While the first algorithm, relies on an
intricate “blackbox-algorithm” for a certain number problem from the literature (which so far
was never implemented), the second algorithm (which we implemented) is more directly based
on combinatorial arguments. Anyway, our new bounds improve on the standard O(kn3)-time
bound [2]. Moreover, we also experimentally tested our second algorithm and compared it to
the standard one, clearly outperforming it (typically by orders of magnitude) on real-world
and on synthetic instances. Further theoretical results comprise linear-time algorithms for
special cases (two input strings or three input strings with some additional constraints).
Further empirical results relate to the typical shape of a mean.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. We consider binary strings x = x[1]x[2] . . . x[n] ∈ {0, 1}n.
We denote the length of x by |x| and we also denote the last symbol x[n] of x by x[−1].
For 1 ≤ i ≤ j ≤ |x|, we define the substring x[i, j] := x[i] . . . x[j]. A maximal substring of
consecutive 1’s (0’s) in x is called a 1-block (0-block). The i-th block of x (from left to right)
is denoted x(i). A string x is called condensed if no two consecutive elements are equal,
that is, every block is of size 1. The condensation of x is denoted x̃ and is defined as the
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Figure 1 An optimal warping path for the strings x = 00101100101 (vertical axis) and y =
0001100111 (horizontal axis). Black cells have local cost 1. The string x consists of eight blocks
with sizes 2,1,1,2,2,1,1,1 and y consists of four blocks with sizes 3,2,2,3. An optimal warping path
has to pass through (8− 4)/2 = 2 non-neighboring blocks of the six inner blocks of x.

condensed string obtained by removing one of two equal consecutive elements of x until the
remaining series is condensed. Note that the condensation length |x̃| equals the number of
blocks in x.

The dynamic time warping distance measures the similarity of two strings using non-linear
alignments defined via so-called warping paths.

I Definition 1. A warping path of order m× n is a sequence p = (p1, . . . , pL), L ∈ N, of
index pairs p` = (i`, j`) ∈ [m]× [n], 1 ≤ ` ≤ L, such that
(i) p1 = (1, 1),
(ii) pL = (m,n), and
(iii) (i`+1 − i`, j`+1 − j`) ∈ {(1, 0), (0, 1), (1, 1)} for each ` ∈ [L− 1].

A warping path can be visualized within an m× n “warping matrix” (see Figure 1). The
set of all warping paths of order m×n is denoted by Pm,n. A warping path p ∈ Pm,n defines
an alignment between two strings x ∈ Qm and y ∈ Qn in the following way: A pair (i, j) ∈ p
aligns element xi with yj with a local cost of (xi − yj)2. The dtw distance between two
strings x and y is defined as

dtw(x, y) := min
p∈Pm,n

√ ∑
(i,j)∈p

(xi − yj)2.

It is computable via standard dynamic programming in O(mn) time1 [18], with recent
theoretical improvements to subquadratic time [12, 14].

3 DTW on Binary Strings

We briefly discuss some known results about the dtw distance between binary strings since
these will be crucial for our algorithms for BDTW-Mean.

1 Throughout this work, we assume that all arithmetic operations can be carried out in constant time.
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Abboud et al. [1, Section 5] showed that the dtw distance of two binary strings of length
at most n can be computed in O(n1.87) time. They obtained this result by reducing the
dtw distance computation to the following integer problem.

Min 1-Separated Sum (MSS)
Input: A sequence (b1, . . . , bm) of m positive integers and an integer r ≥ 0.
Task: Select r integers bi1 , . . . , bir with 1 ≤ i1 < i2 < · · · < ir ≤ m and ij < ij+1 − 1

for all 1 ≤ j < r such that
∑r
j=1 bij is minimized.

The integers of the MSS instance correspond to the block sizes of the input string which
contains more blocks.

I Theorem 2 ([1, Theorem 8]). Let x ∈ {0, 1}m and y ∈ {0, 1}n be two binary strings such
that x[1] = y[1], x[m] = y[n], and |x̃| ≥ |ỹ|. Then, dtw(x, y)2 equals the sum of a solution
for the MSS instance

(
(|x(2)|, . . . , |x(|x̃|−1)|), (|x̃| − |ỹ|)/2

)
.

The idea behind Theorem 2 is that exactly (|x̃| − |ỹ|)/2 non-neighboring blocks of x are
misaligned in any warping path (note that |x̃| − |ỹ| is even since x and y start and end with
the same symbol). An optimal warping path can thus be obtained from minimizing the
sum of block sizes of these misaligned blocks. For example, in Figure 1 the dtw distance
corresponds to a solution of the MSS instance ((1, 1, 2, 2, 1, 1), 2).

Abboud et al. [1, Theorem 10] showed how to solve MSS in O(n1.87) time, where n =∑m
i=1 bi. They gave a recursive algorithm that, on input ((b1, . . . , bm), r), outputs four

lists C00, C0∗, C∗0, and C∗∗, where, for t ∈ {0, . . . , r},
C∗∗[t] is the sum of a solution for the MSS instance ((b1, . . . , bm), t),
C0∗[t] is the sum of a solution for the MSS instance ((b2, . . . , bm), t),
C∗0[t] is the sum of a solution for the MSS instance ((b1, . . . , bm−1), t), and
C00[t] is the sum of a solution for the MSS instance ((b2, . . . , bm−2), t).

Note that C∗∗[r] yields the solution. We will make use of their algorithm when solving
BDTW-Mean. We will also use the following simple dynamic programming algorithm for
MSS which is faster for large input integers.

I Lemma 3. Min 1-Separated Sum is solvable in O(mr) time.

Proof. Let ((b1, . . . , bm), r) be an MSS instance. We define a dynamic programming tableM
as follows: For each i ∈ [m] and each j ∈ {0, . . . ,min(r, di/2e)}, M [i, j] is the sum of a
solution of the subinstance ((b1, . . . , bi), j). Clearly, it holds M [i, 0] = 0 and M [i, 1] =
min{b1, . . . , bi} for all i. Further, it holds M [3, 2] = b1 + b3. For all i ∈ {4, . . . ,m}
and j ∈ {2, . . . ,min(r, di/2e)}, the following recursion holds

M [i, j] = min(bi +M [i− 2, j − 1],M [i− 1, j]).

Hence, the table M can be computed in O(mr) time. J

Note that the above algorithms only compute the dtw distance between binary strings with
equal starting and ending symbol. However, it is an easy observation that the dtw distance
of arbitrary binary strings can recursively be obtained from this via case distinction on which
first and/or which last block to misalign.

I Observation 4 ([1, Claim 6]). Let x ∈ {0, 1}m, y ∈ {0, 1}n with m′ := |x̃| ≥ n′ := |ỹ|.
Further, let a := |x(1)|, a′ := |x(m′)|, b := |y(1)|, and b′ := |y(n′)|. The following holds:
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If x[1] 6= y[1], then

dtw(x, y)2 =


max(a, b), m′ = n′ = 1
a+ dtw(x[a+ 1,m], y)2, m′ > n′ = 1
min

(
a+ dtw(x[a+ 1,m], y)2, b+ dtw(x, y[b+ 1, n])2) , n′ > 1

.

If x[1] = y[1] and x[m] 6= y[n], then

dtw(x, y)2 =
{
a′ + dtw(x[1,m− a′], y)2, n′ = 1
min

(
a′ + dtw(x[1,m− a′], y)2, b′ + dtw(x, y[1, n− b′])2) , n′ > 1

.

For condensed strings, Brill et al. [2] derived the following useful closed form for the
dtw distance (which basically follows from Observation 4 and Theorem 2).

I Lemma 5 ([2, Lemma 1 and 2]). For a condensed binary string x and a binary string y
with |ỹ| ≤ |x|, it holds that

dtw(x, y)2 =


d(|x| − |ỹ|)/2e, x1 = y1

2, x1 6= y1 ∧ |x| = |ỹ|
1 + b(|x| − |ỹ|)/2c, x1 6= y1 ∧ |x| > |ỹ|

.

Note that Lemma 5 implies that one can compute the dtw distance in constant time when
the condensation lengths of the inputs are known and the string with longer condensation
length is condensed.

Our key lemma now states that the dtw distances between an arbitrary fixed string and
all condensed strings of shorter condensation length can also be computed efficiently.

I Lemma 6. Let s ∈ {0, 1}n with ` := |s̃|. Given ` and the block sizes b1, . . . , b` of s, the
dtw distances between s and all condensed strings of lengths `′, . . . , ` for some given `′ ≤ `
can be computed in
(i) O(n1.87) time and in
(ii) O(`(`− `′)) time, respectively.

Proof. Let x be a condensed string of length i ∈ {`′, . . . , `}. Observation 4 and Theorem 2
imply that we essentially have to solve MSS on four different subsequences of block sizes of s
(depending on the first and last symbol of x) in order to compute dtw(s, x). Namely, the four
cases are (b2, . . . , b`−1), (b3, . . . , b`−1), (b2, . . . , b`−2), and (b3, . . . , b`−2). Let r := d(`− `′)/2e

(i) We run the algorithm of Abboud et al. [1, Theorem 10] on the instance ((b2, . . . , b`−1), r)
to obtain in O(n1.87) time the four lists Cαβ , for α, β ∈ {0, 1}, where Cαβ contains the
solutions of ((b2+α, . . . , b`−1−β), r′) for all r′ ∈ {0, . . . , r}. From these four lists, we can
compute the requested dtw distances (using Observation 4) in O(`) time.

(ii) We compute the solutions of the four above MSS instances using Lemma 3. For each
α, β ∈ {0, 1}, let Mαβ be the dynamic programming table computed in O(`(` − `′)) time
for the instance ((b2+α, . . . , b`−1−β), r). Again, we can compute the requested dtw distances
from these four tables in O(`) time (using Observation 4). J

4 More Efficient Solution of BDTW-Mean

Brill et al. [2] gave an O(kn3)-time algorithm for BDTW-Mean. The result is based on
showing that there always exists a condensed mean of length at most n + 1. Thus, there
are 2(n+1) candidate strings to check. For each candidate, one can compute the dtw distance
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to every input string in O(kn2) time. It is actually enough to only compute the dtw distance
for the two length-(n + 1) candidates to all k input strings since the resulting dynamic
programming tables also yield all the distances to shorter candidates. That is, the running
time can actually be bounded in O(kn2).

We now give an improved algorithm. To this end, we first show the following improved
bounds on the (condensation) length of a mean.

I Lemma 7. Let s1, . . . , sk be binary strings with |s̃1| ≤ · · · ≤ |s̃k| and let z be a mean of
these k strings, that is,

z ∈ arg min
x∈{0,1}∗

k∑
i=1

dtw(si, x)2.

Then, it holds µ − 2 ≤ |z̃| ≤ m + 1, where µ := |s̃dk/2e| is the median condensation length
and m := |s̃k| is the maximum condensation length.

Proof. It suffices to show the claimed bounds for condensed means. Since dtw(x̃, y) ≤
dtw(x, y) holds for all strings x, y [2, Proposition 1], the bounds also hold for arbitrary
means.

The upper bound m + 1 can be derived from Lemma 5. Let x be a condensed string
of length |x| ≥ m + 2 and let x′ := x[1,m]. If |x| > m + 2, then dtw(x′, si)2 < dtw(x, si)2

holds for every i ∈ [k], which implies F (x′) =
∑k
i=1 dtw(si, x′)2 <

∑k
i=1 dtw(si, x)2 = F (x).

Hence, x is not a mean. If |x| = m+ 2, then dtw(x′, si)2 ≤ dtw(x, si)2 holds for every i ∈ [k],
that is, F (x′) ≤ F (x). If F (x′) < F (x), then x is clearly not a mean. If F (x′) = F (x), then
dtw(x′, si)2 = dtw(x, si)2 holds for all i ∈ [k]. In fact, dtw(x′, si)2 = dtw(x, si)2 only holds
if |s̃i| = m and si[1] 6= x[1], in which case dtw(x, si)2 = 2. Thus, we have F (x) = 2k and
s̃1 = s̃2 = · · · = s̃k. But then s̃1 is clearly the unique mean (with F (s̃1) = 0).

For the lower bound, let x be a condensed string of length ` < µ − 2 and let x′ :=
x[1] . . . x[`]x[`− 1]x[`]. Then, for every si with |s̃i| ≤ ` (of which there are less than dk/2e
since ` < µ), it holds dtw(x′, si)2 ≤ dtw(x, si)2 + 1 (by Lemma 5).

Now, for every si with |s̃i| > ` + 2 (of which there are at least dk/2e since ` + 2 < µ),
it holds dtw(x′, si)2 ≤ dtw(x, si)2 − 1. This is easy to see from Theorem 2 for the case
that si[1] = x′[1] and si[−1] = x′[−1] holds since the number of misaligned blocks of si
decreases by at least one. From this, Observation 4 yields the other three possible cases
of starting and ending symbols since the sizes of the first and last block of x and of x′ are
clearly all the same (one).

It remains to consider input strings si with ` < |s̃i| ≤ ` + 2. We show that in this
case dtw(x′, si)2 ≤ dtw(x, si)2 holds. Let |s̃i| = ` + 2. Note that then either x′[1] = si[1]
and x′[−1] = si[−1] holds or x′[1] 6= si[1] and x′[−1] 6= si[−1] holds. In the former case, it
clearly holds dtw(x′, si)2 = 0 by Lemma 5. In the latter case, we clearly have dtw(x, si)2 ≥ 2,
and, by Lemma 5, we have dtw(x′, si)2 = 2. Finally, let |s̃i| = ` + 1 and note that then
either x′[1] = si[1] and x′[−1] 6= si[−1] holds or x′[1] 6= si[1] and x′[−1] = si[−1] holds. Thus,
we clearly have dtw(x, si)2 ≥ 1. By Lemma 5, we have dtw(x′, si)2 = 1.

Summing up, we obtain F (x′) ≤ F (x) + a − b, where a = |{i ∈ [k] | |s̃i| < `}| < dk/2e
and b = |{i ∈ [k] | |s̃i| > `+ 2}| ≥ dk/2e. That is, F (x′) < F (x) and x is not a mean. J

Note that the length bounds in Lemma 7 are tight. For the upper bound, consider the two
strings 000 and 111 having the two means 01 and 10. For the lower bound, consider the
seven strings 0, 0, 0, 101, 101, 010, 010 with the unique mean 0.
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Lemma 7 upper-bounds the number of mean candidates we have to consider in terms of
the condensation lengths of the inputs. In order to compute the dtw distances between mean
candidates and input strings, we can now use Lemma 6. We arrive at the following result.

I Theorem 8. Let s1, . . . , sk be binary strings with |s̃1| ≤ · · · ≤ |s̃k| and n := maxj=1,...,k |sj |,
µ := |s̃dk/2e|, and m := |s̃k|. The condensed means of s1, . . . , sk can be computed in
(i) O(kn1.87) time and in
(ii) O(k(n+m(m− µ))) time.

Proof. From Lemma 7, we know that there are O(m − µ) many candidate strings to
check. First, in linear time, we determine the block lengths for each sj . Now, let x be a
candidate string, that is, x is a condensed binary string with µ − 2 ≤ |x| ≤ m + 1. We
need to compute dtw(x, sj)2 for each j = 1, . . . , k. Consider a fixed string sj . For all
candidates x with|x| ≥ |s̃j |, we can simply compute dtw(x, sj)2 in constant time using
Lemma 5. For all x with |x| < |s̃j |, we can use Lemma 6. Thus, overall, we can compute the
dtw distances between all candidates and all input strings in O(kn1.87) time, or alternatively
in O(km(m − µ)) time. Finally, we determine the candidates with the minimum sum of
dtw distances in O(k(m− µ)) time. J

We remark that similar results also hold for the related problems Weighted Binary
DTW-Mean, where the objective is to minimize F (z) :=

∑k
i=1 wi dtw(si, z)2 for some

wi ≥ 0, and Binary DTW-Center with F (z) := maxi=1,...,k dtw(si, z)2 (that is, the dtw
version of Closest String). It is easy to see that also in these cases there exists a condensed
solution. Moreover, the length is clearly bounded between the minimum and the maximum
condensation length of the inputs. Hence, analogously to Theorem 8, we obtain the following.

I Corollary 9. Weighted Binary DTW-Mean and Binary DTW-Center can be solved
in O(kn1.87) time and in O(k(n+m(m− ν))) time, where m is the maximum condensation
length and ν is the minimum condensation length.

5 Linear-Time Solvable Special Cases

Notably, Theorem 8 (ii) yields a linear-time algorithm when m−µ is constant and also when
all input strings have the same length n and m(m − µ) ∈ O(n). Now, we show two more
linear-time solvable cases.

I Theorem 10. A condensed mean of two binary strings can be computed in linear time.

Proof. Let s1, s2 ∈ {0, 1}∗ be two input strings. We first determine the condensations and
block sizes of s1 and s2 in linear time. Let `i := |s̃i|, for i ∈ [2], and assume that `1 ≤ `2.
In the following, all claimed relations between dtw distances can easily be verified using
Observation 4 (together with Theorem 2) and Lemma 5.

If `1 = `2, then, by Theorem 8 (with µ = m = `1), all condensed means can be computed
in O(`1) time.

If `1 < `2, then s̃2 is a mean. To see this, note first that F (s̃2) = dtw(s1, s̃2)2. Let x
be a condensed string. If |x| < `1, then dtw(s1, x)2 > 0 and dtw(s2, x)2 ≥ dtw(s2, s̃1)2 ≥
dtw(s̃2, s̃1)2 = dtw(s̃2, s1)2. Thus, F (x) > F (s̃2). Similarly, if |x| > `2, then dtw(s1, x)2 ≥
dtw(s1, s̃2)2, dtw(s2, x)2 > 0, and F (x) > F (s̃2). If `1 ≤ |x| < `2, then dtw(s1, x)2 +
dtw(s2, x)2 ≥ dtw(s1, s̃2)2, and thus F (x) ≥ F (s̃2). J

For three input strings, we show linear-time solvability if all strings begin with the same
symbol and end with the same symbol.

CPM 2020
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I Theorem 11. Let s1, s2, s3 be binary strings with s1[1] = s2[1] = s3[1] and s1[−1] =
s2[−1] = s3[−1]. A condensed mean of s1, s2, s3 can be computed in linear time.

Proof. We first determine the condensations and block sizes of s1, s2, and s3 in linear time.
Let `i := |s̃i|, for i ∈ [3], and assume `1 ≤ `2 ≤ `3. Note that every mean starts with s1[1]
and ends with s1[−1]. To see this, consider any string x with x[1] 6= s1[1] (or x[−1] 6= s1[−1])
and observe that either removing the first (or last) symbol or adding s1[1] to the front (or
s1[−1] to the end) yields a better F -value. Moreover, it is easy to see that every condensed
mean has length at least `2 since increasing the length of any shorter condensed string by two
increases the dtw distance to s1 by at most one (Lemma 5) and decreases the dtw distances
to s2 and s3 by at least one (Theorem 2).

Note that a mean could be even longer than `2 since further increasing the length by
two increases the dtw distance to s1 and s2 by at most one and could possibly decrease
the dtw distance to s3 by at least two (if a misaligned block of size at least two can
be saved). In fact, we can determine an optimal mean length in O(`3) time by greedily
computing the maximum number ρ of 1-separated (that is, non-neighboring) blocks of size
one among s(2)

3 , . . . , s`3−1
3 . Then there is a mean of length `3 − 2ρ (that is, exactly ρ size-1

blocks of s3 are misaligned). Clearly, any longer condensed string has a larger F -value and
every shorter condensed string has at least the same F -value. J

We strongly conjecture that similar but more technical arguments can be used to obtain a
linear-time algorithm for three arbitrary input strings. For more than three strings, however,
it is not clear how to achieve linear time, since the mean length cannot be greedily determined.

6 Empirical Evaluation

We conducted some experiments to empirically evaluate our algorithms and to observe
structural characteristics of binary means. In Section 6.1 we compare the running times of
our O(k(n+m(m− µ)))-time algorithm (Theorem 8 (ii)) with the standard O(kn2)-time
dynamic programming approach [2] described in the beginning of Section 4. We implemented
both algorithms in Python.2 Note that we did not test the O(kn1.87)-time algorithm since
it uses another blackbox algorithm (which has not been implemented so far) in order to
solve MSS. However, we believe that it is anyway slower in practice. In Section 6.2, we
empirically investigate structural properties of binary condensed means such as the length
and the starting symbol (note that these two characteristics completely define the mean).
All computations have been done on an Intel i7 QuadCore (4.0 GHz).

For our experiments we used the CASAS human activity datasets3 [10] as well as some
randomly generated data. The data in the CASAS datasets are generated from sensors which
detect (timestamped) changes in the environment (for example, a door being opened/closed)
and have previously been used in the context of binary dtw computation [16]. We used
the datasets HH101–HH130 and sampled from them to obtain input strings of different
lengths and sparsities (for a binary string s, we define the sparsity as |s̃|/|s|). For the random
data, the sparsity value was used as the probability that the next symbol in the string will
be different from the last one (hence, the actual sparsities are not necessarily exactly the
sparsities given but very close to those).

2 Source code available at https://www.akt.tu-berlin.de/menue/software/.
3 Available at http://casas.wsu.edu/datasets/.

https://www.akt.tu-berlin.de/menue/software/
http://casas.wsu.edu/datasets/
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Figure 2 Running times of the standard and the fast algorithm on sparse data (sensor D002 in
dataset HH101) in 10-minute intervals (top) and 1-minute intervals (bottom).

6.1 Running Time Comparison

To examine the speedup provided by our algorithm, we compare it with the standard O(kn2)-
time dynamic programming algorithm on (very) sparse real-world data (sparsity ≈ 0.1 and
≈ 0.01) and on sparse (sparsity ≈ 0.1) and dense (sparsity ≈ 0.5) random data, both for
various values of k. Figure 2 shows the running times on real-world data. For sparsity ≈ 0.1,
our algorithm is around 250 times faster than the standard algorithm and for sparsity ≈ 0.01
it is around 350 times faster. Figure 3 shows the running times of the algorithms on larger

CPM 2020



28:10 Fast Binary DTW-Mean

Figure 3 Running times of the standard algorithm for n ≤ 1000 and of the fast algorithm for
n ≤ 5000 on dense random data (top) and for n ≤ 10, 000 on sparse random data (bottom).

random data. For sparsity ≈ 0.1, our algorithm is still twice as fast for n = 10, 000 as the
standard algorithm for n = 1000. These results clearly show that our algorithm is valuable
in practice.

6.2 Structural Observations

We also studied the typical shape of binary condensed means. The questions of interest
are “What is the typical length of a condensed mean?” and “What is the first symbol
of a condensed mean?”. Since the answers to these two questions completely determine a
condensed mean, we investigated whether they can be easily determined from the inputs.
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Figure 4 Difference between median condensed length and calculated mean length depending on
sparsity and number of input strings. For every pair (σ, k) ∈ {0.01, . . . , 1.0} × [60], we calculated
one mean for k strings with sparsity σ. No dot means that the median condensed length and the
mean length did not differ by more than one. A blue (dark gray) dot means they differed slightly
(difference between two and four) and a red (light gray) dot means they differed by at least five.

To answer the question regarding the mean length, we tested how much the actual mean
length differs from the median condensed length. Recall that by Lemma 7 we know that
every condensed mean has length at least µ− 2, where µ is the median input condensation
length. We call this lower bound the median condensed length. We used our algorithm
(Theorem 8 (ii)) to compute condensed means on random data with sparsities 0.01, . . . , 1.0,
k = 1, . . . , 60 and n ≤ 400. Figure 4 clearly shows that on dense data (sparsity > 0.5), the
difference between the mean length and the median condensed length is rarely more than one.
This can be explained by the fact that for dense strings all blocks are usually small such that
there is no gain in making the mean longer than the median condensed length. We remark
that a difference of one appears quite often which might be caused by different starting or
ending symbols of the inputs. In general, for dense data the mean length almost always is at
most the median condensed length plus one, whereas for sparser data the mean can become
longer. As regards the dependency of the mean length on the number k of inputs, it can
be observed that, for sparse data (sparsity < 0.5), the mean length differs even more for
larger k. This may be possible because more input strings increase the probability that there
is one input string with long condensation length and large block sizes. For dense inputs,
there seems to be no real dependence on k.

To answer the question regarding the first symbol of a mean, we tested on random data
with different k values and different sparsities (n ≤ 500), how the starting symbol of the
mean depends on the starting symbols or blocks of the input strings. First, we tested how
often the starting symbol of the mean equals the majority of starting symbols of the input
strings (see Table 1). Then, we also summed up the lengths of all starting 1-blocks and
the lengths of all starting 0-blocks and checked how often the mean starts with the symbol
corresponding to the larger of those two sums (see Table 2). Overall, the starting symbol of
the mean matches the majority of starting symbols or blocks of the input strings in most

CPM 2020



28:12 Fast Binary DTW-Mean

Table 1 Frequency (over 1000 runs) of the first symbol of the mean also being the first symbol
in the majority of input strings.

k/sparsity 0.05 0.1 0.2 0.5 0.8 1
5 76% 79% 82% 82% 82% 80%
15 75% 81% 82% 83% 85% 85%
40 82% 84% 88% 87% 91% 97%

Table 2 Frequency (over 1000 runs) of the first symbol of the mean also being the majority of
symbols throughout the first blocks of input strings.

k/sparsity 0.05 0.1 0.2 0.5 0.8 1
5 69% 73% 75% 83% 85% 80%
15 67% 73% 75% 82% 88% 85%
40 66% 70% 74% 81% 91% 97%

cases (≈ 70–90%, increasing with higher sparsity). For low sparsities, however, taking the
length of starting blocks into account seems to yield less matches. This might be due to
large outlier starting blocks (note that this effect is even worse for larger k).

To sum up the above empirical observations, we conclude that a condensed binary mean
typically has a length close to the median condensed length and starts with the majority
symbol among the starting symbols in the inputs.

7 Conclusion

In this work we made progress in understanding and efficiently computing binary means
of binary strings with respect to the dtw distance. First, we proved tight lower and upper
bounds on the length of a binary (condensed) mean which we then used to obtain fast
polynomial-time algorithms to compute binary means by solving a certain number problem
efficiently. We also obtained linear-time algorithms for k ≤ 3 input strings. Moreover, we
empirically showed that the actual mean length is often very close to the proven lower bound.

As regards future research challenges, it would be interesting to further improve the
running time with respect to the maximum input string length n. This could be achieved
by finding faster algorithms for our “helper problem” Min 1-Separated Sum (MSS). Can
one solve BDTW-Mean in linear time for every constant k (that is, f(k) · n time for some
function f)? Also, finding improved algorithms for the weighted version or the center version
(see Section 4) might be of interest.
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