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Abstract
Text-to-pattern distance is a fundamental problem in string matching, where given a pattern of
length m and a text of length n, over an integer alphabet, we are asked to compute the distance
between pattern and the text at every location. The distance function can be e.g. Hamming
distance or `p distance for some parameter p > 0. Almost all state-of-the-art exact and approximate
algorithms developed in the past ∼ 40 years were using FFT as a black-box. In this work we
present Õ(n/ε2) time algorithms for (1± ε)-approximation of `2 distances, and Õ(n/ε3) algorithm
for approximation of Hamming and `1 distances, all without use of FFT. This is independent to
the very recent development by Chan et al. [STOC 2020], where O(n/ε2) algorithm for Hamming
distances not using FFT was presented – although their algorithm is much more “combinatorial”,
our techniques apply to other norms than Hamming.
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1 Introduction

Text-to-pattern distance is a generalization of a classical pattern matching by incorporating
the notion of similarity (or dissimilarity) between pattern and locations of text. The problem
is defined in a following way: for a particular distance function between words (interpreted as
vectors), given a pattern of length m and a text of length n, we are asked to output distance
between the pattern and every m-substring of the text. Taking e.g. distance to be Hamming
distance, we are essentially outputting number of mismatches in a classical pattern matching
question (that is, not only detecting exact matches, but also counting how far pattern is
to from being located in a text, at every position). Such a formulation, for a constant-size
alphabet, was first considered by Fischer and Paterson in [12]. The algorithm of [12] uses
O(n logn) time and in substance computes the Boolean convolution of two vectors a constant
number of times. This was later extended to poly(n) size alphabets by Abrahamson in [1, 21]
with O(n

√
m logm) run-time.

The lack of progress in Hamming text-to-pattern distance complexity sparked interest in
searching for relaxations of the problem, with a hope for reaching linear (or almost linear) run-
time. There are essentially two takes on this. First consists of approximation algorithms. Until
very recently, the fastest known (1±ε)-approximation algorithm for computing the Hamming
distances was by Karloff [18]. The algorithm uses random projections from an arbitrary
alphabet to the binary one and Boolean convolution to solve the problem in O(ε−2n log3 n)
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time. Later Kopelowitz and Porat [19] gave a new approximation algorithm improving
the time complexity to O(ε−1n log3 n log ε−1), which was later significantly simplified in
Kopelowitz and Porat [20], with alternative formulation by Uznański and Studený [28].

Second widely considered way of relaxing exact text-to-pattern distance is to report exactly
only the values not exceeding certain threshold value k, the so-called k-mismatch problem.
The very first solution to the k-mismatch problem was shown by Landau and Vishkin in
[23] working in O(nk) time, using essentially a very combinatorial approach of taking O(1)
time per mismatch per alignment using LCP queries. This initiated a series of improvements
to the complexity, with algorithms of complexity O(n

√
k log k) and O((k3 log k +m) · n/m)

by Amir et al. in [3], later improved to O((k2 log k +m poly logm) · n/m) by Clifford et al.
[8] and finally O((m log2m log |Σ|+ k

√
m logm) · n/m) by Gawrychowski and Uznański [13]

(and following poly-log improvements by Chan et al. in [5]).
Moving beyond counting mismatches, we consider `1 distances, where we consider text

and pattern over integer alphabet, and distance is sum of position-wise absolute differences.
Using techniques similar to Hamming distances, the O(n

√
m logm) complexity algorithms

were developed by Clifford et al. and Amir et al. in [6, 4] for reporting all `1 distances. It is a
major open problem whether near-linear time algorithm, or even O(n3/2−ε) time algorithms,
are possible for such problems. A conditional lower bound was shown by Clifford in [7], via a
reduction from matrix multiplication. This means that existence of combinatorial algorithm
with O(n3/2−ε) run-time solving the problem for Hamming distances implies combinatorial
algorithms for Boolean matrix multiplication with O(n3−δ) run-time, which existence is
unlikely. Looking for unconditional bounds, we can state this as a lower-bound of Ω(nω/2)
for Hamming distances pattern matching, where 2 ≤ ω < 2.373 is the matrix multiplication
exponent. Later, complexity of pattern matching under Hamming distance and under `1
distance was proven to be identical (up to poly-logarithmic terms), see Labib et al. and
Lipsky et al. [22, 24].

Once again, existence of such lower-bound spurs interest in approximation algorithm
for `1 distances. Lipsky and Porat [25] gave a deterministic algorithm with a run time of
O( nε2 logm logU), while later Gawrychowski and Uznański [13] have improved the complexity
to a (randomized) O(nε log2 n logm logU), where U is the maximal integer value on the input.
Later [28] has shown that such complexity is in fact achievable (up to poly-log factors) with
a deterministic solution.

Considering other norms, we mention following results. First, that for any p > 0 there is
`p distance (1±ε)-approximated algorithm running in Õ(n/ε) time by [28]. More importantly,
for specific case of p = 2 (or more generally, constant, positive even integer values of p) the
exact problem reduces to computation of convolution, as observed by [25].

Text-to-pattern distance via convolution

Consider the case of computing `2 distances. We are computing output array O[1 .. n−m+1]
such that O[i] =

∑
j(T [i+ j]− P [j])2. However, this is equivalent to computing, for every i

simultaneously, the value of
∑
j T [i+ j]2 +

∑
j P [j]2 − 2

∑
j T [i+ j]P [j]. While the terms∑

j T [i+ j]2 and
∑
j P [j]2 can be easily precomputed in O(n) time, we observe (following

[25]) that
∑
j T [i+ j]P [j] is essentially a convolution. Indeed, let PR denote reverse string

to P . Then∑
j

T [i+ j]P [j] =
∑
j

T [i+ j]PR[m+ 1− j] =
∑

j+k=m+1+i
T [j]P ′[k] = (T ◦PR)[m+ 1 + i].
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Since T ◦ PR can be computed efficiently this provides a very strong tool in constructing
text-to-pattern distance algorithms. Almost all of the discussed results use convolution as
a black-box. For example, by appropriate binary encoding we can compute using a single
convolution the number of Hamming mismatches generated by a single letter c ∈ Σ, which is
a crucial observation leading to computation of exact Hamming distances in O(n

√
n logn)

time. Other results rely on projecting large alphabets into smaller ones, e.g. [18, 20, 28].
Convolution over integers is computed by FFT in O(n logn) time. This requires actual

embedding of integers into field, e.g. Fp or C. This comes at a cost, if e.g. we were to consider
text-to-pattern distance over (non-integer) alphabets that admit only field operations, e.g.
matrices or geometric points. Convolution can be computed using “simpler” set of operations,
that is just with ring operations in e.g. Zp using Toom-Cook multiplication [29], which is
a generalization of famous divide-and-conquer Karatsuba’s algorithm [17]. This however
comes at a cost, with Toom-Cook algorithm taking O(n2

√
2 logn logn) time, and increased

complexity of the algorithm.
Computing convolution comes with another string attached – it is inefficient to com-

pute/sketch in the streaming setting. All of the efficient streaming text-to-pattern distance
algorithms [5, 8, 9, 10, 26, 14, 27] use some form of sketching and are actually avoiding
convolution computation. The reason for this is that convolution does not admit efficient
sketching schemes other than with additive error, that is any algorithm based on convolution
is supposed to make the same error of estimation in small and large distance regime.

Our results

We present approximation algorithm for computing the `2 text-to-pattern distance in Õ(n/ε2)
time, where Õ hides poly logn terms. Our algorithm is convolution-avoiding, and in fact it
uses mostly additions and subtractions in its core part (some non-ring operations are necessary
for output-scaling and hashing). We thus claim our algorithm to be more “combinatorial”,
in the sense that it does not rely on field embedding and FFT computation. Our algorithm
is also first non-trivial algorithm for text-to-pattern distance computation with other norms
(than Hamming, which was presented recently in [5]).

I Theorem 1. Text-to-pattern `2 distances can be approximated by an algorithm using
only basic arithmetic operations and not using convolution. The approximation is 1 ± ε
multiplicative with high probability, computed in O(n log3 n

ε2 ) time.

This mirrors the recent development of [5] where a combinatorial algorithm for Hamming
distances was presented with O(n/ε2) run-time. However, our techniques are general enough
so that we can construct algorithm for `1 norm (and Hamming), however with Õ(n/ε3)
run-time.

I Theorem 2. Text-to-pattern Hamming distances can be approximated by an algorithm
using only basic arithmetic operations and not using convolution. The approximation is 1± ε
multiplicative with high probability, computed in O(n log4 n

ε3 ) time.

I Theorem 3. Text-to-pattern `1 distances over alphabet [u] for some constant u = poly(n)
can be approximated by an algorithm using only basic arithmetic operations and not using
convolution. The approximation is 1 ± ε multiplicative with high probability, computed in
O(n log2 n(log2 n+log4 u)

ε3 ) time.

We present two novel techniques, to our knowledge never used previously in this setting.
First, we show that a “mild” dimensionality reduction (linear map reducing from dimension
2d to d, while preserving `2 norm) can be used to repeatedly compress word, and produce

CPM 2020
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sketches for its every m-subword. Second, we show an approximate embedding of `1 space
into `22, that can be efficiently computed. We believe our techniques are of independent
interest, both to stringology and general algorithmic communities.

2 Definitions and preliminaries

Distance between strings

Let X = x1x2 . . . xn and Y = y1y2 . . . yn be two strings. We define their `2 distance as

‖X − Y ‖ =
(∑

i

|xi − yi|2
)1/2

.

More generally, for any p > 0, we define their `p distance as

‖X − Y ‖p =
(∑

i

|xi − yi|p
)1/p

.

Particularly, the `1 distance is known as the Manhattan distance. By a slight abuse of
notation, we define the `0 (Hamming distance) to be

‖X − Y ‖0 =
∑
i

|xi − yi|0 = |{i : xi 6= yi}|,

where x0 = 1 when x 6= 0 and 00 = 0.

Text-to-pattern distance

For text T = t1t2 . . . tn and pattern P = p1p2 . . . pm, the text-to-pattern d-distance is
defined as an array Sd such that, for every i, Sd[i] = d(T [i + 1 .. i + m], P ). Thus, for `p
distance S`p

[i] =
(∑m

j=1 |ti+j − pj |p
)1/p

, while for Hamming distance SHAM[i] = |{j : ti+j 6=
pj}|. Then (1± ε)-approximated distance is defined as an array Sε such that, for every i,
(1− ε) · Sd[i] ≤ Sε[i] ≤ (1 + ε) · Sd[i].

3 Sketching via dimensionality reduction

Sketching is a tool in algorithm design, where a large object is summarized succinctly, so that
some particular property is approximately preserved and some predefined operations/queries
are still supported. Our interest lies on sketches that preserve `2 distances, for which we use
the standard tools from dimensionality reduction.

I Theorem 4 (Johnson-Lindenstrauss [15]). Let P ⊆ Rm be of size m. Then for some
d = O( logm

ε2 ) there is linear map A ∈ Rd×m such that

∀x,y∈P ‖Ax−Ay‖ = (1± ε)‖x− y‖.

A map that preserves `2 distances is useful. Our goal is to construct a linear map such that
we can apply the map to P and to everym-substring of T simultaneously and computationally
efficiently. For this, we need to actually use constructive version of Johnson-Lindenstrauss
lemma.
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I Theorem 5 (Achlioptas [2]). Consider a probability distribution D over matrices Rm×d
defined as follow so that each matrix entry is either −1 or 1 independently and uniformly at
random. Then for any x ∈ Rm there is

Pr
A∼D

(
1√
d
‖Ax‖ = (1± ε)‖x‖

)
≥ 1− δ

if only d = O( log δ−1

ε2 ) is large enough.

Computing such dimension-reduction naively takesO(md) time. However better constructions
are possible.

I Theorem 6 (Sparse JL, c.f. [11, 16]). There is probability distribution S over matrices of
dimension d×m with elements from {−1, 0, 1}, for large enough d = O( log δ−1

ε2 ), such that
each column has only s = O(dε) non-zero elements and for any vector x ∈ Rm there is

Pr
A∼S

(
1√
s
‖Ax‖ = (1± ε)‖x‖

)
≥ 1− δ.

Such matrices can be easily drawn from the distribution by selecting the s positions in each
column independently at random and then filling them uniformly at random with {−1, 1}.
The advantage of this is that single dimensionality reduction operation is computed in O(sm)
time which is ε−1 factor faster than for dense matrices.

We now state the take-away from this section, which is our main technical tool to be
used in the following.

I Corollary 7. For d = O( logn
ε2 ) large enough there is a probability distribution F of linear

maps ϕ : Rd × Rd → Rd such that:
1. ϕ(x, y) = A0x+A1y can be evaluated in O(d2ε) = O( log2 n

ε3 ) time,
2. Prϕ∼F

(
‖ϕ(x, y)‖2 = (1± ε)(‖x‖2 + ‖y‖2)

)
= 1− n−Ω(1),

3. both A0 and A1 are {− 1√
s
, 0, 1√

s
}-matrices where s = O(dε) is the sparsity of each column

of A0 and A1.

4 Algorithm for `2 distances.

We first use Corollary 7 to construct dimensionality reduction with guarantees similar to
Johnson-Lindenstrauss (reducing dimension n to dimension Õ(ε−2)). In the following we
assume that d = O( logn

ε2 ) is large enough. We show a procedure which assumes that m is
divisible by d, and denote s = m

d . We assume s is a power of two, and if the case is otherwise,
we can always pad input with enough zeroes at the end (we can do this, since extra zeroes
have no effect on the output of linear map). We also denote k = log2 s.
We then have the following

I Theorem 8. Given input x ∈ Rm, and ε ≤ 1
k , procedure SingleSketch outputs v ∈ Rd

such that

‖v‖ = (1±O(kε))‖x‖

with high probability, in time O(m logn
ε ). The map x→ v is linear.

Proof. We first bound the stretch. Denote by

αi =
∑
j

‖v(i)
j ‖

2.

CPM 2020
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Algorithm 1 At each level i, we partition its vectors into 2k−i pairs, and compress each pair
using ϕi producing vectors for level i+ 1.
1: Input: x ∈ Rm.
2: Output: v ∈ Rd.
3: procedure SingleSketch(x)
4: Pick k fully independent maps ϕ1, . . . , ϕk as in Corollary 7.
5: Partition input x = (x1, . . . , xm) into s vectors v

(0)
1 , . . . , v

(0)
s where v

(0)
i ←

(xd·(i−1)+1, . . . , xd·i).
6: for i← 1 .. k do
7: for j ← 1 .. 2k−i do
8: v

(i)
j ← ϕi(v(i−1)

2j−1 , v
(i−1)
2j )

9: return v = v
(k)
1 .

Naturally,

α0 =
∑
j

‖v(0)
j ‖

2 =
s∑
j=1

(x2
d·(j−1)+1 + . . .+ x2

d·j) =
n∑
j=1

x2
j = ‖x‖2.

Moreover, by Corollary 7

αi =
2k−i∑
j=1
‖v(i)
j ‖

2 =
2k−i∑
j=1

(1± ε)(‖v(i−1)
2j−1 ‖

2 + ‖v(i−1)
2j ‖2)

= (1± ε)
2k−i+1∑
j=1

‖v(i−1)
j ‖2 = (1± ε)αi−1

We could apply Corollary 7 at this step since for any usage of map ϕi, its inputs are
independent from actual choice of ϕi (e.g. are result of processing x and ϕ1, . . . , ϕi−1). Then
we have ‖v‖2 = αk = (1± ε)kα0 = (1± ε)k‖x‖2. Since ε ≤ 1

k , the claimed bound follows.
We then observe that the map is linear, since every building step of the map is linear.

The total number of times we apply one of ϕ1, . . . , ϕk is O(m/d), so the total run-time is
O(md d

2ε). J

We then extend the algorithm to a scenario where for an input word (vector) x ∈ Rn
we compute the same dimensionality reduction for all m-subwords of x that start at all the
positions divisible by d. In the following we assume that d divides n, and denote t = n−m

d + 1
to be the number of such m-subwords. If its not the case, input can be padded with enough
zeroes at the end.

I Theorem 9. Given input x ∈ Rn, denote by y1, . . . , yt ∈ Rm vectors such that yi =
(x1+(i−1)d, . . . , xm+(i−1)d). For ε ≤ 1

k procedure AllSketch outputs v1, . . . , vt ∈ Rd such
that

‖vj‖ = (1±O(kε))‖yj‖

with high probability, in time O(n log2 n
ε ). Moreover, the map yi → vi is linear and identical

to map from Theorem 8.
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Algorithm 2

1: Input: x ∈ Rn.
2: Output: v1, . . . , vt ∈ Rd for t = n−m

d + 1.
3: procedure AllSketch(x)
4: Let ϕ1, . . . , ϕk be k fully independent maps used in procedure SingleSketch.
5: Partition input x = (x1, . . . , xn) into n/d vectors v

(0)
1 , . . . , v

(0)
n
d

where v
(0)
i ←

(xd·(i−1)+1, . . . , xd·i).
6: for i← 1 .. k do
7: for j ← 1 .. (nd − 2i + 1) do
8: v

(i)
j ← ϕi(v(i−1)

j , v
(i−1)
j+2i−1)

9: return v
(k)
1 , . . . , v

(k)
t .

Proof. The proof follows from inductive observation that ‖v(i)
j ‖2 = (1 ± ε)i(‖v(0)

j ‖2 +
. . . ‖v(0)

j+2i−1‖
2), which results in

‖vj‖2 = (1± ε)k
s∑
i=1
‖v(0)
j+i‖

2

= (1± ε)k
m∑
i=1
‖xi+(j−1)d‖2

= (1± ε)k‖yj‖2.

The rest of the proof follows reasoning from Theorem 8. J

I Theorem 1. Text-to-pattern `2 distances can be approximated by an algorithm using
only basic arithmetic operations and not using convolution. The approximation is 1 ± ε
multiplicative with high probability, computed in O(n log3 n

ε2 ) time.

Proof. First, we note that for simplicity we compute (`2)2 distances since they are additive
when taken under concatenation of inputs (unlike `2), that is ‖x◦y−u◦v‖2 = ‖x−u‖2+‖y−v‖2
for equal length x, u and equal length y, v.

We then assume w.l.o.g. that n is divisible by d. We then observe that contribution
of any fragment of pattern to distance at every text location can be computed naively in
O(c · n) time where c is fragment length. We are thus safe to discard any suffix of pattern of
length O(d) as this time is absorbed in total computation time. So we fix h = O(logn/ε)
and assume w.l.o.g. that m′ = m− 2h is divisible by d.

We denote by ε′ = Ω(ε/ logn) such value that guarantees (1 ± ε)-approximation in
Theorem 8 and Theorem 9. First, assume for simplicity that m′

d is a power of two. We then
consider P0, . . . , Ph, the (h+ 1) distinct m′-substrings of P , and for each we run procedure
SingleSketch on each of them, so by Theorem 8 we compute their sketches in total
O(m logn

ε′ h) time. Similarly, for text T we run AllSketch d
h times to compute sketches of

all m′-substrings of T starting at positions 1, h + 1, 2h + 1, . . .. By Theorem 9 this takes
O(n log2 n

ε′ · dh ) time. Both steps take thus O(n log3 n
ε2 ) time, and maps used to compute sketches

in both steps are linear.
We now observe that for any starting position t, the substring T [t .. (t+m′ − 1)] can be

partitioned into T1 = T [t .. t1], T2 = T [t1 + 1 .. t2] and T3 = T [t2 + 1 .. (t+m′ − 1)], where
length of T1 and T3 is at most 2h, length of T3 is m′ and t1 and t2 are multiplies of h. We
then compute the distances between corresponding fragments of T and P as follows (where

CPM 2020



29:8 Approximating Text-To-Pattern Distance via Dimensionality Reduction

we consider corresponding partitioning of P into P1, P2 and P3): computing ‖T1 − P1‖2 and
‖T3 − P3‖2 takes O(h) each (O(nh) in total for all alignments), while (1± ε) approximating
‖T2 − P2‖2 follows from pre-computed sketches.

We now discuss the general case when m′

d is not a power of two. However we then
observe that m′ can be represented as m′ = d(2i1 + . . . + 2is) where s ≤ logn. And so
the necessary computation require actually querying s different sketches for fragments of
length d · 2i` . To avoid unnecessary O(logn) overhead in time (and repeating running the
preprocessing steps logn times for many various lengths of fragments) we observe that all the
necessary sketches are already computed as temporary values in procedures SingleSketch
and AllSketch. J

5 Hamming and `1 distances.

We now briefly discuss how to use our framework for approximating other norms. We first
recall the classical result by [18].

I Lemma 10 ([18]). Let d = O(logn/ε2) be large enough. Consider µ : Σ→ {0, 1}d where
each ϕ(c) is chosen uniformly and independently at random. Then

∀c1 6=c2‖µ(c1)− µ(c2)‖2 = (1± ε) · d2

with high probability.

We note that we assumed that the dimension O(logn/ε2) of map µ matches value of
d = O(logn/ε2) from dimensionality-reductions in previous section. This can be easily
ensured w.l.o.g. as we can always either pad with extra zeroes each image of µ mapping, or
add extra null coordinates to dimensionality reduction. Extending the mapping from letters
to words, that is for w = c1 . . . ck ∈ Σ∗ denote µ(w) = µ(c1) . . . µ(ck), we have a corollary:

I Corollary 11. For µ as in Lemma 10, and any two words u, v ∈ Σn, there is

‖µ(u)− µ(v)‖2 = (1± ε) · d2‖u− v‖0

with high probability.

This allows us to estimate Hamming distance between words from `22 distance between the
respective embeddings, which are of length O(n logn

ε2 ).

I Theorem 2. Text-to-pattern Hamming distances can be approximated by an algorithm
using only basic arithmetic operations and not using convolution. The approximation is 1± ε
multiplicative with high probability, computed in O(n log4 n

ε3 ) time.

Proof. By Corollary 11 it is enough to estimate the `22 text-to-pattern distance between
embedded words µ(P ) and µ(T ) at starting positions 1, d+ 1, 2d+ 1, . . .. We use procedure
SingleSketch to compute sketch of µ(P ), and procedure AllSketch to compute sketch of
every (dm)-substring of ϕ(T ) starting at positions 1, d+1, 2d+1, . . .. Former takes O(n log2 n

ε2ε′ )
time, and latter takes O(n log3 n

ε2ε′ ) time, where we set ε′ = Ω(ε/k) so that error from sketching
accumulates to 1±O(ε) in total. All in all this gives O(n log4 n

ε3 ) time algorithm. J

We now proceed to `1 distances. Our goal is to construct a mapping f : [u]→ {0, 1}d that
embeds `1 into `22 approximately. That is, we require ∀a,b∈[u]|a− b| ∼ (1± ε)‖f(a)− f(b)‖2
where ∼ hides constant factors. The existence of such map can be easily shown: (i) Take exact
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map f1 : [u]→ {0, 1}u defined as f1(a) = 1a0u−a, (ii) Take any `2 dimensionality-reduction
map f2 : {0, 1}u → {0, 1}d, (iii) set f = f2 ◦ f1. However, our goal is to compute such f
faster than in time proportional to universe size u. We do it by running first a preprocessing
phase, and then a fast computation procedure.

Algorithm 3

1: procedure Preprocess(u)
2: Pick log(u/d) fully independent maps ϕ′1, . . . , ϕ′log(u/d) as in Corollary 7.
3: s0 ← (1, 1, . . . , 1) ∈ Rd.
4: for i← 1 .. log(u/d) do
5: si ← ϕ′i(si−1, si−1)
6: procedure Project(x ∈ [u], c)
7: if c = 0 then
8: return (1, 1, . . . , 1︸ ︷︷ ︸

x

, 0, . . . , 0︸ ︷︷ ︸
d−x

)

9: else if x < 1
2d · 2

c then
10: return ϕ′c(Project(x, c− 1), (0, . . . , 0))
11: else
12: return ϕ′c(sc−1,Project(x− 1

2d · 2
c, c− 1))

I Lemma 12. ψ : x→ Project(x, log(u/d)) represents a linear map [u]→ Rd that embeds
approximately `1 to `22, that is

|x− y| = (1±O(ε log u))‖ψ(x)− ψ(y)‖2

with high probability. Moreover, ψ takes O( log2 n logu
ε3 ) time to evaluate.

Proof. Let us define informally πi = ϕ′i(ϕ′i−1(. . . , . . .), ϕ′i−1(. . . , . . .)) to be unfolded version
of ϕ′, that is a linear map Rd·2i → Rd. Formally π0 = id, and for x = (x1, . . . , xd·2i), defining

πi((x1, . . . , xd·2i)) = ϕ′i(πi−1(xleft), πi−1(xright)),

where xleft = (x1, . . . , xd·2i−1), xright = (xd·2i−1+1, . . . , xd·2i).
We now observe that si = πi((1, . . . , 1︸ ︷︷ ︸

2id

)) and then (by induction)

Project(x, i) = πi((1, 1, . . . , 1︸ ︷︷ ︸
x

, 0, . . . , 0︸ ︷︷ ︸
2id−x

)).

Inductively, each iteration 1, .., log(u/d) results in extra multiplicative (1 ± ε) distortion.
Computation time is dominated by applications of ϕ′1, . . . , ϕ′log(u/d), both in the preprocessing
time and the evaluation time. Since each linear map ϕ′i is applied in time O( log2 n

ε3 ), the time
complexity bound follows.

J

I Theorem 3. Text-to-pattern `1 distances over alphabet [u] for some constant u = poly(n)
can be approximated by an algorithm using only basic arithmetic operations and not using
convolution. The approximation is 1 ± ε multiplicative with high probability, computed in
O(n log2 n(log2 n+log4 u)

ε3 ) time.
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29:10 Approximating Text-To-Pattern Distance via Dimensionality Reduction

Proof. We use Lemma 12 to reduce the problem to estimating `22 text-to-pattern dis-
tance between ψ(P ) and ψ(T ) at starting positions 1, d+ 1, 2d+ 1, . . .. We use procedure
SingleSketch to compute sketch of µ(P ), and procedure AllSketch to compute sketch
of every (dm)-substring of ϕ(T ) starting at selected positions. Denote by ε′ = Ω(ε/k) the
stretch constant in procedures SingleSketch and AllSketch, and by ε′′ = Ω(ε/ log u)
the stretch constant in procedures Project and Preprocess. The total run-time of AllS-
ketch is then O(n log3 n

ε2ε′ ) = O(n log4 n
ε3 ) and total run-time of computing ψ(T ) and ψ(P ) is

O(n log2 n logu
(ε′′)3 ) = O(n log2 n log4 u

ε3 ). J
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