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Abstract
Let W be a string of length n over an alphabet Σ, k be a positive integer, and S be a set of
length-k substrings of W . The ETFS problem asks us to construct a string XED such that: (i) no
string of S occurs in XED; (ii) the order of all other length-k substrings over Σ is the same in W
and in XED; and (iii) XED has minimal edit distance to W . When W represents an individual’s
data and S represents a set of confidential substrings, algorithms solving ETFS can be applied for
utility-preserving string sanitization [Bernardini et al., ECML PKDD 2019]. Our first result here is
an algorithm to solve ETFS in O(kn2) time, which improves on the state of the art [Bernardini et
al., arXiv 2019] by a factor of |Σ|. Our algorithm is based on a non-trivial modification of the classic
dynamic programming algorithm for computing the edit distance between two strings. Notably, we
also show that ETFS cannot be solved in O(n2−δ) time, for any δ > 0, unless the strong exponential
time hypothesis is false. To achieve this, we reduce the edit distance problem, which is known to
admit the same conditional lower bound [Bringmann and Künnemann, FOCS 2015], to ETFS.
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7:2 String Sanitization Under Edit Distance

1 Introduction

Strings are being used to represent individuals’ data arising from a large range of domains
e.g., transportation, web analytics, or molecular biology. For example, a string can represent:
an individual’s movement history, with each letter corresponding to a visited location [23, 20];
an individual’s purchasing history in a retailer, with each letter corresponding to a purchased
product [9]; or a fragment of the genome sequence of a patient, with each letter corresponding
to a DNA base [17]. Analyzing such strings is thus necessary in many different applications.
To support these applications, string data must often be disseminated beyond the party that
has collected them. For example, transportation organizations disseminate their collected data
to data analytics companies [14], retailers disseminate their data to marketing agencies [15],
and hospitals disseminate DNA sequencing data to research institutions [17].

However, individuals’ data dissemination has led to justified privacy concerns [22] due to
the exposure of confidential information [3, 1, 6, 5]. To ease these concerns and comply with
legislation such as HIPAA [8] in the US or GDPR [19] in the EU, it is essential to ensure
that confidential information does not occur in the disseminated data; this process is called
sanitization. At the same time, it is essential to preserve the utility of the original data, so
that data processing and analysis tasks can be accurately performed on the disseminated
data. For instance, a data analyst (resp. marketing researcher) should still be able to
discover actionable patterns of locations (resp. purchased products) from transportation
(resp. purchasing history) data [15, 14].

The Combinatorial String Dissemination (CSD) model was recently introduced in [3]
to provide privacy and utility guarantees. In CSD, we are given a string W and the aim
is to apply a sequence of edit operations to W , so that the resulting counterpart X of W
satisfies a set of privacy constraints and a set of utility properties. Specifically, in [3] the
authors considered the following CSD problem, referred to as TFS (Total order, Frequency,
Sanitization). Given W of length n over an alphabet Σ, a positive integer k, and a set
S of sensitive length-k substrings of W modeling confidential information, construct the
minimal-length string X such that: X does not contain any sensitive length-k substring
(C1); and the order (and thus the frequency) of all other length-k substrings over Σ in W
is the same as in X (P1). The constraint C1 ensures that no sensitive length-k substring
occurs in X. The property P1 ensures that X incurs minimal utility loss for tasks based on
the sequential nature of length-k non-sensitive substrings of W , as well as on their frequency.
The authors of [3] proposed an O(kn)-time algorithm to solve the TFS problem, and showed
that their algorithm is in fact worst-case optimal because the length of X is in Θ(kn).

The authors of [4] considered another CSD problem related to edit distance, that is, the
minimum number of insertions, deletions or substitutions of letters needed to transform one
string into another. The problem considered in [4] is referred to as ETFS (Edit distance,
Total order, Frequency, Sanitization). Given W of length n over an alphabet Σ, a positive
integer k, and a set S of sensitive length-k substrings of W , ETFS asks us to construct a
string XED that satisfies C1 and P1 while being at minimal edit distance from W . ETFS is
the main problem we consider in this paper. Strings constructed by means of solving ETFS
can be used, with minimal utility loss, in tasks that are based on edit distance as a similarity
measure. Examples of such tasks are frequent pattern mining [21], clustering [12], entity
extraction [24] and range query answering [16]. To solve ETFS, the authors of [4] proposed
an O(k|Σ|n2)-time algorithm. Their algorithm is based on solving a specific instance of
approximate regular expression matching, essentially applying the algorithm of Myers and
Miller [18] on an appropriate regular expression that models all strings satisfying C1 and
P1 to finally pick the one that is at minimal edit distance to W .
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Note that, to have a solution to TFS or ETFS, we may need to insert in W a letter
# /∈ Σ. Indeed, inserting (or replacing letters of W with) any letter of Σ could violate P1
and/or possibly create new occurrences of sensitive length-k substrings. We thus generally
have that both X (the solution of TFS) and XED (a solution of ETFS) are over Σ ∪ {#}.

I Example 1. LetW = babaaaaabbbab, Σ = {a, b}, k = 3, and the set of sensitive substrings
be {aba, baa, aaa, aab, bba}. Then X = babbb#bab and XED = bab#aa#abbb#bab. Note
that both X and XED satisfy C1 and P1. X is the shortest such string and XED is a string
closest to W in terms of edit distance.

In Section 3, we show the following theorem improving the result of [4] by a factor of |Σ|.

I Theorem 2. The ETFS problem can be solved in O(kn2) time.

Our algorithm is based on a non-trivial modification of the classic dynamic programming
algorithm for computing the edit distance between two given strings. In particular, the
modification is based on the fact that in ETFS we are given a single string W , and we are
asked to construct a string XED that satisfies C1 and P1 and that is closest to W . We
thus actually fill in the dynamic programming matrix that computes the minimum edit
distance between W and a regular expression that is a suitable abstraction of XED; our
algorithm encodes in its recurrence formulae the choices that specify the instance of the
regular expression that we eventually output.

In Section 4, we also show that ETFS cannot be solved in strongly subquadratic time
unless the Strong Exponential Time Hypothesis (SETH) [11, 10] is false. This is the most
technically involved part of the paper.

I Theorem 3. The ETFS problem cannot be solved in O(n2−δ) time, for any δ > 0, unless
SETH is false.

To arrive at this theorem, we reduce the weighted edit distance problem, which is known
to admit the same conditional lower bound [2, 7], to the ETFS problem. In particular, given
two strings P and Q of length Θ(n), we construct an instance of ETFS of length O(n) from
the output of which we can infer the insertions corresponding to some optimal alignment
of P and Q with respect to the weighted edit distance. Using another suitable instance of
ETFS, we can determine the corresponding deletions. That gives us an optimal alignment of
P and Q, from which we can compute the weighted edit distance of P and Q in O(n) time.

2 Definitions and Notation

Let T = T [0]T [1] . . . T [n− 1] be a string of length |T | = n over a finite alphabet Σ of size
|Σ| = σ. By Σ∗ we denote the set of all strings over Σ, and by Σk the set of all length-k
strings over Σ. For two indices 0 ≤ i ≤ j ≤ n− 1, T [i . . j] = T [i] . . . T [j] is the substring of
T that starts at position i and ends at position j of T . By ε we denote the empty string of
length 0. A prefix of T is a substring of the form T [0 . . j], and a suffix of T is a substring of
the form T [i . . n−1]. A prefix (resp. suffix) of a string is proper if it is not equal to the string
itself. The reverse T [n− 1]T [n− 2] . . . T [0] of T is denoted by TR. Given two strings U and
V we say that U has a suffix-prefix overlap of length ` > 0 with V if and only if the length-`
suffix of U is equal to the length-` prefix of V , i.e., U [|U | − ` . . |U | − 1] = V [0 . . `− 1].

We fix a string W of length n over an alphabet Σ and an integer 0 < k < n. We refer to
a length-k string or a pattern interchangeably. An occurrence of a pattern is uniquely defined
by its starting position. Let S be the set representing the sensitive patterns as positions

CPM 2020



7:4 String Sanitization Under Edit Distance

over {0, . . . , n − k} with the following closure property: for every i ∈ S, any j for which
W [j . . j + k − 1] = W [i . . i+ k − 1], must also belong to S. That is, if an occurrence of a
pattern is in S, then all its occurrences are in S. A substring W [i . . i+ k − 1] of W is called
sensitive if and only if i ∈ S; S is thus the complete set of occurrences of sensitive patterns.
The difference set I = {0, . . . , n− k} \ S is the set of occurrences of non-sensitive patterns.

For any string U , we denote by IU the set of occurrences in U of non-sensitive length-k
strings over Σ. (We have that IW = I.) We call an occurrence i the t-predecessor of another
occurrence j in IU if and only if i is the largest element in IU that is less than j. This
relation induces a strict total order on the occurrences in IU . We call a subset J of IU a
t-chain if for all elements in J except the minimum one, their t-predecessor is also in J . For
two strings U and V , chains JU and JV are equivalent, denoted by JU ≡ JV , if and only if
|JU | = |JV | and U [u . . u+ k − 1] = V [v . . v + k − 1], where u is the j-th smallest element of
JU and v is the j-th smallest of JV , for all j ≤ |JU |.

Given two strings U and V the edit distance dE(U, V ) is defined as the minimum number
of elementary edit operations (letter insertion, deletion, or substitution) that transform one
string into the other. Each edit operation can also be associated with a cost: a fixed positive
value. Given two strings U and V the weighted edit distance dWE(U, V ) is defined as the
minimal total cost of a sequence of edit operations to transform one string into the other.

We now formally define ETFS, the main problem considered in this paper.

I Problem 1 (ETFS). Given a string W of length n, an integer k > 1, and a set S (and
thus set I), construct a string XED which is at minimal (weighted) edit distance from W

and satisfies the following:
C1 XED does not contain any sensitive pattern.
P1 IW ≡ IXED , i.e., the t-chains IW and IXED are equivalent.

We also provide the following auxiliary definitions from [18]. The set of regular expressions
over Σ is defined recursively as follows: (i) a ∈ Σ ∪ {ε} is a regular expression. (ii) If E
and F are regular expressions, then so are EF , E|F , and E∗, where EF denotes the set of
strings obtained by concatenating a string in E and a string in F , E|F is the union of the
strings in E and F , and E∗ consists of all strings obtained by concatenating zero or more
strings from E. Parentheses are used to override the natural precedence of the operators,
which places the operator ∗ highest, the concatenation next, and the operator | last. We say
that a string T matches a regular expression E, if T is equal to one of the strings in E.

3 ETFS-DP: An O(kn2)-time Algorithm for ETFS

In this section we describe ETFS-DP, a dynamic programming algorithm that solves ETFS
faster than the algorithm proposed in [4]. We describe our algorithm for the unweighted
edit distance model for simplicity, but it should be clear that it can be extended to the
weighted edit distance model in a straightforward way and with no additional cost. Intuitively,
since we are looking for a string XED that contains all the non-sensitive patterns of W ,
and in the same order, for each pair (U, V ) of non-sensitive patterns of W such that U is
the t-predecessor of V , we can (i) merge U and V into U · V [k − 1] when U and V have a
suffix-prefix overlap of length k − 1; or (ii) interleave U and V constructing a string UY V ,
where Y is a carefully selected string over Σ ∪ {#}, where # /∈ Σ.

Let us start by defining a regular expression gadget ⊕, which encodes all candidate
strings that can be used to interleave two non-sensitive patterns while respecting C1, and
two similar gadgets 	 and ⊗. We will make use of the following regular expression:

Σ<k = ((a1|a2| . . . |a|Σ||ε) . . . (a1|a2| . . . |a|Σ||ε)︸ ︷︷ ︸
k − 1 times

),
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where Σ = {a1, a2, . . . , a|Σ|} is the alphabet of W . Given a letter # /∈ Σ, we define

⊕ = #(Σ<k#)∗, 	 = (Σ<k#)∗, ⊗ = (#Σ<k)∗.

Let N0, N1, . . . , N|I|−1 be the sequence of non-sensitive patterns as they occur in W
from left to right. In [3], XED was built by finding an optimal alignment between W and a
regular expression R constructed as follows. First, set R = 	N0 and then process pairs of
non-sensitive patterns Ni and Ni+1, for all i ∈ {1, . . . , |I| − 2}: in the i-th step, if Ni and
Ni+1 can be merged, append (Ni+1[k − 1] | ⊕Ni+1) to R. Otherwise, append ⊕Ni+1 to R.
After processing all pairs, conclude by appending ⊗ to R. The length of R is in O(k|Σ|n).

The general idea in Algorithm ETFS-DP is to simulate the alignment of W to R without
constructing R explicitly. Instead, we use a string T = �N0 �N1 · · ·�N|I|−1�, where �, �
and � are length-1 placeholders for 	, ⊕ and ⊗, respectively. The length of T is thus only
(k + 1)|I|+ 1 = O(kn), leading to an O(kn2)-time algorithm when aligned to W , |W | = n.

3.1 Dynamic Programming
In a preprocessing phase, we compute a binary array M of length |I| so that M [`] = 1 if the
`-th and the (`− 1)-th non-sensitive patterns (in the order given by their occurrences in W )
can be merged. We set M [0] = 0 for completeness. More formally, for all 0 < ` ≤ |I| − 1,
M [`] = 1 if N`−1[1 . . k − 1] = N`[0 . . k − 2], and M [`] = 0 otherwise.

We then solve ETFS in a dynamic programming fashion by filling in an (|I|(k + 1) +
1)× (|W |+ 1) matrix E. The rows of E correspond to string T , and the columns to string
W . We denote by E[i][·] and E[·][j] the i-th row and the j-th column of E, respectively.

Entry E[i][j], for all 0 ≤ i ≤ |I|(k+1) and 0 ≤ j ≤ |W |, contains the edit distance between
(the regular expression corresponding to) T [0 . . i] and W [0 . . j − 1]. Rows corresponding to
�, i.e., rows with index i = `(k + 1) for some ` ∈ [1, |I| − 1], implicitly represent a regular
expression gadget and must be filled in with ad hoc rules; we will refer to them as gadgets
rows. In turn, we will name possibly mergeable the rows with index i = `(k + 1) − 1 for
some ` ∈ [1, |I| − 1], as they must be filled in taking into account the option of merging the
corresponding pattern with the preceding one, should it be possible. All other rows of E
will be called ordinary. In what follows, I is a function such that I[T [i] 6= W [j − 1]] = 1 if
T [i] 6= W [j − 1], and 0 otherwise. We give below the recursive formulae that constitute the
core of our dynamic programming algorithm.
Initialization. Entry E[0][j] contains the edit distance between 	 and W [0 . . j − 1] for j ≥ 1,

while E[0][0] = 0. Because of the definition of 	, it is only possible to match up to k − 1
consecutive letters, after which a mismatch due to # occurs, and hence E[0][j] = dj/ke.
E[i][0] stores the edit distance between T [0 . . i] and the empty prefix ε ofW . This distance
is minimized by the shortest possible string in each regular expression prefix, obtained
by always merging when allowed, and picking the shortest possible string encoded by ⊕
when not. This leads to the following formula, where ` ∈ [0, |I| − 1].

E[i][0] =
{
E[i− k − 1][0] + 1, if i = (`+ 1)(k + 1)− 1 ∧M [`] = 1 (merge)
E[i− 1][0] + 1, otherwise (no merge)

(1)

Ordinary Rows: i 6≡ 0 mod (k + 1) and i 6≡ −1 mod (k + 1). The formula is the same
as in the standard algorithm for edit distance [13]: recall that E[·][j] correspond to
W [j − 1].

E[i][j] = min


E[i− 1][j] + 1, (insert)
E[i][j − 1] + 1, (delete)
E[i− 1][j − 1] + I[T [i] 6= W [j − 1]], (match or substitute)

(2)
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7:6 String Sanitization Under Edit Distance

Possibly Mergeable Rows: i ≡ −1 mod (k + 1). These rows correspond to the last let-
ter of a non-sensitive pattern. The first three options of Equation 3 encode the case where
we do not merge, regardless of the value of M [`]. The last two options, instead, require
M [`] = 1, as a merge does take place. This means that the letters corresponding to the k
rows above will not appear in the output string XED, and thus play no role in the edit
distance computation. We thus read the values of row i− k − 1, corresponding to the
last letter of the previous non-sensitive pattern.

E[i][j] = min


E[i− 1][j] + 1, (insert)
E[i][j − 1] + 1, (delete)
E[i− 1][j − 1] + I[T [i] 6= W [j − 1]], (match or substitute)
E[i− k − 1][j] + 1, if M [`] = 1 (insert and merge)
E[i− k − 1][j − 1] + I[T [i] 6= W [j − 1]], if M [`] = 1 (match or sub. and merge)

(3)

Gadget Rows: i ≡ 0 mod (k + 1). A gadget row encodes the possibility of interleaving
two non-sensitive patterns with a string that preserves C1 and P1 and minimizes the
edit distance. Because of the form of the regular expression gadgets, a # can either be
inserted or substituted directly after a non-sensitive pattern, or be preceded by another #
no more than k positions earlier. This results in the following formula:

E[i][j] = min


E[i− 1][j] + 1, (insert)
E[i− 1][j − 1] + 1, (substitute)
E[i][j − 1] + 1, . . . , E[i][max{0, j − k}] + 1, (delete or extend gadget)

(4)

The following lemma states that the above formulae correctly compute the edit distance
between prefixes of T and prefixes of W .

I Lemma 4. E[i][j] = dE(T [0 . . i],W [0 . . j − 1]), for all 0≤ i< |I|(k + 1) and 0<j≤|W |,
and E[i][0] = dE(T [0 . . i], ε).

Proof. The correctness of the equations that describe how to fill in entries E[0][j] and E[i][0]
follows from the explanation in paragraph “Initialization”, and the correctness of Equation 2
follows from the standard dynamic programming algorithm for edit distance [13]. Let us
focus on the case of possibly mergeable rows (Equation 3): when merging is not possible, the
equation is the same as in the standard algorithm, and therefore it is correct. When merging
is possible, we must pick the minimum value among all possible edit operations when we
actually choose to merge and among all possible operations when we do not merge, even
if we could. The first three rows of Equation 3 correspond to the three possible operations
when we do not merge, and are again the same possibilities as the standard algorithm for
edit distance; the last two rows correspond to the case where we merge. When we merge, we
append the letter corresponding to the possibly mergeable row to the previous non-sensitive
pattern. If we were to run the standard algorithm for computing the edit distance between
such string andW , the row above, where we had to read the values for insertion and match or
substitution, would be the one corresponding to the last letter of the previous non-sensitive
pattern. These are precisely the values of the last two rows of Equation 3, that are therefore
correct.

Consider now the gadget rows. An entry E[i][j] on a gadget row should contain the value
of an optimal alignment between W [0 . . j − 1] and a prefix of XED that ends with a #: since
# /∈ Σ, it cannot match with any letter of W , therefore I[T [i] 6= W [j − 1]] = 1 always holds.
As previously observed, a # can either be inserted or substituted directly after a non-sensitive
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pattern, or be preceded by another # no more than k positions earlier. Moreover, it is easy
to see that, if an optimal alignment between W and the regular expression R involves a local
alignment between W [i . . j] and #S# with |S| = j − i − 1 < k, then S = W [i + 1 . . j − 1]:
this is because any alignment with S 6= W [i+ 1 . . j− 1] can be improved by replacing S with
W [i + 1 . . j − 1]. Equation 4 follows from the two observations above: the first two lines
compute the cost of appending a # directly after a non-sensitive pattern, that always entails
either an insertion or a substitution.

The third row of the equation considers the possibility of interleaving two non-sensitive
patterns with a whole string encoded by ⊕, or deleting #. J

Note that Lemma 4 refers to rows 0 ≤ i < |I|(k + 1). Let us now look at the last row:
even if it was filled in like any other gadget row, since it corresponds to ⊗ instead of ⊕, its
values need to be interpreted in a different way. Namely, the value stored in E[|I|(k + 1)][j],
for all 0 ≤ j ≤ |W |, is the cost of an optimal alignment between W [0 . . j + ej − 1] and a
string in R whose length-(ej + 1) suffix is #W [j . . j+ ej − 1], where ej = min{k− 1, |W | − j}.

Unlike in the standard edit distance algorithm [13], the edit distance between W and any
string matching the regular expression R is not necessarily found in its bottom-right entry
E[|I|(k+ 1)][|W |]. Instead, it is found among the rightmost k entries of the last row (in case
XED ends with a string in ⊗), and the rightmost entry of the second-last row (when XED
ends with the last letter of the last non-sensitive pattern). We thus obtain the following.

I Lemma 5. Let XED be a solution to ETFS. Then

dE(XED,W ) = min
{
E
[
|I|(k + 1)− 1

][
|W |

]
, E
[
|I|(k + 1)

][
|W |

]
,

E
[
|I|(k + 1)

][
|W | − 1

]
, . . . , E

[
|I|(k + 1)

][
|W | − k + 1

]}
.

(5)

3.2 Construction of XED

Once we have computed the edit distance d according to Lemma 5, we need to construct a
string XED that matches R and is at edit distance d from W . To do so, when computing
each entry E[i][j] of the matrix for i, j ≥ 1, we store, in an array A, a pointer 〈i′, j′〉 to
an entry from which the minimum value for E[i][j] was obtained. We then build XR

ED by
following any path from an entry E [̄ı][̄] where the global optimum is stored to E[0][0].

At any step of the construction, let E[i′][j′] be the endpoint of the pointer stored for
E[i][j] currently considered, i.e., A[i][j] = 〈i′, j′〉. If ı̄ = |I|(k + 1), i.e., if the minimum is
in the last row of E, we initialize XR

ED with W [̄ . . |W | − 1]R; otherwise, we just initialize it
with the empty string ε. We then enforce the following rules:
If i′ < i, we append T [i] to XR

ED when i is not a gadget row and # otherwise. Indeed, the
condition is fulfilled when the edge in the path is either diagonal (a match or a substitution
in the alignment) or vertical (an insertion in W ). Moreover, i′ can either be equal to i− 1
or to i− k − 1 (when we merge two non-sensitive patterns).

If i′ = i and i ≡ 0 mod (k + 1), we append # toXR
ED followed byW [j′ . . j−2]R. Because

this happens when we follow a horizontal edge on a gadget row, the solution must include
the corresponding substring, that is composed of # and j − j′ − 1 letters of W .

If none of the two cases above happens, we do not write anything, because a horizontal
edge in the path corresponds to a deletion in W . We denote the above procedure by
Algorithm XED-construct. Lemma 6 guarantees that this construction produces a string
that satisfies C1 and P1.

I Lemma 6. XED returned by Algorithm XED-construct satisfies C1 and P1.
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7:8 String Sanitization Under Edit Distance

Proof. Let us start by proving that Algorithm XED-construct satisfies C1. XR
ED (and thus

XED) is obtained by appending either consecutive letters of TR (case i′ < i for all but gadget
rows) or a letter # (all cases for gadget rows) or a number of consecutive letters of WR (case
i′ = i for gadget rows and initialization of XR

ED when the minimum is on the last row of E):
since T does not contain any sensitive patterns by construction and # /∈ Σ, we only need
to verify that no more than k − 1 consecutive letters read directly from WR can ever be
appended to XR

ED. Inspect case i′ = i for gadget rows: j − j′ − 1 is the number of entries
between entry E[i][j] and the endpoint of the corresponding horizontal pointer A[i][j]. The
last line of Equation 4 exhibits the only possibilities for a pointer to point a non-adjacent
entry on the same row, thus j′ ≥ j − k and consequently j − j′− 1 ≤ k− 1. Since both when
the path leaves a gadget row and when it goes on on a gadget row a # is appended to XR

ED,
no sensitive patterns can be created and therefore XED satisfies C1.

Let us now show that P1 is satisfied as well, i.e., N0, N1, . . .N|I|−1 occur in XED in the
same order as they appear in W , and no other length-k string over Σ is a substring of XED.
Consider a letter N`[h] = T [i]. If 0 ≤ h < k − 1, i is an ordinary row. Since any optimal
path goes from the entry of E where the minimum is stored to E[0][0], and by construction
to leave a row the pointers can only point to an entry in the row directly above the current
one (ordinary rows) or in the (k + 1)-th row above (merge case in the possibly mergeable
rows, see Equations 2 and 3), there are only two possibilities: either the path goes through
row i, i.e., there exists j such that A[i][j] = 〈i− 1, j′〉 is part of the optimal path, or row i is
skipped by the path, and thus there exists j such that A[i+ k − h− 1][j] = 〈i− h− 2, j′〉.
Let us observe that in the latter case, all of the rows from i − h − 1 to i + k − h − 2 are
skipped by the path, while in the first case A[i+ k − h− 1][j] = 〈i+ k − h− 2, j′〉 and no
rows are skipped up to i− h− 2. In the first case, Algorithm XED-construct will append
N`[h] to XR

ED after N`[h+ 1] for all 0 ≤ h ≤ k − 1, then a # right after N`[0], that prevents
the making of spurious length-k strings over Σ in XED. In the second case, N`[h] is not
explicitly appended to the string: instead, after appending N`[k − 1] to XR

ED, the algorithm
goes to row i− h− 2, corresponding to N`−1[k − 1]. Nevertheless, this only happens when
the merge condition is satisfied, i.e., when N`−1[1 . . k − 1] = N`[0 . . k − 2], implying that
N`[h] = N`−1[h+ 1] will be appended next to N`[h+ 1] = N`−1[h+ 2] after k − h− 1 steps.
The order in which N0, N1, . . .N|I|−1 appear in XED is by construction the same as they
appear in T , which in turn is the same as the order they appear in W . In no other parts of
the algorithm a length-k string over Σ is created in XED. It follows that P1 is preserved. J

3.3 Wrapping up

I Lemma 7. Algorithm ETFS-DP runs in O(kn2) time.

Proof. We first construct string T and array M in O(kn) time and initialize the first row
and the first column of matrix E in O(kn) time. There are O(kn) “ordinary”, O(n) “possibly
mergeable” and O(n) “gadget rows”, each of size O(n). Each entry (and its corresponding
pointer) on the “ordinary” and “possibly mergeable” rows takes constant time to compute,
while the entries (and pointers) on the gadget rows require O(k) time each. Thus, we can
compute all entries and pointers in O(kn2) time. Tracing back the pointers and constructing
string XED takes again O(kn) time. This results in a total time complexity of O(kn2). J

Lemmas 4-7 imply Theorem 2.
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4 A Conditional Lower Bound for ETFS

We prove that, assuming SETH introduced in [11] and [10], ETFS cannot be solved in
strongly subquadratic time. We do so by a reduction from the classical edit distance problem,
and using the following known conditional lower bound for it: for all δ > 0, the edit
distance dE between two strings of length Ω(n) cannot be computed in O(n2−δ) time without
violating SETH [2], and hence the well-known quadratic-time solution of [13] for computing
the edit distance between two strings of length O(n) is optimal up to subpolynomial factors.
Bringmann and Künnemann [7] proved that this is also true for weighted edit distance,
where each operation (insertion, deletion, substitution and match) has a corresponding fixed
non-negative cost (respectively ci, cd, cs, cm), and the following conditions, which we will call
the BK conditions, hold: (i) ci + cd > cm, (ii) ci + cd > cs, and (iii) cm 6= cs.

Let P and Q be two arbitrary strings over Σ, both of length Θ(n), and without loss of
generality 1 ≤ |P | ≤ |Q|. We would like to compute the weighted edit distance between P and
Q with the following associated costs: ci = 2.5, cd = 2.5, cs = 1, cm = 0. These costs satisfy
the BK conditions. Let c = (ci, cd, cs, cm) and dc be the weighted edit distance with associated
costs c. Assuming SETH is true, there is no algorithm for computing d(2.5,2.5,1,0)(P,Q) in
O(n2−δ) time, for any δ > 0 [7]. In order to prove that ETFS cannot be solved in strongly
subquadratic time either, we will compute d(2.5,2.5,1,0)(P,Q), by solving two instances of
ETFS on a string of length O(n) and using an additional O(n) number of operations. Thus
if ETFS is solvable in O(n2−δ) time, for any δ > 0, SETH is false.

Let us now show the first instance of the ETFS. We define a new alphabet
Σ′ = Σ t {a, b, c1, c2, c3, d, e, f, g} and a new string U(P,Q) = F1F2F3F4 over Σ′ as follows:

F1 = (aab)2x+1aae, F2 =
|P |−1∏
i=0

c1dP [i]c2c3, F3 = (aae)2x−1aa, F4 =
|Q|−1∏
i=0

c1fQ[i]c2c3

where x = 2|Q|, and the product denotes the concatenation operation on strings. We also
set k = 5 and define the set I of non-sensitive pattern occurrences over U as follows:

I = {0, 3, 6, 9, . . . , 6x} ∪ {6x+ 6, 6x+ 11, 6x+ 16, . . . , 6x+ 1 + 5|P |}.

In particular, U(P,Q) is the string input to the first instance of ETFS. The construction
above gives us the following sequence of non-sensitive patterns:

aabaa, aabaa, aabaa, . . . , aabaa (2x+ 1 occurrences)
c1dP [0]c2c3, c1dP [1]c2c3, c1dP [2]c2c3, . . . , c1dP [|P | − 1]c2c3 (|P | occurrences).

It is easy to verify that the set I of occurrences of non-sensitive patterns (and thus the
complementary set S) has the closure property requested by ETFS. The resulting regular
expression R is

R = 	 aabaa⊕aabaa⊕. . .⊕aabaa⊕c1dP [0]c2c3⊕c1dP [1]c2c3⊕. . .⊕c1dP [|P |−1]c2c3 ⊗.

We will prove that it is optimal to align the first x+ 1 patterns with F1, a gadget ⊕ with F2,
the next x patterns with F3 and the final |P | patterns with F4. Then, we will show that the
alignment of those last patterns with F4 corresponds to an alignment of P and Q.

We call the occurrences of aabaa and c1dP [i]c2c3 in the regular expression R, or in any
string in the regular language corresponding to R, AB-patterns and P-patterns, respectively.
Notice that these non-sensitive patterns are substrings of F1 and F2 and that we cannot
merge any two consecutive non-sensitive patterns.
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Recall that the output XED of ETFS is a string with minimal edit distance to U in that
language. One alignment of U and R, which we denote by AU/R and that we will later show
to be optimal under unit cost for insertion, deletion and substitution and zero cost for match,
is as follows:

We align F1 with the first x+ 1 AB-patterns interleaved by #’s as illustrated below. The
cost of this alignment is x+ 1 substitutions.

aabaabaabaabaabaabaabaab . . .aabaae
aabaa#aabaa#aabaa#aabaa#. . .aabaa#

We align F2 with a single gadget ⊕ suitably expanded as shown below. The cost of this
alignment is |P | substitutions. Recall that we have to use a # after every k− 1 = 4 letters,
so as not to introduce any new length-k substrings that would violate property P1.

c1dP [0]c2c3c1dP [1]c2c3c1dP [2]c2c3c1dP [3]c2c3...c1dP [|P | − 1]c2c3

c1dP [0]c2# c1dP [1]c2# c1dP [2]c2# c1dP [3]c2# ...c1dP [|P | − 1]c2#

We align F3 with the remaining x AB-patterns interleaved by #’s as illustrated below.
The cost of this alignment is 2x− 1 substitutions.

aaeaaeaaeaaeaaeaaeaaeaae . . .aaeaa
aabaa#aabaa#aabaa#aabaa#. . .aabaa

We align F4 with the final |P | P-pattern occurrences according to an optimal alignment
AP/Q of P and Q with respect to cost c. Let p and q denote placeholders for letters of
P and Q, respectively. For each edit operation in AP/Q (insertion of q, deletion of p,
substitution or match between p and q), we align in AU/R the corresponding fragment of
F4 and the P-pattern of R as follows.

Insertion Deletion Substitution or Match
c1f q c2c3 - - - - - - - c1f q c2c3

# f q c2c3 # c1d p c2c3 # c1d p c2c3

When inserting a letter of Q, rather than paying 5 consecutive gaps opposite to fragment
c1fqc2c3 of F4, we extend the gadget ⊕ of R with #fqc2c3, to pay only one (unavoidable)
substitution for #. Deleting a letter of P , instead, results in 6 gaps in AU/R. Finally,
substitutions and matches in AP/Q result in the same alignment in AU/R, with the cost
being, respectively, 3 and 2 according to whether q = p or not. Therefore, it turns out
that the cost of this last fragment of alignment AU/R equals d(1,6,3,2)(P,Q).

We next show that it is possible to express d(1,6,3,2)(P,Q) in terms of d(2.5,2.5,1,0)(P,Q),
because symmetry will greatly simplify things later on, when we swap P and Q.

I Lemma 8. Let c and c′ be two costs. We write c ∼ c′ if for any alphabet Σ and for all
P,Q ∈ Σ∗, the set of optimal alignments of P and Q with respect to cost c is equal to the set
of optimal alignments of P and Q with respect to cost c′. Then
1. c ∼ αc for all α ∈ R>0.
2. c ∼ (ci + α, cd, cs + α, cm + α) for all α ∈ R.
3. c ∼ (ci, cd + α, cs + α, cm + α) for all α ∈ R.

Proof. Let the number of insertions, deletions, substitutions and matches in some alignment
of P and Q be ni, nd, ns and nm respectively. We know that ni + ns + nm = |Q| and
nd + ns + nm = |P |. So the transformations 1, 2, and 3 of c given in the lemma statement
change the costs of alignments from d to αd, d+ α|Q| and d+ α|P | respectively. The costs
of alignments are all strictly increasing in d, so the optimal alignments are preserved. J
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By applying transformation 2 of Lemma 8 with α = 1.5 and then transformation 3 of
Lemma 8 with α = −3.5, we obtain

d(1,6,3,2)(P,Q) = d(2.5,2.5,1,0)(P,Q)− 1.5|Q|+ 3.5|P |. (6)

By summing up the costs of the alignment AU/R detailed above and using Equation 6, we get

dE(U,XED) ≤ 4.5(|P |+ |Q|) + d(2.5,2.5,1,0)(P,Q), (7)

which we can bound by 3|P | + 7|Q|, because d(2.5,2.5,1,0)(P,Q) ≤ 2.5(|Q| − |P |) + |P |,
corresponding to the cost of deleting the (|Q| − |P |) extra letters of Q (recall that |P | ≤ |Q|)
and substituting the remaining |P | letters. In Lemma 9 we prove that alignment AU/R is
indeed optimal and equality holds in Equation 7.

I Lemma 9. Alignment AU/R is optimal. Moreover, from any output XED of ETFS on U we
can obtain a supersequence P ′ of P in O(|Q|) time such that dc(P,Q) = |P ′|− |P |+dc(P ′, Q)
and there exists an optimal alignment of P ′ and Q, which does not use any insertions.

The reader can probably share the intuition that alignment AU/R is optimal, at least for
the part F1F2F3 of string U . We prove that indeed no AB-pattern is aligned to any part of
F4 and that no P -pattern is aligned to F1F2F3 (see Example 10). The proof of Lemma 9
consists of a case analysis combined with basic counting and bounding arguments, for which
we refer the reader to the full version of this paper.

I Example 10. Let P = KITTEN and Q = SITTING over Σ = {E, G, I, K, N, S, T}. We define a
new alphabet Σ′ = Σ t {a, b, c1, c2, c3, d, e, f, g} and a new string U(P,Q) = F1F2F3F4 over
Σ′ as follows (recall that x = 2|Q|, so 2x+ 2 = 4Q+ 2 = 30):

F1 = aabaabaabaabaabaabaabaab . . . aabaae

F2 = c1dKc2c3c1dIc2c3c1dTc2c3c1dTc2c3c1dEc2c3c1dNc2c3

F3 = aaeaaeaaeaaeaaeaaeaaeaae . . . aaeaa

F4 = c1fSc2c3c1fIc2c3c1fTc2c3c1fTc2c3c1fIc2c3c1fNc2c3c1fGc2c3

We also set k = 5 and define the set I of non-sensitive pattern occurrences over U as follows:

I = {0, 3, 6, 9, . . . , 6x} ∪ {6x+ 6, 6x+ 11, 6x+ 16, . . . , 6x+ 1 + 5|P |}.

We thus have the following sequence of occurrences of non-sensitive patterns:

aabaa, aabaa, aabaa, . . . , aabaa (29 occurrences)
c1dKc2c3, c1dIc2c3, c1dTc2c3c1dTc2c3, c1dEc2c3, c1dNc2c3 (6 occurrences).

Therefore, the corresponding regular expression R is

R = 	 aabaa⊕. . .⊕aabaa⊕c1dKc2c3⊕c1dIc2c3⊕c1dTc2c3c1dTc2c3⊕c1dEc2c3⊕c1dNc2c3 ⊗.

We now show the crucial fragment of alignment AU/R: how F4 is aligned with the P -patterns.

-c1fSc2c3-c1fIc2c3-c1fTc2c3-c1fTc2c3-c1fIc2c3-c1fNc2c3c1fGc2c3

#c1dKc2c3#c1dIc2c3#c1dTc2c3#c1dTc2c3#c1dEc2c3#c1dNc2c3# fGc2c3

Observe that the cost of the above alignment under unit cost equals to 15: the cost of 4
P -pattern matches (8), plus the cost of 2 P -pattern substitutions (6), plus the cost of 1
gadget insertion (1). It can be readily verified that d(1,6,3,2)(KITTEN, SITTING) = 15.
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Lemma 9 implies the following result.

I Corollary 11. dE(U,XED) = 4.5(|P |+ |Q|) + d(2.5,2.5,1,0)(P,Q).

Given that constructing U takes O(n) time, Corollary 11 tells us that, if we can compute
dE(U,XED) in strongly subquadratic time, then we can also compute dc between any two
strings in strongly subquadratic time contradicting SETH. In fact, to prove that the output
string of ETFS cannot be computed in strongly subquadratic time either, we show that
d(2.5,2.5,1,0) can be obtained by solving ETFS twice and O(n) additional operations.

By Lemma 9, from the outputXED of the ETFS algorithm, we can obtain a supersequence
P ′ of P in O(n) time such that dc(P,Q) = dc(P, P ′) + dc(P ′, Q) and no insertions are
required to optimally align P ′ and Q. There also exists a supersequence Q′ of Q such that
dc(P,Q) = dc(P, P ′)+dc(Q′, Q)+dc(P ′, Q′) and some optimal alignment of P ′ and Q′ which
aligns each P ′[i] with Q′[i] through either a match or a substitution. One such Q′ is the
string obtained by taking the alignment of P ′ and Q given by ETFS and inserting aligned
letters of P ′ into the gaps of Q. The edit distance of Q and P is

dc(P, P ′) + dc(Q,Q′) + d(P ′, Q′) = |P ′| − |P |+ |Q′| − |Q|+
|P ′|−1∑
i=0

I[P ′[i] 6= Q′[i]], (8)

which can be computed in O(n) time once we know P ′ and Q′.
Note that by using ETFS on U(Q,P ′), we could find a supersequence Q′′ of Q such that

dc(P,Q) = dc(P, P ′) + dc(Q,Q′′) + dc(P ′, Q′′) and no deletions are required to optimally
align P ′ and Q′′. It is not necessarily the case that we do not need any more insertions,
though, as optimal alignments are not unique. We now show that we can still compute an
appropriate Q′ by changing c.

Let Qc be the set of supersequences Q′′ of Q with minimal dc(Q′′, Q) +dc(P ′, Q′′) and no
deletions needed in the alignment of P ′ and Q′′. Note that there exists some Q′ ∈ Qc such
that |P ′| = |Q′|. Increasing the cost of deletion by ε, dc(Q′′, Q) + dc(P ′, Q′′) increases by at
least ε(|P ′| − |Q|) with equality if and only if |Q′′| = |P ′|. Since |Q′| = |P ′|, no deletions
implies no insertions. Therefore it suffices to find the insertions, when aligning P ′ and Q
with weights c′ = (2.5, 2.5 + ε, 1, 0) for some ε > 0. We find these insertions by running the
ETFS algorithm on U(G(Q), G(P ′)) with k = 5, where G(V ) =

∏|V |−1
i=0 (V [i]g) for any string

V ∈ (Σ t {a, b, c1, c2, c3, d, e, f})∗, and with the set of non-sensitive pattern occurrences

I = {0, 3, 6, 9, . . . , 6x′} ∪ {6x′ + 6, 6x′ + 11, 6x′ + 16, . . . , 6x′ + 1 + |Q|},

where x′ = 2|G(P ′)|. The solution to this new problem corresponds to an optimal alignment
of G(Q) and G(P ′) with c = (2.5, 2.5, 1, 0), which in its turn corresponds to an optimal
alignment of Q and P ′ with weights c′ = (5, 5, 1, 0) ∼ (2.5, 2.5 + 5, 1, 0) by Lemma 8. We
first carefully define what properties such a corresponding alignment should satisfy, and then
prove that all optimal alignments of G(Q) and G(P ′) are indeed of this form.

I Definition 12. The alignment of G(P ′) and G(Q) corresponding to an alignment AP ′/Q

of P ′ and Q is defined as follows:
If P ′[i] is aligned with Q[i] in AP ′/Q, then G(P ′)[2i] and G(P ′)[2i+ 1] are aligned with
G(Q)[2i] and G(Q)[2i+ 1], respectively.
If P ′[i] is deleted in AP ′/Q, then G(P ′)[2i] and G(P ′)[2i+ 1] are deleted.
If Q[i] is inserted in AP ′/Q, then G(Q)[2i] and G(Q)[2i+ 1] are inserted.

I Lemma 13. Let P ′, Q ∈ Σ∗ such that there exits an optimal alignment of P ′ and Q which
does not include any insertions. Each optimal alignment of G(P ′) and G(Q) with respect
to cost c = (2.5, 2.5, 1, 0) corresponds to an optimal alignment of P ′ and Q with weights
c′ = (5, 5, 1, 0).
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Proof. Let the number of insertions, deletions, substitutions and matches in some optimal
alignment AP ′/Q of P ′ and Q be w, x, y and z respectively. The cost of AP ′/Q with
respect to c′ is 5w + 5x + y. The corresponding alignment of G(P ′) and G(Q) has 2w
insertions, 2x deletions, y substitutions and 2z + y matches, and its cost with respect to c is
(2w) ·2.5+(2x) ·2.5+y ·1+(2z+y) ·0 = 5w+5x+y. Therefore dc(G(P ′), G(Q)) ≤ dc′(P ′, Q).
It remains to be shown that equality holds.

Consider an optimal alignment AG(P ′)/G(Q) of G(P ′) and G(Q). We will show that we
can transform AG(P ′)/G(Q) into one corresponding to an alignment of P ′ and Q without
increasing the edit distance. Consider the rightmost P ′[i] and Q[j] where the corresponding
alignment fails, and call them x and y. There are 13 possibilities for their alignment:

Blue letters are original letters of G(Q), red letters are deleted letters from G(P ′), dots are
arbitrary strings and dashes denote gaps. Note that configurations 1, 7 and 13 are already
properly aligned. Moreover, the cost can be reduced for configurations 2, 3, 4, 5, 6, 8, 9, 11
and 12 by deleting red letters and shifting blue ones. This only leaves configuration 10. Here
there are 3 subcases:

If x is aligned with an x, there must be a g between x and y. We can align this g with
G(P ′)[2i] and move to configuration 13 without increasing the cost nor changing letters.
If x is aligned with an x, we move an adjacent inserted letter to this place and reduce
the cost, which is a contradiction.
Otherwise, x is aligned with a different letter. In this case we can realign it with y without
increasing the cost or changing letters.

Since there is a corresponding alignment for the output string, equality holds. J

Therefore the output string is equal to G(Q′) for some Q′ ∈ Qc. We can infer Q′ in O(n)
time and compute dc(P,Q) using Equation 8. However, since dc(P,Q) could not be computed
in strongly subquadratic time given SETH, we conclude that ETFS cannot be computed in
strongly subquadratic time either, unless SETH is false, thus proving Theorem 3.

5 Final Remarks

The following questions remain unanswered. Can ETFS be solved in O(n2) time? Can
ETFS be solved in strongly subquadratic time when |S| = O(1)?
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