
Dynamic String Alignment
Panagiotis Charalampopoulos
Department of Informatics, King’s College London, UK
Institute of Informatics, University of Warsaw, Poland
panagiotis.charalampopoulos@kcl.ac.uk

Tomasz Kociumaka
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
kociumaka@mimuw.edu.pl

Shay Mozes
Efi Arazi School of Computer Science, The Interdisciplinary Center Herzliya, Israel
smozes@idc.ac.il

Abstract
We consider the problem of dynamically maintaining an optimal alignment of two strings, each of
length at most n, as they undergo insertions, deletions, and substitutions of letters. The string
alignment problem generalizes the longest common subsequence (LCS) problem and the edit distance
problem (also with non-unit costs, as long as insertions and deletions cost the same). The conditional
lower bound of Backurs and Indyk [J. Comput. 2018] for computing the LCS in the static case
implies that strongly sublinear update time for the dynamic string alignment problem would refute
the Strong Exponential Time Hypothesis. We essentially match this lower bound when the alignment
weights are constants, by showing how to process each update in Õ(n) time.1 When the weights
are integers bounded in absolute value by some w = nO(1), we can maintain the alignment in
Õ(n ·min{

√
n, w}) time per update. For the Õ(nw)-time algorithm, we heavily rely on Tiskin’s

work on semi-local LCS, and in particular, in an implicit way, on his algorithm for computing the
(min, +)-product of two simple unit-Monge matrices [Algorithmica 2015]. As for the Õ(n

√
n)-time

algorithm, we employ efficient data structures for computing distances in planar graphs.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases string alignment, edit distance, longest common subsequence, (unit-)Monge
matrices, (min, +)-product

Digital Object Identifier 10.4230/LIPIcs.CPM.2020.9

Funding Panagiotis Charalampopoulos: Partially supported by ERC grant TOTAL (no. 677651)
under the EU’s Horizon 2020 Research and Innovation Programme.
Tomasz Kociumaka: Supported by ISF grants no. 1278/16 and 1926/19, a BSF grant no. 2018364, and
an ERC grant MPM (no. 683064) under the EU’s Horizon 2020 Research and Innovation Programme.
Shay Mozes: Partially supported by Israel Science Foundation grant ISF no. 592/17.

1 Introduction

The problems of computing an optimal string alignment, a longest common subsequence
(LCS), or the edit distance of two strings have been studied for more than 50 years. In
the string alignment problem, we are given weights wmatch for aligning a pair of matching
letters, wmis for aligning a pair of mismatching letters, and wgap for letters that are not
aligned, and the goal to compute an alignment with maximum weight. The edit distance
dE(S, T) of two strings S and T is the minimum cost of transforming string S to string T
using insertions, deletions, and substitutions of letters, under specified costs cins, cdel, and

1 The Õ(·) notation suppresses logO(1) n factors.

© Panagiotis Charalampopoulos, Tomasz Kociumaka, and Shay Mozes;
licensed under Creative Commons License CC-BY

31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020).
Editors: Inge Li Gørtz and Oren Weimann; Article No. 9; pp. 9:1–9:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6024-1557
mailto:panagiotis.charalampopoulos@kcl.ac.uk
https://orcid.org/0000-0002-2477-1702
mailto:kociumaka@mimuw.edu.pl
https://orcid.org/0000-0001-9262-1821
mailto:smozes@idc.ac.il
https://doi.org/10.4230/LIPIcs.CPM.2020.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Dynamic String Alignment

csub, respectively. When all costs are 1, this is also known as the Levenshtein distance of S
and T [24]. Note that if cins = cdel, the edit distance problem is a special case of the string
alignment problem, with wmatch = 0, wmis = −csub, and wgap = −cins = −cdel. In turn, the
LCS problem can be seen as a special case of the edit distance problem: Let the length of
an LCS of S and T be denoted by LCS(S, T). Then, for cins = cdel = 1 and csub = 2, we
have dE(S, T) = |S|+ |T | − 2 · LCS(S, T). In this work, we consider the dynamic version of
the string alignment problem, in which the strings S and T , each of length at most n, are
maintained subject to insertions, deletions, and substitutions of letters, and we are to report
an optimal alignment after each such update.

The textbook dynamic programming (DP) O(n2)-time algorithm for the (static) LCS
and edit distance problems has been rediscovered several times, e.g. in [38, 28, 29, 30, 39].
When the desired output is just the edit distance or the length of an LCS, the space required
by the DP algorithm is trivially O(n) as one needs to store just two rows or columns of the
DP matrix. Hirschberg showed how to actually retrieve an LCS within O(n2) time using only
O(n) space [17]. A line of works has improved the complexity of the classic DP algorithm by
factors polylogarithmic with respect to n (see [25, 40, 11, 5, 15]).

While we are the first to consider the dynamic string alignment problem in the general
variant where edits are allowed in any position of either of the strings, already the DP
algorithm is inherently “dynamic” in the sense that it supports appending a letter and
deleting the last letter in either of the strings in linear time. A series of works examined
variants of incremental and decremental LCS and edit distance problems [23, 21, 18]. The
most general of these variants was considered by Tiskin in [32], where he presented a
linear-time algorithm for maintaining an LCS in the case that both strings are subject to
the following updates: prepending or appending a letter, and deleting the first or the last
letter. Tiskin’s solution not only maintains the LCS, but implicitly also the semi-local LCS
information: the LCS lengths between all prefixes of S (resp. T) and all suffixes of T (resp. S),
as well as the LCS between S (resp. T) and all fragments (substrings) of T (resp. S).

One of the main technical contributions of Tiskin in this area is an efficient algorithm for
computing the (min,+) product (also known as distance product) of two simple unit-Monge
matrices [37].2 The algorithm itself and the ideas behind it have found numerous applications
to variants of the LCS and string alignment problems. We refer the reader to Tiskin’s
monograph [32] as well as [33, 34, 35, 31, 36].

On the lower-bound side, Backurs and Indyk showed that an O(n2−ε)-time algorithm
for computing the edit distance of two strings of length at most n would refute the Strong
Exponential Time Hypothesis (SETH) [4]. Bringmann and Künnemann generalized this
conditional lower bound by showing that it holds even for binary strings under any non-trivial
assignment of weights cins, cdel, and csub [7] – an assignment of weights is trivial if it allows
one to infer the edit distance in constant time. Further consequences of subquadratic-
time algorithms for the edit distance or LCS problems where shown by Abboud et al. [1];
interestingly, they proved that even shaving arbitrarily large polylogarithmic factors from n2

would have major consequences. In light of the above results, an O(n1−ε)-time algorithm
maintaining an optimal string alignment of two strings of length O(n) subject to edit
operations seems highly unlikely, as it would directly imply an O(n2−ε)-time algorithm for
the static version of the problem.

2 A matrix M is a Monge matrix if M [i, j] + M [i′, j′] ≤ M [i′, j] + M [i, j′] for all i < i′ and j < j′ [26].
An n × n Monge matrix is a simple unit-Monge matrix if its leftmost column and bottommost row
consist of zeroes, while its rightmost column and topmost row consist of subsequent integers from 0 to
n− 1 [37].

P. Charalampopoulos, T. Kociumaka, and S. Mozes 9:3

Our results and approach. We heavily rely on Tiskin’s work on efficient distance multiplic-
ation of simple unit-Monge matrices and its applications to the string alignment problem.
Specifically for the LCS problem, Tiskin showed that the semi-local LCS information of two
strings of length at most n can be retrieved from an Õ(n)-size representation as a permutation
matrix PS,T . Based on his efficient algorithm for computing the (min,+)-product of two
simple unit-Monge matrices, he showed that given permutation matrices PS,T and PS,T ′ , one
can efficiently compute PS,TT ′ . We formalize this in the preliminaries (Section 2).

In Section 3, we first describe our algorithm for maintaining an LCS of two strings S and
T in Õ(n) time per edit operation, and then we extend it to maintaining a string alignment
under integer weights. Our algorithm maintains a hierarchical partition of strings S and T
to fragments of length roughly 2s for each scale s, 0 ≤ s ≤ logn, and permutation matrices
PSi,Tj for all pairs of fragments (Si, Tj) at each scale. Then, upon an update to S or T , we
need to update Θ(n/2s) permutation matrices at each scale s. This is in contrast with the
sequential approach of combining the permutation matrices in Tiskin’s work.

In Section 4, we show that efficient data structures for computing distances in planar
graphs outperform the approach outlined above when the alignment weights cannot be
expressed as small integers.

2 Preliminaries

Let T = T [0]T [1] · · ·T [n− 1] be a string of length |T | = n over an alphabet Σ. The elements
of Σ are called letters. For two positions i and j in T , we denote by T [i . . j] the fragment
of T that starts at position i and ends at position j (the fragment is empty if i < j). The
fragment T [i . . j] is an occurrence of the underlying substring T [i] · · ·T [j]. A fragment of
T is represented in O(1) space by specifying the indices i and j. We sometimes denote
the fragment T [i . . j] as T [i . . j + 1). A prefix of T is a fragment that starts at position 0
(T [0 . . j]) and a suffix is a fragment that ends at position n− 1 (T [i . . n− 1] or T [i . . n)).

A longest common subsequence (LCS) of two strings S and T is a longest string that is a
subsequence of both S and T . We denote the length of an LCS of S and T by LCS(S, T).

I Example 1. An LCS of S = acbcddaaea and T = abbbccdec is abcde; LCS(S, T) = 5.

For strings S and T , of length m and n respectively, the alignment graph GS,T of S and T
is a directed acyclic graph with vertex set {vi,j : 0 ≤ i ≤ m, 0 ≤ j ≤ n}. For every 0 ≤ i ≤ m
and 0 ≤ j ≤ n, the graph GS,T has the following edges (defined only if both endpoints exist):

vi,jvi+1,j and vi,jvi,j+1 of length 0,
vi,jvi+1,j+1 of length 1, present if and only if S[i] = T [j].

Intuitively, GS,T is an (m+ 1)× (n+ 1) grid graph (with length-0 edges) augmented with
length-1 diagonal edges corresponding to matching letters of S and T . We think of the vertex
v0,0 as the top left vertex of the grid and the vertex vm,n as the bottom right vertex of the
grid. We shall refer to the rows and columns of GS,T in a natural way. It is easy to see that
LCS(S, T) equals the length of the highest scoring path between v0,0 and vm,n in GS,T .

We index matrices from 0. Let us define some matrices of interest.

I Definition 2. The distribution matrix σ(M) of an m×n matrix M is the (m+ 1)× (n+ 1)
matrix satisfying σ(M)[i, j] =

∑
r≥i,c<jM [r, c].

I Definition 3. An n×n binary matrix is a permutation matrix if it has exactly one 1 entry
in each row and each column. Such a matrix can be represented in O(n) space.

CPM 2020

9:4 Dynamic String Alignment

By constructing a 2D orthogonal range counting data structure over the non-zero entries
of a permutation matrix, one obtains the following lemma.

I Lemma 4 ([32, Theorem 2.15]; [9]). An n× n permutation matrix P can be preprocessed
O(n
√

logn) time so that any entry of σ(P) can be retrieved in time O(logn/ log logn).

Let � be a wildcard letter, i.e., a letter that matches all letters. Tiskin [32] defines an
(m+ n+ 1)× (m+ n+ 1) distance matrix HS,T over GS,�mT�m so that HS,T [i, j] equals the
hightest weight of a path from v0,i to vm,m+j in GS,�mT�m . Note that if j = i −m, then
HS,T [i, j] = 0. By convention, if j < i−m, then HS,T [i, j] = j − (i−m) < 0. The matrix
HS,T captures so-called semi-local LCS values as follows; see Figure 1 for an illustration.

HS,T [i, j] =



LCS(S[m− i . .m), T [0 . . j)) +m− i if i ≤ m and j ≤ n,
LCS(S[0 . .m+ n− j), T [i−m. . n)) + j − n if i ≥ m and j ≥ n,
LCS(S[m− i . .m+ n− j), T) +m− i+ j − n if i ≤ m and n+ i ≥ j ≥ n,
m if n+ i ≤ j,
LCS(S, T [i−m. . j)) if i ≥ m and i−m ≤ j ≤ n,
j +m− i if j ≤ i−m.

v0,0

vm,2m+n

� � � � � � � �a b c a b

c
a
b
a v1,4

v3,9

Figure 1 The figure illustrates how HS,T captures semi-local LCS information for S = abac and
T = abcab. We have m = 4 and n = 5. The value HS,T (i, j) captures the length of the highest
scoring path from the i-th blue node to the j-th red node in the above figure (in the left-to-right
order). The underlying idea is that when there are wildcards � involved, one may always choose to
use the diagonal edges corresponding to them and then fill in the rest of the path. Let us analyze
one of the cases thoroughly, the analysis of the other cases is analogous.

The highest weight of a path from v0,3 to v4,4+6 is 4, which corresponds to HS,T (3, 6) = 4 =
LCS(S[4− 3, 9− 6), T) + 4− 3 + 6− 5 = LCS(S[1, 2], T) + 2 (case 3 of the equation above). The
highest scoring path (in black), after trimming diagonal edges corresponding to wildcards, yields
a highest scoring path from v1,4 to v3,4+5. Its weight indeed corresponds to LCS(S[1 . . 2], T) = 2.
The v0,2-to-v4,4+3 highest scoring path (in green) illustrates case 1 of the equation above:
HS,T (2, 3) = 4 = LCS(S[4− 2 . . 4), T [0 . . 3)) + 4− 2 = LCS(S[2 . . 3], T [0 . . 2]) + 2.
The v0,8-to-v4,4+8 highest scoring path (in orange) illustrates case 2 of the equation above:
HS,T (8, 8) = 3 = LCS(S[0 . . 9− 8), T [8− 4 . . 5)) + 8− 5 = LCS(S[0], T [4]) + 3.
The v0,6-to-v4,4+4 highest scoring path (in magenta) illustrates case 5 of the equation above:
HS,T (6, 4) = 1 = LCS(S, T [6− 4 . . 4)) = LCS(S, T [2 . . 3]).

.

P. Charalampopoulos, T. Kociumaka, and S. Mozes 9:5

I Remark 5. Let us try to provide some extra intuition by considering the indel distance, for
which we get a more uniform formula. The indel distance of two strings, denoted δ(S, T), is
the minimum number of insertions and deletions that are needed to transform S to T . In
other words, δ(S, T) = |S|+ |T | − 2LCS(S, T). Then 2m+ j − i− 2HS,T [i, j], which can be
interpreted as the number of length-0 edges on the highest scoring path from v0,i to vm,m+j
in GS,�mT�m , admits a more uniform formula:

2m+j−i−2HS,T [i, j] =



δ(S[m− i . .m), T [0 . . j)) if i ≤ m and j ≤ n,
δ(S[0 . .m+ n− j), T [i−m. . n)) if i ≥ m and j ≥ n,
δ(S[m− i . .m+ n− j), T) if i ≤ m and n+ i ≥ j ≥ n,
j − i if n+ i ≤ j,
δ(S, T [i−m. . j)) if i ≥ m and i−m ≤ j ≤ n,
i− j if j ≤ i−m.

We now return to the LCS problem. Tiskin shows that the (n+m)× (n+m) matrix
PS,T defined as

PS,T [i, j] = HS,T [i, j] +HS,T [i+ 1, j + 1]−HS,T [i+ 1, j]−HS,T [i, j + 1], (1)

is a permutation matrix and satisfies HS,T [i, j] = j + m − i − σ(PS,T)[i, j]. Note that for
constant-length strings S and T , the matrix PS,T can be computed naively in constant time
from HS,T . Conversely, each entry of HS,T can be retrieved in time O(log(n+m)/ log log(n+
m)) after an O((n+m)

√
log(n+m))-time preprocessing of PS,T by Lemma 4. Crucially for

our approach, Tiskin shows the following result.

I Theorem 6 ([32, Theorem 4.21]).
(a) Given PS,T and PS,T ′ for three strings S, T, T ′, each of length at most n, one can compute

PS,TT ′ in O(n logn) time.
(b) Given PT,S and PT ′,S for three strings S, T, T ′, each of length at most n, one can compute

PTT ′,S in O(n logn) time.

Actually, only part (a) of the above theorem is stated explicitly in [32]. Part (b) can be
derived by symmetry as follows. One can check using the characterization of HS,T in terms
of the semi-local LCS values that HS,T [i, j] = HT,S [n+m− i, n+m− j] +m− i+ j − n;
see [32, Lemma 4.14]. In particular, this means that HS,T can be obtained from HT,S by first
performing a 180-degree rotation and then off-setting the values in every row i by m− i and
the values in every column j by j − n. This, in turn, means that PT,S can be obtained from
PS,T just through a 180-degree rotation, as the offsets are cancelled out in the computation
of PS,T [i, j] from HT,S ; see (1). Thus, we can rotate PT,S and PT ′,S to obtain PS,T and
PS,T ′ , compute PS,TT ′ using Theorem 6(a), and then rotate PS,TT ′ to obtain PTT ′,S .

3 Main Algorithm

We show how to maintain the permutation matrix PS,T in O((m+ n) log(m+ n)) time per
update when the strings S and T undergo substitutions, insertions, and deletions of single
letters. Within the stated update time we can recompute the orthogonal range counting
data structure that allows us to report, in O(log(m+ n)/ log log(m+ n)) time, any element
of the matrix HS,T .

CPM 2020

9:6 Dynamic String Alignment

The high-level idea is to maintain the permutation matrices PA,B for fragments A of S
and B of T , at exponentially growing scales. Local changes to S and T , such as substitutions,
insertions, and deletions, only affect a single fragment at each scale. We can therefore
use Theorem 6 to recompute the affected matrices efficiently in a bottom-up fashion.

We first describe the maintenance of a data structure that can only support substitutions
in order to demonstrate the general approach. We will then describe how to also support
insertions and deletions.

3.1 Supporting Only Substitutions
We can assume that both S and T are of length n and that n is a power of two; otherwise,
we pad S with $ characters and T with # characters such that $ 6= # and neither $ nor # is
in the alphabet. We define logn+ 1 scales, where at scale s, each of S and T is partitioned
into non-overlapping fragments of length 2s. At every scale, and for every pair of fragments
Si and Tj of S and T , respectively, we store the permutation matrix PSi,Tj

corresponding to
HSi,Ti

. At scale s, there are (n/2s)2 matrices, each stored in O(2s) space. Thus, the overall
space required by the data structure is O(n2). Building the data structure in a bottom-up
manner requires time

∑logn
s=0 (n/2s)2 · 2s · s = O(n2) by Theorem 6.

Suppose, without loss of generality, that a letter of S is substituted (the other case is
symmetric). We work in order of increasing scales s = 0, 1, . . . logn. Let Si be the unique
fragment of S in scale s that contains the substituted letter. We recompute the matrices
PSi,Tj

for each one of the n/2s fragments Tj of T at scale s. At scale s = 0, both Si and Tj
consist of single letters, and we recompute the constant-size permutation matrices PSi,Tj

from
scratch in total O(n) time. (In fact, there are only two types of matrices, one corresponding to
the case that the letter Si matches the letter Tj , and the other corresponding to a mismatch.)
To recompute a matrix PSi,Tj at scale s > 0, let S′i, S′′i be the two fragments of S at scale
s− 1 such that Si = S′iS

′′
i . Similarly, let T ′j , T ′′j be the two fragments of T at scale s− 1 such

that Tj = T ′jT
′′
j . We repeatedly apply Theorem 6 to PS′

i
,T ′

j
, PS′

i
,T ′′

j
, PS′′

i
,T ′

j
, PS′′

i
,T ′′

j
to obtain

PSi,Tj
in O(s · 2s) time. Thus, the total time to update all affected permutation matrices at

all scales (and, in particular, to obtain the matrix PS,T) is
∑logn
s=0

n
2s · s · 2s = O(n log2 n).

3.2 Supporting Insertions and Deletions
To support insertions and deletions we use the same approach. However, as each update
increases or decreases the length of the string it is applied to, we can no longer use fixed-
length fragments at each scale. At each scale s, we maintain a partition of each string into
consecutive fragments, each of length between 1

4 · 2
s and 2 · 2s, such that the partition at

scale s is a refinement of the partition at scale s + 1. Let us denote by Rs (resp. Cs) the
partition of S (resp. T) at level s. We only describe the process for S; the string T is handled
analogously. The refinement property for Rs can be stated formally as follows. For any s′ > s,
for each fragment S[a . . b] ∈ Rs there exists a fragment S[a′ . . b′] ∈ Rs′ with a′ ≤ a ≤ b ≤ b′.
We maintain each Rs as a linked list of the fragments, which are represented by their start
and end indices, sorted by the start indices in increasing order. Upon an update in S, we
update the partitions in a bottom-up manner.

Let us first describe how to insert a letter in S after the letter at position k. We first
scan Rs for all s and increment by 1 all the start indices that are greater than k and all the
end indices that are at least k. This way, the newly inserted letter is assigned to a unique
fragment in each partition. Then, we process the scales in increasing order, starting from
scale 0. If the fragment U0 ∈ R0 that contains the newly inserted letter has just become of

P. Charalampopoulos, T. Kociumaka, and S. Mozes 9:7

length greater than 2 · 20 = 2, then we split U0 into two fragments of length at most 2. Note
that this potential split does not violate the refinement property. Then, we proceed to the
next scale. Generally, at scale s, if the length of the fragment Us ∈ Rs that contains the
newly inserted letter does not exceed 2 · 2s, we just proceed to the next scale. Otherwise,
we need to make adjustments, ensuring that the refinement property is not violated. Note
that, if |Us| = 2 · 2s + 1, then, since fragments at scale s− 1 have been already processed and
respect the length constraint, the refinement property implies that Us is the concatenation
of at least three (and at most nine) fragments V1, V2, . . . , Vt at scale s− 1. Let the middle
letter of Us belong to Vi. Then, either

∑
g<i |Vg| ≥ 2s/4 or

∑
g>i |Vg| ≥ 2s/4; let us assume

without loss of generality that we are in the first case. We replace U at scale s by V1 · · ·Vi−1
and Vi · · ·Vt. If such a replacement happens at the highest scale s (with Us = S), then we
create a new level s + 1 with Rs+1 = {Us} = {S}. Note that the refinement property is
maintained and the whole procedure requires O(m) time.

We now treat the complementary case of deleting S[k]. Again, we first scan Rs for all
scales s and decrement by 1 all the start/end indices that are at least k – ensuring that
none of them becomes negative. If some fragment becomes of length 0, then we remove
it. We again process levels in increasing order. Suppose that the fragment Us ∈ Rs that
contained the deleted letter has just become shorter than 1

4 · 2
s. If Rs is the top level of

the decomposition, then we simply remove this level. Otherwise, consider the fragment
Us+1 ∈ Rs+1 that contains Us. Note that, 1 ≤ |Us| = 1

4 · 2
s − 1 implies that the length

|Us|+ 1 of the fragment corresponding to Us prior to the deletion is smaller than 1
4 · 2

s+1,
and hence |Us+1| > |Us|. Thus, there exists a fragment V at scale s that is adjacent to
Us and is also a subfragment of Us+1. Let us assume without loss of generality that V
lies to the right of Us – the other case is symmetric. If |V | < 7

4 · 2
s, then we can just

replace Us and V in Rs by their concatenation, UsV . Otherwise, let the first element of
the decomposition of V at scale s − 1 be X. In this case, we can replace Us and V in Rs
by UsX and Y = V [|X| . . |V | − 1], since 1

4 · 2
s ≤ |UsX| < 1

4 · 2
s + 2 · 2s−1 < 2 · 2s and

1
4 · 2

s < 7
4 · 2

s − 2 · 2s−1 ≤ |V | − |X| = |Y | < |V | ≤ 2 · 2s. The refinement property is
maintained and the whole procedure requires O(m) time.

We maintain PA,B for each pair of fragments (A,B) ∈ Rs × Cs at scale s. In the case
that Rs simply consists of S at scale s, while T is still fragmented, we consider Rj for any
j > s to simply consist of S. (Symmetrically for the opposite case.) The number of pairs of
fragments that are affected at scale s is O((n+m)/2s). We compute PA,B, for each such
pair (A,B), using a constant number of applications of Theorem 6 in O(s · 2s) time. Thus,
the total time to handle scale s is O((n + m)s) and the total time to handle all scales is
O((m+ n) log2(m+ n)).

I Remark 7. Deletions of fragments of either of the strings can also be processed within the
same time complexity with a straightforward generalisation of the above process.

Obtaining the longest common subsequence. We now describe how one can obtain the
longest common subsequence, and not just its length, within Õ(n+m) time. Let us consider
the following auxiliary problem: given some pair of fragments Si, Tj at scale s > 0, compute
the longest common subsequence of either some prefix of Si (resp. Tj) and some suffix of Tj
(resp. Si), or some fragment of Si (resp. Tj) and Tj (resp. Si). Consider the refinement, at
scale s− 1, of Si to U1, . . . , Uk and of Tj to V1, . . . , V`. Let GS,T (S[i1 . . i2], T [j1 . . j2]) be the
subgraph of GS,T induced by the set of vertices {vi′,j′ : i1 ≤ i′ ≤ i2 + 1, j1 ≤ j′ ≤ j2 + 1}.
Our aim is to decompose the highest scoring path in scope (say va,b-to-vc,d) into subpaths,
each lying entirely on some GS,T (Ur, Vt). We can then apply this procedure recursively.

CPM 2020

9:8 Dynamic String Alignment

PSi,Tj was obtained from the k × ` matrices PUt,Vr through some order of applications
of Theorem 6. We can store such intermediate matrices, preprocessed as in Lemma 4, without
any extra asymptotic cost in the complexities. We refine the path by considering the reverse
order. For clarity of presentation, let us assume that k = ` = 2 and the intermediate matrices
were PU1U2,V1 and PU1U2,V2 . We can decompose the path to at most two subpaths, one lying
entirely on J1 = GS,T (U1U2, V1) and one lying entirely on J2 = GS,T (U1U2, V2). The case
that both va,b and vc,d lie on one of J1 or J2 is trivial. In the other case, we wish to find
a node that lies on both J1 and J2 and is on the path. To this end, we query PU1U2,V1

(resp. PU1U2,V2) for the length of the highest scoring va,b-to-u (resp. u-to-vc,d) path for all
nodes u that belong to both J1 and J2. Using Lemma 4, this can be done in O(2s · s/ log s)
time (for s > 0). Any u for which the sum of these values equals the length of the highest
scoring va,b-to-vc,d path is a valid vertex to decompose the path. We then recurse, further
refining the path. Note that the va,b-to-vc,d path gets decomposed into O((n+m)/2s) pieces
at scale s, for all s. Hence, by summing over all scales, the total time required for applying
this procedure is O((n+m) log2(n+m)).

Fragment-to-fragment LCS queries. Our data structure also enables us to answer queries
of the type LCS(S[i1 . . i2], T [j1 . . j2]) in time Õ(n+m) (in fact, in time Õ(1+i2−i1 +j2−j1)).
Note that GS,T (S[i1 . . i2], T [j1 . . j2]) can be decomposed in Õ(n+m) time to multiple pieces
GS,T (U, V), overlapping at their boundaries, such that U and V are of the same scale and
there are O((n + m)/2s) pairs (U, V) of scale s. This can be done, intuitively, using a
greedy approach, that each time uses a piece from the largest possible scale. One can also
think of this as extending a rectangle using a constant number of layers consisting of pieces
corresponding to pairs of strings at scale s, in order of decreasing s. Finally, a repeated
application of Theorem 6 yields the claimed result.

3.3 Extension to String Alignment Under Integer Weights

Let us now consider the problem of computing an alignment of two strings S and T , under
integer weights wmatch, wmis and wgap – one may assume that 2wmatch > 2wmis ≥ wgap [32].
In this problem, the goal is to compute a highest scoring path from v0,0 to vm,n in the following
modification ĜS,T of GS,T . Edges of the form vi,jvi+1,j and vi,jvi,j+1 have weight wgap,
while edges of the form vi,jvi+1,j+1 have weight wmatch if T [i] = S[i] and wmis otherwise.

Tiskin shows in Section 6.1 of his monograph [32] that the alignment problem between
strings S and T , can be reduced to the LCS problem between strings S′ and T ′, obtained as
follows. First, replace every letter a in S or in T by the string $µaν−µ, where $ 6∈ Σ and

µ

ν
= wmis − 2wgap
wmatch − 2wgap

.

Then, if one defines matrix ĤS,T over ĜS,T analogously to the definition of HS,T over GS,T ,
we have that ĤS,T (i, j) = 1

ν ·HS′,T ′(νi, νj).
We maintain the same information as in the previous subsections, making sure that each

fragment of each partition is a multiple of ν. At scale 0, we have only two options about how
PA,B can look like, despite it being a ν × ν matrix; its structure only depends on whether
A = B or not. We precompute such possible PA,B ’s. This way, upon an update on S or T ,
updating scale 0 requires O(nν) time. At every other scale, the total length of the involved
strings has just blown up by a ν multiplicative factor and hence the total update time is

P. Charalampopoulos, T. Kociumaka, and S. Mozes 9:9

O(nν log2(nν)). The same reasoning shows that the preprocessing time is

O

(logn∑
s=0

(nw
2sw

)2
· 2sw · log(2sw)

)
= O(n2w logn logw).

We summarize the results of this section in the following theorem.

I Theorem 8. Given two strings S and T and integer weights wmatch, wmis and wgap,
bounded by w, the alignment score of S and T as they undergo insertions, deletions and
substitutions of letters can be maintained in O(nw log2(nw)) time per operation after
an O(n2w logn logw)-time preprocessing. The actual alignment can be retrieved in time
O(nw log2(nw)). In addition, the following queries are supported:

the score of any semi-local string alignment can be computed in O(log(nw)/ log log(nw))
time,
the score of any fragment-to-fragment alignment can be computed in Õ(nw) time.

4 Handling Large Weights

In this section, we describe an algorithm for string alignment that only relies on the planarity
of ĜS,T . This algorithm outperforms the one from Theorem 8 when the alignment weights
cannot be transformed to integers bounded by (roughly)

√
n.

Instead of computing a highest scoring path, we can reduce the problem to computing a
shortest path in the alignment DAG. Given wmatch, wmis and wgap, we define w′match = 0,
w′mis = wmatch − wmis and w′gap = 1

2wmatch − wgap. Then, a shortest path with respect to
the new weights (of length W), corresponds to a highest scoring path with respect to the
original weights (of score 1

2 (m+ n)wmatch −W).

4.1 Data Structures for Planar Graphs
Let us first introduce some data structures for shortest paths in planar graphs.

MSSP. The multiple-source shortest paths (MSSP) data structure of Klein [22] represents
all shortest path trees rooted at the vertices of a single face f in a planar graph G of size n
using a persistent dynamic tree. It can be constructed in O(n logn) time, requires O(n logn)
space, and can report the distance between any vertex of f and any other vertex in G in
O(logn) time. The actual shortest path p can be retrieved in time O(ρ log logn), where ρ is
the number of edges of p.

FR-Dijkstra. Let us consider a subgraph P of a planar graph G, and a face f of P . The
dense distance graph of P with respect to f , denoted DDGP,f is a complete directed graph on
the set of vertices F that lie on f . Each edge (u, v) has weight dP (u, v), equal to the length
of the shortest u-to-v path in P . DDGP,f can be computed in time O((|F |2 + |P |) log |P |)
using MSSP. In their seminal paper, Fakcharoenphol and Rao [12] designed an efficient
implementation of Dijkstra’s algorithm on any union of DDGs – it is nicknamed FR-Dijkstra.
The algorithm exploits the fact that, due to planarity, certain submatrices of the adjacency
matrix of DDGP,f satisfy the Monge property. We next give a – convenient for our purposes
– interface for FR-Dijkstra, which was essentially proved in [12], with some additional
components and details from [20, 27].

CPM 2020

9:10 Dynamic String Alignment

I Theorem 9 ([12, 20, 27]). Given a set of DDGs with O(M) vertices in total (with
multiplicities), each having at most m vertices, we can (independently) preprocess each DDG
with k vertices in time and extra space O(k log k), so that, after this preprocessing, Dijkstra’s
algorithm can be run on the union of any subset of these DDGs with O(N) vertices in total
(with multiplicities) in time O(N logN logm).

I Remark 10. For an improvement in the logarithmic factors of Theorem 9 see [13].

4.2 Direct Application to String Alignment
Our approach is essentially the same as the one for dynamic distance oracles in planar graphs
due to Klein [22], with extensions in [19, 20, 10]. We want to maintain a data structure that
enables us to compute the length of the shortest v0,0-to-vm,n path. However, instead of a
single update to the graph, we have a batch of O(m+ n) updates for each update to one of
the strings. We rely on the fact that the updates to the graphs are clustered in a constant
number of rows/columns of ĜS,T in order to process them more efficiently compared to
simply using dynamic distance oracles for planar graphs in a black-box manner.

Let us consider a partition of ĜS,T into O((n/r)2) pieces of size Θ(r)×Θ(r) each. We
consider the vertices that lie on the infinite face of each piece as its boundary nodes. Then, as
each piece has O(r) boundary vertices, the total number of boundary vertices is O(n2/r). We
compute the MSSP data structure and the DDG for each piece with respect to its outer face.
Note that the shortest path from v0,0 to vm,n can be decomposed to subpaths p1, . . . , pk such
that each pi lies entirely within some piece Pi and pi’s endpoints are boundary nodes of Pi.
Thus, we can compute the length of the shortest v0,0-to-vm,n path by running FR-Dijkstra
from v0,0 in the union of all DDGs in Õ(n2/r) time. In order to retrieve the actual shortest
path, we can refine the DDG edges of the shortest v0,0-to-vm,n path to the actual underlying
edges using the MSSP data structures for the respective pieces.

Each update to one of the strings affects a constant number of rows or of columns of
the original matrix and these are covered by O(n/r) pieces. The MSSP data structures and
DDGs for these pieces can be recomputed using MSSP and preprocessed for efficient shortest
path computations in Õ(nr · r

2) = Õ(nr) time. The balance is at n2/r = nr, which yields
r =
√
n, so the time per operation is Õ(n3/2). If a piece grows (resp. shrinks) too much, we

break it into two pieces (resp. merge it with an adjacent piece and split in the middle) and
recompute and preprocess the DDGs for the affected pieces. We obtain the following result.

I Theorem 11. Given two strings S and T and alignment weights wmatch, wmis, and wgap,
the optimal alignment of S and T as they undergo insertions, deletions, and substitutions of
letters can be maintained in Õ(n3/2) time per operation after an Õ(n2)-time preprocessing.

5 Final Remarks

There has been a recent series of breakthrough papers on approximating the edit distance
and length of the LCS, see e.g. [3, 2, 8, 16, 14, 6]. It is natural to ask about the maintenance
of an approximation of the edit distance or LCS in the setting of dynamic strings.

References
1 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.

Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, pages 375–388. ACM, 2016. doi:10.1145/2897518.2897653.

https://doi.org/10.1145/2897518.2897653

P. Charalampopoulos, T. Kociumaka, and S. Mozes 9:11

2 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approximation
for edit distance and the asymmetric query complexity. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, pages 377–386. IEEE Computer Society, 2010.
doi:10.1109/FOCS.2010.43.

3 Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time. SIAM
Journal on Computing, 41(6):1635–1648, 2012. doi:10.1137/090767182.

4 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM Journal on Computing, 47(3):1087–1097, 2018. doi:
10.1137/15M1053128.

5 Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching.
Theoretical Computer Science, 409(3):486–496, 2008. doi:10.1016/j.tcs.2008.08.042.

6 Mahdi Boroujeni, Masoud Seddighin, and Saeed Seddighin. Improved algorithms for edit
distance and LCS: beyond worst case. In 31st ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1601–1620. SIAM, 2020.
doi:10.1137/1.9781611975994.99.

7 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In 56th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2015, pages 79–97. IEEE Computer Society, 2015. doi:10.1109/
FOCS.2015.15.

8 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and Michael E.
Saks. Approximating edit distance within constant factor in truly sub-quadratic time. In 59th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2018, pages 979–990.
IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.00096.

9 Timothy M. Chan and Mihai Pătraşcu. Counting inversions, offline orthogonal range counting,
and related problems. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, pages 161–173. SIAM, 2010. doi:10.1137/1.9781611973075.15.

10 Panagiotis Charalampopoulos, Shay Mozes, and Benjamin Tebeka. Exact distance oracles
for planar graphs with failing vertices. In 30th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, pages 2110–2123. SIAM, 2019. doi:10.1137/1.9781611975482.127.

11 Maxime Crochemore, Gad M. Landau, and Michal Ziv-Ukelson. A subquadratic sequence
alignment algorithm for unrestricted scoring matrices. SIAM Journal on Computing, 32(6):1654–
1673, 2003. doi:10.1137/S0097539702402007.

12 Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths,
and near linear time. Journal of Computer and System Sciences, 72(5):868–889, 2006. doi:
10.1016/j.jcss.2005.05.007.

13 Paweł Gawrychowski and Adam Karczmarz. Improved bounds for shortest paths in dense
distance graphs. In 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, volume 107 of LIPIcs, pages 61:1–61:15. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.61.

14 Elazar Goldenberg, Robert Krauthgamer, and Barna Saha. Sublinear algorithms for gap edit
distance. In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
pages 1101–1120. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00070.

15 Szymon Grabowski. New tabulation and sparse dynamic programming based techniques
for sequence similarity problems. Discrete Applied Mathematics, 212:96–103, 2016. doi:
10.1016/j.dam.2015.10.040.

16 MohammadTaghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Xiaorui Sun. Ap-
proximating LCS in linear time: Beating the

√
n barrier. In 30th Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2019, pages 1181–1200. SIAM, 2019. doi:
10.1137/1.9781611975482.72.

17 Daniel S. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Communications of the ACM, 18(6):341–343, 1975. doi:10.1145/360825.360861.

CPM 2020

https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1137/090767182
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.1016/j.tcs.2008.08.042
https://doi.org/10.1137/1.9781611975994.99
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.1137/1.9781611973075.15
https://doi.org/10.1137/1.9781611975482.127
https://doi.org/10.1137/S0097539702402007
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.4230/LIPIcs.ICALP.2018.61
https://doi.org/10.1109/FOCS.2019.00070
https://doi.org/10.1016/j.dam.2015.10.040
https://doi.org/10.1016/j.dam.2015.10.040
https://doi.org/10.1137/1.9781611975482.72
https://doi.org/10.1137/1.9781611975482.72
https://doi.org/10.1145/360825.360861

9:12 Dynamic String Alignment

18 Yusuke Ishida, Shunsuke Inenaga, Ayumi Shinohara, and Masayuki Takeda. Fully incremental
LCS computation. In 15th International Symposium on Fundamentals of Computation Theory,
FCT 2005, volume 3623 of LNCS, pages 563–574. Springer, 2005. doi:10.1007/11537311_49.

19 Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Improved
algorithms for min cut and max flow in undirected planar graphs. In 43rd ACM Symposium
on Theory of Computing, STOC 2011, pages 313–322. ACM, 2011. doi:10.1145/1993636.
1993679.

20 Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum queries
in Monge matrices and partial Monge matrices, and their applications. ACM Transactions on
Algorithms, 13(2):26:1–26:42, 2017. doi:10.1145/3039873.

21 Sung-Ryul Kim and Kunsoo Park. A dynamic edit distance table. Journal of Discrete
Algorithms, 2(2):303–312, 2004. doi:10.1016/S1570-8667(03)00082-0.

22 Philip N. Klein. Multiple-source shortest paths in planar graphs. In 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2005, pages 146–155. SIAM, 2005. URL:
http://dl.acm.org/citation.cfm?id=1070432.1070454.

23 Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string comparison.
SIAM Journal on Computing, 27(2):557–582, 1998. doi:10.1137/S0097539794264810.

24 Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics. Doklady, 10:707–710, 1966.

25 William J. Masek and Mike Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980. doi:10.1016/0022-0000(80)
90002-1.

26 Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. De l’Imprimerie Royale,
1781.

27 Shay Mozes and Christian Wulff-Nilsen. Shortest paths in planar graphs with real lengths
in O(n log2 n/ log log n) time. In 18th Annual European Symposium on Algorithms, ESA
2010, Part II, volume 6347 of LNCS, pages 206–217. Springer, 2010. doi:10.1007/
978-3-642-15781-3_18.

28 Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, 1970. doi:10.1016/0022-2836(70)90057-4.

29 David Sankoff. Matching sequences under deletion/insertion constraints. Proceedings of
the National Academy of Sciences of the United States of America, 69(1):4–6, 1972. doi:
10.1073/pnas.69.1.4.

30 Peter H. Sellers. On the theory and computation of evolutionary distances. SIAM Journal on
Applied Mathematics, 26(4):787–793, 1974. doi:10.1137/0126070.

31 Alexander Tiskin. Longest common subsequences in permutations and maximum cliques in
circle graphs. In 17th Annual Symposium on Combinatorial Pattern Matching, CPM 2006,
volume 4009 of LNCS, pages 270–281. Springer, 2006. doi:10.1007/11780441_25.

32 Alexander Tiskin. Semi-local string comparison: algorithmic techniques and applications,
2007. arXiv:0707.3619.

33 Alexander Tiskin. Semi-local longest common subsequences in subquadratic time. Journal of
Discrete Algorithms, 6(4):570–581, 2008. doi:10.1016/j.jda.2008.07.001.

34 Alexander Tiskin. Semi-local string comparison: Algorithmic techniques and applications.
Mathematics in Computer Science, 1(4):571–603, 2008. doi:10.1007/s11786-007-0033-3.

35 Alexander Tiskin. Faster subsequence recognition in compressed strings. Journal of Mathem-
atical Sciences, 158(5):759–769, 2009. doi:10.1007/s10958-009-9396-0.

36 Alexander Tiskin. Periodic string comparison. In 20th Annual Symposium on Combinatorial
Pattern Matching, CPM 2009, volume 5577 of LNCS, pages 193–206. Springer, 2009. doi:
10.1007/978-3-642-02441-2_18.

37 Alexander Tiskin. Fast distance multiplication of unit-Monge matrices. Algorithmica, 71(4):859–
888, 2015. doi:10.1007/s00453-013-9830-z.

https://doi.org/10.1007/11537311_49
https://doi.org/10.1145/1993636.1993679
https://doi.org/10.1145/1993636.1993679
https://doi.org/10.1145/3039873
https://doi.org/10.1016/S1570-8667(03)00082-0
http://dl.acm.org/citation.cfm?id=1070432.1070454
https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1007/978-3-642-15781-3_18
https://doi.org/10.1007/978-3-642-15781-3_18
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1073/pnas.69.1.4
https://doi.org/10.1073/pnas.69.1.4
https://doi.org/10.1137/0126070
https://doi.org/10.1007/11780441_25
http://arxiv.org/abs/0707.3619
https://doi.org/10.1016/j.jda.2008.07.001
https://doi.org/10.1007/s11786-007-0033-3
https://doi.org/10.1007/s10958-009-9396-0
https://doi.org/10.1007/978-3-642-02441-2_18
https://doi.org/10.1007/978-3-642-02441-2_18
https://doi.org/10.1007/s00453-013-9830-z

P. Charalampopoulos, T. Kociumaka, and S. Mozes 9:13

38 Taras K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4:52–57,
1968. doi:10.1007/BF01074755.

39 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168–173, 1974. doi:10.1145/321796.321811.

40 Sun Wu, Udi Manber, and Eugene W. Myers. A subquadratic algorithm for approximate
limited expression matching. Algorithmica, 15(1):50–67, 1996. doi:10.1007/BF01942606.

CPM 2020

https://doi.org/10.1007/BF01074755
https://doi.org/10.1145/321796.321811
https://doi.org/10.1007/BF01942606

	Introduction
	Preliminaries
	Main Algorithm
	Supporting Only Substitutions
	Supporting Insertions and Deletions
	Extension to String Alignment Under Integer Weights

	Handling Large Weights
	Data Structures for Planar Graphs
	Direct Application to String Alignment

	Final Remarks

