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Preface

The Annual Symposium on Combinatorial Pattern Matching (CPM) is the international
research forum in the areas of combinatorial pattern matching, string algorithms and related
applications. The studied objects include strings as well as trees, regular expressions, graphs,
and point sets, and the goal is to design efficient algorithms and data structures based on their
properties, in order to design efficient algorithmic solutions for the addressed computational
problems. The problems this conference deals with include those in bioinformatics and
computational biology, coding and data compression, combinatorics on words, data mining,
information retrieval, natural language processing, pattern matching and discovery, string
algorithms, string processing in databases, symbolic computation, and text searching and
indexing.

This volume contains the papers presented at the 31st Annual Symposium on Combinat-
orial Pattern Matching (CPM 2020) held on June 17-19. The conference was planned to be
held in Copenhagen, but due to the Covid-19 pandemic the conference was instead held online
using Zoom. The conference program includes 28 contributed papers and three invited talks
by Barna Saha (University of California Berkeley), Karl Bringmann (Max-Planck-Institut
fiir Informatik), and Thore Husfeldt (IT University of Copenhagen and Lund University).
For the second time, CPM includes the “Highlights of CPM” special session, for presenting
the highlights of recent developments in combinatorial pattern matching. In this second
edition we have invited Shay Golan to present his SODA 2020 paper “Locally consistent
parsing for text indexing in small space”, Tomasz Kociumaka to present his STOC 2019
paper “String synchronizing sets: sublinear-time BWT construction and optimal LCE data
structure”, and Pawel Gawrychowski (University of Wroctaw, Poland) to present his paper
“Computing quartet distance is equivalent to counting 4-Cycles”.

The contributed papers were selected out of 49 submissions, corresponding to an accept-
ance ratio of about 57%. Each submission received at least three reviews. We thank the
members of the Program Committee and all the additional external subreviewers that are
listed below for their hard, invaluable, and collaborative effort that resulted in an excellent
scientific program.

The Annual Symposium on Combinatorial Pattern Matching started in 1990, and has
since then taken place every year. Previous CPM meetings were held in Paris, London (UK),
Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscataway, Warwick, Montreal,
Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island, Barcelona, London (Ontario, Canada),
Pisa, Lille, New York, Palermo, Helsinki, Bad Herrenalb, Moscow, Ischia, Tel Aviv, Warsaw,
Qingdao, and Pisa. From 1992 to the 2015 meeting, all proceedings were published in the
LNCS (Lecture Notes in Computer Science) series. Since 2016, the CPM proceedings appear
in the LIPIcs (Leibniz International Proceedings in Informatics) series, as volume 54 (CPM
2016), 78 (CPM 2017), 105 (CPM 2018), and 128 (CPM 2019). The entire submission and
review process was carried out using the EasyChair conference system. We thank the CPM
Steering Committee for their support and advice in this year’s unusual circumstances.
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Algebraic Algorithms for Finding Patterns in
Graphs

Thore Husfeldt

IT University of Copenhagen, Denmark
Lund University, Sweden
thore@itu.dk

—— Abstract

I will give a gentle introduction to algebraic graph algorithms by showing how to determine if a
given graph contains a simple path of length k. This is a famous problem admitting a beautiful
and widely-known algorithm, namely the colour-coding method of Alon, Yuster and Zwick (1995).
Starting from this entirely combinatorial approach, I will carefully develop an algebraic perspective
on the same problem. First, I will explain how the colour-coding algorithm can be understood as
the evaluation of a well-known expression (sometimes called the “walk-sum” of the graph) in a
commutative algebra called the zeon algebra. From there, I will introduce the exterior algebra and
present the algebraic framework recently developed with Brand and Dell (2018).

The presentation is aimed at a combinatorially-minded audience largely innocent of abstract
algebra.

2012 ACM Subject Classification Theory of computation — Fixed parameter tractability; Math-
ematics of computing — Paths and connectivity problems; Mathematics of computing — Graph
algorithms

Keywords and phrases paths, exterior algebra, wedge product, color-coding, parameterized com-
plexity

Digital Object Identifier 10.4230/LIPIcs.CPM.2020.1
Category Invited Talk

Funding Thore Husfeldt: Supported by the Swedish Research Council grant VR-2016-03855 “Al-
gebraic Graph Algorithms” and the Villum Foundation grant 16582 “Basic Algorithms Research
Copenhagen (BARC)”.
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Finding the Anticover of a String

Mai Alzamel Alessio Conte
Department of Informatics, Dipartimento di Informatica,
King’s College London, UK Universita di Pisa, Italy
Department of Computer Science, conte@di.unipi.it

King Saud University, KSA
mai.alzamel@kcl.ac.uk

Shuhei Denzumi Roberto Grossi

Graduate School of Information Science and Dipartimento di Informatica,

Technology, The University of Tokyo, Japan Universita di Pisa, Italy
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Costas S. Iliopoulos Kazuhiro Kurita

Department of Informatics, IST, Hokkaido University, Sapporo, Japan
King’s College London, UK k-kurita@ist.hokudai.ac.jp

costas.iliopoulos@kcl.ac.uk

Kunihiro Wasa
National Institute of Informatics, Tokyo, Japan
wasa@nii.ac.jp

—— Abstract
A Ek-anticover of a string = is a set of pairwise distinct factors of x of equal length k, such that
every symbol of z is contained into an occurrence of at least one of those factors. The existence of
a k-anticover can be seen as a notion of non-redundancy, which has application in computational
biology, where they are associated with various non-regulatory mechanisms. In this paper we address
the complexity of the problem of finding a k-anticover of a string x if it exists, showing that the
decision problem is NP-complete on general strings for & > 3. We also show that the problem
admits a polynomial-time solution for £ = 2. For unbounded k, we provide an exact exponential
algorithm tokﬁnd a k-anticover of a string of length n (or determine that none exists), which runs in
O*(min{?)%, (@)ﬁl}) time using polynomial space.

2012 ACM Subject Classification Mathematics of computing — Combinatorics on words
Keywords and phrases Anticover, String algorithms, Stringology, NP-complete

Digital Object Identifier 10.4230/LIPIcs.CPM.2020.2

1 Introduction

The notion of periodicity in strings is well studied in many fields like combinatorics on
words, pattern matching, data compression and automata theory (see [16], [17]), because it
is of paramount importance in several applications, not to talk about its theoretical aspects.
Algorithms and data structures for finding repeating patterns or regularities in strings (see
[9], [12]) are central to several fields of computer science including computational biology,
pattern matching, data compression, and randomness testing. The nature and extent of
periodicity in strings is also of immense combinatorial interest in its own right [17].

The notion of cover belongs to the area of quasiperiodicity, that is, a generalization of
periodicity in which the occurrences of the period may overlap [3]. We call a proper factor
u of a nonempty string y a cover of y, if every letter of y is within some occurrence of u
in y. A cover u of y needs to be a border (i.e. a prefix and a suffix) of y. A cover of a
string s is a string that covers all positions of s with its occurrences. Intuitively, s can be
generated by overlapping/concatenating copies of its cover u. Covers in strings were already

© Mai Alzamel, Alessio Conte, Shuhei Denzumi, Roberto Grossi, Costas S. Iliopoulos, Kazuhiro
B Kurita, and Kunihiro Wasa,;
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Finding the Anticover of a String

extensively studied. A linear-time algorithm finding the shortest cover of a string was given
by Apostolico et al. [4] and later on improved into an on-line algorithm by Breslauer [20].
A linear-time algorithm computing all the covers of a string was proposed by Moore and
Smyth [19]. Afterwards an on-line algorithm for the all-covers problem was given by Li and
Smyth [15]. Similar combinatorial covering problems have been studied on graphs [8, 21], and
other types of quasiperiodicities include seeds [13], as well as variants including approximate
and partial covers and seeds.

A power of order k is defined by a concatenation of k identical blocks of symbols, where &
is at least 2: it is evident how a covers are generalizations of powers. Powers in various forms
later came to be important structures in computational biology, where they are associated
with various regulatory mechanisms and play an important role in genomic fingerprinting (for
further reading see, e.g., [14] and references therein). Antipowers are an orthogonal notion to
that of powers, that were introduced recently by Fici et al. in [6, 10]. In contrast to powers,
antipowers insist instead on the diversity of consecutive blocks: an antipower (antiperiod) of
order k is a concatenation of k pairwise distinct strings of equal length. A linear algorithm
for computing the antiperiods was given in [1], and online algorithms are given in [2].

We define an anticover as a generalization of the notion of antipower: an anticover of
a string x is a set of pairwise distinct factors of x of equal length, such that every symbol
of x is within some occurrence of one of those factors. Equivalently,  can be generated by
overlapping/concatenating a set of pairwise distinct strings of equal length. Some practical
motivation for this problem can be found in Mincu and Popa [18], that considers the similar
problem of partitioning a string into distinct factors: they show that this problem is motivated
by an application in the DNA compositions, a short DNA fragment can be obtained that
can be self-united into the desired DNA structure. They present that to produce the wanted
DNA structure, it is mandatory that no two fragments are equal.

In this paper we show that the computation of a 2-anticover of a string x of length n
over an alphabet ¥, if it exists, can be done in O(n|3|) time and space. For the general
case, given k > 3, we show that checking whether a tring = has a k-anticover is NP-complete.
Moreover, we provide an exact exponential algorithm to find a k-anticover of  (or determine
that none exists), which runs in O*(min{3%k, (@)ﬁ}) time using polynomial space.

In the literature Condon et al. [7] studied the complexity of partitioning problems for
strings. In particular, they introduced the Equality-Free String Partition problem, which
requires to partition a string x into factors fifs - - fe, each factor f; of length at most k, so
that factors are pairwise different f; # f; for ¢ # j. Among the results, they proved that this
problem is NP-complete for k¥ = 2 and unbounded alphabet. We observe that our notion of
k-anticover requires the factors to be of length exactly k, and thus the problem of finding
an anticover is different from Equality-Free String Partition problem. First, checking if a
partition of factors of length k is equality-free can be trivially done in nearly linear time.
Second, there are strings that admit a solution for one of the two problems, but not the other
(e.g., ababa for k = 3 admits the equality-free partition ab - a - ba, but not an anticover).

2 Preliminaries

Let X be a finite ordered alphabet. A string is defined as a sequence of zero or more symbols
from Y. An empty string is a string of length 0, denoted by e. A string x of length n is
represented by the sequence z = z1x2 - - - x,. We use the notation z[i... j] as a shorthand
for z;x;41 -+ - x; and call it a factor or substring of x with length j —i 4 1. We also say that
a nonempty string s is a factor or substring of x with length k <n if s =z[i...i+k — 1] for
an integer 7 € [1,n — k + 1]; in that case, s occurs in x at position 4. The factor z[1...j] is a
prefiz of x and the factor x[j...n] is a suffiz of x.
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» Definition 1. Given an integer k > 2 and a string x of length n >k, let S = {i1,i9,...4¢}
be an ordered set of positions in x chosen from {1,2,...,n —k+ 1}. We say that S is a
k-anticover of x if
(i) any two factors [i; ...i; +k — 1] and x[ip, .. .0, + k — 1] are different, for j # h, and
(i) any position in x is covered, namely, iy =1, iy =n—k+1, and ij41 —i; < k for
1<j<n-—k.

» Example 2. For x = abbbaaaaabab and k = 3, the ordered set S = {1,3,5,9,11} denotes
a 3-anticover of z: abbbaaaaabab. We remark that the indices i1 = 1 and iy = n — k + 1
must be part of any k-anticover, as they represent the only ways of covering the first and
last symbol of x.

In this paper we consider the following problem.

k-ANTICOVER
Input: A string © = x5 ... 2, and an integer k > 2, where n > k.
Output: Does a k-anticover S of x exist?

It is obvious that any k-length substring that only occurs once in x can be included “for
free” in any k-anticover without risk of redundancy. We call free factors the corresponding
factors, and remark that we can consider trivially covered the symbols that they span.

In the following, we identify i; € S with its factor z[i; ...i; + k — 1], and sometimes we
say that x[i;...7; + k — 1] belongs to an anticover S, actually meaning that i; € S.

3 Hardness of k-Anticover for &k > 3

In this section we show that solving k-ANTICOVER, namely, deciding whether a string x of
length n has a k-anticover, is NP-complete for k > 3.

Firstly, observe that we can easily test in polynomial time whether S is a k-anticover,
by checking that each pair of corresponding factors is distinct and, for each position p €
{1,...,n}, that S contains a factor that covers z (i.e., some i; € {p —k+1,...,p}); thus
k-ANTICOVER € NP.

We prove its completeness for k¥ = 3 by a polynomial time reduction from 3-SAT to
3-ANTICOVER, i.e., given a 3-CNF boolean formula F, we build a string X (in polynomial
time) that admits a 3-anticover if and only if F is satisfiable. For k > 3, we remark that the
techniques utilized could be adapted to reduce a k-SAT instance to k-ANTICOVER, although
we omit this analysis for space reasons.

More in detail, we focus on a peculiar variant of 3-SAT, still NP-complete, where each
literal in F is restricted to appear at most 3 times. This variant has been addressed in [22,
Theorem 2.1], where it is shown that SAT “is NP-complete when restricted to instances with
2 or 3 variables per clause and at most 3 occurrences per variable”. Hence 3-SAT with at
most 3 occurrences per variable is NP-complete.!

In the following, let C4,...,C; be the clauses of F, and v1,...,v,, its variables. For a

variable v;, we refer to the 3 occurrences of its positive literal as v}, vZ, and v, and the ones
) ; .

of its negative literal as —v}, =02, and —v}, meaning that each v! (and each —w]) appears at

most once in F.

! For the sake of completeness, we observe that 3-SAT with ezactly 3 occurrences per variable is always
satisfiable as consequence of [22, Theorem 2.4].
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3.1 Overview of the reduction

We here introduce the structure and components of the reduction, which we then explain in
detail.
The string X' is divided in two parts:
The first one models the clauses of F, where literals correspond to specific factors, and
using a factor in the cover of X means using the corresponding literal in F. In essence,
each clause contains three factors corresponding to the occurrences of its literals (where
the three different occurrences of the same literal will correspond to different factors),
and in order to cover all elements of a clause gadget we will need to use at least one of
such factors.
The second one contains coherence gadgets, which in essence enforce us to use factors in
a way coherent with truth assignments (i.e., if factors ¢ and j in the first part correspond
to v, and —wy, then 7 and j cannot be used at the same time in the cover). Say we want
to cover a clause using the factor corresponding to v3: the coherence gadgets will force
us to use the strings corresponding to —wi, —v?, and —v$ to cover the second part of the
string, meaning they cannot be used anymore in the first one (or they would break the
non-redundancy constraint of the anticover).

We present X as a collection of smaller strings corresponding to gadgets, delimited by
what we call jolly characters: these allow us to essentially ignore the order in which the
pieces of the strings are re-combined and prevent any interaction between adjacent gadgets.

Jolly characters. To simplify the explanation, we use the jolly character “x”: in essence,
each single % represents a unique character that does not appear anywhere else in the string,
i.e., we can imagine that at the end of the reduction each * is then iteratively replaced with
a unique distinct character not appearing in the string.
Jolly characters give us 2 useful properties for k = 3:
All factors including x are free factors, so the & — 1 symbols preceding and succeeding a %
are trivially covered by free factors.
In the string A x B, then the k-length factors of A and B that are not free do not overlap:
if % occurs at X'[i], the right-most factor of A and left-most of B that could be non-free
are, respectively, at positions i — k + 1 and 7 + 1.
As a corollary, Ax B and B+ A have the same answer to k-ANTICOVER. More in general,
if we have a collection of strings of the form xA* (starting and ending in %), and we want
to append them to create a single string (X), the order we chose does not impact the
answer of k-ANTICOVER on the string.

3.2 The clauses part

We now detail the clause gadget of X. Firstly, let pé- and n; be symbols in 3 representing,
respectively, the literals vzj and —wzj .

Let Cj be an arbitrary clause of F, say, (—v§ V v} V vl), corresponding to the third
occurrence of the negative literal of v, and the first occurrences of the positive literals of vs
and v7. Then the corresponding gadget is

Cp, = *##hhn3 x #4hhpt x ##hhpix

where
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n3, pt, and pl are the characters representing the corresponding occurrences of the literals,
as described above.

h is a character representing Cj, (i.e., is different in every clause), whereas the character
# is the same across all clauses, and * are jolly characters.

Now observe that the only characters we need to cover are the first i of each pair hh:
Indeed the 2 symbols following and preceding each * can be trivially covered by free factors,
as shown in the example below:

s h I hhp LA

As k = 3, we have 3 possible factors we can use to cover each of these h symbols; in
particular, the first with {##h, #hh, hhn3}, the second with {##h, #hh, hhpt}, and the
third with {##h, #hh, hhpt}.

As h is clause-specific, the two strings ##h and #hh in each set only appear here, and
no constraint is imposed on their usage. However, as the anticover can contain each string at
most once, it will have to include at least one string among hhn$, hhpl, and hhp?.

In essence, adding this occurrence of hhp} to the anticover will correspond to assigning
“true” to wvy.

The first part of X will thus correspond to the gadgets corresponding to all clauses

C4,...,C; appended after each other in sequence (as discussed above, the order is irrelevant).

In the second part of X, we will then enforce coherence of assignments, i.e., using hhpl
to cover Cp, must forbid us from using the factors corresponding to the literal —w7 in the rest
of the clause part.

3.3 Auxiliary gadgets

In order to explain the coherence part, we first detail the auxiliary gadgets that compose it.

Gadget forbid(abc). Suppose we want to make sure that some string of length 3, say, abc,
cannot be used to cover rest of the string. Then we can place the following gadget in A

forbid(abc) = x$abcd x $abe$ x SabeSx

where again the % are jolly characters, but $ is a gadget-specific character, i.e., each occurrence
of a forbidding gadget has a unique character in place of the §.

Similarly to above, we can observe that all characters are covered by free factors except
the b characters in the middle, which can be covered by the strings $ab, abc, bc$: as we need
to cover 3 characters, we must use all three of these strings. In turn, this means the string
abc can not be used anywhere else in X'. We refer to this gadget as forbid(abc).

An important observation is that all factors used except for abc are either free factors, or
contain the character $, meaning those strings will not appear anywhere else and thus not
affect our choices while covering the rest of the string.

Gadget one-of(abc, def). Suppose now we have two strings abc and def, and we want to
make sure that at most one of the two may be used in the cover of the rest of the string.
Then we can place the following gadget in X

one-of (abe, def) = forbid(c€d) x be€de * abc€def*

2:5
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Here too, € is a gadget-specific character which is used only in this specific instance of this
gadget (same as the $ above, we differentiate so as to avoid confusion with the forbid(c€d)
gadget).

Let’s analyze it from left to right. Firstly, we forbid the string c€d so it cannot be used
in the rest of the string. Then, to cover the € in the central part ... x bc€de « ..., we must
use either bc€ or €de. Finally, in the right part ... x abc€defx we need to cover the three
symbols ...c€d...: if bc€ was used in the central part, we cannot use it now, and since we
cannot use c€d either, to cover the ¢ symbol we must use abc (while we can use €de to cover
the remaining two symbols). Symmetrically, if we used €de in the central part of the gadget
instead, we must use def to cover the right part.

It follows that to cover one-of(abe, def) we must use either abc or def, meaning we can
only use one of them in the rest of the string.

As above, all other factors used are either free or include €, so they do not impact the
rest of the string.

Gadget amplifier(abc, def). Finally, the amplifier gadget is the core of our coherence
enforcement. It corresponds to the following string:

amplifier(abe, def) = forbid(cde) * abedef*

Differently from the gadgets above, this one does affect strings other than the input ones:
we call bed the trigger of the amplifier. Specifically this is the word made from the last two
characters of the first string abc, and the first of the second string def. Furthermore, note
how the string cde made of the third character of the first string, and the first two of the
second, becomes forbidden.?

Focus now on the right part: in ... x abedef* only the symbols ...cd... are not covered by
free factors. Since cde is forbidden, to cover them we have two ways:

use the trigger string bed.

use both abc and def.

As the name suggests, this gadget amplifies the effects of using the trigger cde elsewhere
in X, as it will then force us to use both abc and def to cover amplifier(abe, def). Note
that this gadget does create and affect factors that are not free and may occur somewhere
else, so we will analyze its usage carefully.

3.4 The coherence part

Let v; be a variable of F. In the clauses part, its literals can appear in up to six clauses. Let
w.l.o.g. the symbols 1...6 represent the identifiers of these clauses: the factors representing
the literals will thus be {11p}, 22p?,33p?} for the positive ones, and {44n}, 55n2,66n3} for
the negative.?

As explained above, say that the gadget of clause C} contains an occurrence of the factor
22p?: we want to say that using this occurrence of the factor in the anticover means that
v; is set to true (thus C}, is satisfied by v;). In order to enforce coherence, and make the
anticover correspond to a satisfying assignment, we must then make it impossible to use a
factor corresponding to a negative value of v; anywhere in the clauses part.

2 Note that amplifier(def, abc) is a different gadget: it will forbid fab and its trigger will be efa.
3 If a literal, say pg, does not appear in a clause of F, let it be represented by x pg‘
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More formally, we want to create a gadget for a variable v; which, to be covered, forces
us to use either all of {11p},22p?,33p3}, or all of {44n},55n2,66n3} (this way, one set of
strings is fully “burned” to cover this gadget, and only elements from the other set may be
used in the rest of the string).

Gadget enforce(v;). We do so by using the one-of gadget and a nested use of the
amplifier gadget, with the following gadget made of 5 parts, which we call enforce(v;):
amplifier(11p},2p?3)

amplifier(22p?,33p3)

amplifier(44n},5n26)

amplifier(55n?, 66n)

one-of (1p}2,4n}5)

Al e

Now, key observations are that 2p?3 in gadget 1 is the trigger of gadget 2, while 5n26 in
gadget 3 is the trigger of gadget 4, and finally, the arguments of gadget 5 are the triggers of
gadgets 1 and 3.

In order to cover one-of(1p}2,4nl5) we must use (at least) one between 1p;2 and 4n}5.
If we choose 1p}2 to cover gadget 5, this triggers gadget 1, so to cover gadget 1 we must use
both 11p} and 2p?3; in turn, this triggers gadget 2, forcing us to use both 22p? and 33p?; on
the other hand, gadgets 3 and 4 can be covered using their respective triggers, meaning that
all strings corresponding to positive literals {11p}, 22p?, 33p3} are used by the cover, but it
is not necessary to use any of the negative ones {44n}, 55n2, 6613}, which can be used in the
clauses part. If, instead, we cover gadget 5 using 4n}5, the situation is exactly symmetrical:
we burn all the negative literals {44n}, 55n2,66n;} on gadgets 3 and 4, but we may cover
1 and 3 using the triggers, and using the positive literals {11p}, 22p?, 33p?} in the clauses
part.* We have thus proven the following result.’

» Theorem 3. F is satisfiable if an only if X has a 3-anticover. As a consequence, problem
k-ANTICOVER is NP-complete for k > 3.

4 Polynomial-Time Algorithm for k = 2

In this section, we show that that 2-ANTICOVER can be reduced to 2-SAT in O(n|X]) time
and space, obtaining the following result.

» Theorem 4. Problem 2-ANTICOVER can be solved in O(n|X|) time and space.

Proof. We run first a preliminary test to see if the input string = contains a factor of length 3
that occurs three or more times in it. A 2-anticover cannot exist a 2-ANTICOVER in this
case, and we answer no. Indeed, let abc be a a factor that occurs three or more times in x.
Since the position corresponding to b can be covered either by the factors of length 2, ab or
be, when we find the third occurrence of abe, we cannot use ab or be as it would be chosen
twice. Hence, there is no way to cover the position of b in the third occurrence of abc in any
2-ANTICOVER. Running this test can be easily done in O(nlog|X|) time [12].

For completeness, we remark that it is crucial to use amplifier(l 1p},2p?3) instead of
amplifier(2p?3,11p}): the latter one forbids the string 311, which does not contain % nor char-
acters representing the literal and might affect other coherence gadgets. Instead amplifier(11p;,2p?3)
forbids p} Qp?, which is safe as it may not appear in other coherence gadgets.

Again, we remark that all the gadgets in this reduction can be extended to any k rather than just 3,
although we omit this for space reasons.
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Instead, if this preliminary test is positive, we build a 2-SAT formula as follows. Let i be
any position in the string x, and p; the Boolean variable denoting whether or not the factor
a[i...i+ 1] is chosen in the 2-ANTICOVER.

We have a first group of clauses C;, for 1 < i < n, where C; says that the first (i = 1) and
last (i = n) positions must be covered by the only possible factors z[1...2] and z[n—1...n],
respectively, and any other position must be covered by the factor(s) of length k = 2 starting
at position 7 — 1 or 2:

Ci=(m) (1)
Cn - (pnfl) (2)
Ci=(@pi-1Vp) 2<i<n-—1 (3)

Furthermore, when x[i...i+ 1] = x[j...j + 1] for ¢ # j, we should take at most one of
them, and so we cannot take both, giving the second group B;; of clauses:

Bi; = (—p; V —pj) 1<i<j<nsuchthat z[i...i+1]=x[j...j+1] (4)

Let F be the 2-SAT formula obtained by putting the clauses C; and B;; in logical A. We
observe that F contains n clauses C; and O(n|X|) clauses B;;. Recall that each factor of
length 3 can occur at most twice in . Thus, given any position i, we claim that there are
at most 2|X| 4+ 1 positions j # i such that z[i...i 4+ 1] = z[j...j + 1]. Indeed, any other
occurrence of s = xz[i...i+ 1] is followed by a third symbol, say, ¢ (unless that occurrence is
a suffix of ). But sc is a factor of length 3, and can appear at most twice. Since we have at
most |X| choices for ¢ plus the end of string case, this gives the desired upper bound. As
there are at most n positions i, and for each of them there are at most 2|%| + 1 positions j
where the same factor of length 2 occurs, we conclude that there are O(n|X|) clauses B;;.
Summing up, F has O(n|X]|) size and it can be built O(n|X|) time.

It is straightforward to see that F is satisfied if and only if there is a 2-ANTICOVER for
string . Since 2-SAT can be solved in linear time in the size of the formula F [5], we obtain
the bounds stated in the theorem. <

5 Exact Exponential-Time algorithms for k£ > 3

In this section we consider a better algorithm than a brute-force algorithm for solving
k-ANTICOVER. The task of k-ANTICOVER is finding a subset of positions satisfying the
given constraint. By trying all subsets of positions, we can solve k-ANTICOVER. Since
the number of subset of positions is O(2"~%), the brute-force algorithm runs in O*(2"~%)
time, where the O*(-) notation ignores poly(n) factors. Note that |X| and k is bounded by
n. Thus, O*(-) notation ignores poly(|X]) and poly(k) factors. In this section, we give two
exponential time algorithms. The former algorithm breaks the trivial 2" ~*-barrier for any
k > 3. The latter algorithm is clearly better than the brute-force algorithm and, in addition,
it outperforms the former algorithm when £ > 9.

5.1 Breaking the trivial barrier

Let = be a string with length n and k£ be an integer. We consider a set of positions of x
from 1 to n — k + 1. We partition this set as follows: Let S = {S1,...,S¢} be a partition of
positions 1,2,...,n — k4 1. For any two substring y,y’ with length k starting from position
j and j’ respectively, both j and j' are in S; if and only if y = 3. That is, each partition
corresponds to some substring with length &k in z. For example, given a string abcabca and

k=3,8={{1,4},{2,5},{3}}.
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We describe our proposed algorithm. Let S; € S be the set containing position 1. We
first pick position 1 to cover the 1-st character on x. Hence, after choosing 1, we need to
solve at most |S7| subproblems. Note that for each subproblem, the first k letters are already
covered, and thus, we have k options for covering the (k + 1)th letter in each subproblem.

Since we cannot pick positions which already are picked, the time complexity T'(-) of this
algorithm satisfies the following inequality: T(n —k 4+ 1) < ¢T'(n — k + 1 — ¢), where ¢ is the
size of partition from which we pick a substring. Since the sum of the size of the partitions

is n — k, the time complexity is O* (¢™=¢).

It is known that this formula takes its maximum when ¢ = 3 [11]. Hence, the time
n—k+1

complexity of this algorithm is O*(3"75 ) = 0*(3"5") time.

» Theorem 5. k-ANTICOVER can be solved in O*(3HT%) time and polynomial space.

5.2 A better upper bound for large k

In this subsection, we give a faster algorithm when £ is large. Now we first introduce some

terminologies. A set S = {s1,...,s¢} is a k-cover if U, ,{sis---,si +k} = {1,...,n}.

Hence, a trivial k-cover is {1,1+ k,1 4+ 2k, ... }. Note that each s; corresponds to a position
of x but a k-cover may have two positions which derives from the same substring. A k-cover
S is minimal if there is no subset of S which is a k-cover. We say that s; is redundant in S
if S\ {s;} is also a k-cover.

» Lemma 6. Let x be a string and k be an integer. Then, if x has a k-anticover, then there
18 a minimal k-cover S such that S is also a k-anticover.

Proof. Let S = {s1,...,5¢} be a k-anticover. Since S is a k-anticover, S\ {s;} is also
k-anticover if S\ {s;} is a k-cover of z. Hence, S becomes a minimal cover by removing
redundant elements one by one. Hence, the statement holds. <

From Lemma 6, we can determine whether x has a k-anticover by enumerating all minimal
k-covers. Hence, in the following, we propose an enumeration algorithm for all minimal
k-covers.

We firstly give an upper bound of the number of all minimal k-covers of substrings with
length k£ + 1 such that each minimal k-cover has no redundant positions. Assume that by
concatenating these [n/(k + 1)] substrings, we can reconstruct the input string. Let us
consider the following problem COVER(z, k): given a string x of length k + 1, the task is to
enumerate all minimal k-covers in it under the assumption, for 0 < ¢ < k — 1, that we can

select the length of a first interval s; between 1 to k and we can pick the last k£ — 1 characters.

For example, we consider an instance = abed and k = 3. The subproblem COVER(z, 3) has
the following six solutions: abed, abed, abed, abed, abed, and abed. The next lemma, shows
the upper bound:

@ minimal k-covers.

» Lemma 7. Problem COVER(z,k) has at most

Proof. Let i be the length of a first interval. Since we cover all characters, we have to choose
a position 1. In addition, we pick the second position between 2 and i 4+ 1. Since the length
of x is k + 1, then it is a minimal k-cover. Hence, we have i choices for each i. Therefore, we

have > o, ot = k(k;l) solutions and the statement holds. <
From the above lemma, the number of solutions in each subproblem is at most w

In addition, the number of subproblems is 747 + 1. Now, we can obtain all minimal k-covers
which have no redundant positions between c¢(k+1) 41 to (¢4 1)(k+ 1) for any non-negative

integer ¢ by trying all the combinations of concatenating solutions of all the subproblems.

Because any k-anticover has no redundant positions, the following theorem holds.
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1
Table 1 The list of values of (@) k1 We round the base of the exponent up to the fourth
digit after the decimal point. Note that 33 is approximately equal to 1.4423.

k | 3 5 9 10 20 30
k(k+1) \ FrT
(B 1.5651 1.5705 1.4633 1.4396 1.2900 1.2192

n

» Theorem 8. There is an algorithm solving k-ANTICOVER in O*((@) R
polynomial space.

! ) time and

From Theorem 8 and Table 1, the latter algorithm is better than the former algorithm if £ is
larger than 9. Combining two theorems, we obtain the following theorem.

» Theorem 9. Problem k-ANTICOVER can be solved in O*(min{3ngk7 (@)ﬁl }) time,
using polynomial space.

6 Concluding remarks

In this paper we proposed the k-ANTICOVER problem, a natural combinatorial problem
on strings with applications to fields such as computational biology. We have shown that
finding whether a string of length n can be covered by (possibly overlapping) distinct factors
of length k is polynomial for k = 2, and NP-complete otherwise.

We have also shown how to design exact exponential algorithms for general k, which
improve upon a trivial brute-force approach and get progressively more efficient for larger
values of k.

A question that remains open is whether the proposed algorithms match the inherent
computational complexity of the problem or whether faster solutions exist. Another is
whether the problem remains NP-complete under natural restrictions, such as an alphabet of
constant size.
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1 Introduction

A tandem repeat, or square, is a string which consists of two consecutive identical occurrences
of a substring or root, e.g. abab. Finding all tandem repeats in a given string is a well-studied
problem with many applications in diverse areas such as biological sequence analysis and
data compression. A maximal run in a string S is a substring of S that is periodic and
cannot be extended at all to the right or left, e.g. ababa is a maximal run in the string
abaababac. A maximal run in a string represents contiguous tandem repeats, all with periods
conjugates of each other, and as such, maximal runs have been used to succinctly encode all
tandem repeats. For example, the maximal run ababa represents consecutive tandem repeats
with roots ab and ba.

In this paper, we consider the problem of finding tandem repeats in input that consists
of two parallel strings. We define a double string, and introduce the corresponding notions
of tandem repeat and run in a double string. Double strings are ubiquitous in nature,
as molecules such as DNA come in pairs.! Hence, the problem considered is interesting
from both a theoretical and practical perspective. However, the strength of this paper’s
contribution lies in its applicability to unrelated variants of the tandem repeats problem. We
show how the solution to the double string tandem repeats problem can be used to solve two
different problems. The first is finding 2D corner-sharing tandems, and the second is finding
all scaled tandem repeats. We are confident that more applications of double string pattern
matching will be discovered in the future.

In Section 2 we present precise definitions and examples of tandem repeats and runs in
a double string, and then prove upper and lower bounds on the number of occurrences of
such runs. In Section 3 we present an O(nlogn) time algorithm for locating all double string
tandem repeats. We then extend this algorithm to deal with double string tandem repeats
while allowing k& mismatches. In Section 4 we provide a reduction of the 2-dimensional (2D)
corner-sharing tandem problem to the double string tandem repeats problem. We thus obtain
a more efficient algorithm for locating all corner-sharing tandems in a 2D text, both with
and without mismatches. Finally, in Section 5 we solve the scaled tandem repeats problem by
reducing it to a tandem repeats problem on double strings.

2 Definition and Characterization of Double String Tandem Repeats

We use S]i] to denote the ith character of a string .S, and S[i...j] to denote the substring of
S from S[i] through S[j].

» Definition 1. A double string of length n consists of two parallel sequences over a given
alphabet, each of length n, indexed by 1...n. We call the two strings S1 and Ss.

» Example 1. A double string of length 5, with S; = aabca and Se = ccbba.

12345
aabca
ccbba

» Definition 2. A double string tandem repeat (2-str TR) is a substring of S1 and a
substring of S that are identical and consecutive. As in one string, we call the repeating

! In DNA there are specific relationships between corresponding bases, while our definition of a double
string does not imply any such relationship.
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substring the root or period of the 2-str TR. Specifically, a 2-str TR with length 2p beginning
at location i in Sy, implies that the substring Si[i...i+ p — 1] is identical to the substring
Sali+p...i4+2p—1]. A 2-str TR beginning at location j in So implies that Sa[j...j5+p—1]
is identical to the substring S1[j+p...J + 2p —1].

» Example 2. A double string tandem repeat with root abc begins at location 2 in S.

12345678
aabcaabb
ccbbabcd

For the remainder of the paper, we assume that the 2-str TR begins in S7; all lemmas
and algorithms apply with minor modifications to indices for those beginning in Ss.

» Definition 3. A 2-str run (i, 4,p) in a double string (S1,S52) of lengthn, 1 < i < j <
n—2p+1,1<p<n/2 is a sequence of one or more 2-str TR’s with period size p beginning
at each location i < £ < j in S1. The run is said to be maximal if it cannot be extended to
the left or right, i.e. both (i —1,4,p) and (i,j + 1,p) are not 2-str runs.

» Example 3. A maximal run with period size 3 occurs at locations 1...8 in Sy and 4...11
in Sy. It can be represented by the triple (1,6, 3), since 1 is the start of the leftmost tandem,
6 is the start of the rightmost tandem, and 3 is the period size.

1234567891011
abcabxyzzz z
aaaabcabxy z

Although all of the consecutive 2-str TR’s in a 2-str run have the same period size, the
actual characters in the periods can be different for different tandems in the same run, as is
evident in Example 3. Thus, transitivity in equality of location ¢ with location ¢ — p and

i+ p, for period p, which holds trivially for a run in a string, does not hold for a 2-str run.

Nevertheless, 2-str runs can still be used as an efficient encoding of consecutive 2-str TR’s,
and as we show in the next subsection, there cannot be too many of them.

2.1 The number of maximal 2-str runs in a double string

» Lemma 4. Two distinct mazimal 2-str runs in a double string, with the same period size,
cannot overlap within S1 or Ss.

Proof. Let p be the period size of two distinct maximal 2-str runs in a given double string, and
let j be the rightmost location of the 2-str run that has the leftmost starting location. Due to
the maximality, there must be a mismatch following the first run, thus S1[j+1] # So[j+p+1],

and location j + 1 cannot be included in any 2-str run with period p due to the mismatch.

Therefore, the second 2-str run must start to the right of location j + 1 in S; and hence
cannot overlap. |

Note that in one string, two maximal runs with the same period size may overlap, as long
as the overlap is shorter than the period size, for e.g. abcabcxbez.

» Lemma 5. There can be O(nlogn) mazimal 2-str runs in a double string of length n.

Proof. For a given period p there are no more than n/p maximal 2-str runs since they cannot
overlap by Lemma 4. Since p can be 1...n/2, this yields E;fln/p, a harmonic series which
is bound by O(nlogn). <

3:3
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» Lemma 6. There can be Q(n) mazimal 2-str runs in a double string of length n.

Proof. If we take any S; that contains ©(n) runs (e.g. Fibonacci string [9]), and then set
S1 = So, we will get a double string with ©(n) 2-str runs, since the first period of each run
in S; will pair up with the second period in Ss. <

Remark: We point out that the gap of logn between the upper and lower bound remains
an open problem.

2.2  Primitivity in 2-str TR’s and Runs

A string S is primitive if it cannot be expressed in the form s = u/, for some integer j > 1
and some prefix u of S. For example, ababa is primitive, but abab is non-primitive. The
notion of primitivity is very relevant to tandem repeats, since tandem repeats with primitive
roots are really the only interesting tandem repeats. In fact, in a string, a maximal run with
a primitive root encodes the information about all tandem repeats that span its substring, for
e.g. ababababababa encodes consecutive tandems with periods 2, 4, and 6. We can encode this
output as a triple (4, j,p), where i is the start location of the leftmost tandem, j is the start
of the rightmost tandem, and p is the smallest period (in the above example it is (1, 10, 2)).
This encoding is commonly used in algorithms that report all tandem repeats in a string.
On the other hand, the concept of primitivity in a 2-str TR is more subtle. We cannot
say that we are only interested in TR’s with primitive roots, as we will miss some TR’s in
the double string (see Example 4). Furthermore, a non-primitive TR may be a substring of
a longer run as in Example 5. This non-primitivity certainly should not disqualify the run.

» Example 4. The 2-str TR beginning at location 1, of length 8, has non-primitive root
abab. This is not implied by the 2-str TR at location 3 with primitive root ab.

12345678910
ababcccccec
ccccababab

» Example 5. The TR at location 1 has primitive root zbab, the TR’s at locations 2, 3, and
4 have non-primitive roots baba, abab. There is also a 2-str run of period 2 beginning at
location 4, which in a sense encodes the TR of period 4 beginning at location 4.

1234567891011
xbabababab c
ccccxbabab a

We conclude that since some non-primitive TR’s must be reported, an algorithm that
locates all 2-str TR’s must search for these TR’s. Hence, our algorithm finds and reports all
2-str TR’s, including those that have non-primitive roots. For example, when searching the
double string Sy = Sy = a”, | 5| maximal 2-str runs will be found, one for each period size.
If necessary, those that are not interesting can be filtered out by finding all 1d runs in each
string, and merging this with the output of our algorithm, since every 2-str TR that has a
non-primitive root will be part of a run in each individual string of the double string.

3 The Algorithm

A common idea used in algorithms that find tandem repeats in a string, is to search for all
tandem repeats that cross a given point (see for e.g. [11, 15]). Instead of fixing the starting
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point of a tandem, and searching for xx, the algorithm fixes certain points that the set of
contiguous tandems must cross, and searches for all tandems that cross that point. We use
this idea, searching for each period size separately, and reporting consecutive tandem repeats
as a single run. We follow the framework of the Main-Lorentz algorithm [16] (see pseudocode
in Algorithm 1). Given an input double string (S, S2) of length n, in the first iteration,
all runs that cross the center of the string are found. In the following iteration, (S, Sa) is
split into two halves, and each one is searched individually. (To simplify the presentation
we assume that n is a power of 2.) As implemented in Algorithm 1, this continues for logn
iterations.

The runs that cross the center are classified into two groups. A right run has more than
half of its characters to the right of the center of the string, and a left run has the majority
of its characters to the left of the center. Algorithm 2, together with Figure 1, describes the
procedure that finds all right runs; by symmetry, all left runs can be found.

The novel idea of Algorithm 2 is that computing the longest common extensions using
two different strings yields the desired results. The forward comparisons are done with a
substring of S; against a substring S3, and the same for the reverse comparisons. These
extensions define which runs occur in the double string crossing the midpoint. The standard
KMP algorithm [10] is used to compute all of the forward and reverse extensions in linear
time, as done in [16]. The input pattern to KMP for the forward extensions is the string
S1[5 ...n] and the text is S[§ 4+ 1...n]. Conversely the reverses of Si[1...% — 1] and
Sa[1...n] are used as input to KMP for the reverse extensions. To ensure maximality, the
2-str runs that reach the end of the substring being processed can be discarded in every
iteration other than the top level, since they are non-maximal and will be found in a different
iteration. This will ensure in practice that each 2-str run will be found only once.

Algorithm 1 Find Runs in a Double String.

Input: double string (S7,.S2) of length n
Output: all runs that occur in the double string

for ¢ = logyn downto 1 do > for logn iterations of ML framework
for /=0 ton/2" — 1 do > for each piece of the input of width 2
FindRightRuns((S1, S2) , £2¢ + 1, (£ + 1)2%)
FindLeftRuns((S1, S2) , £2° + 1, (£ + 1)2%)
end for
end for

1)
5, 3
51 E n
S,
L
52 ——

Figure 1 Computing right runs: The figure shows the first iteration, where beg = 1 and end = |S1].
91 is the length of the forward extension that results from matching Si[% ...n] to S2[5 +p...n]. b2
is the length of the reverse extension of Si[1... 4 — 1] and S2[1... % +p—1]. If 61 + d2 > p, then
there are tandem repeats with period size p beginning from location Sl[g —02... % + 1 — 1]. These
are reported by the algorithm as a single run.

3:5
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Algorithm 2 FindRightRuns.

Input: double string (S, 52), beg, end (beginning and end indexes of substring to search)
Output: all right runs that occur in the double string that cross the midpoint.

n =end — beg + 1

mid = (beg + end) /2

for p=1ton/2do > find runs with period p

01 = length of longest common prefix of Si[mid...end] and Sa[mid +p...end]
> Forward Extension
02 = length of longest common suffix of Si[beg...mid — 1] and Sa[beg...mid + p — 1]
> Reverse Extension

if 91 + 02 > p then > Check length
if 01 <n/2 AND 62 <n/2 —1 then > Check for maximality
report run (mid — do, mid + §; — 1,p)
end if
end if
end for

» Lemma 7. Algorithm 1 finds all 2-str runs in a double string (S1,S2) in O(nlogn) time.

Proof. Every run within (57, S2) crosses the center of a substring of S at some point in the
algorithm. As proof of this, consider a run that does not cross the center of Sy, and hence is
not found in the first iteration. The run will be divided among different substrings at some
point since in the final iteration the input strings are of length 1. In the step prior to its
division, a given run must cross the center since the center becomes the splitting point of the
following iteration. In each iteration, only one 2-str run of a given period can cross the center,
since no two runs of the same period size can overlap by Lemma 4. Since the algorithm
checks each possible period size, all 2-str runs will be found by the algorithm. Since there
are O(logn) iterations, and each iteration takes O(n) time, the total time complexity of
Algorithm 1 is O(nlogn). <

3.1 Tandem Repeats in a Double String with k-mismatches

The Hamming distance between two strings of equal length is the number of positions at
which the corresponding characters are different. Allowing a Hamming distance up to k
between the two occurrences of the root results in a k-mismatch 2-str TR. (The concept
of a k-mismatch run applies as well, where a run includes consecutive k-mismatch tandem
repeats, i.e. each repeat in the run has at most & mismatches, and overall the number of
mismatches in the run is not relevant.) In this section we discuss a method for searching for
2-str TR’s with up to k& mismatches.

» Example 6. A double string tandem repeat with & = 1 mismatch begins at location 2
in Sl-

12345678
aabcaabb
ccbbbbcd

Just as we were able to directly extend the Main and Lorentz idea in the previous section,
we are able to extend the algorithm of [12] which solves the tandem repeats with k-mismatches
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problem in 1 string. First, instead of using KMP to find the longest common extenstions,
the algorithm uses the “kangaroo method” that relies on suffix trees and Lowest Common
Ancestor (LCA) queries to give the position of the first mismatch between strings [6].

Hence, suffix trees in both the forward and reverse direction must be constructed for each
S7 and S, and preprocessed for LCA to allow constant time Longest Common Prefix (LCP)
queries [8, 14].

As in the previous algorithm, there are O(logn) iterations and in each iteration, the
repeats that cross the center are found by using the forward and reverse extensions. However,
in this case the comparisons are done allowing up to k errors in each direction. Specifically,
each possible period p is searched for separately. For a given p, each LCP query returns a
position of mismatch, and when the k 4 1st mismatch is encountered, we stop. Finally, the
algorithm considers each pair, (k',k — k') for 0 < k¥’ < k. For each pair, we check whether a
2-str TR, exists when allowing k&’ mismatches in the reverse extension and k — k' mismatches
in the forward extension.

Time Complexity: The number of iterations is slightly smaller than in the previous
algorithm, since for substrings with length < k, our algorithm should not be run, but a
simple O(k) time method should be used. In each iteration, there are O(k) LCP queries
done for each possible period size. In addition, before reporting in a particular period, we
consider O(k) pairs, allowing a number of mismatches to the left and right. Hence, each
iteration takes O(nk) time, while the overall runtime is O(nklog(n/k)).

4 Application 1 - Corner Sharing Tandems

» Definition 8. A 2D corner-sharing tandem (cs-tandem) in a 2D array, is a configuration
consisting of two occurrences of the same subarray that share one corner (see Figure 2).

In [2], Apostolico and Brimkov mention that all primitive corner-sharing tandems can
be found in O(n*) time using similar techniques to their algorithm that they presented for
side-sharing tandems. In this section, we reduce the problem of finding all corner-sharing
tandems in a 2D array to the problem of finding tandems in a double string. We thus obtain
an O(n®logn) time algorithm for this problem. Although the actual output may be of size
O(n*) cs-tandems, we can reasonably represent the set of cs-tandems with the set of maximal
cs-runs, which has size at most O(n3logn). For the special case of tandems that are square
(i.e. of size p x p), the algorithm acheives O(n?logn). Finally, the algorithm that allows
mismatches in a 2-str TR is also extended to 2D cs-tandems with mismatches, as described
in Section 4.3.

Figure 2 The two configurations of a 2D cs-tandem.

» Definition 9. A 2D corner-sharing horizontal run (cs-run) is a sequence of one or more
corner sharing tandems with the same period size occurring consecutively.
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» Lemma 10. There can be O(n®logn) and Q(n?®) mazimal cs-runs in a 2D array of size n?.

Proof. The proof will be included in the full version of the paper. |

4.1 Reduction

The technique of naming in 1d is that of consistently replacing identical substrings with
an integer called the name. We use the following 2D naming technique to reduce the 2D
corner sharing tandem problem to the 2-str tandem problem. Given an input 2D text T,
we construct n/2 2D texts by naming all subcolumns of T. We create a new text called T},
for each 1 < h < n/2, such that Ty[r, c] is the name of the height h substring in column ¢
beginning at row 7.

Each two rows, ¢ and i + h, in each text of names T}, 1 < h < n/2, is input as a double
string to the algorithm that finds tandem repeats in a double string. Since we have a text
of names for each height, every corner sharing tandem of height h’, will appear as a 2-str
tandem in the text of names for T},. See Figure 3 for an example.

The time complexity for the reduction is O(n?) since we construct O(n) texts, each in
time linear to the size of T', as the naming can be done during construction of a suffix tree of
all columns [17]. Algorithm 3 presents pseudocode for the corner-sharing tandem problem.
Algorithm 1 is called O(n) times for each of the O(n) texts, and each running of Algorithm 1
takes O(nlogn) time. Overall, the 2D corner-sharing tandem problem is solved in O(n?logn)
time.

Algorithm 3 Corner Sharing Tandems Algorithm in 2D Text.

Input: 2D text T of size n x n
Output: all corner-sharing tandems in T’

Preprocessing: Construct n/2 texts of names, Tj,, 1 < h < n/2

Text Scanning:

for h =1ton/2 do > for each height h
forr=1ton—2h+1do > for each row r in T},
call Algorithm 1 with rows r and r + h in T}, as Sy, S respectively.
end for
end for

4.2 Corner-Sharing Square Tandems

If the problem of finding all corner-sharing tandems is limited to those tandems whose roots
are of size p X p, we can improve our algorithm to run in O(n?logn) time. We will have
to show two things: 1: a transformation of the input 2D text into input to the double
string problem in less time. 2. The search phase of the algorithm can be improved. The
transformation can be done using the techniques of [7] for finding 2D palindromes, while the
search phase can be shown to be faster using a counting trick. Details are omitted due to
lack of space.
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Figure 3 Input text T is shown on the left, containing a run with period size 3 x 4, beginning at
its upper left corner. The two corresponding rows in 75 can be viewed as a double string, and the
2-str run with period 4 found with substring “123451” in Sy directly corresponds to the cs-run in 7.

4.3 Corner Sharing Tandems with k-mismatches

A 2D corner sharing tandem that allows up to k& mismatches between copies is called a k-
mismatch cs-tandem. A k-mismatch cs-run can be defined analogously as a set of contiguous
k-mismatch cs-tandems, such that each individual cs-tandem contains at most & mismatches.
The algorithm described in Section 3.1 searches for tandem repeats in a double string allowing
k mismatches. The reduction of Section 4.1 can be used in a similar manner to reduce
the k-mismatch cs-tandem problem to the k-mismatch double string problem. However,
each mismatch between names in the 2D text may consist of one or more mismatches in
the column, and will therefore need further investigation. Hence, we will need to process
the mismatching columns when attempting to discover the actual tandems. Details will be
included in the full version of the paper.

5 Application 2 - Scaled Tandem Repeats

5.1 Definitions and Properties

Denote the string aa . .. a, where a repeated r times, by a”. Let S = aj'a3? ... a;j be a string
for which a; # ai11. Let e € N, we say that Sl is an e-scaling of S if Sl¢l = aitcayre. .. agj'e

» Definition 11. A scaled tandem repeat is a string UU’ where U’ is an e-scaling of U for
some integer e, i.e. U' = U, We call the period of a scaled tandem repeat the length of the
first copy, i.e. |U|.

We say that a scaled tandem repeat is sharp if the the last letter of U is not equal to the
first letter of U’. Similarly, we say that scaled tandem repeat UU’ occurring within text T is
a sharp occurrence, if the character in 7" prior to U differs from the first character of U, and
the following character in T" differs from the last character of U’. Using the techniques of [1]
it is possible to show that any solution to the problem of finding sharp occurrences of sharp
scaled tandem repeats yields a solution to the general scaled tandem problem with the same
complexity. Thus, we solve the following problem.

Problem Definition. Given a 1-dimensional text T =ty ...t,, find all sharp occurrencces
of sharp scaled tandem repeats (SSTR) that are substrings of T
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We assume that the number of distinct characters in a sharp tandem repeat is at least
two, otherwise it would not be sharp. We also assume that the scaled tandem repeats we are
seeking are of scale e > 1, since for e = 1 this is the known case of regular tandem repeats.

Define 7" as the run-length encoding (RLE) of the given text T, where each sequence of

characters is replaced with a character and exponent. T, . is the string of characters of the

har

RLE of T, and T/,,, is the string of exponents of 7. In a similar manner to [5] we define

the quotient array Sg[l..n — 1] of array of numbers S[1..n] as follows: Sg[i] = S[i + 1]/S[i].
» Lemma 12. No more than O(nlogn) SSTR can occur in a string T of length n.

Proof. Every SSTR in T must correspond to a tandem repeat in T.,,.. By the Three
Squares Lemma [4], each location in 77, = can have at most O(logn) tandem repeats. We
conclude that there are O(nlogn) SSTR’s in T <

The naive algorithm for the problem would consider every substring of the input text T’
and check whether it is an SSTR resulting in time O(n?). Known methods of using suffix
trees and LCA’s on the character and quotient arrays of the string (see e.g. [13]) , allow
checking in constant time, for every substring U of T, whether the subsequent substring of
T is a scaled copy of U. Thus the time complexity of straight-forward improvements for
finding all scaled tandem repeats would be O(n?).

In the next subsection we solve the SSTR problem in a more efficient way by reducing
the problem into a tandem problem on double strings. To this end, we first generalize the
definition of a run as a concatenated string of repeats, so that the problem can fit into the
framework described in Sections 2 and 3.

» Definition 13. Let T be a string, 1 <i < j <n. We say that there is a scaled run from
T[] to T[j) if there are k,t; i < k <€ < j, for which Je,T[k...j]=Tli... 0]l e is called
the scale of the run. The period of the run is the period of the leftmost scaled tandem repeat
in the run. A scaled run with scale e is maximal if it cannot be extended by one character
either to the right or the left, i.e. there are no scaled runs from T[i] to T[j + 1], from T[i — 1]
to T[j], nor from T[i — 1] to T[j + 1] with scale e.

[ ]
k
R : j
ababaabbaabbaaaabbbbaaaabbbbaaaaaaaabbbbbbbbaaaaaaaabbbbbbbb

Figure 4 An example of a scaled run.

5.1.1 The Compact Region Idea for Scaling

In [3], Butman, Eres and Landau showed a linear-sized data structure of compact regions of
text T that enables efficient work on scaled matching problems. The idea is to construct n/2
collections of strings 71, ..., T}, /2, where the sum of the lengths of the substrings in all T}’s is
O(n). We will then seek dual tandems of each such substring S in the T;’s and a substring
of T whose length is O(]S]).

We provide below the definition of the compact regions data structure, which is based
upon the following observation.

» Observation 1. If a substring S scaled to e occurs sharply in o7 - - op% then js,. .., jk
are multiples of e.
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Following the above observation, the compact regions structure computes for each scale e
a compact text T, in the following two steps:
Step 1: Locate all the regions in T' where the symbols appear in scale e. Add the symbol $
as a separator between the regions.
Step 2: Expand these regions to include the symbols on their boundaries. In 9rder to simplify
the computation of Stage 2, a symbol ¢;7 of T' is replaced in T, by thTJJ. Butman et
al. [3] showed that the total length of all regions is O(n), and that the compact regions data
structure can be constructed in linear time.

T = a?b®a®c®b*a®b®a®c’b%a*c®a’b a’h®c’h®

T, = a'b?$b%a*c3b2a*b*$b*a'$atc3$cibla®ctat$at$a$atb3c*$ctb*$b*
Ty = $b'$b'a’$a?c3b$b a?$a’b3atc?$c?$at$atc?$c?a®$al b?c3h3

T, =$b*$b'a?c'$c bl a?b?$b2$c $c' $atc?a?$a?$b*$b c2$c?b2$b?

Ts = $bla'$alc$cl$a’$ab*$b$ct$cr$ctal$a$b b ct$ctbi$ht

Te = Sa'$a'c'$a'$albr$b $c $ct$clsclal$a$h1ct$ct b $ht

T, = Sa'$a'$a’$a'b'$b $ct$ct$ctat$a$cr$ct b1 $h?

Tg = Sa'$a'b'$b'$ctat$a$c$cibi$h?

T, = $b'$al$ctpt

Figure 5 compact regions data structure example.

5.2 The Reduction

The reduction is based on the following lemma.

» Lemma 14. Let T be a text and assume that there is a scaled tandem to scale e > 1
starting in index i of T, where the length of the period is p. Then the scaled part of the
tandem is represented by a substring of a single compact region in T.. In fact, the substring
in T, is precisely the period.

Proof. Since the scale of the period is e, then e divides the exponent of every symbol in the
scaled part of the tandem. We write in T, the scales divided by e therefore what is written
in T, is precisely the period. |

Assume that a compact region C in T, starts at location 7 of the RLE T” of T. Lemma 14
assures us that any scaled tandem whose scaled repetition occurs in C' cannot start in any
index smaller than ¢ — |C| and cannot end in any index larger than i+|C/|. Let X be the string

composed of |C| occurrences of o', where o is a symbol not in the alphabet. Let C’ = XC.

Then every double string tandem between the strings 7"[i — |C|..i 4 |C|] and C”’ is an e-scaled
tandem in 7. The figure below illustrates this. Both abaabb and abaabbccaabbaaaabbbbecce
are 2-scale tandems. They both appear as double string tandems between the appropriate
substring of 77 and C".

3:11

CPM 2020



3:12 Double String Tandem Repeats

index i
Mny Ny, M3 Ny Ns Ng N
Tr=a11a22a33a44a55a66a77a1 bl a2b2C2a2b2a4b4C4d4
~
=~ l\_l N
[ O e 5 JL-> J
§ \‘ \\

N o N
C'= ol ol ¢! 0! ot 0! ot ot oPalbielalbhla?h?i2d?
—_ ]

L )

Cin TZ

Figure 6 2-scale tandems as double tandems.

Time: The compact regions data structure is created in time O(n). For every region C

the double string tandem repeats are found in time O(|C|log|C]). Since > |C| = O(n)
the total time is O(nlogn).
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—— Abstract
We study a document retrieval problem in the new framework where D text documents are organized
in a category tree with a pre-defined number h of categories. This situation occurs e.g. with
taxomonic trees in biology or subject classification systems for scientific literature. Given a string
pattern p and a category (level in the category tree), we wish to efficiently retrieve the ¢ categorical
units containing this pattern and belonging to the category. We propose several efficient solutions
for this problem. One of them uses n(logo(1 4+ o(1)) + log D + O(h)) + O(A) bits of space and
O(|p| + t) query time, where n is the total length of the documents, o the size of the alphabet used
in the documents and A is the total number of nodes in the category tree. Another solution uses
n(logo(1+o0(1)) +O(log D)) + O(A) + O(D log n) bits of space and O(|p| + tlog D) query time. We
finally propose other solutions which are more space-efficient at the expense of a slight increase in
query time.
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1 Introduction

Data is often structured using category hierarchies represented by trees. In many applications,
such hierarchies play a crucial guiding role: for example, the International Classification of
Diseases (ICD) provides a hierarchical classification of all human disesases and constitues a
common reference for diagnostics. In this paper, we are interested in sequence data, such as
biological sequences or text documents, that are linked to a given hierarchy. More precisely,
in our framework sequences are associated to leaves of a hierarchy, and tree nodes are mapped
to several fixed levels, also called ranks.

This situation is common and occurs in several important applications. One is biology
where species are classified according to the famous Linnaean taxonomy including eight
common taxonomic ranks: species, genus, family, order, class, phylum, kingdom, domain.
Then, given a set of sequences (DNA, RNA or protein) belonging to known species, one can
associate them to the corresponding leaves of the taxonomic tree. Such a structure is used,
for example, for phylogeny-based metagenomic classification where one considers the tree of
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known genomic sequences as a reference for classifying sequences of a metagenomic sample,
see e.g. [23]. A classification procedure may involve queries asking for the taxonomic units
(i.e. internal nodes of the tree) of a certain rank whose sequences contain a given pattern, or
similar type of queries.

Another example is provided by text documents such as scientific papers. The latter
are usually annotated by subjects belonging to a fixed hierarchical nomenclature, such as
ACM Computing Classification System (CCS) or Mathematics Subject Classification (MSC).
Those subject hierarchies have a predefined number of levels: four levels for CCS and three
for MSC. Given a corpus of scientific papers, one could ask about subject categories at a
certain level whose documents contain a given pattern. This is a natural information retrieval
scenario.

Here we study this problem from the stringology perspective (see e.g. [14, 8]). Assume
we are given a set of D documents of total length n over an alphabet of size o, organized in
a tree of height h. The tree has D leaves, each associated with a distinct document, and the
leaves are all at level h of the tree. The total number of nodes in the tree is denoted by A.
The tree specifies a hierarchy of categories: each level of the tree corresponds to a category,
and each internal node corresponds to a categorical unit.

The basic type of query we study in this paper is the following.

Given a pattern p, and a tree level (rank) ¢ € [1..h], return all nodes (categorical
units) dy, - -+ ,d; at level ¢ that have at least one leaf (document) in their subtree that
contains pattern p.

For example, given a large collection of genomic sequences organized in a taxonomic tree
(for example, all known animal genomes), one may ask which animal families have a given
sequence in the genomes of their members. Or, given a large hierarchy of documents (for
example, all Computer Science papers), one may wonder in which subfields of Computer
Science (corresponding to a certain level of the hierarchy) the term ’suffix tree’ is used. This
basic type of queries can be further extended in different ways. For example, one may impose
an additional requirement of the mimimum number of documents of the categorical unit
containing the given pattern. In this first study, we focus on the basic query type.

In this work, we propose several algorithms for this problem. Our first solution (Section 3)
is based on the approach of Muthukrishnan [16] to the document retrieval problem. By
combining several algorithmic tools - efficient text index, colored range reporting queries, and
level ancestor queries - we obtain a solution with n(logo(1 + o(1)) +log D + O(h)) + O(A)
bits of space and O(|p| + t) query time, where ¢ is the output size, i.e. the number of
retrieved categorical units. To improve the space bound, in particular to get rid of the
O(nh) term which can be as big as O(nD), we then develop a solution based on a wavelet
tree built on top of the input category tree (Section 4). On this way, we first obtain a
solution taking n(logo + log D) + O(Dlogn) bits and O(|p| +t - hlog D) query time. We
further improve it using the technique of heavy path decomposition, to obtain a solution
in n(logo (1 + o(1)) + log D) + O(A) bits of space and O(|p| + tlog D) query time. In the
final part of the paper (Section 5), we focus on solutions using succinet and compressed data
structures, on top of the input data. That is, our main goal here is to replace the nlog D
bits by respectively nlogo or by nHy + o(nlog o) in representing the document array. We
obtain memory-time trade-offs showing how this goal can be achieved at the price of a slight
increase of query time.
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We summarize our main results in the following table.

algorithm space (bits) query time
based on colored n(logo(1l+ o(1)) +log D + O(h)) O(lp| +1)
range queries (Sect. 3) +0(A)
based on wavelet n(logo(1 4+ o(1)) + O(log D)) O(|p| + tlog D)
tree (Sect. 4) +O(A) + O(Dlogn)
compact space (Sect. 5) O(nlogo) O(lp| + (t+1) -log°n(1 + %))
compressed space (Sect. 5) nHy + o(nlogo) + O(D logn) O(|p| + t - hlog n(loglogn)?)

2 Preliminaries

We first briefly present main algorithmic tools used by our algorithms.

2.1 Level ancestor queries on trees

Consider a rooted tree. To each node in the tree we associate its level so that the level of the
root is 1, and the level of a child node is 1 more than the level of its parent. The height of a
tree is defined as the maximal level of any node in the tree. We denote by ¢, the level of a
node a.

We will use the implementation of level ancestor queries specified by the following lemma.

» Lemma 1 ([19]). There exists a data structure that represents a tree with n nodes within
space 2n + o(n) and allows answering the following queries in constant time:

1. given a level £ and a node o at level at least £, return the ancestor node 8 of « at level £,
2. given an integer i, return the node o where v is the leaf number i in left-to-right order.

We denote by LAQ(«, i) the query which asks for the ancestor at level i of node a.. We
denote by leafselect(i) the query which returns the i-th leaf of the tree in left to right
order.

2.2 rank/select queries and wavelet trees

rank and select queries on sequences constitute basic building blocks of many succinct data
structures [13]. Given a string S[1..n] on an alphabet X, a query rank.(S, ), with ¢ € ¥ and
i € [1..n], asks for the number of occurrences of ¢ in S[1..i] and select.(S, ) asks for the
unique position ¢ such that S[i] = ¢ and rank.(S,4) = j.

Consider first the important case of binary sequences (bitvectors). The following result is
well-known, see [18].

» Lemma 2. A bitvector B[l..n] can be represented using n + o(n) bits of space, so that
queries rank and select are answered in constant time.

In the case of non-binary alphabet, rank/select queries can be efficiently answered using
wavelet trees. The wavelet tree has been formally introduced in [9], but a similar structure

has been used earlier [3]. Suppose we are given a sequence S of length n over an alphabet X.

The (binary) wavelet tree is a binary tree representation of S that is defined recursively as

follows. Let 3¢ # () and X1 # @ form a partition of ¥ (that is, ¥ = LqUX; and g Ny = 0).

Then the root of the binary wavelet tree will contain a binary vector B, such that B[i] =0
iff S[i] € ¥g. Let the sequence Sy (resp., S1) be formed by keeping only the elements of S
that belong to Xg (resp., X1), in the same order. Then, the left (resp., right) child is defined
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recursively using Sy (resp., S1) and a binary partition of Xy (resp., ¥1). The recursion stops
whenever we reach a leaf that corresponds to a singleton subset of ¥. Such nodes will form
the leaves of the wavelet tree. We refer the reader to the survey [17] for more details about
wavelet trees. We will make use of the following lemma:

» Lemma 3 ([9]). The wavelet tree over the alphabet [1..0] can be represented using n(logo +
0(1)) + O(ologn) bits of space, supporting rank and select queries in O(logo) time.

The definition of binary wavelet tree can be readily generalized to the non-binary case.
As in the binary case, to any node « labeled by an interval ¥, is (implicitly) associated the
sequence S, which is the subsequence of S[1..n] consisting of all characters belonging to 3.
If a node « of a wavelet tree has d children, then the alphabet interval ¥, C [1..0] assigned
to « is partitioned into d disjoint subintervals instead of two, and « stores a sequence C,
over alphabet [1..d] of length [S,| such that C,[i] = j iff S,[j] € X, .

2.3 Text indexes

We assume familiarity with main text indexing structures: suffix trees, suffix arrays and
BWT-indexes. Here we only recall some basic facts about them.

Given a text T over an alphabet ¥ = [1..0], a suffix tree [22] is a tree data structure that
stores in its leaves the suffixes of T'$, where $ is a special character that does not appear in
T and is lexicographically smaller than any character of T'. Each suffix is associated with its
starting position in T'$. Suffix tree allows answering basic string pattern matching queries:
given a pattern p, return the set of starting positions of p in 7.

The suffix array of T is a related but more space-efficient data structure defined as the
array SA[l..n + 1] obtained by sorting all the suffixes of T'$ in lexicographic order and setting
SA[i] = j if and only if the suffix T[j..n|$ has lexicographic rank ¢ among all suffixes of T'$.

A suffix tree occupies O(nlogn) bits of space and a matching query needs access to the
original text T in addition to the suffix tree. The query time is O(|p|logo). The suffix
array [15] is an alternative to the suffix tree which occupies the same O(nlogn) bits of space,
but has lower constant factors in space and supports matching queries in O(|p| + logn) time.

The BWT-index (FM-index) is a space-efficient alternative to suffix arrays and suffix trees
which uses O(nlog o) bits of space only. It was originally proposed in [4] and has seen many
improvements. We will use the following version of BWT-index with alphabet-independent
query time.

» Lemma 4 ([1]). Given a text T of length n over alphabet [1..0], we can build a BWT-index
which occupies nlogo(1+ o(1)) bits of space and supports computing the range of suffizes
prefized by a pattern p in time O(|p|).

Note that computing the range of suffixes answers also whether the pattern occurs in the
text at all, and if so, reports the number of its occurrences (the size of the lexicographic
order interval). For this reason, the query presented in the lemma above is usually refered to
as a count query. The BWT-index is usually augmented with position information so that
it becomes able to report the location of each occurrence of the pattern in addition to the
number of occurrences. This can be achieved using fo the example the compressed suffix
array representation:

» Lemma 5 ([10]). Given a text T of length n over alphabet [1..0] and a constant € > 0,
we can build a data structure which occupies O(nlogo) bits of space and that returns SA[i]
for any i € [1..n] in time O(log n).
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All the above-mentioned text indexes can trivially be extended to support the same
type of queries on a collection of documents instead of a single document. More precisely,
given a collection of texts 131,75, ..., Tp over the same alphabet X, the same queries can be
supported by constructing an index of the string 7187y ... Tp$.

2.4 Colored range reporting and document retrieval

Muthukrishnan [16] was the first to study the problem of efficiently retrieving documents
containing a given string pattern. Through the use of a text index, he reduced the problem
to the one of color range reporting, i.e. reporting all distinct values (“colors”) occuring in
a given interval of an array. His data structure relies on the use of range minimum query
data structures — a data structure that can find in constant time the smallest element in an
sub-range of an array. His algorithm was subsequently improved in terms of space (Theorem
4 in [20]). We will use the following result on color range reporting, which can be obtained
by using the optimal range-minimum query data structure [5] in the method of [20]:

» Lemma 6. Given an 