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Abstract
We study the problem of determining the exact number of defective items in an adaptive group
testing by using a minimum number of tests. We improve the existing algorithm and prove a lower
bound that shows that the number of tests in our algorithm is optimal up to small additive terms.

2012 ACM Subject Classification Mathematics of computing; Mathematics of computing→ Discrete
mathematics; Mathematics of computing → Probabilistic algorithms; Theory of computation →
Probabilistic computation

Keywords and phrases Group Testing, Randomized Algorithm

Digital Object Identifier 10.4230/LIPIcs.SWAT.2020.18

1 Introduction

Let X be a set of items that contains some defective items I ⊆ X. In group testing, we test
a subset Q ⊆ X of items. An answer to the test is 1 if Q contains at least one defective item,
i.e., Q∩I 6= ∅, and 0 otherwise. Group testing was initially introduced as a potential approach
to the economical mass blood testing, [15]. However, it has been proven to be applicable in a
variety of problems, including DNA library screening, [26], quality control in product testing,
[30], searching files in storage systems, [22], sequential screening of experimental variables,
[24], efficient contention resolution algorithms for multiple-access communication, [22, 34],
data compression, [20], and computation in the data stream model, [12]. See a brief history
and other applications in [11, 16, 17, 21, 25, 26] and references therein.

Estimating or determining exactly the number of defective items is an important problem
in biological and medical applications [4, 31]. For example it is used to estimate the
proportion of organisms capable of transmitting the aster-yellows virus in a natural population
of leafhoppers [32], estimating the infection rate of the yellow-fever virus in a mosquito
population [33] and estimating the prevalence of a rare disease using grouped samples to
preserve individual anonymity [23].

In adaptive algorithms, the tests can depend on the answers of the previous ones. In
non-adaptive algorithms, they are independent of the previous ones and; therefore, all tests
can be done in one parallel step.

In this paper, we study the problem of determining exactly the number of defective items
with adaptive group testing algorithms. We first give an algorithm that improves the number
of tests in the best-known algorithm by a factor of 4. Improving constant factors in Group
testing algorithms is one of the utmost important challenges in group testing since, in many
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applications, tests are incredibly costly and time-consuming [3, 6, 9, 17, 18, 27]. Moreover,
we give a lower bound that shows that our algorithm is optimal up to a small additive term.
To the best of our knowledge, this is the first non-trivial lower bound for this problem.

1.1 Previous and New Results

Let X be a set of n items with d defective items I. All the algorithms in this paper are
adaptive. That is, the tests can depend on the answers to the previous ones. All the non-
adaptive algorithms for determining exactly the number of defective items must ask at least
Ω((d2/ log d) logn) queries and Ω(logn/ log logn) for estimating their number, [1, 13, 14].
In [2], Bshouty et al. show that any deterministic or Las Vegas adaptive algorithm must ask
at least Ω(d log(n/d)) queries. Since the query complexity depends on the number of items
n, which, for most applications, is extremely large, non-adaptive algorithms and Las Vegas
(and deterministic) algorithms are not desirable for solving this problem.

In [5], Cheng gave a randomized Monte Carlo adaptive algorithm that for any constant c,
asks 4dc log d queries1 and, with probability at least 1− δ = 1− 1/dc−1, determines exactly
the number of defective items. His algorithm, with the technique used in this paper2, gives a
randomized Monte Carlo algorithm that asks 4d log(d/δ) queries with success probability at
least 1− δ for any δ.

In this paper, we first give lower bounds for the number of queries. The first lower bound
is d log(1/dδ) for any n, d and δ > 1/(2(n − d + 1)). See Theorem 4 in Section 3. This
shows that Cheng’s algorithm is almost optimal (up to a multiplicative factor of 4 and an
additive term of 4d log d). For δ < 1/(2(n − d + 1)), we give the tight bound d log(n/d),
which, in particular, is the number of tests required for any deterministic algorithm. This
bound matches the tight bound for finding all the defective items. We also give better lower
bound of d log(1/δ) for any large enough3 n. See Theorem 5 in Section 3.

Moreover, we give a new randomized Monte Carlo algorithm that asks d log(d/δ) queries.
See Theorem 7 in Section 4. Our algorithm improves Cheng algorithm by a multiplicative
factor of 4 and is optimal up to an additive term of d log d. Notice that, for δ = 1/dω(1)

(especially when δ depends on n), our algorithm is optimal up to a small additive term.
Estimating the number of defective items is studied in [2, 10, 13, 14, 19, 28]. The

problem is to find an integer D such that d ≤ D ≤ (1 + ε)d. In [2], Bshouty et al. modified
Falhatgar et al. algorithm, [19], and gave a randomized algorithm that makes expected
number of (1 − δ) log log d + O((1/ε2) log(1/δ)) tests. They also prove the lower bound
(1− δ) log log d+ Ω((1/ε) log(1/δ)).

2 Definitions and Preliminary Results

In this section we give some notations, definitions, the type of algorithms that are used in
the literature and some preliminary results.

1 All the log in this paper are log2 and all the complexities in this introduction are multiplied by 1 + o(1)
where the o(1) is with respect to d.

2 First estimate d using the algorithm in this paper. Then determine c to get success δ and run his
algorithm

3 n ≥ dω(1) where ω(1) is with respect to d for example log∗ d
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2.1 Notations and Definitions
Let X = [n] := {1, 2, 3, . . . , n} be a set of items with some defective items I ⊆ [n]. In group
testing, we query a subset Q ⊆ X of items and the answer to the query is Q(I) := 1 if Q
contains at least one defective item, i.e., Q ∩ I 6= ∅, and Q(I) := 0, otherwise.

Let I ⊆ [n] be the set of defective items. Let OI be an oracle that for a query Q ⊆ [n]
returns Q(I). Let A be an algorithm that has access to an oracle OI . The output of the
algorithm with an access to an oracle OI is denoted by A(OI). When the algorithm is
randomized, then we add the random seed r, and then the output of the algorithm is a
random variable A(OI , r) in [n]. When I is known from the context, we just write A(r).
Let A be a randomized algorithm and let r0 be a fixed seed. Then A(r0) is a deterministic
algorithm that is equivalent to the algorithm A with the fixed seed r0. We denote by Q(A,OI)
(or Q(A,OI , r)) the set of queries that A asks with oracle OI (and a seed r). We say that
the algorithm determines |I| = d exactly if A(OI , r) = |I|.

2.2 Types of Algorithms
In this paper we consider four types of algorithms whose running time is polynomial in n.
1. The deterministic algorithm A with an oracle OI , I ⊆ X. The query complexity of a

deterministic algorithm A is the worst case complexity, i.e, max|I|=d |Q(A,OI)|.
2. The randomized Las Vegas algorithm. We say that a randomized algorithm A(r) is a

randomized Las Vegas algorithm that has expected query complexity g(d) if for any I ⊆ X,
A(r) with an oracle OI asks g(|I|) expected number of queries and with probability 1
outputs |I|.

3. The randomized Monte Carlo algorithm. We say that a randomized algorithm A(r) is a
randomized Monte Carlo algorithm that has query complexity g(d, δ) if for any I ⊆ X,
A with an oracle OI asks at most g(|I|, δ) queries and with probability at least 1 − δ
outputs |I|.

4. The randomized Monte Carlo algorithm with average case complexity. We say that a
randomized algorithm A(r) is Monte Carlo algorithm with average case complexity that
has expected query complexity g(d, δ) if for any I ⊆ X, A asks g(|I|, δ) expected number
of queries and with probability at least 1− δ outputs |I|.

2.3 Preliminary Results
We now prove a few results that will be used throughout the paper.

Let s ∈ ∪∞i=0{0, 1}i be a string over {0, 1} (including the empty string λ ∈ {0, 1}0). We
denote by |s| the length of s, i.e., the integerm such that s ∈ {0, 1}m. Let s1, s2 ∈ ∪∞n=0{0, 1}n
be two strings over {0, 1} of length m1 and m2, respectively. We say that s1 is a prefix of s2
if m1 ≤ m2 and s1,i = s2,i for all i = 1, . . . ,m1. We denote by s1 · s2 the concatenation of
the two strings.

The following lemma is proved in [1].

I Lemma 1. Let S = {s1, . . . , sN} be a set of N distinct strings such that no string is a
prefix of another. Then

max
s∈S
|s| ≥ E(S) := Es∈S [|s|] ≥ logN.

I Lemma 2. Let A be a deterministic adaptive algorithm that asks queries. If A(OI) 6= A(OJ )
then there is Q0 ∈ Q(A,OI) ∩Q(A,OJ) such that Q0(I) 6= Q0(J).

In particular, if, in addition, I ⊆ J then Q0(I) = 0 and Q0(J) = 1.

SWAT 2020
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Proof. Since algorithm A is deterministic, in the execution of A with OI and OJ , A asks
the same queries as long as it gets the same answers to the queries. Since A(OI) 6= A(OJ),
there must be a query Q0 that is asked to both OI and OJ for which Q0(I) 6= Q0(J). J

I Lemma 3. Let A be a deterministic adaptive algorithm that asks queries. Let C ⊆ 2[n] =
{I|I ⊆ [n]}. If for every two distinct I1 and I2 in C there is a query Q ∈ Q(A,OI1) such
that Q(I1) 6= Q(I2) then

max
I∈C
|Q(A,OI)| ≥ EI∈C |Q(A,OI)| ≥ log |C|.

That is, the query complexity of A is at least log |C|.

Proof. For I ∈ C consider the sequence of the queries that A with the oracle OI asks and
let s(I) ∈ ∪∞n=0{0, 1}n be the sequence of answers. The query complexity and average-case
complexity of A is s(C) := maxI∈C |s(I)| and s̄(C) := EI∈C |s(I)| where |s(I)| is the length
of s(I). We show that for every two distinct I1 and I2 in C, s(I1) 6= s(I2) and s(I1) is not a
prefix of s(I2). This implies that {s(I) | I ∈ C} contains |C| distinct strings such that no
string is a prefix of another. Then by Lemma 1, the result follows.

Consider two distinct sets I1, I2 ⊆ [n]. There is a query Q0 ∈ Q(A,OI1) such that
Q0(I1) 6= Q0(I2). Consider the execution of algorithm A with both OI1 and OI2 , respectively.
Since A is deterministic, as long as the answers of the queries are the same both (A with OI1

and A with OI2) continue to ask the same query. Then, either we get to the query Q0 in
both execution and then Q0(I1) 6= Q0(I2), or we reach some other query Q′, that is asked
before Q0, satisfies Q′(I1) 6= Q′(I2). In both cases, s(I1) 6= s(I2) and s(I1) is not a prefix of
s(I2). J

3 Lower Bounds

In this section, we prove some lower bounds for the number of queries that are needed to
determine exactly the number of defective items with a Monte Carlo algorithm.

I Theorem 4. Let δ ≥ 1/(2(n − d + 1)). Let A be a randomized Monte Carlo adaptive
algorithm that for any set of defective items I of size |I| ∈ {d, d+ 1}, with probability at least
1− δ, determines exactly the number of defective items |I|. Algorithm A must ask at least

d log 1
2dδ − 1

queries.
In particular, when δ ≤ 1/(2(n − d + 1)) then A must ask at least d log(n/d) − O(d)

queries which is the query complexity (up to additive term O(d)) of finding the defective items
(and therefore, in particular, finding |I|) with δ = 0 error.

Proof. Let A(OI , r) be a randomized Monte Carlo algorithm that for |I| ∈ {d, d + 1},
determines |I| with probability at least 1− δ where r is the random seed of the algorithm.
Let X(I, r) be a random variable that is equal to 1 if A(OI , r) 6= |I| and 0 otherwise. Then,
for any I ⊆ [n], Er[X(I, r)] ≤ δ. Let m = b1/(2δ)c + d − 1 ≤ n. Consider any J ⊆ [m],
|J | = d. For any such J , let

YJ(r) = X(J, r) +
∑

i∈[m]\J

X(J ∪ {i}, r).
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Then, for every J ⊆ [m] of size d, Er [YJ(r)] ≤ (m− d+ 1)δ ≤ 1
2 . Therefore, for a random

uniform J ⊆ [m] of size d, we have Er[EJ [YJ(r)]] = EJ [Er[YJ(r)]] ≤ 1/2. Thus, there is r0
such that for at least half of the sets J ⊆ [m], of size d, YJ(r0) = 0. Let C be the set of all
J ⊆ [m], of size d, such that YJ(r0) = 0. Then

|C| ≥ 1
2

(
m

d

)
= 1

2

(
b1/(2δ)c+ d− 1

d

)
.

Consider the deterministic algorithm A(r0). We now claim that for every two distinct
J1, J2 ∈ C, there is a query Q0 ∈ Q(A(r0),OJ1) such that Q0(J1) 6= Q0(J2). If this is true
then, by Lemma 3, the query complexity of A(r0) is at least

log |C| ≥ log 1
2

(
b1/(2δ)c+ d− 1

d

)
≥ d log 1

2dδ − 1.

Proof. We now prove the claim. Consider two distinct J1, J2 ∈ C. There is w.l.o.g j ∈
J2\J1. Since YJ1(r0) = 0, we have X(J1, r0) = 0 and X(J1 ∪ {j}, r0) = 0 and, therefore,
A(OJ1 , r0) = d and A(OJ1∪{j}, r0) = d + 1. Thus, by Lemma 2, there is a query Q0 ∈
Q(A(r0),OJ1) ∩Q(A(r0),OJ1∪{j}) for which Q0(J1) = 0 and Q0(J1 ∪ {j}) = 1. Therefore,
Q0({j}) = 1 and then Q0(J1) = 0 and Q0(J2) = 1. C

J

In the Appendix, we prove this lower bound for any randomized Monte Carlo algorithm
with average-case complexity.

For large enough4 n, n = dω(1), the following result gives a better lower bound.

I Theorem 5. Any randomized Monte Carlo adaptive algorithm that with probability at least
1− δ determines the number of defectives must ask at least(

1− log d+ log(1/δ) + 1
logn+ log(1/δ)

)
d log 1

2δ

queries.
In particular, when n = dω(1) then the number of queries is at least

(1− o(1))d log 1
2δ .

Proof. Let A(r) be a randomized Monte Carlo algorithm that determines the number of
defective items with probability at least 1− δ where r is the random seed of the algorithm.
Let X ′(I, r) be a random variable that is equal to 1 if A(OI , r) 6= |I| and 0 otherwise. Then,
for every I, Er[X ′(I, r)] ≤ δ. For every set I and i ∈ [n]\I, let X(I, i, r) = X ′(I, r) +
X ′(I ∪ {i}, r). Then, for every I ⊆ [n] and i ∈ [n]\I, Er[X(I, i, r)] ≤ 2δ. For I of
size d chosen uniformly at random and i ∈ [n]\I chosen uniformly at random, we have
ErEIEi[X(I, i, r)] = EIEiEr[X(I, i, r)] ≤ 2δ. Therefore, there exists a seed r0 such that
EIEi[X(I, i, r0)] ≤ 2δ. We now choose q permutations φ1, . . . , φq : [n]→ [n] uniformly and
independently at random where

q =
⌈

1 + logn
log 1

2δ

⌉
.

4 The ω(1) is with respect to d. For example, n > dlog∗ d.
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Then, for any I and i ∈ [n]\I, φ1(I), . . . , φq(I) are uniform and independent random sets of
size d and φ1(i), . . . , φq(i) are uniform and independent random integers where φj(i) 6∈ φj(I)
for all j ∈ [q]. Hence,

E{φj}j

 q∏
j=1

X(φj(I), φj(i), r0)

 =
q∏
j=1

Eφj
[X(φj(I), φj(i), r0)] ≤ (2δ)q

and,

E{φj}j
EIEi

 q∏
j=1

X(φj(I), φj(i), r0)

 = EIEiE{φj}j

 q∏
j=1

X(φj(I), φj(i), r0)


≤ (2δ)q.

Therefore,

E{φj}j
EI

 ∑
i∈[n]\I

q∏
j=1

X(φj(I), φj(i), r0)

 ≤ (n− d)(2δ)q < 1
2 .

Thus, there are permutations {φ′j}j∈[q] such that

EI

 ∑
i∈[n]\I

q∏
j=1

X(φ′j(I), φ′j(i), r0)

 < 1
2 .

Since X takes values in {0, 1}, this implies that for at least half of the sets I ⊆ [n], of size d,
and all i ∈ [n]\I, there exists j ∈ [q] such that X(φ′j(I), φ′j(i), r0) = 0. Let C be the class of
such sets I for which the later statement is true. Then,

|C| ≥ 1
2

(
n

d

)
and

(∀I ∈ C)(∀i ∈ [n]\I)(∃j ∈ [q]) X(φ′j(I), φ′j(i), r0) = 0. (1)

Consider the following deterministic algorithm A∗:

Algorithm A∗

For j = 1, . . . , q
Run A(r0) with oracle OI

If A(r0) asks Q then ask the query φ′−1
j (Q).

First notice that, if algorithm A(r0) has query complexity M , then A∗ has query com-
plexity at most qM .

Since φ′−1
j (Q)∩I = ∅ if and only if Q∩φ′j(I) = ∅, at iteration j, the algorithm A(r0) runs

as if the defective items are φ′j(I). Therefore, at iteration j, the queries that are asked by
A(r0) are Q(A(r0),Oφ′

j
(I)) and the queries that are asked by A∗ are φ′−1

j (Q(A(r0),Oφ′
j
(I))).

Hence,

Q(A∗,OI) =
q⋃
j=1

φ′−1
j (Q(A(r0),Oφ′

j
(I))). (2)

We now show that,
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B Claim 6. For every two distinct sets I1, I2 ∈ C there is a query Q′ ∈ Q(A∗,OI1) that
gives different answers for I1 and I2.

If this Claim is true then, by Lemma 3, the query complexity qM of A∗ is at least log |C|
and then, since

(
n
d

)
≥ (n/d)d,

M ≥ log |C|
q

≥
log 1

2
(
n
d

)
1+logn

log(1/(2δ)) + 1

≥ logn− log d− 1
logn+ log 1

δ

· d log 1
2δ

=
(

1− log d+ log(1/δ) + 1
logn+ log(1/δ)

)
d log 1

2δ .

Proof. We now prove the claim. Let I1, I2 ∈ C be two distinct sets of size d. Then there is
i0 ∈ I2\I1. By (1) there is j0 ∈ [q] such that for φ := φ′j0

, X(φ(I1), φ(i0), r0) = 0. Therefore
A(Oφ(I1), r0) = |φ(I1)| = |I1| and

A(Oφ(I1)∪{φ(i0)}, r0) = |φ(I1) ∪ {φ(i0)}| = |I1|+ 1.

Therefore, by Lemma 2, there exists a query Q0 ∈ Q(A(r0),Oφ(I1)) that satisfies Q0(φ(I1)) =
0 and Q0(φ(I1)∪ {φ(i0)}) = 1. That is, Q0 ∩ φ(I1) = ∅ and Q0 ∩ (φ(I1)∪ {φ(i0)}) 6= ∅. This
implies that φ(i0) ∈ Q0. Since φ(i0) ∈ φ(I2), we get that Q0 ∩ φ(I1) = ∅ and Q0 ∩ φ(I2) 6= ∅.
Thus, φ−1(Q0) ∩ I1 = ∅ and φ−1(Q0) ∩ I2 6= ∅. That is, the query Q′ := φ−1(Q0) satisfies

Q′(I1) 6= Q′(I2).

Since Q0 ∈ Q(A(r0),Oφ(I1)), by (2), we have (recall that φ := φ′j0
)

Q′ = φ−1(Q0) ∈ φ−1(Q(A(r0),Oφ(I1))) ⊆ Q(A∗,OI)

and therefore, Q′ ∈ Q(A∗,OI) . This completes the proof of the claim. C

J

4 Upper Bound

In this section we prove:

I Theorem 7. There is a Monte Carlo adaptive algorithm that asks

d log d
δ

+O

(
d+ log d log 1

δ

)
= (1 + o(1))d log d

δ

queries and, with probability at least 1− δ, finds the number of defective items.

This improves the bound 4d log(d/δ) achieved in [5]. By Theorem 5, this bound is optimal
up to the additive term (1 + o(1))d log d.

We will use the following.

I Lemma 8 ([7, 8, 29]). There is a deterministic algorithm, Find-Defectives, that without
knowing d, asks d log(n/d) +O(d) queries and finds the defective items.

Our algorithm, at the first stage, calls the procedure Estimate that, with probability at
least 1 − δ/2 finds an estimate D of the number defective items where d ≤ D ≤ 8d. This
procedure makes O(d+ log d log(1/δ)) queries.

SWAT 2020
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At the second stage, it uniformly at random partitions the set of items [n] into t = D2/δ

disjoint sets B1, B2, . . . , Bt. We show that, with probability at least 1−δ/2, each set contains
at most one defective item. We call a set that contains a defective item a defective set.
Therefore, with probability at least 1− δ/2, the number of defective items is equal to the
number of defective sets. Then, we treat each set Bi as one item i and call the algorithm
Find-Defectives in Lemma 8 on t items to find the defective sets. To do that, each test
Q ⊆ [t] in Find-Defectives is simulated by the query S(Q) := ∪i∈QBi in our algorithm.
Obviously, the set Q contains an index of a defective set if and only if S(Q) contains a
defective item. Therefore, the algorithm will return the number of defective sets which, with
probability at least 1 − δ/2, is equal to the number of defective items. By Lemma 8, the
number of queries asked in the second stage is

d log t
d

+O(d) = d log D
2/δ

d
+O(d) = d log d

δ
+O(d).

We now prove:

I Lemma 9. There is a Monte Carlo adaptive algorithm Estimate that asks

O

(
d+ log d log 1

δ

)
queries and returns an integer D that, with probability at least 1 − δ, D ≥ d and, with
probability 1, D ≤ 8d.

Proof. The algorithm is in Figure 1. For each k = 2i, the algorithm does the following
t = d2 log(1/δ)/ke times: uniformly at random divides the items into k mutually disjoint
sets and then tests each set and counts (in the variable “count”) the number of sets that
contain at least one defective item. First, notice that, for k ≤ d,

Pr[count < k/4] ≤
(
k

k/4

)(
1
4

)d
≤ 2k

(
1
4

)d
≤ 2−d.

The probability that the algorithm outputs k < d is the probability that the event “count <
k/4” happens t = d2 log(1/δ)/ke times for some k = 2i < d. This is at most

blog dc∑
i=1

(2−d)d2 log(1/δ)/2ie ≤
blog dc∑
i=1

δ2d/2i

≤ δ.

Therefore, with probability at least 1− δ, the output is greater or equal to d. Since “count”
is always less than or equal to the number of defective items d, when 4d < k ≤ 8d, we have
count ≤ d < k/4 and the algorithm halts. Therefore, the output cannot be greater than 8d.

The number of queries that the algorithm asks is at most

dlog 8de∑
i=1

2i
⌈

2 log(1/δ)
2i

⌉
≤
dlog 8de∑
i=1

2 log(1/δ) + 2i = O

(
d+ log d log 1

δ

)
. J

We now prove Theorem 7.

Proof. The algorithm is in Figure 2. First, we run the algorithm in Figure 1 that estimates d
and returns D such that, with probability at least 1− δ/2, d ≤ D ≤ 8d. Then, the algorithm
chooses a function f : [n]→ [N ] uniformly at random where N = dD2/δe. This is equivalent
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Estimate(n, δ)
1) For k = 2i, i = 1, 2, 3, · · · do
2) For m = 1 to t :=

⌈ 2 log(1/δ)
k

⌉
3) Choose a function fm : [n]→ [k] uniformly at random
4) count← 0
5) For j = 1 to k
6) ask the query Q := f−1

m (j)
7) If the answer is 1 then count←count+1
8) EndFor
9) If (count≥ k/4) Break (leave the For loop)
10) EndFor
11) If (count≤ k/4) Output(k) and halt
12) EndFor

Figure 1 An algorithm that estimates d.

to uniformly at random divide the items into N mutually disjoint sets Qi, i = 1, . . . , N . The
probability that some Qi contains two defective items is

Pr[(∃i) Qi contains two defective items] = 1−
d−1∏
i=1

(
1− i

N

)

≤
d−1∑
i=1

i

N
≤ d2

2N ≤
δ

2 .

Then, the algorithm runs Find-Defectives in Lemma 8 on the N disjoint sets Q1, . . . , QN
to find the number of sets that contain a defective item. This number is, with probability at
least 1− δ/2, equal to the number of defective items. Therefore, with probability at least
1− δ, Find-Defectives finds d. This completes the proof of correctness.

The query complexity is the query complexity of Estimate(n, δ/2) and Find-Defectives
with N items. This, by Lemma 8 and 9, is equal to

d log N
d

+O(d) +O

(
d+ log d log 1

δ

)
= d log d

δ
+O

(
d+ log d log 1

δ

)
. J

Find-d(n, δ)
1) D ←Estimate(n, δ/2) .
3) N ← dD2/δe.
2) Choose a function f : [n]→ [N ] uniformly at random.
3) Define Qi = f−1(i) for i = 1, 2, . . . , N .
4) Run Find-Defectives with N items.
5) and for each query Q ask ∪j∈QQj .
6) Let ∆ be the output of Find-Defectives.
7) Output ∆.

Figure 2 An algorithm that finds d.
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5 Appendix

I Theorem 10. Let 1/dω(1) ≥ δ ≥ 1/(2(n − d + 1)). Let A be a randomized adaptive
algorithm that for any set of defective items I of size d or d + 1, with probability at least
1− δ, exactly determines the number of defective items |I|. Algorithm A must ask at least

(1− o(1))d log 1
δ

expected number of queries.
When δ ≤ 1/(2(n− d+ 1)) then A must ask at least (1− o(1))d logn queries which is,

asymptotically, the query complexity of finding the defective items with δ = 0 error.

Proof. Let A(r) be a randomized algorithm that for I ⊆ [n], |I| ∈ {d, d+ 1} and oracle OI ,
determines |I| with probability at least 1− δ where r is the random seed of the algorithm.
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Let X(I, r) be a random variable that is equal to 1 if A(r,OI) 6= |I| and 0 otherwise. Then
for any I ⊆ [n], Er[X(I, r)] ≤ δ. Let m = bτ/δc + d − 1 ≤ n where τ = 1/(d log(1/(dδ))).
Consider any J ⊆ [m], |J | = d. For any such J let

YJ(r) = X(J, r) +
∑

i∈[m]\J

X(J ∪ {i}, r).

Then for every J ⊆ [m] of size d, Er [YJ(r)] ≤ (m − d + 1)δ ≤ τ. Therefore for a random
uniform J ⊆ [m] of size d we have Er[EJ [YJ(r)]] = EJ [Er[YJ(r)]] ≤ τ . Therefore, by
Markov’s inequality, for η = 1/ log(1/(dδ)),

Prr[EJ [YJ(r)] > η] ≤ τ

η
= 1
d
.

That is, for random r, with probability at least 1− 1/d, at least 1− η fraction of the sets
J ⊆ [m] of size d satisfies YJ(r) = 0. Let R be the set of seeds r such that at least 1 − η
fraction of the sets J ⊆ [m] of size d satisfies YJ (r) = 0. Then Prr[R] ≥ 1− 1/d. Let r0 ∈ R.
Let Cr0 be the set of all J ⊆ [m] of size d such that YJ(r0) = 0. Then

|Cr0 | ≥ (1− η)
(
m

d

)
= (1− η)

(
bτ/δc+ d− 1

d

)
.

Consider the deterministic algorithm A(r0). As in Theorem 4, for every two distinct
J1, J2 ∈ Cr0 , there is a query Q ∈ Q(A(r0),OJ1) such that Q(J1) 6= Q(J2). Then by
Lemma 3, the average-case query complexity of A(r0) is at least

log |Cr0 | ≥ log(1− η)
(
bτ/δc+ d− 1

d

)
≥ d log τ

dδ
− log 1

1− η .

Let Z(OI , r) = |Q(A(r),OI)|. We have shown that for every r ∈ R,

EI∈Cr
[Z(OI , r)] ≥ d log τ

dδ
− log 1

1− η .

Therefore for every r ∈ R,

EI [Z(OI , r)] ≥ EI [Z(OI , r)|I ∈ Cr]Pr[I ∈ Cr]

≥ (1− η)
(
d log τ

dδ
− log 1

1− η

)
.

Therefore

EIEr[Z(OI , r)] = ErEI [Z(OI , r)]
≥ Er[EI [Z(OI , r)|r ∈ R]Pr[r ∈ R]]

≥
(

1− 1
d

)
(1− η)

(
d log τ

dδ
− log 1

1− η

)
.

Therefore there is I such that

Er[Z(OI , r)] ≥
(

1− 1
d

)
(1− η)

(
d log τ

dδ
− log 1

1− η

)
and then

Er[Z(OI , r)] ≥ (1− o(1))d log 1
δ
. J
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