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Abstract
The zeta and Moebius transforms over the subset lattice of n elements and the so-called subset convo-
lution are examples of unary and binary operations on set functions. While their direct computation
requires O(3n) arithmetic operations, less naive algorithms only use 2npoly(n) operations, nearly
linear in the input size. Here, we investigate a related n-ary operation that takes n set functions as
input and maps them to a new set function. This operation, we call multi-subset transform, is the
core ingredient in the known inclusion–exclusion recurrence for weighted sums over acyclic digraphs,
which extends Robinson’s recurrence for the number of labelled acyclic digraphs. Prior to this work,
the best known complexity bound for computing the multi-subset transform was the direct O(3n).
By reducing the task to rectangular matrix multiplication, we improve the complexity to O(2.985n).
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1 Introduction

In this paper, we consider the following problem. We are given a finite set U and, for each
element i ∈ U , a function fi from the subsets of U to some ring R. The task is to compute
the function g given by

g(T ) =
∑
S⊆T

∏
i∈T

fi(S) , T ⊆ U . (1)

We shall call g the multi-subset transform of (fi)i∈U . While the present study of this operation
on set functions stems from a particular application to weighted counting of acyclic digraphs,
which we will introduce later in this section, we believe the multi-subset transform could
also have applications elsewhere.

A straightforward computation of the multi-subset transform requires Ω(3n) arithmetic
operations (i.e., additions and multiplications in the ring R) when U has n elements. In the
light of the input size O(2nn) and output size O(2n), one could hope for an algorithm that
requires 2nnO(1) operations. Some support for optimism is provided by the close relation to
two similar operations on set functions: the zeta transform of f and the subset convolution
of f1 and f2, given respectively by

(fζ)(T ) =
∑
S⊆T

f(S) and (f1 ∗ f2)(T ) =
∑
S⊆T

f1(S)f2(T \S) , T ⊆ U ;
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these unary and binary operations can be performed using O(2nn) [18, 12] and O(2nn2)
[2] arithmetic operations, thus significantly beating the naive Ω(3n)-computation. Indeed,
consider the seemingly innocent replacement of “i ∈ T” by “i ∈ S” or “i ∈ U” in (1): either
one would yield a variant that immediately (and efficiently) reduces to the zeta transform.
Likewise, replacing the factor

∏
i∈T\S fi(S) in the product by

∏
i∈T\S fi(T \S) would give

us an instance of subset convolution. The present authors do not see how to fix these
“broken reductions” – the multi-subset transform could be a substantially harder problem
not admitting a nearly linear-time algorithm. One might even be tempted to hypothesize
that one cannot reduce the base of the exponential complexity below the constant 3. We
refute this hypothesis:

I Theorem 1. The multi-subset transform can be computed using O(2.985n) arithmetic
operations.

We obtain our result by a reduction to rectangular matrix multiplication (RMM). The
basic idea is to split the ground set U into two halves U1 and U2 and divide the product
over i ∈ T into two smaller products accordingly. In this way we can view (1) as a matrix
product of dimensions 2|U1| × 2|U | × 2|U2|. The two rectangular matrices are sparse, with
at most 6n/2 = O(2.4495n) non-zero elements out of the total 8n/2. The challenge is to
exploit the sparsity. Known algorithms for general sparse matrix multiplication [19, 11]
turn out to be insufficient for getting beyond the O(3n) bound (see Section 2.1 for details).
Fortunately, in our case the sparsity occurs in a special, structured form that enables better
control of zero-entries, and thereby a more efficient reduction to dense RMM. To get the
best available constant base in the exponential bound, we call upon the recently improved
fast RMM algorithms [7].

1.1 Application to weighted counting of acyclic digraphs
Let an be the number of labeled acyclic digraphs on n nodes. Robinson [14] and Harary and
Palmer [10], independently discovered the following inclusion–exclusion recurrence:

an =
n∑
s=1

(−1)s−1
(
n

s

)
2s(n−s)an−s .

To see why the formula holds, view s as the number of sinks (i.e., nodes with no out-neighbors),
each of which can choose its in-neighbors freely form the remaining n− s nodes.

Tian and He [16] generalized the recurrence to weighted counting of acyclic digraphs
on a given set of n nodes V . Now every acyclic digraph D on V is assigned a modular
weight, that is, a real-valued weight w(D) that factorizes into node-wise weights wi(Di),
where Di ⊆ V \{i} is the set of in-neighbors of node i in D. This counting problem has
applications particularly in Bayesian learning of Bayesian networks from data; the weighted
count is the partition function of a statistical model that associates each node of the graph
with a random variable, and evaluating the partition function is the main computational
bottleneck [6, 16, 15]. Letting aV denote the weighted sum of acyclic digraphs on V , we have

aV =
∑
D

∏
i∈V

wi(Di) =
∑
∅6=S⊆V

(−1)|S|−1

(∏
i∈S

∑
Di⊆V \S

wi(Di)
)
aV \S . (2)

The recurrence enables computing aV using O(3nn) arithmetic operations [16].
We will apply Theorem 1 to lower the base of the exponential bound:

I Theorem 2. The sum over acyclic digraphs with modular weights can be computed using
O(2.985n) arithmetic operations.
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1.2 Related work
There are numerous previous applications of fast matrix multiplication algorithms to decision,
optimization, and counting problems. Here we only mention a few that are most related to
the present work.

Williams [17] employs fast square matrix multiplication to count all variable assignments
that satisfy a given number of constraints, each involving at most two variables. By a simple
reduction, this yields the fastest known algorithm for the Max-2-CSP problem. The present
work is based on the same idea of viewing the product of a group of low-arity functions as a
large matrix; this general idea is also studied in the doctoral thesis of the first author [13,
Sects. 3.3 and 3.6], including reductions to RMM, however, without concrete applications.

Björklund, Kaski, and Kowalik [3] apply fast RMM to show the following: Given a
nonnegative integer q and three mappings f , g, h from the subsets of an n-element set to
some ring, one can sum up the products f(A)g(B)h(C) over all pairwise disjoint triplets
of q-sets A,B,C using O

(
n3qτ+c) ring operations, where τ < 1

2 and c ≥ 0 are constants
independent of q and n. Consequently, one can count the occurrences of constant-size paths
(or any other small-pathwidth patterns) faster than in the “meet-in-the-middle time” [3].
While the involvement of set functions and set relations bear a resemblance to those in
multi-subset transform, the reduction of Björklund et al. is based on solving an appropriately
constructed system of linear equations, and is thus very different from the combinatorial
approach taken in the present work.

2 Fast multi-subset transform: proof of Theorem 1

We will develop an algorithm for multi-subset transform in several steps. In Section 2.1 we
give the basic reduction to RMM and the idea of splitting the sum over into several smaller
sums. Then, in Section 2.2 we present a simple implementation of the splitting idea, and get
our first below-3 algorithm. This algorithm is improved upon in Section 2.3, yielding the
claimed complexity bound. We end this section by presenting a more sophisticated splitting
scheme in Section 2.4. We have not succeeded to give a satisfactory analysis of its complexity.
Yet, our numerical calculations suggest the bound O(2.930n).

We will denote by ω(k), for k ≥ 0, the smallest value such that the product of an N×dNke
matrix by an dNke ×N can be computed using O

(
Nω(k)+ε) arithmetic operations for any

constant ε > 0; for a formal definition of ω(k), see Gall and Urrutia [7]. Thus, the exponent
of square matrix multiplication is ω := ω(1).

We will make repeated use of the following facts about binomial coefficients:

I Fact 3. For integers k ≥ 1 and n ≥ 2k we have

(2n)−1/2b
(k
n

)n
≤
(
n

k

)
≤

k∑
j=0

(
n

j

)
≤ b

(k
n

)n
= 2nH(k/n) ,

where

b(x) := x−x(1− x)x−1 and H(x) := log2 b(x) , x ∈ [0, 1] .

This can be proven using Stirling’s approximation to factorials.

I Fact 4. Let n be a positive integer. The function k 7→
(
n
k

)
2k is increasing in [0, 2

3n) and
strictly decreasing in [ 2

3n, n).

This can be proven by observing that the ratio
(
n
k+1
)
2k+1/

(
n
k

)
2k equals 2(n− k)/(k+ 1), and

is thus decreasing in k, and is greater or equal to 1 exactly when k ≤ 2
3n−

1
3 .

SWAT 2020



29:4 Fast Multi-Subset Transform

2.1 Basic reduction to rectangular matrix multiplication
Assume without loss of generality that n is even. Let us arbitrarily partition U into two
disjoint sets U1 and U2, both of size h := n/2. If T ⊆ U , denote by T1 and T2 respectively
the intersections T ∩ U1 and T ∩ U2. Furthermore, write N := 2h so that 2n = N2.

Armed with this notation, we write the multi-subset transform of set functions (fi)i∈U as

g(T ) = G(T1, T2) :=
∑
S⊆U

F1(T1, S)F2(T2, S) , T ⊆ U , (3)

where we define

Fp(Tp, S) := [S ∩ Up ⊆ Tp]
∏
i∈Tp

fi(S) , p = 1, 2 .

Here the Iverson’s bracket notation [Q] evaluates to 1 if Q is true, and to 0 otherwise.
We can write the representation (3) in terms of a matrix product as

G = F1F
>
2 ,

where G is an N ×N matrix indexed in 2U1 × 2U2 and Fp is an N ×N2 matrix indexed in
2Up × 2U . As above, we will write the index pair in parentheses (not as subscripts).

Applying fast RMM without any further tricks already yields a somewhat competitive
asymptotic complexity bound. To see this, recall that ω(k) denotes the exponent of RMM
of dimensions N × dNke × N . Since ω(2) < 3.252 [7], we get that G, and thus g, can be
computed using O

(
N3.252) = O(3.087n) arithmetic operations. If the lower bound ω(2) ≥ 3

was tight, we would achieve the bound O(2.829n).
So far, we have ignored the sparsity of the matrices Fp. An entry Fp(Tp, S) is zero

whenever the intersection Sp = S ∩ Up is not contained in Tp. Thus, out of the 8n/2 entries
of Fp, at most 3h2h = 6n/2 are nonzero. In general, one can compute a matrix product of
dimensions r × rk × r using O

(
mr(ω−1)/2+ε) operations, provided that the matrices have at

most m ≥ r(ω+1)/2 non-zero entries, irrespective of k [11]. This result applies to our case,
but with the best known upper bound for ω [8], it only yields a bound O(3.108n). A direct
reduction to multiple multiplications of sparse square matrices [19] yields an even worse
bound, O(3.142n) (calculations omitted). Output-sensitive sparse matrix multiplication
algorithms [1] will not work either, as our output matrix is dense in general.

Luckily, in our case, we can make more efficient use of the sparsity. We will decompose
the matrix product into a sum of smaller matrix products, as formulated by the following
representation (the proof is trivial and omitted):

I Lemma 5. Let {S1, S2, . . . , SM} be a set partition of 2U . Let Fpq be the submatrix of Fp
obtained by removing all columns but those in Sq, for p = 1, 2 and q = 1, 2, . . . ,M . Then

G =
M∑
q=1

Gq , where Gq = F1qF
>
2q .

We will also apply this decomposition after removing some rows from the matrices Fpq.
Then the index sets may be different for different Gq. To properly define the entry-wise
addition in these cases, we simply make the convention that the missing entries equal zero.

To employ a fast RMM algorithm we will call a function Fast-RMM(T1, S,T2). The
function returns the product E1E

>
2 , where each Ep is obtained from Fp by only keeping the

rows Tp and the columns S. Note that we do not show the input matrices explicitly in the
function call, as the submatrices will always be extracted from F1 and F2.
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Algorithm 1 The Columns algorithm for the multi-subset transform.

function Columns-Directly(S)
1 G[T ]← 0 for all T ⊆ U
2 for S ∈ S

3 for T ⊆ U s.t. S ⊆ T
4 G[T ]← G[T ] + F1(T1, S)F2(T2, S)
5 return G

Algorithm Columns
(
(fi)i∈U

)
1 G[T ]← 0 for all T ⊆ U
2 select σ ∈ ( 1

3 ,
1
2 )

3 S1 ← {S ⊆ U : |S| ≤ σn}
4 G← G+ Fast-RMM

(
2U1 , S1, 2U2

)
5 G← G+ Columns-Directly

(
2U \ S1

)
6 return G

2.2 A simple below-3 algorithm
We apply Lemma 5 with M = 2 and split the columns to those that are smaller than a
threshold σn and to those that are at least as large:

S1 = {S ⊆ U : |S| < σn} and S2 = {S ⊆ U : |S| ≥ σn} .

We assume σn is an integer and that 1
3 < σ < 1

2 . We will optimize the parameter σ later.
The idea is to call fast RMM only for summing over the columns S1 and to handle the
remaining columns in a brute-force manner. The algorithm Column is given in Algorithm 1.

Consider first the computation of the matrix G1. We compute G1 using fast RMM. The
computational complexity depends on the number of columns in the matrices F11 and F21.
Letting C be the number of columns, the required number of operations for the matrix
multiplication of dimensions N × C ×N is O

(
Nω(k)), where k = logN C. We have

C = |S1| =
σn∑
s=0

(
n

s

)
≤ b(σ)n , (4)

where the inequality follows by Fact 3.
Consider then the computation of the matrix G2. To compute G2(T ), for T ⊆ U , it

suffices to compute the sum of the products F1(T1, S)F2(T2, S) over all columns S ⊆ T whose
size is at least σn. Thus, the required number pairs (S, T ) to be considered is at most

B :=
n∑

s=σn

(
n

s

)
2n−s ≤ n

(
n

σn

)
2n(1−σ) ≤ n

(
21−σb(σ)

)n (5)

where the penultimate inequality follows by Fact 4 (since 1− σ < 2
3 ) and the last by Fact 3.

Let us finally combine the bounds in (4) and (5).

I Proposition 6. For any ε > 0, the number of operations required by Columns is

O
(

2n(ω(2H(σ))+ε)/2 + n2n(1−σ+H(σ))
)
.

SWAT 2020
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It remains to choose σ so as to optimize the bound. Clearly the first term is increasing
and the second term is decreasing in σ. Thus, the bound is (asymptotically) minimized by
choosing a σ that makes ω

(
2H(σ)

)
equal to 2(1 − σ +H(σ)). There are two obstacles to

implement this idea: first, we only know upper bounds for ω(k), for various k; second, no
closed-form expression is known for the best upper bounds – upper bounds for ω(k) have
been computed and reported only at some points k [7].

Due to these complications, we resort to the following facts:

I Fact 7 ([7]). The exponent of RMM satisfies ω(1.75) ≤ 3.021591.

I Fact 8. Let k > 0 and r ≥ 0. The exponent of RMM satisfies ω(k + r) ≤ ω(k) + r.

(This follows by reducing the larger RMM instance trivially to multiple smaller instances.)
Combining these two facts yields an upper bound:

ω(2H(σ)) ≤ ω(1.75) + 2H(σ)− 1.75 ≤ 1.271591 + 2H(σ) .

Now, solving 1.271591 + 2H(σ) = 2(1− σ +H(σ)) gives

σ = 1− 1.271591/2 = 0.3642045 .

With this choice of σ the complexity bound becomes O(2.994n).

2.3 A faster below-3 algorithm
Next we give a slightly faster algorithm to compute G1. This will allow us to choose a larger
threshold σ, thus also rendering the computation of G2 faster.

Instead of computing G1 directly using fast RMM, we now compute some rows and
columns of G1 in a brute-force manner and only apply fast RMM to the remaining smaller
matrix. Specifically, the algorithm only calls fast RMM to compute the entries G1(T1, T2)
where the sizes of T1 and T2 exceed τh. We assume that τh is an integer and that τ ∈ ( 1

2 ,
2
3 ).

We will optimize the parameter τ together with σ later. The algorithm Rows&Columns is
given in Algorithm 2. The correctness of the algorithm being clear, we proceed to analysing
the complexity in terms of the required number of arithmetic operations.

Consider first the computation of an entry G1(T1, T2) where |T1| ≤ τh. The number of
pairs (S, T ) satisfying S ⊆ T ⊆ U and |T1| ≤ τh is given by

B′ := 3h
τh∑
t=0

(
h

t

)
2t ≤ 3hh

(
h

τh

)
2τh ≤ h

(
3 · 2τ b(τ)

)h ; (6)

the penultimate inequality follows by Fact 4 (since τ < 2
3 ) and the last inequality by Fact 3.

Similarly, computing the entries G1(T1, T2) for all T1 ⊆ U1 and T2 ⊆ U2 such that
|T2| ≤ τh requires at most B′ additions and multiplications.

It remains to compute the entries G1(T1, T2) for T1 ⊆ U1 and T2 ⊆ U2 such that
|T1|, |T2| > τh. This can be computed as a product of two matrices (submatrices of F1 and
F>2 ) whose sizes are at most R× C and C ×R, where C is as before and

R :=
h∑

j=τh+1

(
h

j

)
≤ b(τ)h , (7)

where the inequality follows by Fact 3 (since τ > 1
2 ).

Let us combine the bounds in (6) and (7):
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Algorithm 2 The Rows&Columns algorithm for the multi-subset transform.

function Rows-Trimmed(τ, S)
1 G[T ]← 0 for all T ⊆ U
2 Tp ← {Tp ⊆ Up : |Tp| > τh} for p← 1, 2
3 for S ⊆ T ⊆ U s.t. S ∈ S and (T1 6∈ T1 or T2 6∈ T2)
4 G[T ]← G[T ] + F1(T1, S)F2(T2, S)
5 G← G+ Fast-RMM

(
T1, S,T2

)
6 return G

Algorithm Rows&Columns
(
(fi)i∈U

)
1 G[T ]← 0 for all T ⊆ U
2 select σ ∈ ( 1

3 ,
1
2 ) and τ ∈ ( 1

2 ,
2
3 )

3 S1 ← {S ∈ U : |S| ≤ σn}
4 G← G+ Rows-Trimmed(τ, S1)
5 G← G+ Columns-Directly

(
2U \ S1

)
6 return G

I Proposition 9. For any ε > 0, the number of operations required by Rows&Columns is

O
(
n(3 · 2τ b(τ))n/2 + b(τ)(ω(k)+ε)n/2 + n

(
21−σb(σ)

)n)
, where k = 2 logb(τ) b(σ) .

To set the parameters σ and τ , we resort to the bound ω(k) ≤ 1.271591 + k (Fact 7 and
Fact 8). Balancing the latter two terms in the bound yields the equation

(1.271591 + k)H(τ) = 2
(
1− σ +H(σ)

)
.

Equivalently, 1.271591 ·H(τ) = 2(1− σ). Solving for σ and equating the first and the third
term in the bound leaves us the equation

log2 3 + τ +H(τ) = 1.271591 ·H(τ) + 2H
(
1− 0.6357955 ·H(τ)

)
.

By numerical calculations we find one solution in the valid range, τ ≈ 0.59777, and corre-
spondingly σ ≈ 0.38185. With these choices the complexity bound becomes O(2.985n). This
completes the proof of Theorem 1.

2.4 A covering based algorithm
The previous algorithms were based on pruning some columns and rows of the matrices F1
and F2, and applying fast RMM to the remaining multiplication of two reduced matrices.
Now, we take a different approach and reduce the original problem instance into multiple,
smaller RMM instances applying Lemma 5 with some M > 2. To this end, we cover – in the
sense of a set cover – the columns by multiple groups such that the columns in one group
contain a large block of zero entries (in the same set of rows) in the matrices F1 and F2.

It will be convenient to consider sets of fixed sizes. For a set V and a nonnegative integer
s, write

(
V
s

)
for the set of all s-element subsets of V . Let s1, s2 ∈ {0, 1, . . . , h} fix the sizes of

the intersection of a column with the sets U1 and U2. We wish to cover the set (of set pairs)(
U1
s1

)
×
(
U2
s2

)
by a small number of sets of the form

(
K1
s1

)
×
(
K2
s2

)
, where the sets K1 and K2

are of some fixed sizes k1 ≥ s1 and k2 ≥ s2. The following classic result [5] shows that this
covering design problem has an efficient solution:

SWAT 2020
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I Theorem 10 ([5]). Let c(v, k, s) be the minimum number of subsets of {1, 2, . . . , v} of size
k such that every subset of size s ≤ k is contained by at least one of the sets. We have

c(v, k, s)
(
k

s

)(
v

s

)−1
≤ 1 + ln

(
k

s

)
.

In particular, c(v, k, s) is within the factor k of the obvious lower bound
(
v
s

)(
k
s

)−1.

I Remark 11. Although the work needed for constructing a covering does not contribute to
the number of operations in the ring R, a remark is in order if one is interested in the required
number of other operations. The authors are not aware of any deterministic algorithm
for constructing an optimal covering in time polynomial in

(
v
k

)
+
(
v
s

)
, while asymptotically

optimal randomized polynomial-time algorithms are known [9].
Fortunately, for our purposes it suffices to run the well known greedy algorithm that

iteratively picks a set that covers the largest number of yet uncovered elements. It finds
a set cover whose size is within a logarithmic factor of the optimum, which is sufficient in
our context. Furthermore, it can be implemented to run in time linear in the input size [4,
Ex. 35.3–3], which is

(
v
k

)(
k
s

)
≤ 3v in our case (with v = h = n/2).

From now on, we assume that for p = 1, 2 we are given a set family Kp ⊆
(
Up

kp

)
that has

the desired coverage property, i.e.,
{(
Kp

sp

)
: Kp ∈ Kp

}
is a set cover of

(
Up

sp

)
, so that for every

column S ⊆ U satisfying |S1| = s1, |S2| = s2 there is a pair (K1,K2) ∈ K1 ×K2 such that
S1 ⊆ K1, S2 ⊆ K2. In what follows, we will assume that some appropriate values of k1, k2
are chosen based on s1, s2; we will return back to the issue of finding good values at the end
of this subsection.

For each pair (K1,K2), we construct a submatrix E1 of F1 as follows: remove from F1 all
columns S not covered by (K1,K2), and all rows T1 whose intersection with K1 contains less
than s1 elements (as otherwise we cannot have S1 ⊆ T1 and the entry F1(T1, S) vanishes). We
construct a matrix E2 analogously by removing columns and rows from F2. The dimensions
of the matrix product E1E

>
2 are R1 × C ′ ×R2, where

R1 :=
k1∑
j=s1

(
k1

j

)
2h−k1 , C ′ :=

(
k1

s1

)(
k2

s2

)
, R2 :=

k2∑
j=s2

(
k2

j

)
2h−k2 .

Algorithm Cover-Columns, given in Algorithm 3, organizes the reduction to multiple
RMM instances like this using Lemma 5. Specifically, from the set cover of the columns it
extracts a set partition by trivially keeping track of the already covered columns.

To analyze the complexity of the algorithm, let us first bound the dimensions R1, C ′,
and R2 for fixed s1, s2, k1, k2. We aim at bounds of the form Nα for some 0 < α < 2, and
therefore parameterize the set sizes as

sp = σph and kp = κph , p = 1, 2 .

Thus 0 ≤ σp ≤ κp ≤ 1. In what follows, we let σp/κp evaluate to 0 if σp = κp = 0.

I Lemma 12. We have

R1 ≤ Nβ1 , C ′ ≤ Nα1+α2 , R2 ≤ Nβ2 ,

where

αp := κpH
(σp
κp

)
and βp := 1− κp + κpH

(
max

{σp
κp
,

1
2

})
, p = 1, 2 . (8)
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Algorithm 3 The Cover-Columns algorithm for the multi-subset transform.

Algorithm Cover-Columns
(
(fi)i∈U

)
1 G[T ]← 0 for all T ⊆ U
2 C← ∅ // Already covered columns
3 for (s1, s2) ∈ {0, 1, . . . , h}2

4 select k1 and k2
5 Kp ← Covering-Design(sp, kp, Up) for p← 1, 2
6 for (K1,K2) ∈ K1 ×K2
7 S← {S1 ∪ S2 : S1 ∈ K1 and S2 ∈ K2}
8 G← G+ Rows-Trimmed(0, S \ C) // Trim only all-zero rows
9 C← C ∪ S

10 return G

Proof. The bound for C ′ follows directly from the definitions of σp, κp, αp and from Fact 3.
For the bound on R1 (equivalently R2), suppose first that κ1 ≥ 2σ1. Then using the simple

inequality
∑k1
j=s1

(
k1
j

)
≤ 2k1 = Nκ1H(1/2) gives the claimed bound. Otherwise, κ1 ≤ 2σ1 and

thus, by Fact 3,
∑k1
j=s1

(
k1
j

)
≤ 2k1H(1−σ1/κ1) = Nκ1H(σ1/κ1), implying the claimed bound. J

It remains to turn the bounds on the dimensions to a bound on the complexity of the
corresponding RMM and sum up these bounds over the multiple matrix multiplication tasks.

I Proposition 13. For any ε > 0, the number of operations required by Cover-Columns
is O

(
2(γ+ε)n/2), where

γ := max
0≤σ1≤1
0≤σ2≤1

min
σ1≤κ1≤1
σ2≤κ2≤1

H(σ1) +H(σ2)− α1 − α2 + β1 + β2 + β∗

(
ω
(α1 + α2

β∗

)
− 2
)
, (9)

with αp and βp as defined in (8), and β∗ := min{β1, β2}.

Proof. Let ε > 0.
Consider first the complexity of a single matrix multiplication with fixed σp, κp, for

p = 1, 2. By Lemma 12 we obtain an upper bound by taking Nmax{β1,β2}−β∗ = Nβ1+β2−2β∗

matrix multiplications of dimensions Nβ∗ ×Nα1+α2 ×Nβ∗ . This gives us the upper bound
O
(
Nβ1+β2+β∗(ω(k)−2)+ε/2), where k = (α1 +α2)/β∗. Note that we used only a half of ε – we

will need the other half for tolerating a nonzero underestimation that is due to minimizing
κp over reals. We will return to this issue at the end of the proof.

Consider then the number of matrix multiplications for fixed sp, kp, for p = 1, 2. By
Theorem 10 and by the approximation ratio of the greedy algorithm, the number is at most

n4
(
h

s1

)(
h

s2

)(
k1

s1

)−1(
k2

s2

)−1
≤ n5b(σ1)hb(σ2)hb(σ1/κ1)−κ1hb(σ2/κ2)−κ2h

= n5NH(σ1)+H(σ2)−α1−α2 .

Here we used Fact 3 to bound the binomial coefficients, observing that (2k1)1/2(2k2)1/2 ≤ n.
Now, combine the above two bounds, recall that N = 2n/2, and observe that replacing

the sum over (s1, s2) by the maximum over (σ1, σ2) is compensated by adding a factor of n2

to the bound. The algorithm can select optimal k1 and k2 by optimizing the upper bound,
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which costs yet another factor of n2. Due to the constant ε in the exponent, we can ignore
the nO(1) factor in the asymptotic complexity bound.

To complete the proof, we show that for any values of σp and κp (hence also for the
optimal values) and for any large enough integer h, there are rational numbers κ′p ≥ σp such
that (i) κ′ph are integers and (ii) Γ(σ1, σ2, κ

′
1, κ
′
2) ≤ Γ(σ1, σ2, κ1, κ2) + ε/2, where

Γ(σ1, σ2, κ1, κ2) := H(σ1) +H(σ2) + β1 + β2 + β∗

(
ω
(α1 + α2

β∗

)
−
(α1 + α2

β∗

)
− 2
)
. (10)

Note that we rearranged some terms in (9), for a reason that will be revealed in a moment.
We will consider two cases: either σ1 or σ2 is near the boundary values 0 or 1, or both

are in [c, 1− c], where c > 0 is a small constant. We choose c < 1
2 such that if 0 ≤ σ1 < c or

1− c < σ1 ≤ 1, then regardless of σ2,

Γ(σ1, σ2, 1, 1) ≤ ω(1) + ε/2 ,

and symmetrically for σ2. To see that this is possible, observe first that at κ1 = κ2 = 1 we
have α1 = H(σ1), α2 = H(σ2), and thus

Γ(σ1, σ2, 1, 1) = β1 + β2 + β∗

(
ω
(α1 + α2

β∗

)
− 2
)

≤ β1 + β2 + β∗

(
ω
(α∗
β∗

)
+ α1 + α2 − α∗

β∗
− 2
)
,

where α∗ := αp if β∗ = βp. Observe that α∗ ≤ β∗. Since ω(1)− 2 ≥ 0 and α1, α2, β1, β2 ≤ 1,

Γ(σ1, σ2, 1, 1) ≤ α1 + α2 − α∗ + β1 + β2 + ω(1)− 2 ≤ ω(1) +H(σ1) .

For the latter inequality we used the facts that α∗ = α2 if σ1 < c and that β1 = H(σ1) if
σ1 > 1− c. Finally, we observe that H(σ1) tends to 0 when σ1 tends to 0 or 1.

On the other hand, we have the lower bound Γ( 1
2 ,

1
2 , κ1, κ2) ≥ 2+β1+β2−β∗ ≥ 2.5 > ω(1),

since ω(z)− z ≥ 1 and βp = 1− κp + κpH
(
1/(2κp)

)
≥ κp ≥ 1

2 ; here we used the fact that
H(x) ≥ 2− 2x for x ∈

[ 1
2 , 1
]
.

We may thus restrict out attention to the domain

Λc :=
{

(σ1, σ2, κ1, κ2) : c ≤ σ1, σ2 ≤ 1− c, σ1 ≤ κ1 ≤ 1, σ2 ≤ κ2 ≤ 1
}
.

We now show that Γ is continuous on Λc. Observe first that the functions H, αp, and βp
are continuous on Λc (as κp > c). We also have that β∗ is continuous and strictly positive
(as σp ≤ 1− c) and that z 7→ ω(z) is continuous (as |ω(z + δ)− ω(z)| ≤ δ for all δ > 0).

Since the domain Λc is compact, we have that Γ is uniformly continuous on Λc. This in
turn implies that there is a δε > 0 such that (ii) holds whenever |κ′p − κp| < δε, implying
that we can make both (i) and (ii) hold for all h > 1/δε by putting κ′p := dκphe/h. J

Now we know that the complexity of the algorithm is O
(
2(γ+ε)n/2), but we do not know

how large γ is. Unlike for the simpler algorithms given in the previous subsections, we
cannot just select some values of the parameters σp and κp and bound γ from above by
Γ(σ1, σ2, κ1, κ2), as defined in (10), for we do not know the maximizing values of σp. Since
Γ is uniformly continuous on the domain Λc, one could in principle prove any fixed strict
upper bound on γ with a sufficiently large, finite computation. While at the present time
the authors have not produced such a proof, evaluations of Γ(σ1, σ2, κ1, κ2) at various values
of the four parameters suggest the following:

I Conjecture 14. The number of operations required by Cover-Columns is O(2.930n).
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3 Fast weighted counting of acyclic digraphs: proof of Theorem 2

Let us write the inclusion–exclusion recurrence (2) as a multi-subset transform:

I Lemma 15. Without loss of generality, suppose 0 6∈ V . Let 0 ∈ T ⊆ V ∪ {0} and

g(T ) =
∑
S⊆T

∏
i∈T

fi(S) ,

where

fi(S) =


0 if 0 6∈ S or |S| = |T |;
(−1)|S|−1aS\{0} else if i = 0;∑
Di⊆S\{0} wi(Di) else if i 6∈ S;

1 otherwise.

Then aT\{0} = (−1)|T |g(T ).

Proof. Because the summand vanishes unless 0 ∈ S 6= T and because fi(S) = 1 unless
i ∈ {0} ∪ (T \ S), we have

(−1)|T |g(T ) = (−1)|T |
∑

0∈S(T
f0(S)

∏
i∈T\S

fi(S)

=
∑

0∈S(T
(−1)|T |+|S|−1aS\{0}

∏
i∈T\S

∑
Di⊆S\{0}

wi(Di) .

Writing in terms of T ′ := T \ {0} and S′ := T \ S, and observing that |S| and −|S| have the
same parity,

(−1)|T |g(T ) =
∑

∅6=S′⊆T ′
(−1)|S

′|−1aT ′\S′
∏
i∈S′

∑
Di⊆T ′\S′

wi(Di) = aT ′ .

The last equality follows immediately from (2). J

It remains to organize the computations so that when computing aT for some T ⊆ V , the
values aS have already been computed for all S ( T . To this end, we proceed in increasing
order by |T |: for each t = 1, 2, . . . , n in this order we simultanously compute the values
aT for all T ∈

(
V
t

)
by calling the fast multi-subset transform, as detailed in algorithm

Sum-Acyclic-Digraphs given in Algorithm 4. As we only need n calls, the asymptotic
complexity bound (with a rounded constant base of the exponential) remains valid.
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