
Primal-Dual 2-Approximation Algorithm for the
Monotonic Multiple Depot Heterogeneous
Traveling Salesman Problem
S. Rathinam
Texas A & M University, College Station, TX 77843, USA
srathinam@tamu.edu

R. Ravi
Carnegie Mellon University, Pittsburgh, PA 15213, USA
ravi@cmu.edu

J. Bae
Michigan Technological University, Houghton, MI 49931, USA
bae@mtu.edu

K. Sundar
Los Alamos Laboratory, NM 87545, USA
kaarthik@lanl.gov

Abstract
We study a Multiple Depot Heterogeneous Traveling Salesman Problem (MDHTSP) where the
cost of the traveling between any two targets depends on the type of the vehicle. The travel costs
are assumed to be symmetric, satisfy the triangle inequality, and are monotonic, i.e., the travel
costs between any two targets monotonically increases with the index of the vehicles. Exploiting
the monotonic structure of the travel costs, we present a 2-approximation algorithm based on the
primal-dual method.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases Approximation Algorithm, Heterogeneous Traveling Salesman Problem,
Primal-dual Method

Digital Object Identifier 10.4230/LIPIcs.SWAT.2020.33

Funding R. Ravi: This material is based upon work supported in part by the U. S. Office of Naval
Research under award number N00014-18-1-2099.

1 Introduction

We consider a generalization of a multiple Traveling Salesman Problem (TSP) involving
heterogeneous vehicles, where the cost of traveling between any two locations depends on
the type of the vehicle. Given a set of targets, the initial location (depot) and metric travel
costs corresponding to each vehicle, the objective is to find a tour for each vehicle such that
each target is visited exactly once by some vehicle and the sum of the travel costs of all
the vehicles is minimum. This problem is referred to as the Multiple Depot Heterogeneous
Traveling Salesman Problem (MDHTSP) and is widely studied in the unmanned vehicle
community [4, 5, 10,11,13–16,20,22].

MDHTSP is a generalization of the classic TSP and is NP-Hard. Therefore, we are
interested in developing approximation algorithms for the MDHTSP. Henceforth, we assume
the travel costs for each vehicle are symmetric and satisfy the triangle inequality unless
otherwise mentioned. For covering all targets with multiple TSPs when all the vehicles
are identical, there are several constant-factor approximation algorithms in the literature
[6, 12,17, 21]. Generally, most of these algorithms follow a three-step procedure: In the first

© S. Rathinam, R. Ravi, J. Bae, and K. Sundar;
licensed under Creative Commons License CC-BY

17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020).
Editor: Susanne Albers; Article No. 33; pp. 33:1–33:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:srathinam@tamu.edu
mailto:ravi@cmu.edu
mailto:bae@mtu.edu
mailto:kaarthik@lanl.gov
https://doi.org/10.4230/LIPIcs.SWAT.2020.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Primal-Dual 2-Approximation Algorithm for MDHTSP

step, the tour requirements are relaxed to find an optimal constrained forest. In the second
step, the edges in the constrained forest are doubled, or in special cases, a matching problem
is solved (à la Christofides) for a subset of vertices and the corresponding edges are added to
the forest to obtain an Eulerian graph for each vehicle. In the final step, the Eulerian graph
for each vehicle is used to obtain an Eulerian walk and the repeated visits are shortcut to
find a tour. Similar procedures are also used to find approximation algorithms for multiple
Hamiltonian Path Problems in [3, 18].

No constant factor approximation algorithms are known for the MDHTSP. In [22], a
3n
2 -approximation algorithm is presented for the MDHTSP where n denotes the number of
vehicles (not the number of nodes in the metric). For a related variant of MDHTSP where
all the vehicles start from the same depot and the objective is to minimize the makespan
(maximum travel cost of any vehicle), a constant-factor approximation algorithm is presented
in [8]. For the same makespan objective, when the vehicles are functionally heterogeneous1,
a (2dln(n)e+ 1)-approximation algorithm has been presented recently in [23].

Monotonic MDHTSP. We are interested in the special case of the MDHTSP in which some
restriction is placed on the travel costs of the vehicles. Intuitively, we assume the vehicles are
ordered and the costs are monotonic. Formally, let D = {d1, d2, · · · , dn} denote the n depots
(initial locations) of the vehicles. Let T represent the set of targets. For each i ∈ {1, · · · , n},
let Vi := T ∪ {di} denote the set of vertices corresponding to the ith vehicle, and let Ei
denote the set of all the edges that join any two distinct vertices in Vi. For i ∈ {1, · · · , n},
let the cost of traversing an edge e ∈ Ei for the ith vehicle be denoted by costie. We assume
the travel costs for each vehicle satisfy the triangle inequality and are monotonic i.e., for any
two vehicles i < j, costie ≤ costje. However, we do not assume that they are proportional (i.e.
costie = ρ · costje). A tour for vehicle i is given by the sequence (di, ui1, · · · , uili , di) where
uij ∈ T for j = 1, · · · , li and li denotes the number of targets visited by vehicle i. The
travel cost of vehicle i is equal to costi(di,ui1) +

∑li−1
j=1 cost

i
(uij ,ui(j+1)) + costi(uili

,di) if li ≥ 1,
and is equal to 0 otherwise. The objective is to find a tour for each vehicle such that each
target is visited exactly once by some vehicle and the sum of travel costs of all the vehicles is
minimum.

Even though the travel costs are monotonic, the partitioning of the targets amongst the
vehicles is still non-trivial because the vehicles start their tours from different initial locations
or depots. This is an important special case that naturally arises in the following practical
applications: (1) If the vehicles are modelled as ground robots [19] traveling with the same
speed but with different turning radius constraints and ri denotes the minimum turning
radius of vehicle i, then the vehicles can be ordered such that r1 ≤ r2 · · · ≤ rn. In this case,
the travel costs (the shortest distances required to travel between targets subject to the
turning radius constraints) are monotonic. (2) If the vehicles travel at different speeds and
the travel cost for any vehicle between two targets is defined as the ratio of the Euclidean
distance between the targets and the speed of the vehicle, then the travel costs satisfy the
case of proportional costs, which are also monotonic. (3) If each vehicle has a fuel capacity
and the vehicles are allowed to refuel at gas stations, then the cost of traveling between any
two targets subject to the refueling constraints also increases as the fuel capacity of a vehicle
decreases [9]. Here, again, the travel costs are monotonic.

1 The travel costs for the vehicles may be the same but there are compatibility constraints between
vehicles and targets.

S. Rathinam, R. Ravi, J. Bae, and K. Sundar 33:3

When n = 2 and the travel costs are monotonic, a 2-approximation algorithm was
presented for MDHTSP in [2] extending the primal-dual algorithm for the prize collecting
TSP [7] to the two vehicle case. Similar to the prize-collecting TSP in which any target not
visited by a vehicle must pay a penalty, for the two vehicle case, any target not visited by
the first vehicle is on the tour of the second vehicle that is modeled by some form of penalty.

For the multiple vehicle case we address, it is not difficult to design a primal-dual algorithm
to find a feasible solution where each target is connected to some depot. However, the key
to proving a good approximation ratio is in the pruning procedure of such an algorithm so
that the edges retained after the pruning procedure can be paid for by an appropriate dual
solution. A closely related problem where a similar pruning procedure arises is the Prize
Collecting Steiner Tree problem (PCST)2. In the primal-dual algorithm for the PCST [7], the
greedy growth of the duals must be frozen due to the constraints represented by the penalties
on the nodes, particularly when the total sum of duals associated with any subset of vertices
reaches the total sum of penalties for this set. How such frozen components are handled in
terms of whether they are connected to the final solution tree or not is the crucial step of
the pruning procedure in [7]. This is accomplished by a labeling procedure which was also
used in [2] for the two vehicle case. However, its direct generalization to the many vehicles
case we address is much more involved. In this paper, we provide an alternate simpler view
of the pruning procedure for the PCST and re-purpose it for our multi-vehicle extension.
This is the main technical novelty in our work.

Contributions. We present a primal-dual 2-approximation algorithm for the n vehicle case
of monotonic MDHTSP. Like the prior work [2], we use a primal-dual approach, but avoid
the use of the prize-collecting TSP as explained above. The heart of our result is a 2-
approximation for the Heterogeneous Spanning Forest (HSF) problem of finding a minimum
cost collection of n trees from the depots covering all the targets among the different graphs
corresponding to the vehicles3. The following is a summary of our key technical steps.
1. While multiple LP relaxations are possible for the MDHTSP, we present an LP relaxation

and a dual that allows the primal-dual method to construct a HSF with a special nesting
structure among its components (Lemma 3).

2. This structure is then used to prove that pruning appropriate edges from the output of
the main loop of the primal-dual method will result in a feasible HSF (Lemma 4 and
Theorem 5).

3. Finally, we show that the value of the dual can be decomposed into the sum of the dual
values corresponding to each of the vehicles (Lemma 8). This allows us to decompose the
proof of the bound on the cost of the edges in each tree in terms of its corresponding
dual value.

Putting together the above components, we show that the cost of the HSF constructed
using the proposed algorithm is at most the optimal LP relaxation cost of the MDHTSP.
Short-cutting the Euler tours on the trees in this HSF provides a 2-approximation algorithm
for the MDHTSP for the n-vehicle case (Theorem 7).

2 Given a graph, a depot node, a penalty for each node and a cost of each edge in the graph, the objective
of the PCST is to find a tree containing the depot such that the sum of the cost of all the edges present
in the tree and the penalty of all the nodes not present in the tree is minimum.

3 This result does not require the different costs to be metric, but only that they are monotonic across
the vehicles. The metric condition is only used in converting the forests to tours.

SWAT 2020

33:4 Primal-Dual 2-Approximation Algorithm for MDHTSP

2 LP Relaxation for MDHTSP and its Dual

We use two sets of integer variables that will be later relaxed to formulate an LP relaxation
for the MDHTSP. The first set of variables denoted by xie determines whether edge e ∈ Ei is
present in the tour of vehicle i ∈ {1, · · · , n}. The second set of variables ziU is defined for
i = 1, · · · , n− 1 and any U ⊆ T . Specifically, ziU is equal to 1 if U is the subset of all the
targets visited by vehicles i+ 1, · · · , n; otherwise, ziU is equal to 0. Refer to Fig. 1 for an
illustration of these variables.

Note that
∑
U⊆T z

i
U = 1 ∀i ∈ {1, · · · , n − 1}, i.e., every vehicle of index i up to n − 1

picks a single subset of targets that will be covered by vehicles i+ 1 or later.
The following proposition is a simple consequence of the fact that the z-variables can be

used to identify subsets of targets that need to be covered by vehicle i. For any S ⊆ T and
i = 1, · · · , n, let δi(S) := {(u, v) : u ∈ S, v ∈ Vi \ S}.

I Proposition 1. Any feasible solution to the MDHTSP satisfies the following constraints:∑
e∈δi(S)

xie ≥ 2
∑

U :S⊆U⊆T
(zi−1
U − ziU) ∀ S ⊆ T, |S| ≥ 1, i ∈ {1, · · · , n};

z0
T = 1; z0

U = 0 ∀U 6= T ; znU = 0 ∀U ⊆ T .

Proof. Both
∑
U :S⊆U⊆T z

i−1
U and

∑
U :S⊆U⊆T z

i
U can either be 0 or 1. The constraint is

trivially satisfied except for the case when
∑
U :S⊆U⊆T z

i−1
U = 1 and

∑
U :S⊆U⊆T z

i
U = 0. But∑

U :S⊆U⊆T z
i−1
U = 1 can occur only if all the targets in S are visited by vehicles in {i, · · · , n}.

Also,
∑
U :S⊆U⊆T z

i
U = 0 can occur only if there is at least one target in S visited by a vehicle

in {1, · · · , i}. Therefore, if
∑
U :S⊆U⊆T z

i−1
U = 1 and

∑
U :S⊆U⊆T z

i
U = 0, there is at least one

target in S that must be visited by vehicle i. This is implied by the constraint as it reduces
to

∑
e∈δi(S) x

i
e ≥ 2 which is true. J

The LP relaxation of the MDHTSP that we work with contains only the constraints from
the above proposition.

Costlp = min
n∑
i=1

∑
e∈Ei

costie x
i
e (1)

∑
e∈δi(S)

xie ≥ 2
∑

U :S⊆U⊆T
(zi−1
U − ziU) ∀ S ⊆ T, i = 1, · · · , n, (2)

z0
T = 1; z0

U = 0 ∀U 6= T ; znU = 0 ∀U ⊆ T (3)
xie ≥ 0 ∀ e ∈ Ei, i = 1, · · · , n, (4)
ziU ≥ 0 ∀ U ⊆ T, i = 1, · · · , n− 1. (5)

The dual of the above linear program is as follows:

max 2
∑
S⊆T

Y1(S) (6)

∑
S:e∈δi(S)

Yi(S) ≤ costie ∀ e ∈ Ei, ∀i = 1, · · · , n, (7)

∑
S:S⊆U

Yi(S) ≤
∑

S:S⊆U
Yi+1(S) ∀ U ⊆ T, ∀i = 1, · · · , n− 1, (8)

Yi(S) ≥ 0 ∀ S ⊆ T, ∀ i = 1, · · · , n. (9)

S. Rathinam, R. Ravi, J. Bae, and K. Sundar 33:5

d1

d2

d3

d4

U1

U2

U3

Target
Depot

z1U1
= z2U2

= z3U3
= 1

Figure 1 An illustration of a feasible solution involving four vehicles. In this example, U1 ⊇
U2 ⊇ U3.

Other than the usual packing constraints in (7), the more interesting constraints (8) restrict
the dual value of the subsets of any set U in a cheaper cost level to be at most that
accumulated in any higher cost level.

3 Primal-Dual Algorithm

We define some terms before presenting the main steps of the primal-dual algorithm. The
algorithm maintains a forest of edges defined over the targets and the respective depot for
each vehicle separately, by using the known primal-dual moat-growing procedure separately
and simultaneously in each of the graphs (Vi, Ei) [1, 7].

Let Fi(t) be the forest obtained in (Vi, Ei) for the vehicle i ∈ {1, · · · , n} at the end
of iteration t of the main loop. For any two distinct vehicles i, j ∈ {1, · · · , n}, i < j and
any iteration t, consider (connected) components Ci in forest Fi(t) and Cj in forest Fj(t).
Because of the monotonicity of costs across the indices, typically the edges between targets in
the lower level i will become packed and hence chosen in the forest before those in the higher
cost level j. Ci is considered as an ancestor of Cj , or Cj is a descendant of Ci if Ci ⊇ Cj .
Note that Cj cannot be a descendant of Ci if it contains a depot. Note carefully that we
have the subset inclusion only among the targets in the components in different levels but
not among the set of tight edges connecting them.

A component can either be active, inactive or frozen. A component is active at the start
of an iteration if its dual variable will be allowed to increase during the iteration without
violating any of the constraints in the dual problem. A component is inactive if it either
contains a depot or if any of its ancestor contains a depot. A component is frozen if it
stopped growing due to the constraint in (8), i.e., each descendant of this component is not
active as it contains targets connected to some higher level depots. If a component is inactive
or frozen at the start of an iteration, its dual value will not change during the iteration.

SWAT 2020

33:6 Primal-Dual 2-Approximation Algorithm for MDHTSP

Initialization. Initially, each forest consists of singleton components which is either a depot
or a target. The singleton components with only targets are active; any component with
a depot is inactive. The dual variables corresponding to all the active components are
initialized to zero.

Main loop. In each iteration of the primal-dual algorithm, the dual variables of all active
components in all the forests (in all graphs (Vi, Ei)) are increased simultaneously as much
as possible by the same amount until at least one of the constraints in the dual problem
becomes tight. If multiple constraints in both (7) and (8) become tight simultaneously during
iteration t, only one constraint either in (7) or (8) is chosen and processed based on the
following procedure.

If constraints in (7) become tight, then a tight constraint corresponding to the vehicle
with the least vehicle number (say i) is chosen. The edge corresponding to the chosen
constraint is added to the forest corresponding to vehicle i merging two components at
its ends (say C1 and C2). If both C1 and C2 do not contain a depot, then the merged
component is active. If one of the components contains a depot (say di ∈ C2), then the
merged component and all its descendants (specifically the descendants of C1) become
inactive.
If a constraint in (8) becomes tight (i.e., it risks being violated if the current dual variables
all continue to grow) for some vehicle i, then the corresponding component is deactivated
and becomes frozen.

The main loop of the algorithm stops when each component in all the forests is either inactive
or frozen. We will detail some properties of the components before describing the pruning
step of the algorithm in Section 3.1.

Remarks.
1. If a component C1 merges with a component C2 that contains a depot, the merged

component and its descendants are deactivated and will never become active again in the
main loop.

2. It is straightforward to compute the maximum possible increase (41) in the dual variables
that do not violate the constraints in (7) using standard techniques involving internal
variables for each target in polynomial time. Since we do not grow dual variables more
than this amount, it is straightforward to verify that the dual solution we construct obeys
the constraints in (7). Specifically, we can use internal variables pi(u) defined for each
target u and vehicle i in the following way: All these internal variables are first set to
zero during the initialization. Suppose, at the start of an iteration, C1 and C2 are two
components corresponding to vehicle i, and u ∈ C1 and v ∈ C2. Assume at least one of
these components is active. Let active(C) denote if a component C is active or not. For
j = 1, 2, active(Cj) = 1 if Cj is active and is equal to 0 otherwise. Then, the maximum
amount by which the dual variable corresponding to C1 or C2 can be increased before
violating the constraint corresponding to edge e = (u, v) is given by Costie−pi(u)−pi(v)

active(C1)+active(C2) .
This amount can be computed for all such candidate edges and the least of these amounts
is equal to 41. During an iteration, if the primal-dual algorithm decides to increase the
dual variable of each active component by 4, then pi(u) for each target u and vehicle i
will be set to pi(u) +4 if the component containing u is active; otherwise pi(u) doesn’t
change.

3. Similarly, we can compute the maximum possible increase (42) in the dual variables that
do not violate the constraints in (8), using internal variables defined for each component
again in polynomial time. Specifically, we use two internal variables Ȳi(C) and Boundi(C)

S. Rathinam, R. Ravi, J. Bae, and K. Sundar 33:7

for each component C ∈ Fi(t), i = 1, · · · , n−1 defined4 as follows: Ȳi(C) :=
∑
S:S⊆C Yi(C)

and Boundi(C) :=
∑
S:S⊆C Yi+1(C). All the internal variables are first set to zero during

the initialization (t = 0). For any i = 1, · · · , n− 1, suppose at the end of iteration t, an
active component C ∈ Fi(t) has mC active descendants in Fi+1(t). Then, during iteration
t+1, the constraint corresponding to C in (8) can become tight only ifmC = 0. In the case
mC = 0, the maximum amount by which the dual variable of C can be increased without
violating its constraint is given by Boundi(C)− Ȳi(C). This amount can be computed for
each of components in {C : C is active and mC = 0, C ∈ Fi(t+ 1), i = 1, · · · , n− 1} and
the least of these amounts is equal to 42. In addition, if the primal-dual algorithm decides
to increase the dual variable of each active component by 4 during iteration t+ 1, before
any merger occurs, for all i = 1, · · · , n−1, for all active C ∈ Fi(t), Ȳi(C)← Ȳi(C)+4 and
Boundi(C)← Boundi(C) +mC4; in addition, if two components C1, C2 ∈ Fi(t) merge,
Ȳi(C1

⋃
C2)← Ȳi(C1) + Ȳi(C2) and Boundi(C1

⋃
C2)← Boundi(C1) +Boundi(C2).

Observations on the Main Loop. We review a few facts that follow from the running of
the main loop. Consider any i ∈ {1, · · · , n} and a vertex u ∈ T . Let Ci(t, u) denote the
component containing u in the forest corresponding to vehicle i at the start of iteration t of
the main loop. Let activei(t, u) be an indicator denoting if Ci(t, u) is active or not. That is,
activei(t, u) = 1 if Ci(t, u) is active and activei(t, u) = 0 otherwise.

I Lemma 2. The main loop of the primal-dual algorithm terminates in 2n(|T |+1) iterations.

Proof. At the start of the main loop, the number of components in all the forests is n(|T |+1)
and the number of active components in all the forests is n|T |. During each iteration of the
main loop, the sum of the number of components and the number of active components in all
the forests decreases by at least 1. Therefore, the main loop will require at most 2n|T |+ n

iterations. J

Note that components in smaller index vehicles typically merge before their corresponding
analogues in the larger indices since the distances are shorter in the smaller index metric.
Hence, in addition to the laminar structure on the target nodes among these components
for a fixed vehicle, there is an inclusion relation among these components when viewing
them across the vehicle indices (after we ignore the depots that are present only in their
corresponding graphs). The following lemma shows that at any time t′ in the main loop of
the algorithm, for j > i, the set of connected components for vehicle index j are contained in
those for vehicle index i. Let the main loop of the primal-dual procedure terminate after tf
iterations. Also, let 4t denote the amount by which the dual value of each active component
is increased during iteration t.

I Lemma 3. In any iteration t′ = 1, · · · , tf , for any vehicles i, j ∈ {1, · · · , n}, i < j

and any target u ∈ T , the following relations hold true: activei(t′, u) ≥ activej(t′, u) and
Ci(t′, u) ⊇ Cj(t′, u) if dj /∈ Cj(t′, u).

Proof. We prove this lemma by induction on t′. For t′ = 1, the lemma is trivially satisfied.
Assume the lemma is true for iterations t′ = 1, · · · , t for some t < tf .

Suppose that in iteration t, the constraint in (7) becomes tight for some edge (u, v)
corresponding to vehicle i . There are two cases.

4 In the special case when C only consists of di, we define Boundi(C) = 0.

SWAT 2020

33:8 Primal-Dual 2-Approximation Algorithm for MDHTSP

The merged component does not contain di: In this case, the merged component will be
active at the end of the iteration and will be an ancestor to the descendants of Ci(t, u)
and Ci(t, v). In addition, if i ≥ 2, Ci−1(t, u) must be the same component as Ci−1(t, v).
If this is not true, for edge e = (u, v),

costi−1
e −

t−1∑
t′=1

(activei−1(t′, u) + activei−1(t′, v))4t′

≤ costie −
t−1∑
t′=1

(activei(t′, u) + activei(t′, v))4t′ . (10)

Therefore, during iteration t, the algorithm would have added (u, v) to the forest corre-
sponding to vehicle i− 1 due to our rule in processing the vehicle with the least index
in the main loop, which is a contradiction. One can now verify that for any target u,
activei(t+ 1, u) ≥ activej(t+ 1, u) and Ci(t+ 1, u) ⊇ Cj(t+ 1, u) if dj /∈ Cj(t+ 1, u).
Merged component contains di: If di ∈ Ci(t, u), then the merged component and all the
descendants of the merged component also become inactive. Again, one can verify the
lemma is true for iteration t+ 1.

Suppose a constraint in (8) becomes tight for some component C. If C is frozen, then C
cannot have any descendants that are active. Again, it is easy to check that the lemma is
true for iteration t+ 1. J

I Lemma 4. Consider a frozen component C corresponding to vehicle i ∈ {1, · · · , n− 1}
at the start of iteration t. Consider any target u ∈ C. Then, either Ci+1(t, u) is frozen and
Ci+1(t, u) ⊆ C or Ci+1(t, u) contains di+1 and Ci+1(t, u) \ {di+1} ⊆ C.

Proof. If di+1 /∈ Ci+1(t, u), using Lemma 3, Ci+1(t, u) ⊆ Ci(t, u) = C; also, since Ci+1(t, u)
is not active and cannot5 have an ancestor that is connected to a depot, Ci+1(t, u) is frozen. If
di+1 ∈ Ci+1(t, u), then any target v ∈ Ci+1(t, u)\{di+1} must also belong to C. If this is not
the case, there is an edge joining targets w and v in component Ci+1(t, u) such that w ∈ C
and v /∈ C. From Lemma 3, using a similar argument as in (10), this is not possible. J

3.1 Pruning
For i = 1, · · · , n, the pruning phase of the primal-dual procedure selects a subgraph F̄i
of Fi(tf) such that each target is connected to exactly one of the depots. We need a few
definitions before describing the pruning procedure. The degree of a subgraph C of forest
F is defined as |{(u, v) : u ∈ C, v /∈ C, (u, v) ∈ F}|. A subgraph C of Fi(tf) is referred as
a frozen subgraph if C is a component that is frozen during some iteration t ≤ tf . A
subgraph C of Fi(tf) is referred to as a pendent-frozen subgraph if C is a frozen subgraph
and its degree is equal to 1 (Ref to Fig. 2). A maximal pendent-frozen subgraph is a
pendent-frozen subgraph C ∈ Fi(t) such that there is no other pendent-frozen subgraph
C ′ ∈ Fi(t) with C ′ ⊃ C. Given vehicle i, iteration t of the main loop and a component C
spanning a subset of targets, let FCi (t) be a subgraph of Fi(t) induced by di and the targets
in C. It follows from this definition that if C was frozen during iteration t of the main loop
for vehicle i, then for all j = i, i+ 1, · · · , n, FCj (t) = FCj (tf).

The pruning procedure is implemented in n iterations. Let i := 1 at the start of the
pruning procedure and let G1 = F1(tf).

5 If Ci+1(t, u) has an ancestor that is connected to a depot, then C also has an ancestor that is connected
to a depot which makes C inactive and this is not possible.

S. Rathinam, R. Ravi, J. Bae, and K. Sundar 33:9

Figure 2 An illustration of forest Gi corresponding to vehicle i. Each shaded region corresponds
to a frozen subgraph.

1. Remove all the frozen subgraphs that are components (not containing di) from Gi.
Furthermore, in the tree containing di in Gi, remove all the maximal pendent-frozen
subgraphs. The resultant pruned tree is F̄i (Refer to Figs. 2, 3).

2. If i = n, stop. Else, let Gi+1 be the union of all the subgraphs FCi+1(tC) obtained for
every frozen subgraph C frozen at time tC and discarded from Gi in the previous step.
Set i = i+ 1 and go to step 1.

Intuitively, frozen components contain targets connected to depots in higher index graphs
and hence the pruning step discards them for processing in an appropriate (later) iteration.
Similarly, maximal pendent-frozen subgraphs must be pruned so as to ensure that no inactive
component in this index contributes degree one in the standard degree-based inductive
argument for the 2-approximation ratio in the primal-dual method [7].

3.2 Feasibility
We are ready to prove the following main theorem.

I Theorem 5. Each target in T is connected to exactly one of the depots in {F̄1, · · · , F̄k},
i.e, {F̄1, · · · , F̄k} is a feasible Heterogeneous Spanning Forest (HSF).

Proof. We will prove the Theorem by induction on the stages of the pruning procedure.

I Lemma 6. Consider any iteration k of the pruning procedure. Let the subset of targets
connected to di in F̄i be denoted as Ti. Then, each target in

⋃k
i=1 Ti is connected to exactly

one of the depots in {F̄1, · · · , F̄k} and the remaining targets are contained in the frozen
subgraphs discarded in Gk.

Proof. Clearly the lemma is true for k = 1. Assume that the lemma is true for k = k′ − 1.
We will now show that the lemma is true for k = k′ also. Applying Lemma 4 to each
discarded frozen subgraph in Gk′−1, all the targets in T \

⋃k′−1
i=1 Ti are either present in the

SWAT 2020

33:10 Primal-Dual 2-Approximation Algorithm for MDHTSP

Figure 3 Output forest F̄i after removing the maximal pendent-frozen subgraphs and frozen
subgraphs that are components from Gi.

frozen components of Gk′ or connected to dk′ using only targets from T \
⋃k′−1
i=1 Ti. By the

definition of the pruning step on Gk′ , the targets that are pruned away do not affect the
connectivity from dk′ to the targets retained in Tk′ . Hence the induction step is proved. J

By the above lemma, when k = n, we see that the targets Ti covered in the various iterations
form a partition of T . J

4 Approximation Guarantee

I Theorem 7. The approximation ratio of the primal-dual algorithm for MDHTSP is 2.

We show that the dual value of the LP relaxation can be equivalently written as the sum
of the dual values corresponding to each of the vehicles (Lemma 8). This will allow us to
bound the cost of the edges in each forest with respect to its dual value (Lemma 9). The
approximation ratio will readily follow from these results.

Consider any vehicle i ∈ {1, · · · , n− 1}. Let Ci1, · · · , Cimi
denote the discarded, frozen

subgraphs of Gi (as defined in the pruning procedure) for vehicle i. Also, let the subset of
targets in all these discarded components be Ui. To simplify the ensuing derivation (with a
slight abuse of notation), we also refer to C as a subset of targets present in component C.

I Lemma 8.

∑
S⊆T

Y1(S) =
∑

S⊆T,S 6⊆U1

Y1(S) +
n−1∑
j=2

∑
S⊆Uj−1,S 6⊆Uj

Yj(S) +
∑

S⊆Un−1

Yn(S).

Proof. Note that∑
S⊆T

Y1(S) =
∑

S⊆T,S 6⊆U1

Y1(S) +
∑
S⊆U1

Y1(S). (11)

S. Rathinam, R. Ravi, J. Bae, and K. Sundar 33:11

For any j = 2, · · · , n− 1,∑
S⊆Uj−1

Yj−1(S) =
mj−1∑
k=1

∑
S⊆C(j−1)k

Yj−1(S).

Each C(j−1)k is a frozen component. Therefore, its corresponding constraint in (8) is tight.

⇒
∑

S⊆Uj−1

Yj−1(S) =
mj−1∑
k=1

∑
S⊆C(j−1)k

Yj(S) =
∑

S⊆Uj−1

Yj(S)

=
∑

S⊆Uj−1,S 6⊆Uj

Yj(S) +
∑
S⊆Uj

Yj(S).

Applying the above relation recursively in equation (11), the lemma follows. J

For any j = 1, · · · , n, let Cost(F̄j) =
∑
e∈F̄j

costje.

I Lemma 9. For any j = 2, · · · , n− 1,

Cost(F̄j) ≤ 2
∑

S⊆Uj−1,S 6⊆Uj

Yj(S).

Proof.

Cost(F̄j) =
∑
e∈F̄j

costje =
∑
e∈F̄j

∑
S:e∈δj(S)

Yj(S) =
∑
S⊆T

Yj(S)|δj(S)
⋂
F̄j |.

Note that from Lemma 3, any S ⊆ T that loaded an edge e ∈ F̄j must be a subset of
Uj−1. In addition, |δj(S)

⋂
F̄j | = 0 for any S ⊆ Uj , since Uj was discarded in the pruning.

Therefore, we get

Cost(F̄j) =
∑
S⊆T

Yj(S)|δj(S)
⋂
F̄j | =

∑
S⊆Uj−1,S 6⊆Uj

Yj(S)|δj(S)
⋂
F̄j |.

Therefore, the lemma reduces to proving that∑
S⊆Uj−1,S 6⊆Uj

Yj(S)|δj(S)
⋂
F̄j | ≤ 2

∑
S⊆Uj−1,S 6⊆Uj

Yj(S). (12)

The above result can be proved by induction on the main loop, using the usual degree
argument for such primal-dual algorithms [7]. At the start of any iteration t and vehicle
j, let A denote the set of active components defined as follows: A := {C : C is active,
C ⊆ Uj−1, C 6⊆ Uj}. Similarly, let I denote the set of inactive or frozen components defined
as follows I := {C : C is inactive or frozen, C ⊆ Uj−1, C 6⊆ Uj}. Form a graph H with
components in A ∪ I as vertices and e ∈ F̄j ∩ δj(C) for C ∈ A ∪ I as edges.

Let deg(u) represent the degree of a vertex u in graph H. Let the dual variable of each
active component during the iteration increase by 4t. Due to this dual increase, the right
hand side of the inequality (12) will increase by 24t|A|, whereas the left hand side of the
inequality (12) will increase by 4t

∑
u∈A deg(u). Therefore, the lemma is proved if we can

show that
∑
u∈A deg(u) ≤ 2|A|.

Note that H is a tree that spans all the the components in A ∪ I. Therefore, deg(u) ≥ 1
for any component u in A∪ I. There is exactly one inactive component in I, and this inactive
component contains dj6. In addition, for any vertex u that represents a frozen component,

6 A component in a forest corresponding to vehicle j can also be inactive if its ancestor is connected to a
depot. But from Lemma 3, such a component never becomes active again and never gets connected to
dj .

SWAT 2020

33:12 Primal-Dual 2-Approximation Algorithm for MDHTSP

deg(u) ≥ 2 due to the pruning procedure that discards maximal pendant-frozen subgraphs.
Therefore,∑

u∈A
deg(v) =

∑
u∈A∪I

deg(u)−
∑
u∈I

deg(u)

=
∑

u∈A∪I
deg(u)−

∑
u∈{C:C∈I,dj /∈C}

deg(u)−
∑

u∈{C:C∈I,dj∈C}

deg(u)

≤ 2(|A|+ |I| − 1)− 2(|I| − 1)− 1
< 2|A|. J

Similarly, one can also show that Cost(F̄1) ≤ 2
∑
S⊆T,S 6⊆U1

Y1(S) and Cost(F̄n) ≤
2

∑
S⊆Un−1

Yn(S). Hence, using Lemma 8, we get

n∑
i=1

Cost(F̄i) ≤2
∑

S⊆T,S 6⊆U1

Y1(S) + 2
n−2∑
j=1

∑
S⊆Uj ,S 6⊆Uj+1

Yj+1(S) + 2
∑

S⊆Un−1

Yn(S)

=2
∑
S⊆T

Y1(S) ≤ Costlp.

Therefore, the cost of the constructed HSF will be at most the optimal cost of the
MDHTSP. Doubling the edges in the constructed HSF and short cutting the repeated
visits to the targets in an Euler walk suitably leads to a 2-approximation algorithm for the
MDHTSP.

References
1 Ajit Agrawal, Philip Klein, and Ramamoorthi Ravi. When trees collide: An approximation

algorithm for the generalized steiner problem on networks. SIAM journal on Computing,
24(3):440–456, 1995.

2 Jung Yun Bae and Sivakumar Rathinam. A primal-dual approximation algorithm for a
two depot heterogeneous traveling salesman problem. Optimization Letters, 10, 2015. doi:
10.1007/s11590-015-0924-1.

3 Jungyun Bae and Sivakumar Rathinam. Approximation algorithms for multiple termi-
nal, hamiltonian path problems. Optimization Letters, 6(1):69–85, 2012. doi:10.1007/
s11590-010-0252-4.

4 Bruno N. Coelho, Vitor N. Coelho, Igor M. Coelho, Luiz S. Ochi, Roozbeh Haghnazar K.,
Demetrius Zuidema, Milton S.F. Lima, and Adilson R. da Costa. A multi-objective green uav
routing problem. Comput. Oper. Res., 88(C):306–315, December 2017. doi:10.1016/j.cor.
2017.04.011.

5 R. Doshi, S. Yadlapalli, S. Rathinam, and S. Darbha. Approximation algorithms and heuristics
for a 2-depot, heterogeneous hamiltonian path problem. International Journal of Robust and
Nonlinear Control, 21(12):1434–1451, 2011. doi:10.1002/rnc.1701.

6 A.M. Frieze. An extension of christofides heuristic to the k-person travelling salesman problem.
Discrete Applied Mathematics, 6(1):79–83, 1983. doi:10.1016/0166-218X(83)90102-6.

7 Michel X. Goemans and David P. Williamson. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing, 24(2):296–317, April 1995.

8 I. Gortz, M. Molinaro, V. Nagarajan, and R. Ravi. Capacitated Vehicle Routing with Non-
uniform Speeds, volume 6655 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2011.

9 Samir Khuller, Azarakhsh Malekian, and Julián Mestre. To fill or not to fill: The gas station
problem. ACM Trans. Algorithms, 7(3):36:1–36:16, July 2011. doi:10.1145/1978782.1978791.

http://dx.doi.org/10.1007/s11590-015-0924-1
http://dx.doi.org/10.1007/s11590-015-0924-1
http://dx.doi.org/10.1007/s11590-010-0252-4
http://dx.doi.org/10.1007/s11590-010-0252-4
http://dx.doi.org/10.1016/j.cor.2017.04.011
http://dx.doi.org/10.1016/j.cor.2017.04.011
http://dx.doi.org/10.1002/rnc.1701
http://dx.doi.org/10.1016/0166-218X(83)90102-6
http://dx.doi.org/10.1145/1978782.1978791

S. Rathinam, R. Ravi, J. Bae, and K. Sundar 33:13

10 David Levy, Kaarthik Sundar, and Sivakumar Rathinam. Heuristics for routing heterogeneous
unmanned vehicles with fuel constraints. Mathematical Problems in Engineering, 2014, 2014.

11 Parikshit Maini and P.B. Sujit. On cooperation between a fuel constrained uav and a refueling
ugv for large scale mapping applications. In 2015 International Conference on Unmanned
Aircraft Systems, 2015. doi:10.1109/ICUAS.2015.7152432.

12 W. Malik, S. Rathinam, and S. Darbha. An approximation algorithm for a symmetric
generalized multiple depot, multiple travelling salesman problem. Operations Research Letters,
35:747–753, 2007.

13 P. Oberlin, S. Rathinam, and S. Darbha. Today’s traveling salesman problem. IEEE Robotics
and Automation Magazine, 17(4):70–77, December 2010.

14 Alena Otto, Niels A. H. Agatz, James F. Campbell, Bruce L. Golden, and Erwin Pesch.
Optimization approaches for civil applications of unmanned aerial vehicles (uavs) or aerial
drones: A survey. Networks, 72(4):411–458, 2018. doi:10.1002/net.21818.

15 Stefan Poikonen, Xingyin Wang, and Bruce Golden. The vehicle routing problem with drones:
Extended models and connections. Networks, 70(1):34–43, 2017. doi:10.1002/net.21746.

16 Amritha Prasad, Shreyas Sundaram, and Han-Lim Choi. Min-max tours for task allocation
to heterogeneous agents. In 2018 IEEE Conference on Decision and Control (CDC), pages
1706–1711, 2018. doi:10.1109/CDC.2018.8619118.

17 S. Rathinam, R. Sengupta, and S. Darbha. A resource allocation algorithm for multivehicle sys-
tems with nonholonomic constraints. IEEE Transactions Automation Science and Engineering,
4:98–104, 2007. doi:10.1109/TASE.2006.872110.

18 Sivakumar Rathinam and Raja Sengupta. 3/2-approximation algorithm for two variants
of a 2-depot hamiltonian path problem. Operations Research Letters, 38(1):63–68, 2010.
doi:10.1016/j.orl.2009.10.001.

19 J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both forwards and backwards.
Pacific J. Math., 145(2):367–393, 1990.

20 Kaarthik Sundar and Sivakumar Rathinam. An exact algorithm for a heterogeneous, multiple
depot, multiple traveling salesman problem. In Unmanned Aircraft Systems (ICUAS), 2015
International Conference on, pages 366–371. IEEE, 2015.

21 Zhou Xu and Brian Rodrigues. An extension of the christofides heuristic for the generalized
multiple depot multiple traveling salesmen problem. European Journal of Operational Research,
257(3):735–745, 2017. doi:10.1016/j.ejor.2016.08.054.

22 S. Yadlapalli, S. Rathinam, and S. Darbha. 3-approximation algorithm for a two depot,
heterogeneous traveling salesman problem. Optimization Letters, pages 1–12, 2010.

23 Miao Yu, Viswanath Nagarajan, and Siqian Shen. An approximation algorithm for vehicle
routing with compatibility constraints. Operations Research Letters, 46(6):579–584, 2018.
doi:10.1016/j.orl.2018.10.002.

SWAT 2020

http://dx.doi.org/10.1109/ICUAS.2015.7152432
http://dx.doi.org/10.1002/net.21818
http://dx.doi.org/10.1002/net.21746
http://dx.doi.org/10.1109/CDC.2018.8619118
http://dx.doi.org/10.1109/TASE.2006.872110
http://dx.doi.org/10.1016/j.orl.2009.10.001
http://dx.doi.org/10.1016/j.ejor.2016.08.054
http://dx.doi.org/10.1016/j.orl.2018.10.002

	Introduction
	LP Relaxation for MDHTSP and its Dual
	Primal-Dual Algorithm
	Pruning
	Feasibility

	Approximation Guarantee

