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Abstract
We investigate dynamic versions of geometric set cover and hitting set where points and ranges may
be inserted or deleted, and we want to efficiently maintain an (approximately) optimal solution
for the current problem instance. While their static versions have been extensively studied in the
past, surprisingly little is known about dynamic geometric set cover and hitting set. For instance,
even for the most basic case of one-dimensional interval set cover and hitting set, no nontrivial
results were known. The main contribution of our paper are two frameworks that lead to efficient
data structures for dynamically maintaining set covers and hitting sets in R1 and R2. The first
framework uses bootstrapping and gives a (1 + ε)-approximate data structure for dynamic interval
set cover in R1 with O(nα/ε) amortized update time for any constant α > 0; in R2, this method
gives O(1)-approximate data structures for unit-square (and quadrant) set cover and hitting set
with O(n1/2+α) amortized update time. The second framework uses local modification, and leads to
a (1 + ε)-approximate data structure for dynamic interval hitting set in R1 with Õ(1/ε) amortized
update time; in R2, it gives O(1)-approximate data structures for unit-square (and quadrant) set
cover and hitting set in the partially dynamic settings with Õ(1) amortized update time.
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2:2 Dynamic Geometric Set Cover and Hitting Set

1 Introduction

A range space (X,R) consists of a set X of objects and a family R of subsets of X called
ranges. A subset H ⊆ X is called a hitting set of (X,R) if it intersects every (nonempty)
range in R, and a subset C ⊆ R is called a set cover of (X,R) if

⋃
C∈C C = X. In many

applications X is a set of points in Rd and R is induced by a set of geometric regions
(rectangles, balls, simplices, etc.), i.e., each is the subset of points lying inside one of the
regions. With a slight abuse of notation, we will use R to denote the set of ranges as well
as the set of regions that define these ranges. Given a geometric range space (S,R), the
geometric set-cover (resp., hitting-set) problem is to find the smallest number of ranges in R
(resp., points in S) that cover all points in S (resp., hit all ranges in R). Geometric set cover
and hitting set are classical geometric optimization problems, with numerous applications in
databases, sensor networks, VLSI design, etc.

In many applications, the problem instance can change over time and re-computing a
new solution after each change is too costly. In these situations, a dynamic data structure
that can update the solution after a change more efficiently than constructing the entire new
solution from scratch is highly desirable. This motivates the main problem studied in our
paper: dynamically maintaining geometric set covers and hitting sets under insertion and
deletion of points and ranges. In this paper, we formulate the problem as follows: after each
update, our data structure should (implicitly) store an approximate set-cover solution R′
(resp., hitting-set solution S′) for the current instance such that the following queries can be
supported efficiently.

Size query: report the size of R′ (resp., S′).
Membership query: for a given range R ∈ R (resp., point a ∈ S), report whether R
(resp., a) is contained in R′ (resp., S′).
Reporting query: report all elements in R′ (resp., S′).

We require the size query to be answered in O(1) time, a membership query to be answered in
O(log |R′|) time (resp., O(log |S′|) time), and the reporting query to be answered in O(|R′|)
time (resp., O(|S′|) time); this is the best one can expect in the pointer machine model.

We say that a set-cover (resp., hitting-set) instance is fully dynamic if insertions and
deletions on both points and ranges are allowed, and partially dynamic if only the points
(resp., ranges) can be inserted and deleted. In this paper, unless explicitly mentioned
otherwise, problems are always considered in the fully dynamic setting.

Related work

The set-cover and hitting-set problems for general range spaces are well-known to be NP-
complete [12]. A simple greedy algorithm achieves an O(logn)-approximation [7, 13, 15],
which is tight under appropriate complexity-theoretic assumptions [8, 14]. The problems
remain NP-hard or even hard to approximate in many geometric settings [5, 16, 17]. However,
by exploiting the geometric nature of the problems, efficient algorithms with o(logn) approx-
imation factors can be obtained. For example, Mustafa and Ray [18] showed the existence
of polynomial-time approximation schemes (PTAS) for halfspace hitting set in R3 and disk
hitting set in R2. There is also a PTAS for unit-square set cover given by Erlebach and
van Leeuwen [9]. Agarwal and Pan [3] proposed approximation algorithms with near-linear
running time to the set-cover and hitting-set problems for halfspaces in R3, disks in R2, and
orthogonal rectangles.

Despite extensive work on the static versions of hitting set and set cover, very little is
known about these problems in the dynamic setting. There is some recent work on set cover
in the partially dynamic setting. Gupta et al. [11] showed that an O(logn)-approximation
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can be maintained with O(f logn) amortized update time and an O(f3)-approximation can
be maintained with O(f2) amortized update time, where f is the maximum number of ranges
that a point belongs to. These bounds were subsequently improved by Bhattacharya et al. [6]
to O(f2)-approximation factor and O(f logn) amortized update time, and by Abboud et al. [1]
to (1 + ε)f -approximation factor and O(f2 logn/ε5) amortized update time.

In geometric settings, there has been some work on the dynamic hitting-set problem.
Agarwal et al. [4] described a dynamic data structure for maintaining an (1+ε)-approximation
of the optimal hitting set when the set of points S is R1 and R is a set of intervals.
Ganjugunte [10] studied the dynamic hitting-set problem for the case where S is a set of
points in R2 and R is a set of squares or discs, under two different dynamic settings: (a) only
the range set R is dynamic and (b) R is dynamic and S is semi-dynamic (i.e., insertion-only).
We are not aware of any non-trivial results for geometric set cover or hitting set even in 1D,
except that the greedy algorithm can be implemented in an output-sensitive manner in some
special cases (see below).

Our results

The main contribution of this paper are two frameworks for designing fully dynamic geometric
set-cover and hitting-set data structures, leading to efficient data structures in R1 and R2

(see Table 1). The first framework is based on bootstrapping, which results in efficient
(approximate) dynamic data structures for interval set cover and quadrant/unit-square set
cover and hitting set (the first three rows of Table 1). The second framework is based on local
modification, which results in efficient (approximate) dynamic data structures for interval
hitting set and quadrant/unit-square set cover and hitting set in the partially dynamic setting
(the last three rows of Table 1).

Table 1 Summary of our results for dynamic geometric set cover and hitting set (SC = set cover
and HS = hitting set). All update times are amortized. The notation Õ(·) hides logarithmic factors;
n is the size of the current instance, and α > 0 is any small constant. All data structures can be
constructed in Õ(n0) time where n0 is the size of the initial instance.

Framework Problem Range Approx. Update time Setting

Bootstrapping
SC Interval 1 + ε Õ(nα/ε) Fully dynamic

SC & HS Quadrant O(1) Õ(n1/2+α) Fully dynamic

SC & HS Unit square O(1) Õ(n1/2+α) Fully dynamic

Local modification
HS Interval 1 + ε Õ(1/ε) Fully dynamic

SC & HS Quadrant O(1) Õ(1) Part. dynamic

SC & HS Unit square O(1) Õ(1) Part. dynamic

For technical reasons, our algorithms maintain a multiset solution, as opposed to a regular
subset of R (resp., S). That is, we allow the solution to be a multiset of elements in R (resp.,
S) that cover all points in S (resp., hit all ranges in R), and the quality of the solution is
also evaluated in terms of the multiset cardinality. Unless explicitly mentioned otherwise,
solutions for set cover and hitting set always refer to multiset solutions hereafter.

Overview of the techniques

The basic idea of our bootstrapping framework is as follows: We begin from a simple dynamic
set-cover or hitting-set data structure (e.g., a data structure that re-computes a solution
after each update), and repeatedly use the current data structure to obtain an improved
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2:4 Dynamic Geometric Set Cover and Hitting Set

one. The main challenge here is to design the bootstrapping procedure: how to use a given
data structure to construct a new data structure with improved update time. We achieve
this by using output-sensitive algorithms and carefully partitioning the problem instances
to sub-instances. We say an algorithm is output-sensitive if it computes an (approximate)
optimal solution in time proportional to the size of the output, using only basic data structures.
A data structure built on a dataset of size n is basic if it can be constructed in Õ(n) time
and made dynamic with Õ(1) update time. One of our technical contributions is in designing
an O(1)-approximate output-sensitive algorithm for 2D quadrant set cover, which is new to
the best of our knowledge.

Our second framework is much simpler, which is based on local modification. Namely,
we construct a new solution by slightly modifying the previous one after each update, and
re-compute a new solution periodically using an output-sensitive algorithm. This framework
applies to the problems which are stable, i.e., the optimum of a dynamic instance does not
change significantly. The discussion of this framework can be found in the full version [2].

Organization

The rest of the paper is organized as follows. Due to limited space, only the results of our first
framework (bootstrapping) are discussed in this conference version: Section 2 presents the
1D results and Section 3 presents the 2D results. The results of our second framework (local
modification), as well as all the omitted proofs and details, can be found in the full version [2].

2 Warm-up: 1D set cover for intervals

As a warm up for our bootstrapping framework, we first study the 1D problem. Let S be a
set of points in R1 and I a set of intervals in R1; set n = |S|+ |I|. Our goal is to maintain a
small-size set cover of the range space (S, I) as S and I are updated dynamically; we refer
to this instance as the dynamic interval cover problem. We note that (static) interval set
cover can be solved using the greedy algorithm that repeatedly picks the leftmost uncovered
point and covers it using the interval with the rightmost right endpoint. By storing S and I
in a height-balanced tree, the greedy algorithm can be made output sensitive, i.e., it reports
an optimal set cover of size opt in O(opt logn) time.

I Lemma 1. Interval set cover admits an exact output-sensitive algorithm.

Using the output-sensitive algorithm, now we sketch how to design a fully dynamic data
structure to solve the interval-set-cover problem. Set a threshold nα for some α ∈ (0, 1). The
main bootstrapping step is as follows: Assume that we have a dynamic data structure solving
the interval-set-cover problem with O(nα/(1−α)) update time (modulo the dependencies
on the approximation parameter ε). Using this data structure, we construct a dynamic
data structure with Õ(nα) update time as follows: Run the output-sensitive algorithm for
O(nα) steps; if the optimal set cover has size opt at most nα then the algorithm correctly
computes an optimal set cover. Otherwise, we know that opt is at least nα. We partition the
points and the intervals on the real line into roughly εnα portions in a balanced way. The
number of points and endpoints of the intervals per portion is O(n1−α/ε), and the number
of portions is at most O(εnα). On each portion, we build a sub-instance using the points
contained in the portion, with all intervals that have an endpoint in the portion. We use the
slower data structure to maintain a set cover of this sub-instance. If one of these intervals
completely covers the portion (the portion is coverable), we solve its sub-instance with a
single covering interval. If the portion is not coverable, we rely on the slower data structure
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to provide an approximate solution. Because opt is so large, an (ε/2)-approximation on each
uncoverable portion combined with the single intervals of each coverable portion still gives
an (1 + ε)-approximate multiset solution to the entire instance.

The size of each portion is O(n1−α) (omitting ε for now), so each update to the dynamic
data structure on the portions takes about O((n1−α)α/(1−α)) = O(nα) time, which only
happens at most two times per insertion (an interval can partially intersects at most two
portions). The data structure periodically reconstructs itself after processing about n1−α

operations; which means in amortization each operation costs an extra O(nα) time. Overall,
this gives O(nα) update time for the new data structure.

We now describe the data structure in detail and analyze its performance.

2.1 Bootstrapping
We begin by stating the bootstrapping theorem, which is the technical heart of our result.

I Theorem 2. Let (S, I) be an instance of interval set cover, with n = |S| + |I|. Let
α, ε ∈ (0, 1) be parameters. If there exists a (1 + ε)-approximate dynamic set-cover structure
Dold for (S, I) with Õ(nα/ε1−α) amortized update time and Õ(n) construction time for any
ε > 0, then there exists a (1 + ε)-approximate dynamic interval-set-cover data structure Dnew
with Õ(nα′

/ε1−α′) amortized update time and Õ(n) construction time for any ε > 0, where
α′ = α/(1 + α). Here n denotes the size of the current problem instance.

Constructing Dnew

The data structure Dnew consists of two parts. The first part is the basic data structure A
required for the output-sensitive algorithm of Lemma 1. The second part is a family of Dold
data structures. Let f(n, ε) = min{n

1
1+α /ε

α
1+α , n/2}. Dnew is reconstructed periodically.

Let n0 = |S| + |I| when the data structure is being constructed. Set r = dn0/f(n0, ε)e.
We partition the real line R into r intervals J1, . . . , Jr such that each interval Ji contains
at most 2f(n0, ε) points in S plus the endpoints of the intervals in I. For i ≤ r, define
Si = S ∩ Ji and Ii ⊆ I the subsets of intervals that intersect Ji but do not cover it, i.e.,
Ii = {I ∈ I : Ji∩I 6= ∅ and Ji * I}. When Dnew is updated, the partition J1, . . . , Jr remains
unchanged, but the Si’s and Ii’s change as S and I are updated. We view each (Si, Ii) as a
dynamic interval-set-cover instance, and build the data structure D(i)

old on (Si, Ii) using Dold,
with the approximation parameter ε̃ = ε/2. Thus, D(i)

old maintains a (1 + ε̃)-approximate set
cover for (Si, Ii). The second part of Dnew consists of the data structures D(1)

old, . . . ,D
(r)
old.

Maintaining a set cover

We now describe the algorithm for maintaining a set cover Iappx for (S, I), if there exists
one. Set δ = min{(6 + 2ε) · r/ε, n}. We simulate the output-sensitive greedy algorithm for
at most δ steps. If the algorithm successfully computes a set cover, we use it as our Iappx.
Otherwise, we construct Iappx as follows. For i ∈ {1, . . . , r}, we say Ji is coverable if there
exists I ∈ I such that Ji ⊆ I and uncoverable otherwise. Let P = {i : Ji is coverable} and
P = {i : Ji is uncoverable}. For each i ∈ P , we choose an interval in I that contains Ji,
and denote by I∗ the collection of these intervals. If for some i ∈ P , the data structure
D(i)
old tells us that the current (Si, Ii) does not have a set cover, then we immediately

conclude that the current (S, I) has no feasible set cover, record as such. Otherwise, for
every i ∈ P , D(i)

old maintains a (1 + ε̃)-approximate optimal set cover I∗i for (Si, Ii). Set
Iappx = I∗ t

(⊔
Ji∈P′ I∗i

)
.
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2:6 Dynamic Geometric Set Cover and Hitting Set

It can be shown that if (S, I) has a feasible set cover, our algorithm maintains one, namely,
Iappx. Later we prove that Iappx is always a (1 + ε)-approximate optimal set cover for (S, I).
We now describe how to store Iappx properly to support the size, membership, and reporting
queries in the required query times. If Iappx is computed by the output-sensitive algorithm,
then the size of Iappx is at most δ, and we have all the elements of Iappx in hand. In this
case, it is not difficult to build a data structure on Iappx to support the desired queries. On
the other hand, if Iappx is defined as the disjoint union of I∗ and I∗i ’s, the size of Iappx might
be very large and we do not explicitly store all elements of Iappx. Fortunately, in this case,
each I∗i is already maintained in the data structure D(i)

old. Therefore, we only compute P , P ,
and I∗; with these in hand, we easily build a data structure to support the desired queries
for Iappx. A detailed discussion is presented in the full version [2].

Updating Dnew

Let n0 be the size of the data structure when Dnew was previously constructed. We reconstruct
Dnew after f(n0, ε) update operations and reset n0 to the current value of |S|+ |I|. If Dnew is
not being reconstructed after an update operation, we first update the basic data structure A.
Then, we update the data structure D(i)

old if the instance (Si, Ii) changes due to the operation.
Note that an update on S changes exactly one Si and an update on I changes at most two
Ii’s (because an interval can belong to at most two Ii’s). Thus, we in fact only need to
update at most two D(i)

old’s.

Correctness

Now we show that the set cover Iappx maintained by Dnew is a (1 + ε)-approximate optimal
set cover for (S, I). Let opt be the size of the optimal set cover of (S, I). If Iappx is computed
by the output-sensitive algorithm, then it is an optimal set cover for (S, I). Otherwise,
opt > δ = min{(6 + 2ε) · r/ε, n}. If opt > n, then the current (S, I) has no set cover (i.e.,
opt =∞) and thus Dnew makes a no-solution decision. So assume opt > (6 + 2ε) · r/ε. In this
case, Iappx = I∗t (

⊔
i∈P I

∗
i ). For each i ∈ P , let opti be the optimum of the instance (Si, Ii).

Then we have |I∗i | ≤ (1 + ε̃) · opti for all i ∈ P where ε̃ = ε/2. Since |I∗| ≤ r, we have

|Iappx| = |I∗|+
∑
i∈P

|I∗i | ≤ r +
(

1 + ε

2

)∑
i∈P

opti. (1)

Let Iopt be an optimal set cover for (S, I). We observe that for i ∈ P , Iopt ∩Ii is a set cover
for (Si, Ii), because Ji is uncoverable (so the points in Si cannot be covered by any interval
in I\Ii). It immediately follows that opti ≤ |Iopt ∩ Ii| for all i ∈ P . Therefore, we have∑

i∈P

opti ≤
∑
i∈P

|Iopt ∩ Ii|. (2)

The right-hand side of the above inequality can be larger than |Iopt| as some intervals in
Iopt can belong to two Ii’s. The following lemma bounds the number of such intervals.

I Lemma 3. There are at most 2r intervals in Iopt that belong to exactly two Ii’s.

Proof. Suppose the portions J1, . . . , Jr are sorted from left to right. Let si be the separation
point of Ji and Ji+1. Observe that an interval I ∈ Iopt belongs to exactly two Ii’s only
if I contains one of the separation points s1, . . . , sr−1. We claim that for each si, at most
two intervals in Iopt contain si. Assume there are three intervals I−, I, I+ that contain si.
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Without loss of generality, assume that I− (resp., I+) has the leftmost left endpoint (resp.,
the rightmost right endpoint) among I−, I, I+. Then one can easily see that I ⊆ I− ∪ I+.
Therefore, Iopt\{I} is also a set cover for (S, I), contradicting the optimality of Iopt. Thus,
at most two intervals in Iopt contain si. It follows that there are at most 2(r − 1) intervals
in Iopt that contain some separation point, and only these intervals can belong to exactly
two Ii’s, which proves the lemma. J

The above lemma immediately implies∑
i∈P

|Iopt ∩ Ii| ≤ |Iopt|+ 2r = opt + 2r. (3)

Combining Inequalities 1, 2, and 3, we deduce that

|Iappx| ≤ r +
(

1 + ε

2

)∑
i∈P

opti

≤ r +
(

1 + ε

2

)∑
i∈P

|Iopt ∩ Ii|

≤ r +
(

1 + ε

2

)
· (opt + 2r) = (3 + ε) · r +

(
1 + ε

2

)
· opt

<
ε

2 · opt +
(

1 + ε

2

)
· opt = (1 + ε) · opt,

where the last inequality follows from the assumption opt > (6 + 2ε) · r/ε.

Time complexity analysis

We briefly discuss the amortized update time of Dnew; a detailed analysis can be found in the
full version [2]. Recall that f(n, ε) = min{n

1
1+α /ε

α
1+α , n/2} and that Dnew is reconstructed

after f(n0, ε) update operations, where n0 is the size of (S, I) when Dnew was last constructed,
|n− n0| ≤ n0/2 and the size of each (Si, Ii) is O(f(n0, ε)). The construction of Dnew can be
easily done in Õ(n0) time.

The update time of Dnew consists of the time for updating the data structures A and
D(1)
old, . . . ,D

(r)
old, the time for maintaining the solution, and the (amortized) time for reconstruc-

tion. As argued before, we only need to update at most two D(i)
old’s after each operation. Thus,

updating the Dold data structures takes Õ(f(n0, ε)α/ε1−α) amortized time. Maintaining Iappx
takes Õ(δ+r) = O(n0/(f(n0, ε) ·ε)) time, with a careful implementation. The reconstruction
time is Õ(n) = Õ(n0 + f(n0, ε)), which we pay for by charging Õ(n0/f(n0, ε)) = Õ(r) to
each update operation since the previous reconstruction. In total, the amortized update time
of Dnew is Õ(f(n0, ε)α/ε1−α +n0/(f(n0, ε) · ε)). By substituting the value of f(n0, ε) (which
balances the two terms in the update time) and using the inequality |n− n0| ≤ n0/2, the
amortized update time is Õ(n

α
1+α /ε1− α

1+α ) = Õ(nα′
/ε1−α′) (recall that α′ = α/(1 + α)).

2.2 Putting everything together
With the bootstrapping theorem in hand, we are now able to design our dynamic interval-set-
cover data structure. The starting point is a “trivial” data structure, which simply uses the
output-sensitive algorithm of Lemma 1 to recompute an optimal interval set cover after each
update. Clearly, the update time of this data structure is Õ(n) and the construction time is
Õ(n0). Thus, there exists a (1 + ε)-approximate dynamic interval-set-cover data structure
with Õ(nα0/ε1−α0) amortized update time for α0 = 1 and Õ(n0) construction time. Define
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2:8 Dynamic Geometric Set Cover and Hitting Set

αi = αi−1/(1 + αi−1) for i ≥ 1. By applying Theorem 2 i times for a constant i ≥ 1, we
see the existence of a (1 + ε)-approximate dynamic interval-set-cover data structure with
Õ(nαi/ε1−αi) amortized update time and Õ(n0) construction time. One can easily verify
that αi = 1/(i+ 1) for all i ≥ 0. Therefore, for any constant α > 0, we have an index i ≥ 0
satisfying αi < α and hence Õ(nαi/ε1−αi) = O(nα/ε). We finally conclude the following.

I Theorem 4. Let (S, I) be an instance of interval set cover, with n = |S| + |I|. Let
α, ε ∈ (0, 1) be two constants. There exists a (1 + ε)-approximate dynamic interval-set-cover
data structure with O(nα/ε) amortized update time.

3 2D set cover for quadrants and unit squares

In this section, we present dynamic set-cover data structures for quadrants and unit squares
using the bootstrapping framework. Most of the section focuses on dynamic quadrant set
cover. At the end of the section, we reduce dynamic unit-square set cover to dynamic
quadrant set cover.

Let (S,Q) be a range space where S is a set of points in R2 and Q is a set of quadrants
in R2. We wish to maintain a set cover of (S,Q) as both S and Q are updated dynamically.
In order to apply the bootstrapping framework, we need an output-sensitive algorithm for
quadrant set cover, analog to the one in Lemma 1 for intervals. Designing such an algorithm
is considerably more difficult compared to the 1D case, and we defer it to Section 3.2.
We first discuss the bootstrapping procedure, assuming the existence of a µ-approximate
output-sensitive algorithm for quadrant set cover.

3.1 Bootstrapping
We prove the following bootstrapping theorem, which is the technical heart of our result.

I Theorem 5. Let (S,Q) be an instance of quadrant set cover, with n = |S| + |Q|. Let
α, ε ∈ (0, 1) be parameters and µ > 0. If there exist a (µ+ ε)-approximate output-sensitive
algorithm for quadrant set cover and a (µ + ε)-approximate dynamic set-cover structure
Dold for (S,Q) with Õ(nα/ε1−α) amortized update time and Õ(n) construction time, then
there exists a (µ + ε)-approximate dynamic quadrant-set-cover data structure Dnew with
Õ(nα′

/ε1−α′) amortized update time and Õ(n) construction time, where α′ = 2α/(1 + 2α).

Constructing Dnew

As in the 1D case, the data structure Dnew consists of two parts. The first part is the data
structure A required for the µ-approximate output-sensitive algorithm. The second part is
a family of Dold data structures defined as follows. Let f(n, ε) = min{n

1+α
1+2α /ε

α
1+2α , n/2}.

Dnew is reconstructed periodically. Let n0 = |S| + |I| when the data structure is being
constructed. Set r = dn0/f(n0, ε)e. We use an orthogonal grid to partition the plane R2

into r × r cells such that each row (resp., column) of the grid contains f(n0, ε) points in
S plus vertices of the quadrants in Q (see the left of Figure 1 for an illustration). Denote
by �i,j the cell in the i-th row and j-th column. Define Si,j = S ∩ �i,j . We also define
a sub-collection Qi,j ⊆ Q, as follows: We include in Qi,j all the quadrants in Q whose
vertices lie in �i,j . Besides, we also include in Qi,j the following (at most) four special
quadrants. We say a quadrant Q left intersects �i,j if Q partially intersects �i,j and contains
the left edge of �i,j (see the right of Figure 1 for an illustration); similarly, we define “right
intersects”, “top intersects”, and “bottom intersects”. Among a collection of quadrants, the
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r rows

r columns

A cell

�i,j

Q

Figure 1 Left: The r× r grid. Note that the cells may have different sizes. Right: A quadrant Q
that left intersects �i,j .

leftmost/rightmost/topmost/bottommost quadrant refers to the quadrant whose vertex is
the leftmost/rightmost/topmost/bottommost. We include in Qi,j the rightmost quadrant
in Q that left intersects �i,j , the leftmost quadrant in Q that right intersects �i,j , the
bottommost quadrant in Q that top intersects �i,j , and the topmost quadrant in Q that
bottom intersects �i,j (if these quadrants exist).1 When the instance (S,Q) is updated,
the grid remains unchanged, but the Si,j ’s and Qi,j ’s change as S and Q are updated. We
view each (Si,j ,Qi,j) as a dynamic quadrant-set-cover instance, and build the data structure
D(i,j)
old on (Si,j ,Qi,j) using Dold, with approximation factor ε̃ = ε/2. The second part of Dnew

consists of the data structures D(i,j)
old for i, j ∈ {1, . . . , r}.

Maintaining a set cover

We now describe the algorithm for maintaining a set cover Qappx for (S,Q), if one exists.
Set δ = min{(8µ + 4ε + 2) · r2/ε, n}. We simulate the output-sensitive algorithm for at
most δ steps. If the algorithm successfully computes a set cover, we use it as our Qappx.
Otherwise, we construct Qappx as follows. We say the cell �i,j is coverable if there exists
Q ∈ Q that contains �i,j and uncoverable otherwise. Let P = {(i, j) : �i,j is coverable}
and P = {(i, j) : �i,j is uncoverable}. For each (i, j) ∈ P , we choose a quadrant in Q
that contains �i,j , and denote by Q∗ the set of these quadrants. If for some (i, j) ∈ P ,
D(i,j)
old tells us that the instance (Si,j ,Qi,j) has no set cover, then we immediately conclude

that the current (S,Q) has no feasible set cover, and record as such. Otherwise, for each
(i, j) ∈ P , D(i,j)

old maintains a (µ+ ε̃)-approximate optimal set cover Q∗i,j for (Si,j ,Qi,j). Set
Qappx = Q∗ t

(⊔
(i,j)∈P Q

∗
i,j

)
. Qappx is stored in roughly the same way as Iappx is in the

1D case, and we omit the details from here.

1 Recall that in the 1D case, we define Ii as the sub-collection of intervals in I that partially intersect
the portion Ji. However, we cannot simply define Qi,j as the sub-collection of quadrants in Q that
partially intersect �i,j because a quadrant partially intersects too many cells.
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Updating Dnew

Let n0 be the size of the data structure when Dnew was previously constructed. We reconstruct
Dnew after f(n0, ε) update operations and reset n0 to the current value of |S|+ |I|. If Dnew
is not being reconstructed after an update operation, we first update the basic data structure
A. Then, we update those data structures D(i,j)

old for which (Si,j ,Qi,j) change. Note that
an update on S changes exactly one Si,j , and an update on Q may only change the Qi,j ’s
in one row and one column (specifically, if the vertex of the inserted/deleted quadrant lies
in �i,j , then only Qi,1, . . . ,Qi,r,Q1,j , . . . ,Qr,j may change). Thus, we in fact only need to
update the D(i,j)

old ’s in one row and one column.

Correctness

We show that the set cover Qappx maintained by Dnew is a (µ + ε)-approximate optimal
set cover for (S,Q). If Qappx is computed by the output-sensitive algorithm, then it is a
µ-approximate optimal set cover for (S,Q). Otherwise, opt > δ = min{(8µ+4ε+2) ·r2/ε, n},
i.e., either opt > (8µ+ 4ε+ 2) · r2/ε or opt > n. If opt > n, then (S,Q) has no set cover (i.e.,
opt =∞) and Dnew makes a no-solution decision. So assume (8µ+ 4ε+ 2)r2/ε < opt < n.
In this case, Qappx = Q∗ t (

⊔
(i,j)∈P Q

∗
i,j). For each (i, j) ∈ P , let opti,j be the optimum

of (Si,j ,Qi,j). Then we have |Q∗i,j | ≤ (µ+ ε̃) · opti,j for all (i, j) ∈ P where ε̃ = ε/2. Since
|Q∗| ≤ r2, we have

Qappx = |Q∗|+
∑

(i,j)∈P

|Q∗i,j | ≤ r2 +
(
µ+ ε

2

) ∑
(i,j)∈P

opti,j . (4)

Let Q′i,j ⊆ Qi,j consist of the non-special quadrants, i.e., those whose vertices are in �i,j .

I Lemma 6. We have opti,j ≤ |Qopt ∩Q′i,j |+ 4 for all (i, j) ∈ P , and in particular,∑
(i,j)∈P

opti,j ≤ opt + 4r2. (5)

Using Equations 4 and 5, we deduce that

|Qappx| ≤ r2 +
(
µ+ ε

2

) ∑
(i,j)∈P

opti,j

≤ r2 +
(
µ+ ε

2

)
(opt + 4r2)

≤ (4µ+ 2ε+ 1) · r2 +
(
µ+ ε

2

)
· opt

<
ε

2 · opt +
(
µ+ ε

2

)
· opt = (µ+ ε) · opt,

where the last inequality follows from the fact that opt > (8µ+ 4ε+ 2) · r2/ε.

Time complexity analysis

We briefly discuss the amortized update time of Dnew; a detailed analysis can be found
in the full version [2]. Recall that f(n, ε) = min{n1−α′/2/(

√
ε)α′

, n/2} and that Dnew is
reconstructed after f(n0, ε) update operations, where n0 is the size of (S,Q) when Dnew was
last constructed, |n− n0| ≤ n0/2. We first observe the following fact.
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I Lemma 7. At any time between reconstructions, we have
∑r
k=1(|Si,k| + |Qi,k|) =

O(f(n0, ε) + r) for all i ∈ {1, . . . , r} and
∑r
k=1(|Sk,j | + |Qk,j |) = O(f(n0, ε) + r) for all

j ∈ {1, . . . , r}.

The above lemma implies that the sum of the sizes of all (Si,j ,Qi,j) is O(n0 + r2) at any time
in the first period. Therefore, constructing Dnew can be done in Õ(n0 + r2) = Õ(n0) time.

The update time of Dnew consists of the (amortized) time for reconstruction, the time for
updating A and D(i,j)

old ’s, and the time for maintaining the solution. Using almost the same
analysis as in the 1D problem, we can show that the reconstruction takes Õ(r + r2/f(n0, ε))
amortized time and maintaining Qappx takes Õ(δ + r2) = Õ(r2/ε) time, with a careful
implementation. The time for updating the D(i,j)

old requires a different analysis. Let mi,j

denote the current size of (Si,j ,Qi,j). As argued before, we in fact only need to update the
D(i,j)
old in one row and one column (say the i-th row and j-th column). Hence, updating the
D(i,j)
old takes Õ(

∑r
k=1 m

α
i,k/ε

1−α +
∑r
k=1 m

α
k,j/ε

1−α) amortized time. Lemma 7 implies that∑r
k=1 mi,k = O(f(n0, ε) + r) and

∑r
k=1 mk,j = O(f(n0, ε) + r). Since α ≤ 1, by Hölder’s

inequality and Lemma 7,

r∑
k=1

mα
i,k ≤

(∑r
k=1 mi,k

r

)α
· r = O(r1−α · (f(n0, ε) + r)α) = O(r + r1−αfα(n0/ε))

and similarly
∑r
k=1 m

α
k,j = O(r + r1−αfα(n0/ε)). It follows that updating the Dold data

structures takes Õ((r+ r1−αfα(n0/ε))/ε1−α) amortized time. In total, the amortized update
time of Dnew (during the first period) is Õ((r+r1−αfα(n0/ε))/ε1−α+r2/ε). By substituting
the value of f(n0, ε) = n

1+α
1+2α /ε

α
1+2α (which balances the two main terms in the update

time) and using the fact that |n− n0| ≤ n0/2, we obtain that the amortized update time is
Õ(n

2α
1+2α /ε1− 2α

1+2α ) = Õ(nα′
/ε1−α′).

3.2 An output-sensitive cover algorithm
The key to Theorem 5 is an output-sensitive algorithm for the quadrant-set-cover problem.
In this section, we develop such an algorithm, which computes an O(1)-approximation of the
set cover in Õ(opt) time, using basic data structures.

For simplicity, let us assume that (S,Q) has a set cover; how the no-solution case
is handled is discussed in the full version [2]. There are four types of quadrants in Q,
southeast, southwest, northeast, northwest; we denote by QSE,QSW,QNE,QNW ⊆ Q the
sub-collections of these types of quadrants, respectively. Let USE denote the union of the
quadrants in QSE, and define USW, UNE, UNW similarly. Since (S,Q) has a set cover, we
have S = (S ∩ USE) ∪ (S ∩ USW) ∪ (S ∩ UNE) ∪ (S ∩ UNW). Therefore, if we can compute
O(1)-approximate optimal set covers for each of (S ∩ USE,Q), (S ∩ USW,Q), (S ∩ UNE,Q),
and (S ∩ UNW,Q), then the union of these four set covers is an O(1)-approximate optimal
set cover for (S,Q).

With this observation, it now suffices to show how to compute an O(1)-approximate
optimal set cover for (S ∩ USE,Q) in Õ(optSE) time, where optSE is the optimum of (S ∩
USE,Q). The main challenge is to guarantee the running time and approximation ratio
simultaneously. We begin by introducing some notation. Let γ denote the boundary of USE,
which is an orthogonal staircase curve from bottom-left to top-right. If γ ∩ USW 6= ∅, then
γ ∩ USW is a connected portion of γ that contains the bottom-left end of γ. Define σ as the
“endpoint” of γ ∩ USW, i.e., the point on γ ∩ USW that is closest the top-right end of γ. See
Figure 2 for an illustration. If γ ∩ USW = ∅, we define σ as the bottom-left end of γ (which
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γ

USW

σ

Figure 2 Illustrating the curve γ and the point σ.

is a point whose y-coordinate equals to −∞). For a number ỹ ∈ R, we define φ(ỹ) as the
leftmost point in S ∩ USE whose y-coordinate is greater than ỹ; we say φ(ỹ) does not exist if
no point in S ∩ USE has y-coordinate greater than ỹ. For a point a ∈ R2 and a collection P
of quadrants, we define Φ→(a,P) and Φ↑(a,P) as the rightmost and topmost quadrants in
P that contains a, respectively. For a quadrant Q, we denote by x(Q) and y(Q) the x- and
y-coordinates of the vertex of Q, respectively.

To get some intuition, let us consider a very simple case, where Q only consists of
southeast quadrants. In this case, one can compute an optimal set cover for (S ∩ USE,Q)
using a greedy algorithm similar to the 1D interval-set-cover algorithm: repeatedly pick the
leftmost uncovered point in S∩USE and cover it using the topmost (southeast) quadrant in Q.
Using the notations defined above, we can describe this algorithm as follows. Set Qans ← ∅
and ỹ ← −∞ initially, and repeatedly do a ← φ(ỹ), Q ← Φ↑(σ,QSE), Qans ← Qans ∪ {Q},
ỹ ← y(Q) until φ(ỹ) does not exist. Eventually, Qans is the set cover we want.

Now we try to extend this algorithm to the general case. However, the situation here
becomes much more complicated, since we may have three other types of quadrants in
Q, which have to be carefully dealt with in order to guarantee the correctness. But the
intuition remains the same: we still construct the solution in a greedy manner. The following
procedure describes our algorithm, see also Figure 3.

1. Qans ← ∅. ỹ ← −∞. If φ(ỹ) does not exist, then go to Step 6.
2. Qans ← {Φ→(σ,QSW), Φ↑(σ,QSE)}. ỹ ← y(Φ↑(σ,QSE)). If φ(ỹ) exists, then a ← φ(ỹ),

else go to Step 6.
3. If a ∈ UNE, then Qans ← Qans ∪ {Φ↑(a,QNE), Φ↑(a,QSE)} and go to Step 6.
4. If a ∈ UNW, then Qans ← Qans ∪ {Φ→(a,QNW), Φ↑(a,QSE)} and Q← Φ↑(v,QSE) where

v is the vertex of Φ→(a,QNW), otherwise Q← Φ↑(a,QSE).
5. Qans ← Qans ∪ {Q}. ỹ ← y(Q). If φ(ỹ) exists, then a← φ(ỹ) and go to Step 3.
6. Output Qans.

The following lemma proves the correctness of our algorithm.

I Lemma 8. Qans covers all points in S ∩ USE, and |Qans| = O(optSE).

The remaining task is to show how to perform our algorithm in Õ(optSE) time using
basic data structures. It is clear that our algorithm terminates in O(optSE) steps, since we
include at least one quadrant to Qans in each iteration of the loop Step 3–5 and eventually
|Qans| = O(optSE) by Lemma 8. Thus, it suffices to show that each step can be done in
Õ(1) time. In every step of our algorithm, all work can be done in constant time except the
tasks of computing the point σ, testing whether a ∈ UNE and a ∈ UNW for a given point
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ỹ

USE

UNW

Figure 3 Yet uncovered points lie in the hatch-shaded region (top left). In Step 3, the entire
region can be covered by two quadrants if a ∈ UNE (top right). In Step 4, the hatch-shaded region
can be reduced using one or three quadrants, depending on whether a ∈ UNW (bottom). After
Step 4, any quadrant intersecting the remaining hatch-shaded region will not cover a.

a, computing the quadrants Φ→(a,QSW), Φ→(a,QNW), Φ↑(a,QSE), Φ↑(a,QNE) for a given
point a, and computing φ(ỹ) for a given number ỹ. All these tasks except the computation
of φ(·) can be easily done in Õ(1) time by storing the quadrants in binary search trees. To
compute φ(·) in Õ(1) time is more difficult, and we achieve this by properly using range
trees built on both S and QSE. The details are presented in the full version [2].

Using the above algorithm, we can compute O(1)-approximate optimal set covers for
(S ∩ USE,Q), (S ∩ USW,Q), (S ∩ UNE,Q), and (S ∩ UNW,Q). As argued before, the union
of these four set covers, denoted by Q∗, is an O(1)-approximate optimal set covers for (S,Q).

I Theorem 9. Quadrant set cover admits an O(1)-approximate output-sensitive algorithm.

3.3 Putting everything together
With the bootstrapping theorem in hand, we are now able to design our dynamic quadrant-
set-cover data structure. Again, the starting point is a “trivial” data structure which uses the
output-sensitive algorithm of Theorem 9 to re-compute an optimal quadrant set cover after
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each update. Clearly, the update time of this data structure is Õ(n) and the construction
time is Õ(n0). Let µ = O(1) be the approximation ratio of the output-sensitive algorithm.
The trivial data structure implies the existence of a (µ+ ε)-approximate dynamic quadrant-
set-cover data structure with Õ(nα0/ε1−α0) amortized update time for α0 = 1 and Õ(n0)
construction time. Define αi = 2αi−1/(1 + 2αi−1) for i ≥ 1. By applying Theorem 5 i times
for a constant i ≥ 1, we see the existence of a (µ+ε)-approximate dynamic quadrant-set-cover
data structure with Õ(nαi/ε1−αi) amortized update time and Õ(n0) construction time. One
can easily verify that αi = 2i/(2i+1 − 1) for all i ≥ 0. Therefore, for any constant α > 0,
we have a constant i ≥ 0 satisfying αi < 1/2 + α and hence Õ(nαi/ε1−αi) = O(n1/2+α/ε).
Setting ε to be any constant, we finally conclude the following.

I Theorem 10. Let (S,Q) be an instance of quadrant set cover, with n = |S| + |Q|. Let
α > 0 be an arbitrarily small constant. There exists an O(1)-approximate dynamic quadrant-
set-cover data structure with O(n1/2+α) amortized update time.

As mentioned earlier, set cover for unit squares can be reduced to instances of quadrant set
cover. In particular, we prove the following lemma in the full version [2]:

I Lemma 11. Suppose there exists a c-approximate dynamic quadrant-set-cover data structure
with f(n) amortized update time, where f is an increasing function. Then there exist O(c)-
approximate dynamic unit-square-set-cover, dynamic unit-square-hitting-set, and dynamic
quadrant-hitting-set data structures with Õ(f(n)) amortized update time.

Finally, it can be verified that the hitting-set problem for quadrants (resp., unit squares) is
the same as the set-cover problem for quadrants (resp., unit squares). We thus conclude the
following.

I Theorem 12. Let (S,R) be an instance of unit-square set cover, unit-square hitting set,
or quadrant hitting set, with n = |S|+ |R|. Let α > 0 be an arbitrarily small constant. There
exists an O(1)-approximate dynamic data structure for (S,R) with O(n1/2+α) amortized
update time.

References
1 Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Panigrahi, and Barna

Saha. Dynamic set cover: improved algorithms and lower bounds. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pages 114–125. ACM, 2019.

2 Pankaj K. Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue. Dynamic
geometric set cover and hitting set. arXiv preprint, 2020. arXiv:2003.00202.

3 Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets and
set covers. In Proceedings of the thirtieth annual symposium on Computational geometry, page
271. ACM, 2014.

4 Pankaj K. Agarwal, Junyi Xie, Jun Yang, and Hai Yu. Monitoring continuous band-join
queries over dynamic data. In 16th International Symposium on Algorithms and Computation
(ISAAC), pages 349–359. Springer, 2005.

5 Piotr Berman and Bhaskar DasGupta. Complexities of efficient solutions of rectilinear polygon
cover problems. Algorithmica, 17(4):331–356, 1997.

6 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. Design of dynamic algo-
rithms via primal-dual method. In International Colloquium on Automata, Languages, and
Programming, pages 206–218. Springer, 2015.

7 Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations
research, 4(3):233–235, 1979.

http://arxiv.org/abs/2003.00202


P.K. Agarwal, H.-C. Chang, S. Suri, A. Xiao, and J. Xue 2:15

8 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings of the
forty-sixth annual ACM Symposium on Theory of Computing, pages 624–633. ACM, 2014.

9 Thomas Erlebach and Erik Jan Van Leeuwen. Ptas for weighted set cover on unit squares. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 166–177. Springer, 2010.

10 Shashidhara K. Ganjugunte. Geometric hitting sets and their variants. PhD thesis, Duke
University, 2011.

11 Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online
and dynamic algorithms for set cover. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 537–550. ACM, 2017.

12 Juris Hartmanis. Computers and intractability: a guide to the theory of np-completeness.
Siam Review, 24(1):90, 1982.

13 David S. Johnson. Approximation algorithms for combinatorial problems. Journal of computer
and system sciences, 9(3):256–278, 1974.

14 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-ε.
Journal of Computer and System Sciences, 74(3):335–349, 2008.

15 László Lovász. On the ratio of optimal integral and fractional covers. Discrete mathematics,
13(4):383–390, 1975.

16 Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some common geometric
location problems. SIAM journal on computing, 13(1):182–196, 1984.

17 Nimrod Megiddo and Arie Tamir. On the complexity of locating linear facilities in the plane.
Operations research letters, 1(5):194–197, 1982.

18 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete & Computational Geometry, 44(4):883–895, 2010.

SoCG 2020


	Introduction
	Warm-up: 1D set cover for intervals
	Bootstrapping
	Putting everything together

	2D set cover for quadrants and unit squares
	Bootstrapping
	An output-sensitive cover algorithm
	Putting everything together


