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Abstract
We consider robust power-distance functions that approximate the distance function to a compact
set, from a noisy sample. We pay particular interest to robust power-distance functions that are
anisotropic, in the sense that their sublevel sets are unions of ellipsoids, and not necessarily unions
of balls. Using persistence homology on such power-distance functions provides robust clustering
schemes. We investigate such clustering schemes and compare the different procedures on synthetic
and real datasets. In particular, we enhance the good performance of the anisotropic method for
some cases for which classical methods fail.
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1 Introduction

Often data can be represented as a point cloud X in a Euclidean space Rd. Grouping data
into clusters as homogeneous and well-separated as possible is the purpose of clustering.
When no label is know in advance, we talk about unsupervised clustering. Topological data
analysis (TDA) tools are designed to understand the shape of the data. Thereby, such tools
may help to understand the shape of clusters in which to group the data. In this paper, we
develop and study a TDA-based unsupervised clustering scheme. In addition, our method
detects and removes points that do not really belong to any cluster; the outliers.

Clustering datasets is of extreme importance in multiple domains including medicine and
social networks among others. The classical k-means method clusters data into isotropic
clusters. In particular, the trimmed version of k-means of [14] that removes outliers, supplies
balls-shaped clusters. These two algorithms have been extended by [2, 5] for Bregman-balls-
shaped clusters, see also tclust [17] for ellipsoidal clusters. Such methods are well-suited for
data generated according to mixtures of distributions which sublevel-set are Bregman balls
themselves. For more general datasets, for instance, a sample of point from a disconnected
manifold, these methods are no longer appropriate. Spectral clustering methods [27] perform
such tasks, but are not robust to outliers. DBSCAN [19] is an algorithm based on a fixed
upper-level set of an approximation of the density, and consequently, does not provide a
multiscale information. Via a dendrogram, the classical single-linkage hierarchical clustering
algorithm provides such a multiscale information. The dendrogram encodes information about
the connectivity of unions of balls centered at points in X, or equivalently, of the sublevel
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sets of the distance function to X. For a fixed radius r, the Čech complex is a simplicial
complex defined as the collection of simplices (vertex, edge, triangle, tetrahedron) for which
the r-balls centered at the vertices have a non-empty common intersection. We call 1-skeleton
its subcomplex (a graph) that contains only vertices and edges. The non-decreasing family
of such graphs indexed by r ∈ R is called a filtration. Single-linkage is a persistence-based
method since is based on the persistence, prominence or equivalently lifetime of the connected
components into this graph filtration, however, it is not robust to outliers. The algorithm
ToMATo in [12] is robust and persistence-based. Indeed, it is based on a graph filtration
built from a neighborhood graph and a (robust) distance-like function whose values guide
the appearance of vertices and edges in the graph filtration. An example of robust distance
function that Chazal et al. consider in [12] is given by the distance-to-measure (DTM) [10].
Note that the graph is a priori not intrinsic to the distance function, which may cause bad
clustering. For instance, an edge that links two vertices with small distance-function value
but intersects an area with large distance function value, may link two clusters that should
not be. This problem was the cause of failure of the single-linkage method for data corrupted
by outliers. Alternative filtrations that do not suffer from this problem are the DTM-filtration
[1], or the power filtrations [7], based on the 1-skeleton of the Čech filtration associated to
the sublevel sets of a power distance function: a function of type x 7→ mini∈I ‖x−mi‖2 + ωi
for some (mi)i∈I in Rd and (ωi)i∈I in R. Some approximations of the DTM that are power
functions have been introduced and studied in the literature: the k-witnessed distance [18],
the power distance [7], the c-PDTM [6] whose sublevel sets are unions of c balls, and the
c-PLM [4] whose sublevel sets are unions of c ellipsoids, with c possibly much smaller than
the sample size. The last two functions are robust to outliers since their construction is
based on the principle of trimmed least squares [26].

Contributions
By replacing balls with ellipsoids, we enlarge the notion of weighted Čech filtration into the
anisotropic weighted Čech filtration. We derive an expression for the radius of intersection of
two ellipsoids. We introduce a clustering algorithm based on persistence. Such a clustering
algorithm can be run from any graph filtration, in particular, from the 1-skeleton of the
anisotropic weighted Čech filtration, which corresponds to the filtration of sublevel sets of an
anisotropic power function. We experiment this algorithm on the filtration of the c-PLM [4].

Practical interests
A clustering algorithm based on the persistence filtration of the sublevel sets of a power
function is pertinent since unlike ToMATo, the graph is intrinsic to the distance function.
So, no additional parameters are required for the algorithm. The main advantage of using
an anisotropic power function is that its sublevel sets are ellipsoids. Much less ellipsoids are
required than balls to Hausdorff-approximate a compact manifold with intrinsic dimension
smaller than the ambient dimension. The clustering scheme can also be applied to decompose
a set of points generated on a polygonal line into segments. Once the ellipsoids computed,
the persistence algorithm runs fast. Its complexity in terms of number of comparisons is at
worst O(c4), with c, the number of ellipsoids, which is much smaller than the sample size.
Most importantly, the robustness of the persistence algorithm relies on the robustness of
the distance function. The c-PLM [4] is robust to outliers. The guaranty for the clustering
method follows from the ‖·‖∞-distance closeness between the power distance function and the
distance function to the underlying manifold X , relatively to the minimal distance between
the connected components of X . Note that such a proximity condition is sufficient but not
necessary, as illustrated by the different numerical examples, with the c-PLM.
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Organisation of the paper
In Section 2, we recall the notions of power function and weighted Čech filtration, the
filtration of the nerves of its sublevel sets, that we extend to anisotropic power functions.
We prove some stability and approximation properties for such filtrations. Examples of
robust power filtrations are also displayed. The main clustering algorithm, Algorithm 1 is
given in Section 3. This algorithm applies to any filtration of graphs, including the graph
filtrations obtained as the 1-skeleton of a weighted Čech filtration. We enumerate other types
of filtrations that fit into this framework. Finally, we implement Algorithm 1 with the robust
anisotropic aforementioned power function in Section 4. We compare this method to other
clustering methods on synthetic and real datasets.

2 Power-functions-based filtrations for robust clustering

In the sequel, we will recall the notion of filtration for subsets of Rd (equipped with the
Euclidean norm ‖ · ‖) and for simplicial complexes. We will consider a class of functions for
which filtrations associated to sublevel sets are easily represented by filtrations of simplicial
complexes, making the evolution of their connected components tractable: the power functions.
In addition, we will give an example of robust power-functions [6] that can be built from
a probability distribution or a pointset X. Their sublevel sets are unions of c balls, with c
possibly much smaller than the size of X. Most importantly, we will also give an example of
a robust anisotropic power-function, whose sublevel sets are unions of c ellipsoids [4]. Both
of these power functions will be considered in the next sections for clustering purposes.

2.1 Generalities on filtrations
A filtration indexed by a time set T ⊂ R is a family (V t)t∈T of subsets of Rd, non-decreasing
for the inclusion (i.e. ∀t ≤ t′, V t ⊂ V t′). A typical example is the filtration of the sub-level
sets of a function f : Rd 7→ R,

(
f−1((−∞, t])

)
t∈T . For any simplex S with finite vertex set X,

a filtration of simplicial complexes of S is a non-decreasing family (St)t∈T of subcomplexes
of S, meaning that for every t ≤ t′, any simplex of St is also a simplex of St′ .

The interleaving pseudo-distance between two filtrations (V t)t∈T and (W t)t∈T is defined
as the smallest ε > 0 such that (V t)t∈T and (W t)t∈T are ε-interleaved, i.e. such that:
∀t ∈ T , V t ⊂W t+ε and W t ⊂ V t+ε. This definition extends to simplicial complexes. Note
that the sub-level-sets filtrations of two functions f and g satisfying ‖f − g‖∞ ≤ ε are
ε-interleaved. We will see in Section 3 that the notion of interleaving is primordial, since it
measures the difference of topology between two filtrations. In particular, the stability of our
sub-level-sets-based clustering scheme will be guarantied from the closeness of the functions.

2.2 Power-functions-based filtrations
In this paper, we consider classes of functions whose sub-level sets filtration has a sparse
representation, the power functions. The sublevel sets of these functions can be represented
by simplicial complexes in so-called weighted Čech filtrations. We will consider two types of
power functions, the isotropic and the anisotropic ones.

2.2.1 The isotropic case
An isotropic power function is a function fm,ω : Rd → R defined from an index set I = [[1, c]],
a family of centers m = (mi)i∈I in Rd and a family of weights ω = (ωi)i∈I in R by
fm,ω : x 7→ mini∈I ‖x − mi‖2 + ωi. A simple example of power function is the squared
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Euclidean distance function to a set of points X, d2
X : x ∈ Rd 7→ minm∈X ‖x −m‖2. The

sublevel sets of fm,ω, V tm,ω = f−1
m,ω((−∞, t]), are unions of at most c balls Bti = B(mi,

√
t− ωi)

with B(m, r) = {x ∈ Rd | ‖x −m‖ ≤ r}. Note that Bti is empty for t < ωi and two balls
Bti and Btj intersect if and only if t ≥ ti,j with ti,j = (ωj−ωi)2+2(ωj+ωi)‖mj−mi‖2+‖mj−mi‖4

4‖mj−mi‖2 .
The connectivity of V tm,ω can be encoded in a graph Gtm,ω, whose vertices are indices i ∈ I
such that ωi ≤ t and whose edges are pairs of vertices [i, j] such that ti,j ≤ t. Indeed, Gtm,ω

and V tm,ω have the same number of connected components, and mi and mj are in the same
connected component in V tm,ω if and only if i and j are also in the same component in Gtm,ω.

More generally, the topological information of V tm,ω (number of connected components,
loops, voids etc.) can be encoded in the weighted Čech complex Cechm,ω(t), defined as
the nerve of the union of balls (Bti)i∈I : Cechm,ω(t) = {σ ⊂ I |

⋂
i∈σ Bti 6= ∅}, [1, 7, 3].

According to the Nerve Lemma [20, Corollary 4G.3], any sublevel set V tm,ω is homotopic
to Cechm,ω(t) and thus contains the same topological information. For computational
reasons, the weighted Vietoris-Rips filtration is frequently considered as a provably good
surrogate for the weighted Čech filtration (Cechm,ω(t))t∈T . The weighted Vietoris-Rips
complex VRm,ω(t) is the flag complex of Gtm,ω (Gtm,ω is the 1-skeleton of the weighted Čech
complex): VRm,ω(t) = {σ ⊂ I | ∀i, j ∈ σ,Bti ∩ Btj 6= ∅}. Indeed, as a direct consequence of
[3, Theorem 3.2] which is a generalization of the non-weighted case in [15, Theorem 2.5.], if
the weights in ω are non-negative, then these two filtrations are interleaved:

∀0 < t′ ≤ d+ 1
2d t,VRm,ω(t′) ⊂ Cechm,ω(t) ⊂ VRm,ω(t). (1)

These notions can all be extended to anisotropic power functions.

2.2.2 The anisotropic case
Consider I = [[1, c]], centers m = (mi)i∈I in Rd, weights ω = (ωi)i∈I in R and matrices
Σ = (Σi)i∈I inMd, the set of definite positive symmetric matrices. An anisotropic power
function is a function fm,ω,Σ : Rd → R defined from I, m, ω and Σ by fm,ω,Σ : x 7→
mini∈I ‖x−mi‖2Σ−1

i

+ωi. For any matrix Σ ∈Md and x ∈ Rd, ‖x‖Σ−1 =
√
xTΣ−1x denotes

the Σ-Mahalanobis norm of x. The sublevel sets of fm,ω,Σ, V tm,ω,Σ = f−1
m,ω,Σ((−∞, t]), are

unions of at most c ellipsoids Eti = BΣi
(mi,

√
t− ωi) = {x ∈ Rd | ‖x −mi‖2Σ−1

i

≤ t − ωi}.
Again, Eti is empty for t < ωi and the intersection time ti,j of Eti and Etj is given below. The
relative question of the emptiness of the intersection of two ellipsoids is tackled in [28, 25].

I Proposition 1. Consider two ellipsoids Eti = BΣi
(mi,

√
t− ωi) and Etj = BΣj

(mj ,
√
t− ωj)

with ωi ≤ ωj in R, mi and mj in Rd, Σi = PiDiP
T
i and Σj = PjDjP

T
j in Md, with two

positive diagonal matrices Di and Dj and two orthogonal matrices Pi and Pj from the spectral
theorem. Set Σ̃ =

√
DiP

T
i Σ−1

j Pi
√
Di = P̃ D̃P̃T , for orthogonal and diagonal matrices P̃ and

D̃ = diag(λ1, λ2, . . . , λd), and m̃ = P̃T
√
D−1
i PTi (mj −mi). Ellipsoids Eti and Etj intersect

if and only if t ≥ ti,j for ti,j = ωj when ‖m̃‖ ≤ √ωj − ωi, and ti,j = ωj +
∑d
k=1

(
λm̃k

λ+λk

)2
λk

when ‖m̃‖ > √ωj − ωi. The positive number λ is the unique solution of the following equation:

d∑
k=1

λk − λ2

(λ+ λk)2λkm̃
2
k = ωj − ωi. (2)
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The proof is based on the fact that the ellipsoids Eti and Etj are tangent at their first intersection
point, and the corresponding gradients are collinear. In the context of isotropy (i.e. for
Σi = Σj = Id, the identity matrix of Rd) m̃ = mj −mi, and when ‖mj −mi‖ >

√
ωj − ωi,

(2) has a unique positive solution given by λ = ωi−ωj+‖mj−mi‖2

ωj−ωi+‖mj−mi‖2 . We recover the merging
time ti,j given in Section 2.2.1. Now, define Gtm,ω,Σ, Cechm,ω,Σ(t) and VRm,ω,Σ(t), the
anisotropic counterparts of Gtm,ω, Cechm,ω(t) and VRm,ω(t). The nerve lemma still applies,
since unions of ellipsoids are contractible. Although this paper is mostly based on the study of
connected components for clustering, anisotropic weighted Čech and Vietoris-Rips filtrations
are primordial to have a tractable estimation of the topology of compact sets from suitable
approximations as finite unions of ellipsoids. In fact, as their isotropic counterparts (1), these
filtrations are interleaved, provided that the eigenvalues of the matrices in Σ are positive.

I Proposition 2. If ω is a set on non-negative weights in R and Σ a family of matrices with
eigenvalues in [λmin, λmax] for some λmin > 0, then for every t > 0 and 0 < t′ ≤ λmin

λmax
d+1
2d t,

VRm,ω,Σ(t′) ⊂ Cechm,ω,Σ(t) ⊂ VRm,ω,Σ(t). (3)

The condition of non-negative weights is not too restrictive since for general weights, it suffices
to replace ω, t and t′ by ω −mini∈I ωi, t−mini∈I ωi and t′ −mini∈I ωi in the proposition.
Then, the condition on t′ becomes mini∈I ωi < t′ ≤ λmin

λmax
d+1
2d t +

(
1− λmin

λmax
d+1
2d

)
mini∈I ωi.

As noted in [15], when λmin equals λmax and the weights in ω are null, the term λmin
λmax

d+1
2d is

optimal. When m is the set of vertices of a regular d-simplex, the left inclusion is an equality.
Often, less ellipsoids than balls are required to describe a compact set X , for a fixed

level of precision (e.g. for the Hausdorff distance). For instance, a segment in R2, and more
generally, any d′-dimensional submanifold in Rd, with d′ < d. For this reason, anisotropic
Čech and Vietoris-Rips filtrations are pertinent tools to compute and store the topological
information about X efficiently. The requisite condition is that we dispose of an anisotropic
power function that is a good approximation of d2

X . Such examples of functions follow.

2.3 Examples of filtrations based on robust power functions

2.3.1 Isotropic robust power functions
Set X, a set of n points generated on the neighborhood of a compact subset X of Rd. In order
to face the non robustness of the distance function to X, dX, Chazal et al. have introduced
the notion of distance-to-measure (DTM), in [10]. The DTM is a counterpart of dX robust
to noise and outliers. Its robustness follows from some parameter k ∈ [[1, n]], the number
of nearest-neighbors X1, X2, . . . , Xk of x in X, used to estimate dX(x). The DTM dX,k is
defined by d2

X,k : x 7→ 1
k

∑k
i=1 ‖x −Xi‖2 = ‖x −mx,k‖2 + vx,k with mx,k =

∑k
i=1X

i, the
mean of the k nearest neighbours of x in X and vx,k = 1

k

∑k
i=1 ‖Xi −mx,k‖2 their variance.

Note that dX,1 coincides with dX and is not robust, whereas dX,n(x) is the distance of x to
the barycenter of the point cloud X, up to some factor, which is robust, but very poor in
terms of topological information. The DTM is actually a weighted power function [18]:

d2
X,k(x) = inf

y∈Rd
‖x−my,k‖2 + vy,k. (4)

This follows from the fact that the mean distance between x and its k nearest neighbors is
not larger than the mean distance between x and the k nearest neighbors of any other point
y ∈ Rd. This infimum is actually a minimum over a set of c points y = (yi)i∈[[1,c]] in Rd, with

SoCG 2020
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c of order
(
n

k

)
. A power approximation of the DTM, the k-witnessed distance, was defined

in [18] by replacing Rd by X in (4). Its sublevel sets are unions of n balls. An approximation
of the DTM with c (possibly much smaller than n) balls, the c-PDTM, was defined in [6], by
replacing Rd by a set yc,k of c points in Rd. This set yc,k is a minimum of a “k-means”-type
criterion [24], y 7→

∑n
i=1 miny∈y ‖Xi −my,k‖2 + vy,k, for y with cardinality c. Morally, yc,k

is chosen such that on average on X, x 7→ miny∈y ‖x−my,k‖2 + vy,k is small. Note that the
graph of the c-PDTM is necessarily above the graph of the DTM. According to [6], for a
sample on a regular d′-dimensional manifold, c can be chosen of order n

d′
d′+4 , which is much

smaller than n. Moreover, the c-PDTM is a good approximation of d2
X , despite noise.

2.3.2 An anisotropic robust power function
An anisotropic version of the c-PDTM has been introduced in [4], the c-power likelihood to
measure (c-PLM). It consists in replacing Euclidean norms with Mahalanobis norms. For
every x ∈ Rd and Σ ∈ Md, set X1, X2,. . .Xk the k-nearest neighbors of x in X, for the
Σ−1-Mahalanobis norm: ‖Xi−x‖Σ−1 ≤ ‖Xj−x‖Σ−1 for every i ≤ j. Denote by mx,Σ,k their
mean, and by vx,Σ,k = 1

k

∑k
i=1 ‖Xi−mx,Σ,k‖2Σ−1 their variance, relative to the Σ-Mahalanobis

norm. Set θc,k, a family of c pairs (y,Σ) ∈ Rd ×Md that minimizes (or which criterion is as
close as possible to the optimal criterion, in case of non existence of a minimum) the following
“k-means”-type criterion Rc,k among all θs of cardinality c: Rc,k(θ) =

∑n
i=1 min(y,Σ)∈θ ‖Xi−

my,Σ,k‖2Σ−1 +vy,Σ,k+log(det(Σ)). The term log(det(Σ)) prevents optimal covariance matrices
to be degenerated, with Σ−1 going to 0. In some sense, minimizing such a criterion boils
down to fit Gaussian distributions to the data set X, at best. The c-PLM is the power
function defined from θc,k by: x 7→ min(y,Σ)∈θc,k

‖x−my,Σ,k‖2Σ−1 + vy,Σ,k + log(det(Σ)). A
modification of the criterion Rc,k has been introduced in [4], to remove some datapoints
(|X|−sig for some parameter sig), when X is corrupted with outliers. The criterion is given by
Rc,k,sig(θ) = min(i1,i2,...,isig)∈[[1,|X|]]

∑sig
j=1 min(y,Σ)∈θ ‖Xij−my,Σ,k‖2Σ−1 +vy,Σ,k+log(det(Σ)).

Iterative Lloyd-type algorithms [22] provide local minima θ̃c,k and θ̃c,k,sig for the criteria
Rc,k and Rc,k,sig [4]. These algorithms run in O(ncd2 + nkd2 + n log(n)c)it operations, with
it the number of iterations of the algorithm. They consist, given θ = (y,Σ), in splitting the
space Rd into weighted Σ-curved Voronoi cells, replacing centers y by the centroid of the cells,
and updating the matrices in Σ by a close formula from the points in the cells and ellipsoids.
To compute θ̃c,k,sig, a trimming step is added at each iteration. For clustering, disposing of
a local minimum is enough, as enhanced in the numerical illustration section, since we can
remove bad centers in θ̃c,k or in θ̃c,k,sig with the parameter Threshold in Algorithm 1.

3 Persistence-based clustering from power-functions-based filtrations

3.1 Persistence for power-functions-based filtrations
Set fm,ω,Σ : x ∈ Rd 7→ mini∈I ‖x−mi‖2Σ−1

i

+ ωi, an anisotropic power-function indexed by
a set I = [[1, c]] and with the ωis sorted in non-decreasing order. As above-mentioned, the
sublevel sets V t = f−1

m,ω,Σ((−∞, t]) are unions of at most c ellipsoids Eti = BΣi
(mi,

√
t− ωi),

non empty as soon as t ≥ ωi. In particular, each sublevel set of fm,ω,Σ contains at most c
connected components. Each connected component of V t, V ti is indexed by the smallest index
i ∈ I such that mi belongs to the component. With a language abuse, we call connected
component Vi, the family of connected components (V ti )t∈T that gets born at time t = bi = ωi
and dies at a time t = di when V ti merges with another connected component V tj for some
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j ≤ i. Note that d1 = ∞. The lifetime of the component V ti , di − bi, is called persistence
or prominence of the component i. This merging information is encoded in a barcode or a
dendrogram. In these two representations, each line is associated to a component Vi, has
length di − bi, and begins at the height bi. The dendrogram is obtained from the barcode by
linking the bars associated to merging components, at a height given by the merging time.

When m is a point set X, Σi = Id and ωi = 0 for every i, clustering points accordingly
to the connected components of V t boils down to the classical single-linkage clustering
procedure, with t > 0, calibrated in accordance with the dendrogram. This procedure is not
robust to outliers. In this paper, we consider an adjacent procedure, similar to the ToMATo
algorithm [12], based on the prominence of components. To be precise, in the clustering
scheme, a component Vi cannot merge with another component Vj at a time t larger than
ωi + Stop, for some parameter Stop. In other words, components with large prominence will
never die in this clustering procedure. This is the purpose of Algorithm 1 in the next section.

In order to better visualize the prominence of the components, we represent their lifetimes
in a persistence diagram. A persistence diagram is a multiset of points (bi, di) ∈ R2 that lie
above the diagonal b = d. Each point (bi, di) is associated to a connected component Vi. The
notion of persistence diagram was introduced by Edelsbrunner et al. in [16], in the broader
framework of homology, and allows to compute lifetimes of additionnal features such as loops,
voids etc. It is defined for filtrations that are regular enough, on triangulable spaces such
as Rd. The proper notion of regularity is the notion of q-tameness [11]. In [7, Proposition
3.5], Buchet et al. proved that the DTM is q-tame. The proof of [7] can be straightforwardly
adjusted for distance functions to compact sets and most importantly, for anisotropic power
functions, provided that the eigenvalues of the matrices Σi are all positive.

Since distance to compact sets, distance-to-measure and anisotropic power functions are
q-tame, the persistence diagrams associated to their filtrations are well defined. They can
be compared through the bottleneck distance, a distance between two diagrams D and D′
defined as the minimal value of maxx∈D,y∈D′ |y−φ(x)|∞ among functions φ that pair points
in D with points in D′, with some points potentially paired to diagonal points. Diagrams
associated to interleaved filtrations are close, according to the following theorem.

I Theorem 3 (Stability of persistence diagrams [11, 9, 13]). If two filtrations V and W are
q-tame and ε-interleaved, then the persistence diagrams of these filtrations are ε-close in
bottleneck distance.

According to Theorem 3, the persistence diagram of any anisotropic power function
fm,ω,Σ that is ε− ‖ · ‖∞ close to dX is ε-bottleneck close to the persistence diagram of the
sublevel sets of dX . Consequently, prominence of the connected components of X can be
deduced from the diagram associated to fm,ω,Σ, for ε small enough. This bottleneck closeness
occurs with large probability for a regular manifold X for the c-PDTM built from a noisy
sample from X , according to [6]. No such result has been proved yet for the c-PLM. Anyway,
intuitively, its sublevel sets are good approximations of the manifold X , with the advantage
that they are made of less ellipsoids, and that these ellipsoids are oriented accordingly to
the manifold, i.e. with large eigenvalues on the tangent space and small eigenvalues on its
orthogonal. This will be confirmed in the numerical illustrations section.

By construction, the persistence diagram (for connected components) associated to the
filtration of the sublevel sets of fm,ω,Σ coincides with the persistence diagram associated to
the anisotropic weighted Čech complex Cech(fm,ω,Σ). Consequently, we can forget about the
ellipsoids and focus on the simplicial complex filtration, which can be computed and stored
efficiently, in a c× c matrix Mat = (ti,j)i,j∈I . Such a matrix contains the times of appearance
of vertices and of merging of connected components in Cech(fm,ω,Σ). The clustering scheme
of this paper exposed just below is based on such a merging matrix Mat.

SoCG 2020



23:8 Robust Anisotropic Power-Functions Filtrations

3.2 An algorithm for persistence-based clustering

Consider (Gt)t∈R a filtration of sub-graphs of G, a graph with c nodes. Based on this filtration,
we define an algorithm, strongly inspired from the ToMATo algorithm [12]. The clustering
scheme is guided by the persistence of the connected components in (Gt)t∈R, and preserves
components with large prominence. We assume that the nodes of G are labeled such that the
node labeled i gets born before the node labeled j, when i ≤ j. The procedure is as follows.
A connected component gets born when a node gets born, with the same label. A component
changes of label at each time t for which it merges with a component with smaller label in Gt,
unless its prominence is larger than some parameter Stop. The prominence of a node or a
component is defined as the lifetime of the component in the filtration (i.e. the elapsed time
between the birth of the node and the time t such that a node with smaller index is present
in its connected component in Gt). The resulting clustering is given by the label of the nodes
at time t = +∞. It contains exactly labels of edges with a prominence larger than Stop. In
this clustering scheme, we decide that nodes born after some time parameter Threshold are
not relevant; they are removed. This procedure is implemented in Algorithm 1.

Algorithm 1 Persistence-based Clustering Algorithm.

Data: Mat, Threshold, Stop
Result: Color, Birth, Death
Initialization ;
c ← max{i | Mat[i,i] ≤ Threshold} ; Mat ← Mat[1:c,1:c] ;
Birth ← [Mat[i,i] for i in 1:c] ; Death ← [∞ for i in 1:c] ;
indice ← 1 ; I ← 1 ; time ← Mat[I,I] ; Color ← [] ;
while time <∞ do

if time = Mat[I,I] then
Component I appears ;
indice ← indice + 1 ; Mat[I,I] ← ∞ ; Color[I] ← I;

else
(col_max, col_min) ← (max(Color[I],Color[J]) , min(Color[I],Color[J]));
if time - Birth[col_max] ≤ Stop then

Components col_max and col_min merge ;
Replace all entries col_max by col_min in Color ;
Death[col_max] ← time ;

else
Component col_max will never die ;

end
Mat[i,j] ←∞ for every i, j ≤ min(indice,c) such that
(Color[i],Color[j]) ∈ {(col_min, col_max), (col_max, col_min)};

end
I,J ← arg mini,j≤min(indice,c) Mat[i,j] ; time ← Mat[I,J]

end

This algorithm requires a merging matrix Mat = (ti,j)i,j∈I , with I = [[1, c]]. We define its
coefficients by ti,i, the birth time of the node i in the filtration (Gt)t∈T ; for i > j, ti,j the
birth time of the edge [i, j] and for i < j, ti,j =∞. The vector Color contains the resulting
clustering, the vector Birth, the birth time of the components and Death their death time.
Note that Death[1] is always +∞. When (Gt)t∈T is the filtration of the sublevel sets of some
power function fm,ω,Σ, the matrix Mat has coefficients given by ti,i = ωi and for i > j ≥ 1,
ti,j the intersecting time of the ellipsoids Eti and Etj , given by Proposition 1.
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In practice, to label points in X (generated around X ), we consider an approximation
of d2

X based on a family m of c centers. Set m′, the centers not removed and labeled by
Algorithm 1, and ω′ and Σ′ the corresponding parameters. Clustering points in X is made
accordingly to these labels and to the Voronoi decomposition of Rd, based on m′, ω′ and Σ′:
x ∈ X has the same label as m′i if ‖x −m′i‖2Σ′−1

i

+ ω′i ≤ ‖x −m′j‖2Σ′−1
j

+ ω′j for every j.
Since fm∗,ω∗,Σ∗ approximates d2

X , in order to deal with outliers, we remove (i.e. assign the
label 0) the points x ∈ X for which fm′,ω′,Σ′(x) is the largest. Note that a power function is
homogeneous to the square of a distance function. Therefore, for positive weights ω, it could
be more appropriate to consider the filtration of sublevel sets of

√
fm,ω,Σ instead of fm,ω,Σ.

The best complexity of Algorithm 1 (O(c3) comparisons) is obtained when Stop = ∞,
with 2c iterations of the algorithm. The worst complexity (O(c4)) is obtained when Stop = 0,
with O(c2) iterations. This is fast when c is much smaller than the sample size (e.g. for
c-PLM and c-PDTM), and does not depend on the dimension. In the experiments of Section
4, Algorithm 1 runs much faster than the computation of the c-PLM and the c-PDTM.

In practice, just as Chazal et al. [12], we recommend to run Algorithm 1 several times. A
first time with Threshold = Stop = ∞ to calibrate the parameter Threshold, in order to
remove bad nodes (i.e. nodes with late birth and short lifetime). A second time with this
parameter Threshold and Stop = ∞, to measure the prominence of the components and
select the number of clusters (via the parameter Stop), as the number of components with
prominence much larger than others. More details on the calibration of these two parameters,
from the persistence diagrams (Birth[i], Death[i])i∈I , are given in Section 4.1. The final
clustering is obtained from Color, after running Algorithm 1 with these two parameters.

Giving a sense to an optimal minimal prominence Stop is possible for distance functions.
For instance, for the sublevel-sets filtration of dX , Stop can be chosen as half of the minimal
distance between two distinct components of X . Consequently, for any ε − ‖ · ‖∞-close
approximation of dX , taking Stop− ε leads to a perfect clustering, provided that 2ε < Stop.

The parameter Threshold is primordial, especially for the c-PLM function. Indeed, the
algorithm for the c-PLM is based on θ̃c,k, a local minimizer of the criterion Rc,k. Consequently,
some ellipsoids Ei are far from the support, or in a wrong direction. Thus, their weight
ωi (and thus Birth[i]) is large with respect to other well-placed ellipsoids, due to a large
variance term vyi,Σi,k. Such bad ellipsoids are removed for a suitable parameter Threshold.

3.3 Connection to other persistence-based clustering methods
In the sequel, we display different graph filtrations, to be used for persistence-based clustering,
with Algorithm 1. For each of these filtrations, we give a summarize of the corresponding
matrices Mat, in Table 1, with the convention that ti,i ≤ tj,j when i ≤ j.

ToMATo Algorithm [12] rests on a graph filtration based on a graph G and a function
f defined on the nodes of G. Morally, Gt is the sub-graph of G that contains the nodes i
such that f(i) ≤ t, and the edges [i, j] if and only if i and j are in Gt. Chazal et al. mostly
studied this method for G, a Rips graph of a set X ⊂ Rd, and for f(i), the DTM to X at Xi.

The DTM-filtration [1] corresponds to the 1-skeleton of the nerve of the union of balls(⋃
x∈X B(x, rt(x))

)
t>0 with rt(x) = −∞ for t < dX,k(x) and rt(x) = (tp − dpX,k(x))

1
p for

t ≥ dX,k(x), for some p ≥ 1 and with the convention that B(x,−∞) is empty. In Table 1, we
give the coefficients for p = 1. The DTM-filtration with p = 2 was actually introduced in [7],
leading to what we call Power filtration, which coincides with the sublevel-sets filtration of
the square of a power distance. We also consider additional power-functions-based filtrations,
from the k-witnessed distance [18], the c-PDTM [6] and the c-PLM [4].

SoCG 2020
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Table 1 Coefficients of Mat for the different methods, with the notation f = dX,k for the DTM
to X with number of nearest neighbors parameter k.

Method ti,i ti,j for i < j

ToMATo f(i) max(f(i), f(j))(1[i,j]∈G)−1

DTM-filtration f(i)
(
‖Xi−Xj‖+f(i)+f(j)

2

)
1‖Xi−Xj‖>|f(i)−f(j)| + f(i)1f(i)−f(j)≥‖Xi−Xj‖

fm,ω ωi
(ωj−ωi)2+2(ωj+ωi)‖mj−mi‖2+‖mj−mi‖4

4‖mj−mi‖2√
fm,ω

√
ωi

√
(ωj−ωi)2+2(ωj+ωi)‖mj−mi‖2+‖mj−mi‖4

4‖mj−mi‖2

fm,ω,Σ ωi Given by Proposition 1

Power filtration
√

fm,ω with m = X and ω = (f2(x))x∈X
Witnessed

√
fm,ω with (m,ω) = (mx,k, vx,k)x∈X

c-PDTM fm,ω with (m,ω) = (my,k, vy,k)y∈yc,k

c-PLM fm,ω,Σ with (m,ω, Σ) = (my,Σ,k, vy,Σ,k + log(det(Σ)), Σ)(y,Σ)∈θc,k

4 Numerical illustrations

4.1 A complete illustration of the method
Consider the target X , a set of three curves in R2. We generate X = (Xi)i∈[[1,Ns+No]],
a set of Ns = 500 signal points (Xi = Yi + Zi)i∈[[1,Ns]], with Yi uniform on X and Zi
Gaussian with standard deviation σ = 0.02 ; corrupted by No = 200 outliers, uniform on
[−1.5, 2.5]2. We compare the clustering scheme based on Algorithm 1 with the sublevel
sets of the c-PLM, to the target labels in Figure 2 (left). Parameters are set to c = 50
centers, k = 10 nearest neighbors, sig = 520 points to consider as signal, and it = 100
iterations and n_ini = 10 initializations to compute a suitable local optimum θ̃c,k,sig of the
c-PLM-criterion Rc,k,sig. Since the DTM dX,k is large for outliers, we select sig from the
curve ([dX,k(Xi), i ∈ [[1, Ns +No]]] in non-decreasing order), as the point of slope break ; see
Figure 1 (left). The DTM can be replaced by any not-trimmed approximation of the c-PLM.
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Figure 1 Parameters selection heuristics.

We run Algorithm 1 a first time with the parameters Threshold =∞ and Stop =∞, and
display the persistence diagram (Birth[i], Death[i])i∈[[1,c]], in Figure 1 (middle). In order to
have 3 clusters, we select Stop = 5.62, the height of a line parallel to the diagonal, separating
3 points from the others. We run Algorithm 1 a second time with this new parameter, which
results in the clustering C1 of Figure 2 (middle). A sublevel set of the function fθ̃c,k

is
represented by the union of ellipses. Note that some ellipses have a bad position. This results
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in a bad clustering. We use the parameter Threshold to remove them. In Figure 1 (middle),
6 points are on the right side, separated from the other points with a vertical line (of abscissa
−10.27). Then, we run Algorithm 1 with Threshold = −10.27 and Stop =∞. According to
the persistence diagram in Figure 1 (right), since 3 points are well-separated from the other
ones with a large band parallel to the diagonal (containing a line parallel to the diagonal,
with height 12), we recover the number of clusters, 3, and set Stop = 12. The clustering C2
obtained with Threshold = −10.27 and Stop = 12 is represented in Figure 2 (right). The
bad ellipses have been removed. Denote by θ̃′c,k,sig, the subfamily of θ̃c,k,sig made of centers
not removed by the procedure. The color of any point x in Figure 2 (right) is given by the
label in Color (label returned by the Algorithm 1) of its associated center (y,Σ) in θ̃′c,k,sig.
This is the center (y,Σ) such that fθ̃′c,k,sig

(x) = ‖x−my,Σ,k‖2Σ−1 + vy,Σ,k + log(det(Σ))). The
labels of the |X| − sig points with largest fθ̃′c,k,sig

-value are set to 0.

Note that for large datasets, computing θ̃′c,k,sig may take some time. We can compute it
from a sub-sample of X, run Algorithm 1, and label points in X accordingly.
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Figure 2 Two resulting clusterings, with ellipses.

We compare the performance of the two clusterings C1 and C2. In terms of outliers
detection, this can be assessed via the proportion of signal points labeled as outliers (0.034
for C1, 0.016 for C2) and as the proportion of outliers labeled as signal points (0.185 for C1,
0.14 for C2). As expected from Figure 2, removing bad ellipses reduces these proportions
and thus improves the outliers detection performance. In terms of clusters recovering, the
normalized mutual information (NMI) is classically used. It equals 1 for a perfect clustering
and 0 for a terrible clustering. When considering outliers as a cluster with label 0, we got
NMI = 0.586 for C1 and NMI = 0.841 for C2. The NMI computed on the signal points
labeled as signal points is NMI = 0.634 for C1 and NMI = 1 for C2, a perfect clustering.

4.2 Comparison of the different methods on synthetic datasets
We compare different clustering methods on two synthetic datasets : the previous dataset
with 3 curves, and datapoints from a polygonal curve of 14 segments, as in [8]. We set
parameters to Ns = 500, No = 200, σ = 0.02, c = 50, k = 10, it = 100, n_ini = 10 and
Threshold chosen such that 10 means are removed from the c-PLM-centers θ̃c,k,sig. For the
ToMATo algorithm we set r = 0.12, the radius of the Rips graph. We used the function
dbscan from the R packages dbscan [19], with parameters eps = 0.15 and minPts = 10;
tclust and specc from the tclust [17] and kernlab [21] R packages.

For the three curves, the parameter r for ToMATo is chosen such that the graph is not
connected, the clusterings are acceptable but have more than 3 clusters. The c-PLM often
performs perfectly, and sometimes performs poorly, since the number of bad ellipses removed

SoCG 2020
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Figure 3 Violin plots representing the NMI computed on signal points, detected as signal points.

is fixed to 10 and not calibrated according to the heuristics, and their is some instability. We
observe the same clustering problem as in Figure 2 (middle) for the other methods since the
lines are close, compared to the distance between sample points from the same line. For the
polygonal line of 14 segments, all methods except the c-PLM and tclust put centers of clusters
on massive parts of X (the center and the intersections of 3 segments). For the c-PLM and
tclust, most clusters coincide with segments. Nonetheless, their is some instability (much
less pronounced for the c-PLM), since the algorithms are based on local minimizers.

4.3 Applications to real datasets

4.3.1 Recovering fleas species, based on 6 measurements
We picked the dataset flea from the R-package tourr [29], initially from [23]. This dataset
contains records of 6 measurements for 74 males insects from the Palaeartic, from three
different species : Heptapotamica, Concinna, Heikertingeri. The variables correspond to
measurements on the tarsus, the aedeagus and the head. We normalized data so that the
mean and variance of each of the 6 variables are respectively 0 and 1. In Table 2, we computed
the NMI between the true species and the clustering returned by different methods. We ran
each algorithm 10 times with at most 100 iterations. For every k-nearest-neighbours-based
algorithm, we set k = 10. For ToMATo, we set r = 1.9 so that the graph is connected ;
for the c-PLM and the c-PDTM, c = 50 and for dbscan, eps = 1.5 and minPts = 10. The
3-PDTM and 3-PLM methods consists in clustering data according to the weighted Voronoi
cells given by the optimal centers and covariance matrices.

Table 2 NMI between clustering of fleas and their true specie.

Without k-means tclust DBSCAN Spectral 3-PLM 3-PDTM
Algorithm 1 0.825 0.848 0.647 1 1 1

With ToMATo Witnessed power DTM-filt. c-PLM hier. c-PDTM hier.
Algorithm 1 0.628 0.906 1 1 1 1

The methods based on the decomposition of R6 into 3 (weighted and/or curved) Voronoi
cells are efficient: at most 3 bad labels for k-means and tclust and all labels correct for their
“robust” versions, the 3-PDTM and the 3-PLM. The perfect performance of these two last
functions is due to the weights that force the centers of cells to lie in massive areas for X. The
bad performance of ToMATo is due to the difficulty to select the parameter r for the Rips
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graph, the small number of points, and the fact that the inverse of the DTM should be used
instead of the DTM, as recommended by the authors. Nonetheless, we made the choice to
use the DTM since the other methods (witnessed distance, power function, DTM-filtration,
c-PLM and c-PDTM) are based on filtrations from approximations of the DTM, and almost
all of these methods perform perfectly. The method dbscan performs poorly since it labels
14 points as outliers. Nonetheless, the points considered as signal are well clustered.

4.3.2 Clustering a earthquake dataset

We consider a set of 12790 points representing the longitude and latitude of earthquakes of mag-
nitude non smaller than 5.0, between the 01/01/1970 and the 01/01/2010. This dataset was
picked from the website http://earthquake.usgs.gov/earthquakes/eqarchives/epic/.

We used Algorithm 1 with an approximation of the c-PLM based on a sub-sample of
2000 points from the dataset, with parameters c = 200, k = 10 and for it = 50 iterations.
We restricted matrices Σ to have eigenvalues smaller than 50 by thresholding them. The
persistence diagram in Figure 4 suggests that the dataset has 4 or 10 clusters. Moreover, the
curve of the sorted values of the c-PLM approximation on the pointset in Figure 4 suggests
to keep sig = 12250 points as signal points. See Figure 5 for the corresponding clustering.
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Figure 5 Earthquake clustering with Algorithm 1, for the c-PLM function.
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