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Abstract
We consider paths with low exposure to a 2D polygonal domain, i.e., paths which are seen as little
as possible; we differentiate between integral exposure (when we care about how long the path sees
every point of the domain) and 0/1 exposure (just counting whether a point is seen by the path or
not). For the integral exposure, we give a PTAS for finding the minimum-exposure path between
two given points in the domain; for the 0/1 version, we prove that in a simple polygon the shortest
path has the minimum exposure, while in domains with holes the problem becomes NP-hard. We
also highlight connections of the problem to minimum satisfiability and settle hardness of variants
of planar min- and max-SAT.
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1 Introduction and Related work

Both visibility and motion planning are textbook subjects in computational geometry –
see, e.g., the respective chapters in the handbook [21] and the books [20, 34]. Visibility
meets routing in a variety of geometric computing tasks. Historically, the first approach to
finding shortest paths was based on searching the visibility graph of the domain; visibility
is vital also in computing minimum-link paths, i.e., paths with fewest edges [25,31,32,39].
”Visibility-driven” path planning has attracted also some recent interest [3, 37, 44]. In
addition to the theoretical considerations, visibility and motion planning are closely coupled
in practice: computer vision and robot navigation go hand-in-hand in many courses and
real-world applications.
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24:2 Geometric Secluded Paths and Planar Satisfiability

Table 1 Hardness of minimum-exposure
paths in polygonal environments.

0/1 Integral
exposure exposure

With holes Hard (Thm. 1) PTAS
Simple P (Thm. 2) (Thm. 4)

Table 2 Hardness of versions of planar opt2SAT
(see Section 4 for definitions).

min2SAT max2SAT
V-cycle Hard (Thm. 7)
VC-cycle Hard (Thm. 7) Hard
Separable P (Thm. 5) (Thm. 7)
Monotone P (Cor. 6)

The question of hiding a path in a polygonal domain was first raised in a SoCG’88
paper [19]: it considered the robber route problem in which the goal is to minimize the length
traveled within sight of at least one of a number of threats (each threat being a point); the
problem reduces to finding the shortest path in the 0/1/∞ metric that assigns a cost of 1
to the union of the visibility polygons of the threats, and 0 to the rest of the domain (and
infinite weight to the complement of the domain, where travel is forbidden). Our settings
are different from [19] in two aspects: (1) we have a continuum of the threats (every point in
the domain is a threat) and (2) in the integral version, we care for how long threats are seen
from points along the path (formally: we integrate the visible area along the path); in other
words, we account for the “intensity” of the visibility from the threats.

Lately, motivated by the rise of the Internet of things (IoT) and mobile computing, there
has been a surge of research on anonymity, security, confidentiality and other forms of privacy
preservation (in particular, in geometric environments [4]), studying paths with minimum
exposure to sensors in a network [16, 17, 38, 43]. The standard model, again, assumes a finite
number of point sensors, so the visibility is changing discretely, as the path goes in/out of a
sensor coverage. To our knowledge, Lebeck, Mølhave and Agarwal [26,27] were the first to
introduce integration of the visibility continuously changing along the path (which is also
one of our models). Our paper is different from Lebeck et al. in that we give algorithms
with provable theoretical performance in continuous domains under the usual notion of
distance-independent visibility. Lebeck et al. presented strategies with outstanding practical
performance on discretized terrains, in the more realistic model of visibility deteriorating
with distance.

Minimizing the integral exposure can be viewed as an extension of the weighted region
problem (WRP) [2, 9–11,14,24,33,35] to the case of continuously changing weight, where the
weight of a point is the area of its visibility polygon; in the WRP the input is a weighted
polygonal subdivision of the domain (with a constant weight assigned to each cell of the
subdivision) and the goal is to find the path minimizing the integral of the weight along
the path. The computational complexity of the WRP is open; PTASs for the problem have
running times that depend not only on the complexity of the subdivision, but also on various
parameters of the input like ratio of max/min weight, largest coordinate and angles of the
regions, etc. (the parameters differ between the algorithms, see [41, Ch. 31] for details).
Integration of other measures of “local quality” (different from visibility) for points along a
path was the subject also in the study of high-quality paths [1,45] and related research [46,47].

Recent papers [8, 18, 29, 42] explored paths adjacent to few vertices in graphs; such paths
were dubbed secluded in [8]. Our paper may thus be viewed as studying geometric versions
of the secluded path problem.

Contributions and Roadmap. In Section 2 we prove that in a polygonal domain with holes
it is NP-hard to find a path, between two given points, minimizing the area seen from the
path; the reduction is from minSAT (find the truth assignment to Boolean variables so as to
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satisfy the minimum number of given disjunctive clauses). In Section 2.1 we complement the
hardness by showing that in a simple polygon, shortest paths are the ones that see minimum
area; even more generally, we prove that in a polygon with holes, a locally shortest path sees
less area than any path of the same homotopy type (because for a small number of holes
the homotopy types can be efficiently enumerated, this implies that the problem is FPT
parameterized by the number of holes). Section 3 gives a PTAS for minimizing the integral of
the seen area along the path; we first give a generic scheme for building a piecewise-constant
approximation of the visibility area for points in the domain, and then in Section 3.2 present
details of an implementation which allows applying a PTAS for WRP on our “pixels” with
approximately constant seen area. Finally, in Section 4 we further explore the connection
between path hiding and minSAT, and determine hardness of versions of planar minSAT
(and maxSAT).

Tables 1 and 2 summarize the results. We leave open designing an approximation
algorithm for minimizing the seen area, as well as the complexity of the integral version of
the problem.

Notation and Problems formulation. We use | · | to denote the measure of a set, i.e., length
of a segment and area of a 2D set. Let P be a polygonal domain with n vertices and s, t ∈ P
be two given points in it. For a point p ∈ P let V (p) ⊆ P be the visibility polygon of p, i.e.,
the set of points seen by p. We study the following problems:

Geometric Secluded Path: Find the s-t path that sees as little area of P as possible
(the area seen by a path is defined as the area seen by at least one point of the path, i.e.,
the so called weak visibility region of the path).
Integral Geometric Secluded Path: Find the s-t path π that minimizes the integral
of the area of the visibility polygon over the points along the path,

∫
π
|V (p)|dp.

2 Minimizing seen area

We prove that exposure minimization is NP-hard in general, but in simple polygons the
minimum-exposure path is the shortest path.

I Theorem 1. Geometric Secluded Path is NP-hard.

Proof. We reduce from min2SAT: find truth assignment for a set of n variables, satisfying the
minimum number of given two-literal disjunctive clauses. (Inside this proof n will denote the
number of variables and c the number of clauses.) Figure 1, left illustrates the construction.
A variable gadget is an isosceles triangle. The triangles for the variables are stacked into a
Christmas tree, with s and t placed at the top and the root respectively. Going through the
left (resp. right) vertex of a triangle represents setting the variable to True (resp. False). The
clauses are all put on a horizontal line above the Christmas tree so that the segment between
any literal and any clause does not intersect the tree. Each clause is connected to its literals,
and all connections (including the ones forming the Christmas tree edges) are thin corridors
forming the domain; a clause gadget is simply the intersection of the two corridors. The idea
of the reduction is to have an s-t path go through all variable gadgets, choosing whether to
go through the variable or its negation in every gadget: the fewer clause gadgets are seen,
the fewer clauses are satisfied.

A few technicalities have to be taken care of:
Two variable–clause corridors, leading to different clauses, may intersect midway, meaning
that the intersection area may be seen twice. We have to make sure that the area of such
a midway intersection is much smaller than the clause gadget area. Being smaller by a

SoCG 2020
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Figure 1 Left: The reduction from min2SAT. All segments are thin corridors of P . Some
leakage-blocking high-area chambers are shown black and some area equalizers are shown gray (both
black and gray belong to the domain). Middle: the largest angle at a clause and the smallest angle
at a midway intersection. The c clauses are spread evenly on the segment of width 2H/h; thus, the
distance between clauses (the base of the triangle with angle αmin at the apex) is 2H

h(c−1) . Right:
Midway intersection of unit-width corridors is area- 1

sinα rhombus with side 1
sinα and angle α.

factor 4c3 will suffice: even if parts of a corridor are seen due to the midway intersections
with all (at most 2c− 1) other corridors, the total seen corridor’s midway area will still
be smaller (by a factor ≈ 2c) than the area of a single clause gadget. Moreover, with
such small midway intersections, they may be neglected altogether when counting the
areas of clause gadgets seen from literals: the total areas of all (at most 4c2 midway
intersections) will be smaller by at least a factor of c than the area of a single clause
gadget. To reduce areas of the midway intersections in comparison to the clause gadgets
areas, we put the clause gadgets high above the Christmas tree – at height H, to be
determined later (Fig. 1, middle). The area of intersection of two corridors (Fig. 1, right)
is inversely proportional to the sine of the angle between the corridors (the corridors are
all of the same width), so the smallest-area clause gadget would be the one for the clause
xn ∨ xn placed directly above the apex of the Christmas tree (since we do not control
which clause goes where on the clauses line, we have to consider the worst case); let αmax
be the angle between the corridors defining the gadget. Assuming the height of every
variable gadget triangle is h and their bases have lengths 2, 4, . . . , 2n (refer to Fig. 1,
middle),

αmax = 2 arctan n

H + nh
.

On the other hand, the smallest angle between two interesting corridors that do not
lead to the same clause (i.e., the smallest angle that may define the area of a midway
intersection) can be formed by corridors leading to last and last-but-one clause from the
last-but-one and last variables xn, xn−1 resp. (changing the endpoints of the corridors
would only increase the angle of intersection); the angle is

αmin = γ − β = arctan H + nh

H/h− 2H
h(c−1) − n

− arctan H + (n− 1)h
H/h− (n− 1) .

By trigonometric formulas, the ratio sinαmin/ sinαmax, after being squared a constant
number of times, is a ratio of polynomials. This ratio tends to infinity as H grows; hence,
at a polynomially large H, the ratio becomes larger than 4c2, as we need.
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Figure 2 Left: Area seen by one literal only (gray) is
negligible for small α. Right: Decreasing clause gadget
area.
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Figure 3 V (p) is shaded; ab is the
essential cut of p. A dotted path, cross-
ing the cut of p′ (dashed), can be short-
cut along the cut.

We make sure that the area, around a clause gadget, seen from one literal but not from
the other (Fig. 2, left), is negligible in comparison with the clause gadget area (seen from
both literals of the clause). This is already taken care of by the above, as the whole
construction is made tall (large H).
Leakage of paths from the Christmas tree into variable–clause corridors is prevented
by attaching a large-area chamber to each corridor (between the literal and the first
intersection of two corridors), so that a path going through the corridor would see the
whole area of the chamber. To ensure that the area of a single chamber is larger than the
area seen by any path through the Christmas tree, the whole construction is scaled up
while keeping the width of the corridors fixed: since the areas available for the chambers
grow quadratically with the scaling factor and the areas seen along the corridors grow
linearly, a polynomial scaling will suffice to ensure that the chambers areas are large
enough to prevent the path going anywhere except through the variable gadgets.
We attach area equalizers to the literals so that no matter whether the path passes
through the variable or its negation, it sees the same non-clause area (the areas may be
different between the different variables; we only make sure that for any single variable
the seen non-clause area does not depend on whether the variable is set to true or false
by the path).
In the construction so far, different clause gadgets may have different areas; let a denote
the smallest area of a clause gadget. We make sure that all clause gadgets have area
a, which can be done e.g., by appropriately cutting off the clause gadgets from the top
(Fig 2, right).

Now, all s-t paths, going through the Christmas tree only, will see the same non-clause
area A. The total area seen by a path is then ≈ A+ka where k is the number of clauses seen
by the path, which is the same as the number of clauses satisfied by the truth assignment
set by the path (we say that the seen area is approximately equal to A+ ka because of the
non-counted areas that may be seen – midway intersections and parts seen by one literal
only – which we made sure to be negligible in comparison with a). J

In Section 4 we discuss why we could not use planar min2SAT to prove hardness of
Geometric Secluded Path, avoiding dealing with the crossings.

SoCG 2020
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2.1 Simple polygons
We show that in a simple polygon shortest paths see least area:

I Theorem 2. If P is a simple polygon, the shortest s-t path is the solution to Geometric
Secluded Path.

Proof. The visibility polygon V (p) of a point p ∈ P is bounded by edges and chords of P ,
with each chord connecting a vertex of the polygon to a point on its boundary. If P is a
simple polygon and p does not see s (s /∈ V (p)), then there is a unique chord separating p
from s; the chord is called the essential cut of p [7] (Fig. 3).

If an essential cut does not separate s from t, then the shortest s-t path does not cross
the cut, for otherwise, the path could be shortcut along the cut. That is, the shortest path
crosses those and only those cuts that separate s from t. But any other path also has to
cross all such cuts, i.e., has to see all the points seen by the shortest path. J

For polygons with a small number of holes one may go through all homotopy types of
simple (without self-intersections) s-t paths: a simple argument shows that a shortcut of
a path sees less than the original path, and hence the locally shortest path is the secluded
path within its homotopy class.

3 A PTAS for minimizing integral exposure

In Section 3.1 we give a generic way to partition the domain in such a way that the visible
area is approximately constant within a cell of the partition; then in Section 3.2 we present
details of a slightly different partitioning, having straight-line edges, on which a PTAS for
the WRP can be applied to find the path with approximately minimum integral exposure.

3.1 Reduction to WRP with curved regions
We first compute the visibility graph of P , i.e., the graph connecting pairs of mutually visible
vertices of the domain, and extend every edge of the graph in both directions maximally
within P . The extensions of the visibility edges split P into O(n4) cells such that the visibility
polygon V (p) is combinatorially the same for any point p within one cell of the subdivision;
the subdivision is called the visibility decomposition of P [5]. In particular, the area |V (p)| is
given by the same formula for any point p in one cell σ of the decomposition. Specifically,
the rays from p through the seen vertices of P split V (p) into O(n) triangles (Fig. 4, left).
The side of any triangle, opposite to p, is a subset of an edge of P ; we call this side the
base of the triangle. Each of the other, non-base sides is formed by a ray passing through
a vertex r′ of P and ending at a point r on the base. (In Section 3.2 we will differentiate
between fixed-endpoint sides for which r = r′ is an endpoint of the base and rotating rays
which rotate around r′ if p moves; here we treat both types of sides with a single formula,
since fixed-endpoint sides may be viewed as a special case of rotating sides with r = r′.)

To write the formula for the area of the triangle pqr, we follow [12, Appendix A.1] and
assume that the base is the x-axis and that both p = (x, y) and r′ = (a, b) lie above the base
(y, b ≥ 0); then the abscissa of r is x− y(x− a)/(y − b) (Fig. 4, right). Let q′ be the vertex
that defines the other side, pq, of pqr; to simplify the formulas, assume w.l.o.g. that q′ lies
on the y-axis: q′ = (0, d). The abscissa of q is then x− yx/(y − d), and the area y|rq|/2 of
the triangle pqr is

|pqr| = y2

2

(
x− a
y − b

− x

y − d

)
(1)
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Figure 4 Left: Domain P with 3 holes and a point p ∈ P ;
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areas are added; for p ∈ σ+, |r′Rr|
is added while |q′Qq| is subtracted.
Right: r′R is not fully inside P .

Next, to obtain a piecewise-constant (1+ε)-approximation of the area |V ((x, y))| visible
from point (x, y) ∈ P , we use level sets of the area function (1). For a given area A, the
equality |pqr| = A is attained along the curve γA

x = 2A/y2 + a/(y − b)
1/(y − b)− 1/(y − d) . (2)

Consider a cell σ of the visibility decomposition. We split σ with the curves γAi
for a

set A = (A1, . . . , Ai, . . . ) of areas forming geometric progression with common ratio 1+ε:
Ai = (1 + ε)Ai−1. Let Si denote the set of points p for which the area of the triangle pqr is
between Ai−1 and Ai (that is, Si = {p ∈ σ : Ai−1 < |pqr| ≤ Ai} are the points between γAi−1

and γAi). We call Si a curved sector because in equation (2), we have limy→b x(y) = a for any
A, i.e., all curves γA have r′ = (a, b) as a common point. (We put a GeoGebra graphics to
play with the level sets to see how they look at https://www.geogebra.org/m/cvxvhfcf.)
We assign the same weight Ai to all points in the curved sector; this way, for i > 1 the weight
of any point p ∈ Si is within factor 1+ε of the area of the triangle pqr:

|pqr| ≤ Ai ≤ (1 + ε)|pqr| ∀p ∈ Si,∀i > 1 (3)

For every cell σ of the visibility decomposition, we overlay the level sets from each of the
O(n) triangles of V (p) for p ∈ σ. We confine the level sets to the cell, i.e., for each curve γA
use only the intersection γA ∩ σ. We call each cell of the overlay a region and set the weight
of the region to the sum of the weights of the curved sectors whose intersection forms the
region.

To bound the number of level sets used (i.e., to determine the first area A1 in the geometric
sequence A and the needed length of the sequence), assume that vertices of P have integer
coordinates and let L denote the largest coordinate. (This model and its variants are common
for WRP; in particular, the running times of known solutions for WRP [2,9–11,24,33] depend
on L.) Now, consider a triangulation T of P – any point p ∈ P lies inside a triangle τ of T
and sees all of the triangle; thus the area |V (p)| is at least the area of τ . Since τ has integer
coordinates, by Pick’s Theorem [22] the area of the triangle is at least 1/2:

|V (p)| ≥ 1/2 (4)

SoCG 2020
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We are now ready to prove that it suffices to have

A1 = ε

2n (5)

Indeed, suppose V (p) consists of K triangles of areas ∆1, . . . ,∆K and let A1, . . . , AK be the
weights of the curved sectors that form the region to which p belongs; the weight of the
region is thus w(p) = A1 + · · ·+AK . Classify the triangles as “small” and “large”, with the
former having area at most A1 (and thus having p lie in the sector S1) and the latter having
area larger than A1 (with p in a sector Si for i > 1); let l = {k : ∆k > A1} be the indices
of the large triangles. By (3), for every large triangle k ∈ l, Ak ≤ (1 + ε)∆k. Since K ≤ n,
we have

w(p) =
∑
k∈l

Ak +
∑
k/∈l

Ak ≤ (1 + ε)
∑
k∈l

∆k +nA1 ≤ (1 + ε)|V (p)|+ ε
1
2 ≤ (1 + 2ε)|V (p)| (6)

where the last inequality is due to (4).

I Proposition 3. If WRP on N regions with curved boundaries of constant algebraic com-
plexity can be (1+ε)-approximated in time T (N, 1

ε ), then a (1 + ε)2-approximation to the
minimum integral exposure path can be found in time T (n

10

ε2 log2(nL), 1
ε ).

Proof. For an upper bound on the sector weight, note that obviously ∀p ∈ P, |V (p)| ≤ L2.
Hence, the number of needed level sets is at most log1+ε(2nL2) = O( 1

ε log(nL)). The level
sets are defined for each of the O(n3) triples r′, q′, q̄r where r′, q′ are vertices and q̄r is the
side of P containing qr; thus overall there are O(n

3

ε log(nL)) level set curves. Since each
curve γA has constant algebraic degree (cf. (2)), any two curves intersect O(1) times, so the
complexity of the overlay of the level sets inside the cell σ of the visibility decomposition is
O((n

3

ε )2 log2(nL)). Since there are O(n4) cells, our construction splits P into O(n
10

ε2 log2(nL))
regions of constant weight.

By (6), region weights approximate the visibility area to within 1+ε (use ε:=ε/2 to get
rid of the factor 2 in front of ε); hence finding a (1+ε)-approximate solution to the WRP
on our regions provides a (1 + ε)2-approximation to the minimum integral exposure path.
Formally, let π∗ be the minimum integral exposure path (the optimal solution to Integral
Geometric Secluded Path), let π̄ be the minimum-weight path through our regions (the
optimal solution to WRP) and let π be the (1+ε)-approximate solution to WRP; then∫
π

|V (p)|dp ≤
∫
π

w(p) dp ≤ (1+ε)
∫
π̄

w(p) dp ≤ (1+ε)
∫
π∗
w(p) dp ≤ (1+ε)2

∫
π∗
|V (p)|dp

(7)

where the first inequality is due to the left inequality of (3), the second is because π
approximates π̄, the third is because π̄ is optimal w.r.t. w, and the last one is due to the
right inequality in (3). J

3.2 A detailed implementation
Applicability of Proposition 3 remains questionable due to absence of an algorithm for WRP
with curved regions boundaries. In this section we present another, direct approach to reduce
our problem to WRP on a polygonal subdivision. We refine the visibility decomposition
(without affecting the asymptotic complexity) and recalculate the area functions so that they
have linear levels. This way, the regions in the overlay of the level sets are convex, so existing
WRP solutions can be applied directly.
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Figure 6 Left: Green dashed are level sets of the area function ∆r (9). Right: Ai contributes
positively to w(p) while Aj comes with minus into w(p), because for p in this region, r′ ∈ ⊕
(r′Rr ∈ V (p)) while r′1 ∈ 	 (r′1R′r′1 /∈ V (p)).

Specifically, we differentiate between fixed-endpoint and rotating sides of the triangles
into which V (p) is split: the former end at a vertex of P while the latter rotate around a
vertex if p moves (see Fig. 4, left). Triangles whose both sides are fixed-endpoint are easy to
handle: (while the area of each individual triangle changes as p moves,) the total area of all
such triangles remains the same (moving p just redistributes the area between the triangles,
“stealing” from some and “giving” to others). We therefore call such triangles fixed.

Consider now a triangle pqr whose both sides pq, pr are rotating around vertices q′, r′
resp. (this is the most general case: if one of the sides, say, pq′ is fixed, we can just assume
q = q′); assume that rq is horizontal (Fig. 5, left). We refine the visibility decomposition
by extending the vertical segments through each of r′, q′ maximally up and down; let R,Q
be the feet of the perpendiculars dropped from r′ and q′ resp. onto the supporting line of
pq (any of r′R, q′Q may lie only partially inside P , as in Fig. 5, right – this is not an issue).
Note that |Rr′pq′Q| may be added to the fixed-triangles areas – the total area of all fixed
triangles plus the areas of the pentagons Rr′pq′Q for all the triangles with p as the apex
does not depend on p (while p remains in the same cell). Denote this total area by C. The
area |V (p)| is obtained from C by adding/subtracting the areas of the triangles r′Rr for
all vertices r′ on which a side of a triangle of V (p) rotates – whether |r′Rr| is added or
subtracted depends on whether the triangle is in V (p) or not:

|V (p)| = C +
∑
r′∈⊕

∆r −
∑
r′∈	

∆r (8)

where ∆r = |r′Rr| and ⊕ (resp. 	) is the set of vertices whose triangles r′Rr are visible
(resp. invisible) from p.

Assume that r′ is the origin O and that the supporting line of rR is the horizontal line
y = −h, and let p = (x, y) with x ≥ 0 (Fig. 6, left). Then

∆r = h2

2
x

y
(9)

and a level set γA = {p = (x, y) : ∆r = A} of the function (9) is a ray (emanating from the
origin) of constant x/y: since the height r′R of the triangle is fixed, ∆r is constant whenever
r is fixed. As in Section 3.1, we draw the rays for a set A = (A1, . . . , Ai, . . . ) of areas forming
geometric progression with common ratio 1+ε and assign the weight Ai to all points in the
sector Si = {p ∈ σ : Ai−1 < ∆r ≤ Ai} between γAi−1 and γAi

(we again use the weight
A1 = ε/(2n) for points between γ0 and γA1). Also as in Section 3.1, we define a region as a
cell in the overlay of the rays emanating from the vertices r′ of P . Finally, the weight w(p)
of any point p in a region is determined by C and the weights of the sectors forming the
region: for a vertex r′ ∈ ⊕ the weights of the sectors of r′ are added to regions weights; for a
vertex r′ ∈ 	, the weights are subtracted (Fig. 6, right).
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The fact that our subdivision into regions provides a (1+ε)-approximation to |V (p)| can
be argued similarly to Section 3.1:

I Theorem 4. If WRP on N regions can be (1+ε)-approximated in time T (N, 1
ε ), then

a (1 + ε)3-approximation to the minimum integral exposure path can be found in time
T (n

4

ε log(nL), 1
ε ).

4 On planar optimal satisfiability

In this section we return to the (non-integral) Geometric Secluded Path problem
(Section 2) and elaborate on its connections to planar satisfiability, identifying, in particular,
polynomially solvable and hard versions of planar minSAT and maxSAT.

For a SAT instance with variables V and clauses C, the graph G = (V ∪ C,E) of the
instance is the bipartite graph whose vertices are the variables and the clauses, and whose
edges connect each variable to a clause whenever the variable or its negation appears in
the clause. In a planar SAT, G is planar. Planar SAT has been the staple starting point
for hardness reduction in computational geometry. In many cases, hardness of geometric
problems was proved using restricted hard versions of planar SAT, such as:

V-cycle SAT: G remains planar after adding a cycle through V (G is no longer bipartite)
VC-cycle SAT: G remains planar after adding a cycle through V ∪ C (this version, as well

as V-cycle SAT were defined already in the original paper on planar SAT [28])
Separable SAT: A further restriction of V-cycle SAT: for any variable x, the V-cycle separates

clauses containing x from the clauses containing x; in other words, no variable x has
an x-containing clause and a x-containing clause on the same side of the V-cycle (this
version is from [28, Lemma 1], but has no name there; we take the name from [40])

Monotone SAT: In any clause, all variables are either non-negated or all variables are
negated (this version is defined for general, not only for planar SAT).

See [15,36,40] for in-depth treatment of restricted planar SAT versions and their uses.
When proving hardness of Geometric Secluded Path in Section 2 (Theorem 1) we

spent considerable effort on dealing with crossings between variable–clause connectors. A
natural question is why we did not reduce from planar minSAT. The answer is that to avoid
crossings, our reduction should better start from separable minSAT (Fig. 7, left), so that for
any variable x, the connections from literal x reside on one side of the Christmas tree and
the connections from x – on its other side (otherwise, a connection from, say, x would cross
the Christmas tree itself; Fig. 7, middle). However:

I Theorem 5. Separable minSAT can be solved in polynomial time.

Proof. Let A be the clauses on one side of the variable chain and B = C \A – the clauses
on the other side. Construct the “clause conflict” graph H [30] whose vertices are the clauses
and whose edges connect two clauses whenever one contains the negation of a literal in the
other (Fig. 7, right). For any edge, at least one of the conflicting clauses will be satisfied in
any truth assignment; thus, every edge in the graph will be incident to a satisfied clause. In
particular, solving the minSAT is equivalent to finding minimum vertex cover (VC) in H.
By the separability, for any variable x, all clauses with x are in A and all clauses with x are
in B (or vice versa); thus, any edge of H connects a clause in A with a clause in B, i.e., H is
bipartite, and the VC in it can be found in polynomial time. J
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Figure 7 Left: Reduction from separable minSAT to Geometric Secluded Path would have
no crossings (note that some variables have their negations on one side of the Christmas tree, while
others – on the other; this is fine, since the definition of separable SAT requires separability locally
for each variable; the separability does not have to be consistent across all variables). Middle: In
non-separable minSAT, clause x1 ∨ x2 could be seen not only from s-t path via x2 but also from s-t
path via x2 due to the crossing with the Christmas tree. Right: the graph H (which happens to be
K2,2) for the instance on the left.

Note that the above proof does not use the planarity. In particular, monotone minSAT can
be solved similarly: the clauses with all positive variables can form the set A and the clauses
with all negative variables – set B in the graph H from the proof. We thus have:

I Corollary 6. Monotone minSAT (planar or not) can be solved in polynomial time.

In the full version [6], we prove NP-hardness of V- and VC-cycle min2SAT, as well as hardness
of all four versions of planar max2SAT (these do not have relation to secluded paths; we give
the proofs just for completeness of our treatment of planar optSAT):

I Theorem 7. The following planar versions of max2SAT are NP-hard: V-cycle, VC-cycle,
monotone, separable. V- and VC-cycle min2SAT are NP-hard.

5 Conclusion

We studied minimum-exposure paths in polygonal domains. We showed that minimizing
seen area is hard in polygons with (large number of) holes, while in polygons with a small
number of holes the s-t path that sees least area can be found in polynomial time. We also
gave a PTAS for finding an s-t path minimizing the integral of the seen area along the path.
Finally, we discussed the connection between the geometric secluded paths and optimizing
planar satisfiability, and identified hard and easy cases of planar optSAT (while the planar
optSAT variants, which we proved hard, were not used in reductions in this paper, we hope
that they may be useful in other settings). We conclude with some remarks on each of the
problems studied.

Minimizing seen area and Secluded paths in graphs

Recall that in Secluded Path (the original, graph problem) the goal is to find an s-t path
adjacent to fewest vertices of the graph (vertices of the path itself are also counted as adjacent
to the path). The problem was proved hard in [8]. Our proof of hardness of Geometric
Secluded Path (Theorem 1) gives an alternative proof of hardness of Secluded Path
in graphs: simply remove equalizers and leakage-blocking chambers from Fig. 1 (no need
to care about midway intersections and all the other geometric technicalities) and add a
large number of extra vertices adjacent to each clause vertex (Fig. 8, left). While our proof
is simpler than the ones in [8], it is less powerful because Chechik et al. [8] showed also
hardness of approximation. In fact, the reduction in [8], shown here on Fig. 8, right, may
also be seen as reduction from minSAT (in view of the connection between minSAT and VC
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t

s

xi xi

Figure 8 Left: Our reduction from min2SAT to Secluded Path. To avoid high-degree vertices
at the clauses (hollow), the s-t path will go via the Christmas tree, setting the variables; the number
of seen (i.e., adjacent) clause vertices is the number of satisfied clauses. Right: The reduction from
VC in a graph G [8, Fig. 3]: the new graph G′ has new vertices s and t, and an s-t path (thin blue)
crossing all edges (thick blue) is added to G, with every crossing (lightgreen rhombi) turned into a
gadget (bottom) where the s-t path chooses which vertex of G (red) the path will see; leaking into
the original vertices of G (red) is prevented in G′ by attaching high-weight vertices (black).

in the clause conflict graph – see proof of Theorem 5): the choices that the s-t path makes
in the edges of the original graph G may be seen as setting the truth values to the variables
(similarly to how the path through our Christmas tree does it).

A natural question, arising in view of the effort we spent dealing with the crossings in
Section 2 when proving hardness of Geometric Secluded Path (Theorem 1), is why we
did not reduce from Secluded Path in planar graphs. The answer is that we are not aware
of a hardness result for the problem in planar graphs. Indeed, even though Chechik et al.’s
hardness proof for general graphs (refer to Fig. 8, right) could reduce from VC in a planar
graph G, in order to keep the planarity also in the resulting graph G′ (in which the secluded
s-t path is sought), the added path (crossing all edges of G) must cross each edge exactly
once, meaning that it is an Euler path in the planar dual of G, meaning that the dual has
vertices of even degree only, meaning that G has faces with even number of edges, meaning
it has only even cycles, meaning it is bipartite, meaning VC is polynomial in it. (Strictly
speaking, since we need only an Euler path through the edges, not Euler cycle, G may have
2 odd faces – we believe VC is still polynomial in such graphs).

The PTAS for integral seen area minimization

Several remarks on the complexity of our solution:
A faster algorithm for our problem could potentially be obtained by using a “1D” dis-
cretization of edges of the visibility decomposition (instead of creating a 2D “grid” of
regions, as we do), as done in many algorithms for WRP (and related problems on mini-
mizing path integral [1,45]). Such a solution, however, would require knowing the optimal
path connecting points on the boundary of the same cell of the decomposition. This, may
be quite complicated, as it amounts to minimizing the integral of a function with Ω(n)
terms, for which an analytical solution might not exist (though an approximation may be
possible).
An algorithm for WRP with regions whose boundaries are curves of constant algebraic
degree could be interesting and would lead to a solution of our problem just using the
generic scheme from Section 3.1. The biggest stumbling block for the design of such an
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s t

Figure 9 Shortest s-t path (solid) sees the niches behind s and t for its whole length; stepping to
the side (dashed path) decreases the integral exposure.

algorithm may be the non-convexity of the regions, implying that a segment between two
points on the boundary of a region is not guaranteed to stay inside the region. It may be
possible that WRP techniques could be adapted to handle our regions from Section 3.1
by approximating their boundaries with piecewise-linear functions (since we are looking
only for a (1+ε)-optimal path, the fineness of such piecewise-linear approximation would
also be controlled by ε).
Since our problem is an extension of WRP to the case of continuously changing weight,
it may be tricky to establish hardness of the problem, as the complexity of WRP has
remained open for many years (see [14] for a recent proof of algebraic complexity of
WRP). Differently from 0/1 exposure (Theorem 3), even in simple polygons the shortest
path does not necessarily minimize the integral exposure (Fig. 9).

Optimal 2-satisfiability

Few observations on min2SAT and max2SAT:
Monotone minSAT is an example of the tractable class of submodular function minimiza-
tion [23].
Planar max2SAT has a PTAS [13, Thm. 8.8].
If in a separable max2SAT with VC cycle, the cycle also separates the variables at
the clauses (i.e., if at each clause the connections from the two variables come from
the different sides of the cycle), then the problem can be solved in polynomial time by
reduction to separable min2SAT.
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