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Abstract
Tverberg’s theorem states that for any k ≥ 2 and any set P ⊂ Rd of at least (d + 1)(k − 1) + 1
points, we can partition P into k subsets whose convex hulls have a non-empty intersection. The
associated search problem lies in the complexity class PPAD ∩ PLS, but no hardness results are
known. In the colorful Tverberg theorem, the points in P have colors, and under certain conditions,
P can be partitioned into colorful sets, in which each color appears exactly once and whose convex
hulls intersect. To date, the complexity of the associated search problem is unresolved. Recently,
Adiprasito, Bárány, and Mustafa [SODA 2019] gave a no-dimensional Tverberg theorem, in which
the convex hulls may intersect in an approximate fashion. This relaxes the requirement on the
cardinality of P . The argument is constructive, but does not result in a polynomial-time algorithm.

We present a deterministic algorithm that finds for any n-point set P ⊂ Rd and any k ∈ {2, . . . , n}
in O(nddlog ke) time a k-partition of P such that there is a ball of radius O

(
k√
n

diam(P)
)

that
intersects the convex hull of each set. Given that this problem is not known to be solvable exactly
in polynomial time, and that there are no approximation algorithms that are truly polynomial in
any dimension, our result provides a remarkably efficient and simple new notion of approximation.

Our main contribution is to generalize Sarkaria’s method [Israel Journal Math., 1992] to reduce
the Tverberg problem to the Colorful Carathéodory problem (in the simplified tensor product
interpretation of Bárány and Onn) and to apply it algorithmically. It turns out that this not only
leads to an alternative algorithmic proof of a no-dimensional Tverberg theorem, but it also generalizes
to other settings such as the colorful variant of the problem.
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1 Introduction

In 1921, Radon [19] proved a seminal theorem in convex geometry: given a set P of at
least d + 2 points in Rd, one can always split P into two non-empty sets whose convex
hulls intersect. In 1966, Tverberg [25] generalized Radon’s theorem to allow for more sets
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in the partition. Specifically, he showed that any point set P ⊂ Rd of cardinality at least
(d+ 1)(k−1) + 1 can be split into k sets T1, . . . , Tk ⊂ P whose convex hulls have a non-empty
intersection, i.e., conv(T1) ∩ · · · ∩ conv(Tk) 6= ∅, where conv(·) denotes the convex hull.

By now, several alternative proofs of Tverberg’s theorem are known, e.g., [3, 6, 15, 20,
21, 26, 27]. Perhaps the most elegant proof is due to Sarkaria [21], with simplifications by
Bárány and Onn [6] and by Aroch et al. [3]. In this paper, all further references to Sarkaria’s
method refer to the simplified version. This proof proceeds by a reduction to the Colorful
Carathéodory Theorem, another celebrated result in convex geometry: given r ≥ d+ 1 point
sets P1, . . . , Pr ⊂ Rd that have a common point y in their convex hulls conv(P1), . . . , conv(Pr),
there is a traversal x1 ∈ P1, . . . , xr ∈ Pr, such that conv({x1, . . . , xr}) contains y. Sarkaria’s
proof [21] uses a Tensor product to lift the original points of the Tverberg instance into
higher dimensions, and then uses the Colorful Carathéodory traversal to obtain a Tverberg
partition for the original point set.

From a computational point of view, a Radon partition is easy to find by solving d+ 1
linear equations. On the other hand, finding Tverberg partitions is not straightforward.
Since a Tverberg partition must exist if P is large enough, finding such a partition is a total
search problem. In fact, the problem of computing a Colorful Carathéodory traversal lies
in the complexity class PPAD ∩ PLS [14, 16], but no better upper bound is known. Since
Sarkaria’s proof gives a polynomial-time reduction from the problem of finding a Tverberg
partition to the problem of finding a colorful traversal, the same complexity applies to
Tverberg partitions. Again, as of now we do not know better upper bounds for the general
problem. Miller and Sheehy [15] and Mulzer and Werner [17] provided algorithms for finding
approximate Tverberg partitions, computing a partition into fewer sets than is guaranteed by
Tverberg’s theorem in time that is linear in n, but quasi-polynomial in the dimension. These
algorithms were motivated by applications in mesh generation and statistics that require
finding a point that lies “deep” in P . A point in the common intersection of the convex hulls
of a Tverberg partition has this property, with the partition serving as a certificate of depth.

Tverberg’s theorem also admits a colorful variant, first conjectured by Bárány and
Larman [5]. The setup consists of d+ 1 point sets P1, . . . , Pd+1 ⊂ Rd, each set interpreted
as a different color and having size t. For a given k, the goal is to find k pairwise-disjoint
colorful sets (i.e., each set contains at most one point from each Pi) A1, . . . , Ak such that
∩ki=1conv(Ai) 6= ∅. The problem is to determine the optimal value for t such that such a
colorful partition always exists. Bárány and Larman [5] conjectured that t = k suffices and
they proved the conjecture for d = 2 and arbitrary k, and for k = 2 and arbitrary d. The
first result for the general case was given by Živaljević and Vrećica [29] through topological
arguments. Using another topological argument, Blagojevič, Matschke, and Ziegler [7] showed
that (i) if k + 1 is prime, then t = k; and (ii) if k + 1 is not prime, then k ≤ t ≤ 2k − 2.
These are the best known bounds for arbitrary k. Later Matoušek, Tancer, and Wagner [13]
gave a geometric proof that is inspired by the proof of Blagojevič, Matschke, and Ziegler [7].

More recently, Soberón [22] showed that if more color classes are available, then the
conjecture holds for any k. More precisely, for P1, . . . , Pn ⊂ Rd with n = (k − 1)d+ 1, each
of size k, there exist k colorful sets whose convex hulls intersect. Moreover, there is a point
in the common intersection so that the coefficients of its convex combination are the same
for each colorful set in the partition. The proof uses Sarkaria’s tensor product construction.

Recently Adiprasito, Bárány, and Mustafa [1] established a relaxed version of the Colorful
Carathéodory Theorem and some of its descendants [4]. For the Colorful Carathéodory
theorem, this allows for a (relaxed) traversal of arbitrary size, with a guarantee that the
convex hull of the traversal is close to the common point y. For the Colorful Tverberg
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problem, they prove a version of the conjecture where the convex hulls of the colorful sets
intersect approximately. This also gives a relaxation for Tverberg’s theorem [25] that allows
arbitrary-sized partitions, again with an approximation notion of intersection. Adiprasito et
al. refer to these results as no-dimensional versions of the respective classic theorems, since
the dependence on the ambient dimension is relaxed. The proofs use averaging arguments.
The argument for the no-dimensional Colorful Carathéodory also gives an efficient algorithm
to find a suitable traversal. However, the arguments for the no-dimensional Tverberg results
do not give a polynomial-time algorithm for finding the partitions.

Our contributions. We prove no-dimensional variants of the Tverberg theorem and its
colorful counterpart that allow for efficient algorithms. Our proofs are inspired by Sarkaria’s
method [21] and the averaging technique by Adiprasito, Bárány, and Mustafa [1]. For the
colorful version, we additionally make use of ideas of Soberón [22]. Furthermore, we also
give a no-dimensional generalized ham-sandwich theorem that interpolates [28] between the
centerpoint theorem and the ham-sandwich theorem [24], again with an efficient algorithm.

Algorithmically, Tverberg’s theorem is useful for finding centerpoints of high-dimensional
point sets, which in turn has applications in statistics and mesh generation [15]. In fact,
most algorithms for finding centerpoints are Monte-Carlo, returning some point p and a
probabilistic guarantee that p is indeed a centerpoint [9, 11]. However, this is coNP-hard to
verify. On the other hand, a (possibly approximate) Tverberg partition immediately gives a
certificate of depth [15,17]. Unfortunately, there are no polynomial-time algorithms for finding
optimal Tverberg partitions, and the approximation algorithms are not truly polynomial in
the dimension. In this context, our result provides a fresh notion of approximation that also
leads to very fast polynomial-time algorithms.

Furthermore, the Tverberg problem is intriguing from a complexity theoretic point of
view, because it constitutes a total search problem that is not known to be solvable in
polynomial time, but which is also unlikely to be NP-hard. So far, such problems have
mostly been studied in the context of algorithmic game theory [18], and only very recently
a similar line of investigation has been launched for problems in high-dimensional discrete
geometry [10, 12, 14, 16]. Thus, we show that the no-dimensional variant of Tverberg’s
theorem is easy from this point of view. Our main results are as follows:

Sarkaria’s method uses a specific set of k vectors in Rk−1 to lift the points in the Tverberg
instance to a Colorful Carathéodory instance. We refine this method to vectors that are
defined with the help of a given graph. The choice of this graph is important in proving
good bounds for the partition and in the algorithm. We believe that this generalization
is of independent interest and may prove useful in other scenarios that rely on the tensor
product construction.
We prove an efficient no-dimensional Tverberg result:
I Theorem 1.1 (efficient no-dimensional Tverberg theorem). Let P ⊂ Rd be a set of n
points, and let k ∈ {2, . . . , n} be an integer. Let D(·) denote the diameter.

For any choice of positive integers r1, . . . , rk that satisfy
∑k
i=1 ri = n, there is a

partition T1, . . . , Tk of P with |T1| = r1, |T2| = r2, . . . , |Tk| = rk, and a ball B of radius
nD(P )
mini ri

√
10dlog4 ke
n−1 = O

(√
n log k

mini ri
D(P )

)
that intersects the convex hull of each Ti.

The bound is better for the case n = rk and r1 = · · · = rk = r. There exists a
partition T1, . . . , Tk of P with |T1| = · · · = |Tk| = r and a d-dimensional ball of radius√

k(k−1)
n−1 D(P ) = O

(
k√
n
D(P )

)
that intersects the convex hull of each Ti.

In either case, we can compute the partition in deterministic time O(nddlog ke).

SoCG 2020
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Figure 1 Left: a point set on three colors and four points of each color. Right: a colorful partition
with a ball containing the centroids (squares) of the sets of the partition.

and a colorful counterpart (for a simple example, see Figure 1):
I Theorem 1.2 (efficient no-dimensional Colorful Tverberg). Let P1, . . . , Pn ⊂ Rd be n
point sets, each of size k, with k being a positive integer, so that the total number of
points is N = nk. Then, there are k pairwise-disjoint colorful sets A1, . . . , Ak and a ball
of radius

√
2k(k−1)

N maxiD(Pi) = O
(

k√
N

maxiD(Pi)
)
that intersects conv(Ai) for each

i ∈ [k]. We can find the Ais in deterministic time O(Ndk).
For any sets P, x ⊂ Rd, the depth of x with respect to P is the largest positive integer k
such that every half-space that contains x also contains at least k points of P .
I Theorem 1.3 (no-dimensional Generalized Ham-Sandwich Theorem). Let P1, . . . , Pk be
k ≤ d finite point sets in Rd. Then there is a (d− k + 1)-dimensional ball B and k − 1
lines `1, . . . , `k−1 such that the d-dimensional Cartesian product B× `k−1× `k−2×· · ·× `1
has depth at least

⌈
|Pi|
mi

⌉
with respect to Pi, for i ∈ [k]. Here, {2 ≤ mi ≤ |Pi|, i ∈ [k]} is

any set of chosen integer parameters. The ball B has radius (2 + 2
√

2) maxi D(Pi)√
mi

and
the lines `1, . . . , `k−1 can be determined in O(dk2 +

∑
i |Pi|d) time.

The colorful Tverberg result is similar in spirit to the regular version, but from a
computational viewpoint, it does not make sense to use the colorful algorithm to solve
the regular Tverberg problem. Due to space constraints, the colorful Tverberg and the
Generalized Ham-Sandwich results have been deferred to an extended version in [8].

Compared to the results of Adiprasito et al. [1], our radius bounds are slightly worse.
More precisely, they show that both in the colorful and the non-colorful case, there is a ball of

radius O
(√

k
nD(P )

)
that intersects the convex hulls of the sets of the partition. They also

show this bound is close to optimal. In contrast, our result is off by a factor of O(
√
k), but

derandomizing the proof of Adiprasito et al. [1] gives only a brute-force 2O(n)-time algorithm.
In contrast, our approach gives almost linear time algorithms for both cases, with a linear
dependence on the dimension.

Techniques. Adiprasito et al. first prove the colorful no-dimensional Tverberg theorem
using an averaging argument over an exponential number of possible partitions. Then, they
specialize their result for the non-colorful case, obtaining a bound that is asymptotically
optimal. Unfortunately, it is not clear how to derandomize the averaging argument efficiently.
The method of conditional expectations applied to their averaging argument leads to a
runtime of 2O(n). To get around this, we follow an alternate approach towards both versions
of the Tverberg theorem. Instead of a direct averaging argument, we use a reduction to the
Colorful Carathéodory theorem that is inspired by Sarkaria’s proof, with some additional
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twists. We will see that this reduction also works in the no-dimensional setting, i.e., by a
reduction to the no-dimensional Colorful Carathéodory theorem of Adiprasito et al., we obtain
a no-dimensional Tverberg theorem, with slightly weaker radius bounds, as stated above.
This approach has the advantage that their Colorful Carathéodory theorem is based on an
averaging argument that permits an efficient derandomization using the method of conditional
expectations [2]. In fact, we will see that the special structure of the no-dimensional Colorful
Carathéodory instance that we create allows for a very fast evaluation of the conditional
expectations, as we fix the next part of the solution. This results in an algorithm whose
running time is O(nddlog ke) instead of O(ndk), as given by a naive application of the method.
With a few interesting modifications, this idea also works in the colorful setting. This seems
to be the first instance of using Sarkaria’s method with special lifting vectors, and we hope
that this will prove useful for further studies on Tverberg’s theorem and related problems.

Outline of the paper. We describe our extension of Sarkaria’s technique in Section 2 and
then use it in combination with a result from Section 3 to prove the no-dimensional Tverberg
result. In Section 3, we expand upon the details of an averaging argument that is useful
for the Tverberg result. Section 4 is devoted to the algorithm for computing the Tverberg
partition. We conclude in Section 5 with some observations and open questions. The results
for the colorful setting and the generalized ham-sandwich theorem are presented in the
extended version [8].

2 Tensor product and no-dimensional Tverberg Theorem

In this section, we prove a no-dimensional Tverberg result. Let D(·) denote the diameter of
any point set in Rd. Let P ⊂ Rd be our given set of n points. We assume for simplicity that
the centroid of P , that we denote by c(P ), coincides with the origin 0, so that

∑
x∈P x = 0.

For ease of presentation, we denote the origin by 0 in all dimensions, as long as there is no
danger of confusion. Also, we write 〈·, ·〉 for the usual scalar product between two vectors in
the appropriate dimension, and [n] for the set {1, . . . , n}.

Tensor product. Let x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , ym) ∈ Rm be any two vectors.
The tensor product ⊗ is the operation that takes x and y to the dm-dimensional vector x⊗ y
whose ij-th component is xiyj . Easy calculations show that for any x, x′ ∈ Rd, y, y′ ∈ Rm,
the operator ⊗ satisfies: (i) x⊗y+x′⊗y = (x+x′)⊗y; (ii) x⊗y+x⊗y′ = x⊗ (y+y′); and
(iii) 〈x⊗ y, x′ ⊗ y′〉 = 〈x, x′〉〈y, y′〉. By (iii), the L2-norm ‖x⊗ y‖ of the tensor product x⊗ y
is exactly ‖x‖‖y‖. For any set of vectors X = {x1, x2, . . . } in Rd and any m-dimensional
vector q ∈ Rm, we denote by X ⊗ q the set of tensor products {x1 ⊗ q, x2 ⊗ q, . . . } ⊂ Rdm.
Throughout this paper, all distances will be in the L2-norm.

A set of lifting vectors. We generalize the tensor construction that was used by Sarkaria
to prove the Tverberg theorem [21]. For this, we provide a way to construct a set of k vectors
{q1, . . . , qk} that we use to create tensor products. The motivation behind the precise choice
of these vectors will be explained a little later in this section. Let G be an (undirected)
simple, connected graph of k nodes. Let ‖G‖ denote the number of edges in G, ∆(G) denote
the maximum degree of any node in G, and diam(G) denote the diameter of G, i.e., the
maximum length of a shortest path between a pair of vertices in G.

We orient the edges of G in an arbitrary manner to obtain a directed graph. We use
this directed version of G to define a set of k vectors {q1, . . . , qk} in ‖G‖ dimensions. This
is done as follows: each vector qi corresponds to a unique node vi of G. Each coordinate

SoCG 2020
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position of the vectors corresponds to a unique edge of G. If vivj is a directed edge of G,
then qi contains a 1 and qj contains a −1 in the corresponding coordinate position. The
remaining co-ordinates are zero. That means, the vectors {q1, . . . , qk} are in R‖G‖. Also,∑k
i=1 qi = 0. It can be verified that this is the unique linear dependence (up to scaling)

between the vectors for any choice of edge orientations of G. This means that the rank of
the matrix with the qis as the rows is k − 1. It can be verified that:

B Claim 2.1. For each vertex vi, the squared norm ‖qi‖2 is the degree of vi. For i 6= j, the
dot product 〈qi, qj〉 is −1 if vivj is an edge in G, and 0 otherwise.

An immediate application of Claim 2.1 and property (iii) of the tensor product is that for
any set of k vectors {u1, . . . , uk}, each of the same dimension, the following relation holds:∥∥∥∥∥

k∑
i=1

ui ⊗ qi

∥∥∥∥∥
2

=
k∑
i=1

k∑
j=1
〈ui ⊗ qi, uj ⊗ qj〉 =

k∑
i=1

k∑
j=1
〈ui, uj〉〈qi, qj〉

=
k∑
i=1
〈ui, ui〉〈qi, qi〉+ 2

k∑
1≤i<j≤k

〈ui, uj〉〈qi, qj〉 =
k∑
i=1
‖ui‖2‖qi‖2 − 2

∑
vivj∈E

〈ui, uj〉

=
∑

vivj∈E
‖ui − uj‖2, (1)

where E is the set of edges of G.1
As an example, such a set of vectors can be formed by taking G as a balanced binary tree

with k nodes, and orienting the edges away from the root. Let q1 correspond to the root. A
simple instance of the vectors is shown below:

q1

q2

q4 q5

q3

q6 . . .

The vectors in the figure above can be represented as the matrix

q1
q2
q3
q4
q5
. . .


=



1 1 0 0 0 0 0 0 . . .

−1 0 1 1 0 0 0 0 . . .

0 −1 0 0 1 1 0 0 . . .

0 0 −1 0 0 0 1 1 . . .

0 0 0 −1 0 0 0 0 . . .

. . .


where the i-th row of the matrix corresponds to vector qi. As ‖G‖ = k − 1, each vector is
in Rk−1. The norm ‖qi‖ is one of

√
2,
√

3, or 1, depending on whether vi is the root, an
internal node with two children, or a leaf, respectively. The height of G is dlog ke and the
maximum degree is ∆(G) = 3.

1 We note that this identity is very similar to the Laplacian quadratic form that is used in spectral graph
theory; see, e.g., the lecture notes by Spielman [23] for more information.
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Lifting the point set. Let P = {p1, . . . , pn} ⊂ Rd. Our goal is to find a (relaxed) Tverberg
partition of P into k sets. For this, we first pick a graph G with k vertices, as in the
previous paragraph, and we derive a set of k lifting vectors {q1, . . . , qk} from G. Then, we lift
each point of P to a set of vectors in d‖G‖ dimensions, by taking tensor products with the
vectors {q1, . . . , qk}. More precisely, for a ∈ [n] and j = 1, . . . , k, let pa,j = pa ⊗ qj ∈ Rd‖G‖.
For a ∈ [n], we let Pa = {pa,1, . . . , pa,k} be the lifted points obtained from pa. We have,
‖pa,j‖ = ‖qj‖‖pa‖ ≤

√
∆(G)‖pa‖. By the bi-linear properties of the tensor product, we have

c(Pa) = 1
k

k∑
j=1

(pa ⊗ qj) = 1
k

pa ⊗
 k∑
j=1

qj

 = 1
k

(pa ⊗ 0) = 0,

so the centroid c(Pa) coincides with the origin, for a ∈ [n].
The next lemma contains the technical core of our argument. It shows how to use the

lifted point sets to derive a useful partition of P into k subsets of prescribed sizes. We defer
its proof to Section 3.

I Lemma 2.2. Let P = {p1, . . . , pn} be a set of n points in Rd satisfying
∑p
i=1 pi = 0. Let

P1, . . . , Pn denote the point sets obtained by lifting each p ∈ P using the vectors {q1, . . . , qk}.
For any choice of positive integers r1, . . . , rk that satisfy

∑k
i=1 ri = n, there is a partition

T1, . . . , Tk of P with |T1| = r1, |T2| = r2, . . . , |Tk| = rk such that the centroid of the set of
lifted points T := {T1 ⊗ q1 ∪ · · · ∪ Tk ⊗ qk} (this set is also a traversal of P1, . . . , Pn) has
distance less than δ =

√
∆(G)

2(n−1)D(P ) from the origin 0.
The bound is better for the case n = rk and r1 = · · · = rk = n

k . There exists a
partition T1, . . . , Tk of P with |T1| = |T2| = · · · = |Tk| = r such that the centroid of
T := {T1 ⊗ q1 ∪ · · · ∪ Tk ⊗ qk} has distance less than γ =

√
‖G‖

k(n−1)D(P ) from the origin 0.

Using Lemma 2.2, we show that there is a ball of bounded radius that intersects the
convex hull of each Ti. Let α1 = r1

n , . . . , αk = rk

n be positive real numbers. The centroid of
T , c(T ), can be written as

c(T ) = 1
n

k∑
i=1

∑
x∈Ti

x⊗ qi =
k∑
i=1

1
n

(∑
x∈Ti

x

)
⊗ qi =

k∑
i=1

ri
n

(
1
ri

∑
x∈Ti

x

)
⊗ qi =

k∑
i=1

αici ⊗ qi,

where ci = c(Ti) denotes the centroid of Ti, for i ∈ [k]. Using Equation (1),

‖c(T )‖2 =

∥∥∥∥∥
k∑
i=1

αici ⊗ qi

∥∥∥∥∥
2

=
∑

vivj∈E
‖αici − αjcj‖2. (2)

Let x1 = α1c1, x2 = α2c2, . . . , xk = αkck. Then

k∑
i=1

xi =
k∑
i=1

αici =
k∑
i=1

ri
n

 1
ri

∑
p∈Ti

p

 = 1
n

n∑
j=1

pj = 0,

so the centroid of {x1, . . . , xk} coincides with the origin. Using ‖c(T )‖ < δ and Equation (2),∑
vivj∈E

‖xi − xj‖2 =
∑

vivj∈E
‖αici − αjcj‖2 < δ2.

SoCG 2020
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We bound the distance from x1 to every other xj . For each i ∈ [k], we associate to xi the
node vi in G. Let the shortest path from v1 to vj in G be denoted by (v1, vi1 , vi2 , . . . , viz , vj).
This path has length at most diam(G). Using the triangle inequality and the Cauchy-Schwarz
inequality,

‖x1 − xj‖ ≤ ‖x1 − xi1‖+ ‖xi1 − xi2‖+ · · ·+ ‖xiz − xj‖

≤
√

diam(G)
√
‖x1 − xi1‖2 + ‖xi1 − xi2‖2 + · · ·+ ‖xiz − xj‖2

≤
√

diam(G)
√ ∑
vivj∈E

‖xi − xj‖2 <
√

diam(G)δ. (3)

Therefore, the ball of radius β :=
√

diam(G)δ centered at x1 covers the set {x1, . . . , xk}. That
means, the ball covers the convex hull of {x1, . . . , xk} and in particular contains the origin.
Using triangle inequality, the ball of radius 2β centered at the origin contains {x1, . . . , xk}.
Then the norm of each xi is at most 2β which implies that the norm of each ci is at most
2β/αi. Therefore, the ball of radius 2β

miniαi
= 2n

√
diam(G)δ

miniri
centered at 0 contains the set

{c1, . . . , ck}. Substituting the value of δ from Lemma 2.2, the ball of radius

2n
√

diam(G)
miniri

√
∆(G)

2(n− 1)D(P ) = nD(P )
miniri

√
2diam(G)∆(G)

n− 1

centered at 0 covers the set {c1, . . . , ck}.

Optimizing the choice of G. The radius of the ball has a term
√

diam(G)∆(G) that depends
on the choice of G. For a path graph this term has value

√
(k − 1)2. For a star graph, that

is, a tree with one root and k − 1 children, this is
√
k − 1. If G is a balanced s-ary tree, then

the Cauchy-Schwarz inequality in Equation (3) can be modified to replace diam(G) by the
height of the tree. Then the term is

√
dlogs ke(s+ 1) which is minimized for s = 4. The

radius bound for this choice of G is nD(P )
miniri

√
10dlog4 ke
n−1 as claimed in Theorem 1.1.

Balanced partition. For the case n = rk and r1 = · · · = rk = r, we give a better
bound for the radius of the ball containing the centroids c1, . . . , ck. In this case we have
α1 = α2 = · · · = αk = r

n = 1
k . Then Equation (2) is

‖c(T )‖2 =
∑

vivj∈E
‖αici − αjcj‖2 = 1

k2

∑
vivj∈E

‖ci − cj‖2.

Since ‖c(T )‖ < γ, we get∑
vivj∈E

‖ci − cj‖2 < k2γ2. (4)

Similar to the general case, we bound the distance from c1 to any other centroid cj . For each
i, we associate to ci the node vi in G. There is a path of length at most diam(G) from v1 to
any other node. Using the Cauchy-Schwarz inequality and substituting the value of γ, we get

‖c1 − cj‖ ≤
√

diam(G)
√ ∑
vivj∈E

‖ci − cj‖2 <
√

diam(G)kγ =

√
diam(G)‖G‖
k(n− 1) kD(P )

=
√

k

n− 1
√

diam(G)‖G‖D(P ). (5)
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Therefore, a ball of radius
√

k
n−1

√
diam(G)‖G‖D(P ) centered at c1 contains the set c1, . . . , ck.

The factor
√

diam(G)‖G‖ is minimized when G is a star graph, which is a tree. We can
replace the term diam(G) by the height of the tree. Then the ball containing c1, . . . , ck has
radius

√
k(k−1)
n−1 D(P ), as claimed in Theorem 1.1.

As balanced as possible. When k does not divide n, but we still want a balanced partition,
we take any subset of n0 = kbnk c points of P and get a balanced Tverberg partition on the
subset. Then we add the removed points one by one to the sets of the partition, adding at
most one point to each set.

As shown above, there is a ball of radius less than
√

k(k−1)
n0−1 D(P ) that intersects the

convex hull of each set in the partition. Noting that 1√
n0−1 ≤

√
k+2
k

1√
n−1 , a ball of radius

less than
√

(k+2)(k−1)
(n−1) D(P ) intersects the convex hull of each set of the partition.

3 Existence of a desired partition

This section is dedicated to the proof of Lemma 2.2. Like Adiprasito et al. [1], we use an
averaging argument. More precisely, we bound the average norm δ of the centroid of the
lifted points {T1⊗ q1 ∪ · · · ∪Tk⊗ qk} over all partitions of P of the form T1, . . . , Tk, for which
the sets in the partition have sizes r1, . . . , rk respectively, with

∑k
i=1 ri = n.

Each such partition can be interpreted as a traversal of the lifted point sets P1, . . . , Pn
that contains ri points lifted with qi for i ∈ [k]. Thus, consider any traversal of this
type X = {x1, . . . , xn} of P1, . . . , Pn, where xa ∈ Pa, for a ∈ [n]. The centroid of X is
c(X) =

∑n

a=1
xa

n . We bound the expectation n2E
(
‖c(X)‖2

)
= E

(
‖
∑n
a=1 xa‖

2
)
, over all

possible traversals X. By the linearity of expectation, E
(
‖
∑n
a=1 xa‖

2
)
can be written as

E

 n∑
a=1
‖xa‖2 +

∑
a,b∈[n]
a<b

2〈xa, xb〉

 = E

(
n∑
a=1
‖xa‖2

)
+ 2E

 ∑
a,b∈[n]
a<b

〈xa, xb〉

 .

We next find the coefficient of each term of the form ‖xa‖2 and 〈xa, xb〉 in the expectation.

Using the multinomial coefficient, the total number of traversals X is
(

n

r1, r2, . . . , rk

)
=

n!
r1!r2!·····rk! . Furthermore, for any lifted point xa = pa,j , the number of traversals X with

pa,j ∈ X is
(

n− 1
r1, . . . , rj − 1, . . . , rk

)
= (n−1)!

r1!·····(rj−1)!·····rk! . So the coefficient of ‖pa,j‖2 is
(n−1)!

r1!·····(rj −1)!·····rk
n!

r1!·····rk!
= rj

n . Similarly, for any pair of points (xa, xb) = (pa,i, pb,j), there are two
cases in which they appear in the same traversal: first, if i = j, the number of traversals is

(n−2)!
r1!·····(ri−2)!·····rk! . The coefficient of 〈pa,i, pb,j〉 in the expectation is hence ri(ri−1)

n(n−1) . Second, if
i 6= j, the number of traversals is calculated to be (n−2)!

r1!·····(ri−1)!·····(rj−1)!·····rk! . The coefficient
of 〈pa,i, pb,j〉 is rirj

n(n−1) . Substituting the coefficients, we bound the expectation as
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E

(
n∑
a=1
‖xa‖2

)
+ 2E

 ∑
a,b∈[n]
a<b

〈xa, xb〉

 =
n∑
a=1

k∑
j=1
‖pa,j‖2

rj
n

+ 2
∑

a,b∈[n]
a<b

 k∑
j=1
〈pa,j , pb,j〉

rj(rj − 1)
n(n− 1) +

∑
i,j∈[k]
i6=j

〈pa,i, pb,j〉
rirj

n(n− 1)


=

k∑
j=1

rj
n

n∑
a=1
‖pa,j‖2 + 2

n(n− 1)
∑

a,b∈[n]
a<b

 ∑
i,j∈[k]

〈pa,i, pb,j〉rirj −
k∑
j=1
〈pa,j , pb,j〉rj


=

k∑
j=1

rj

(
1
n

n∑
a=1
‖pa,j‖2

)
+
∑

a,b∈[n]
a<b

∑
i,j∈[k]

2〈pa,i, pb,j〉rirj
n(n− 1) −

∑
a,b∈[n]
a<b

k∑
j=1

2〈pa,j , pb,j〉rj
n(n− 1) .

We bound the value of each of the three terms individually to get an upper bound on the
value of the expression. The first term can be bounded as

k∑
j=1

rj

(
1
n

n∑
a=1
‖pa,j‖2

)
= 1
n

k∑
j=1

rj

(
n∑
a=1
‖pa‖2‖qj‖2

)
= 1
n

 k∑
j=1

rj‖qj‖2
 n∑
a=1
‖pa‖2

≤ 1
n

∆(G)
k∑
j=1

rj

 n∑
a=1
‖pa‖2 = 1

n
(∆(G)n)

n∑
a=1
‖pa‖2 < ∆(G)

(
nD(P )2

2

)
,

where we have made use of Claim 2.1 and the fact that
∑n
a=1 ‖pa‖2 < nD(P )2

2 (see [1,
Lemma 4.1]). The second term can be re-written as

∑
a,b∈[n]
a<b

∑
i,j∈[k]

2〈pa,i, pb,j〉rirj
n(n− 1) =

∑
i,j∈[k]

2rirj
n(n− 1)

 ∑
a,b∈[n]
a<b

〈pa,i, pb,j〉



=
∑
i,j∈[k]

2rirj
n(n− 1)

 ∑
a,b∈[n]
a<b

〈pa ⊗ qi, pb ⊗ qj〉

 =
∑
i,j∈[k]

2rirj
n(n− 1)

 ∑
a,b∈[n]
a<b

〈pa, pb〉 〈qi, qj〉


=

 ∑
i,j∈[k]

2〈qi, qj〉rirj
n(n− 1)

 · ∑
a,b∈[n]
a<b

〈pa, pb〉 =

 ∑
(vi,vj)∈E

2(ri − rj)2

n(n− 1)

 · ∑
a,b∈[n]
a<b

〈pa, pb〉 ≤ 0,

where we have again made use of Claim 2.1. We also used c(P ) = 0 to bound the term∑
a,b,∈[n],a<b〈pa, pb〉 = − 1

2
∑n
a=1 ‖pa‖2 < 0. The second term is non-positive and therefore

can be removed since the total expectation is always non-negative. The third term is
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∑
a,b∈[n]
a<b

k∑
j=1

−2〈pa,j , pb,j〉rj
n(n− 1) =

∑
a,b∈[n]
a<b

k∑
j=1

−2 〈pa ⊗ qj , pb ⊗ qj〉 rj
n(n− 1)

=
∑

a,b∈[n]
a<b

k∑
j=1

−2〈pa, pb〉‖qj‖2rj
n(n− 1) =

 k∑
j=1
‖qj‖2rj


 ∑
a,b∈[n]
a<b

−2〈pa, pb〉
n(n− 1)


<

 k∑
j=1
‖qj‖2rj

( nD(P )2

2n(n− 1)

)
=

 k∑
j=1
‖qj‖2rj

 D(P )2

2(n− 1) <
n∆(G)D(P )2

2(n− 1) .

Collecting the three terms, the expression is upper bounded by

D(P )2∆(G)n
2 + D(P )2∆(G)n

2(n− 1) = D(P )2∆(G)n
2

(
1 + 1

n− 1

)
= D(P )2∆(G)n2

2(n− 1) ,

which bounds the expectation by 1
n2

(
D(P )2∆(G)n2

2(n−1)

)
= D(P )2∆(G)

2(n−1) . This shows that there is a

traversal such that its centroid has norm less than D(P )
√

∆(G)
2(n−1) , as claimed in Lemma 2.2.

Balanced case. For the case that n is a multiple of k, and r1 = · · · = rk = n
k = r, the

upper bound can be improved: the first term in the expectation is

k∑
j=1

rj

(
1
n

n∑
a=1
‖pa,j‖2

)
= r

n

k∑
j=1

n∑
a=1
‖pa,j‖2 = r

n

k∑
j=1

n∑
a=1
‖pa‖2‖qj‖2

= r

n

 k∑
j=1
‖qj‖2

 n∑
a=1
‖pa‖2 = r

n
2‖G‖

n∑
a=1
‖pa‖2 <

r

n
2‖G‖

(
nD(P )2

2

)
≤ r‖G‖D(P )2,

The second term is zero, and the third term is less than k∑
j=1
‖qj‖2rj

 D(P )2

2(n− 1) = r

 k∑
j=1
‖qj‖2

 D(P )2

2(n− 1) = 2r‖G‖ D(P )2

2(n− 1) = r‖G‖D(P )2

(n− 1) .

The expectation is upper bounded as

n2E
(
‖c(X)‖2

)
< r‖G‖D(P )2 + r‖G‖D(P )2

(n− 1)

=⇒ E
(
‖c(X)‖2

)
<
r‖G‖D(P )2

n2

(
1 + 1

n− 1

)
= r‖G‖D(P )2

n(n− 1) = ‖G‖D(P )2

k(n− 1) ,

which shows that there is at least one balanced traversal X whose centroid has norm less
than

√
‖G‖

k(n−1)D(P ), as claimed in Lemma 2.2.

4 Computing the Tverberg partition

We now give a deterministic algorithm to compute no-dimensional Tverberg partitions. The
algorithm is based on the method of conditional expectations. First, in Section 4.1 we give
an algorithm for the general case when the sets in the partitions are constrained to have
given sizes r1, . . . , rk. The choice of G is crucial for the algorithm.
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The balanced case of r1 = · · · = rk has a better radius bound and uses a different graph G.
The algorithm for the general case also extends to the balanced case with a small modification,
that we discuss in Section 4.2. We get the same runtime in either case:

I Theorem 4.1. Given a set of n points P ⊂ Rd, and any choice of k positive integers
r1, . . . , rk that satisfy

∑k
i=1 ri = n, a no-dimensional Tverberg k-partition of P with the sets

of the partition having sizes r1, . . . , rk can be computed in time O(nddlog ke).

4.1 Algorithm for the general case
The input is a set of n points P ⊂ Rd and k positive integers r1, . . . , rk satisfying

∑k
i=1 ri = n.

We use the tensor product construction from Section 2 that are derived from a graph G. Each
point of P is lifted implicitly using the vectors {q1, . . . , qk} to get the set {P1, . . . , Pn}. We
then compute a traversal of {P1, . . . , Pn} using the method of conditional expectations [2],
the details of which can be found below. Grouping the points of the traversal according to
the lifting vectors used gives us the required partition. We remark that in our algorithm we
do not explicitly lift any vector using the tensor product, thereby avoiding costs associated
with working on vectors in d‖G‖ dimensions.

We now describe a procedure to find a traversal that corresponds to a desired partition of P .
We go over the points in {P1, . . . , Pn} iteratively in reverse order and find the traversal Y =
(y1 ∈ P1, . . . , yn ∈ Pn) point by point. More precisely, we determine yn in the first step, then
yn−1 in the second step, and so on. In the first step, we go over all points of Pn and select any
point yn ∈ Pn that satisfies E

(
c‖(x1, x2, . . . , xn−1, yn)‖2

)
≤ E

(
c‖(x1, x2, . . . , xn−1, xn)‖2

)
.

For the general step, suppose we have already selected the points {ys+1, ys+2, . . . , yn}. To
determine ys, we choose any point from Ps that achieves

E
(
‖c(x1, x2, . . . , xs−1, ys, ys+1, . . . , yn)‖2

)
≤ E

(
‖c(x1, x2, . . . , xs, ys+1, . . . , yn)‖2

)
. (6)

The last step gives the required traversal. We expand E(‖c(x1, x2, . . . , xs−1, ys, . . . , yn)‖2) to

E

∥∥∥∥∥ 1
n

(
s−1∑
i=1

xi +
n∑
i=s

yi

)∥∥∥∥∥
2 = 1

n2E

∥∥∥∥∥
(
s−1∑
i=1

xi +
n∑

i=s+1
yi

)
+ ys

∥∥∥∥∥
2

= 1
n2

E

∥∥∥∥∥
s−1∑
i=1

xi +
n∑

i=s+1
yi

∥∥∥∥∥
2+ ‖ys‖2 + 2

〈
ys,E

(
s−1∑
i=1

xi +
n∑

i=s+1
yi

)〉
= 1
n2

E

∥∥∥∥∥
s−1∑
i=1

xi +
n∑

i=s+1
yi

∥∥∥∥∥
2+ ‖ys‖2 + 2

〈
ys,E

(
s−1∑
i=1

xi

)
+

n∑
i=s+1

yi

〉 .

We pick a ys for which E(‖c(x1, x2, . . . , xs−1, ys, . . . , yn)‖2) is at most the average over all

choices of ys ∈ Ps. As the term E
(∥∥∥∑s−1

i=1 xi +
∑n
i=s+1 yi

∥∥∥2
)

is constant over all choices of

ys, and the factor 1
n2 is constant, we can remove them from consideration. We are left with

‖ys‖2 + 2
〈
ys,E

(
s−1∑
i=1

xi

)
+

n∑
i=s+1

yi

〉
= ‖ys‖2 + 2

〈
ys,E

(
s−1∑
i=1

xi

)〉
+ 2〈ys,

n∑
i=s+1

yi〉. (7)

Let ys = ps ⊗ qi. The first term is ‖ys‖2 = ‖ps ⊗ qi‖2 = ‖ps‖2‖qi‖2. Let r′1, . . . , r′k be the
number of elements of T1, . . . , Tk that are yet to be determined. In the beginning, r′i = ri for
each i. Using the coefficients from Section 3, E

(∑s−1
i=1 xi

)
can be written as
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E

(
s−1∑
i=1

xi

)
=

s−1∑
i=1

k∑
j=1

pi,j
r′j

s− 1 =
k∑
j=1

r′j
s− 1

s−1∑
i=1

pi,j =
k∑
j=1

r′j
s− 1

s−1∑
i=1

pi ⊗ qj

= 1
s− 1

k∑
j=1

r′j

(
s−1∑
i=1

pi

)
⊗ qj =

(
1

s− 1

s−1∑
i=1

pi

)
⊗

 k∑
j=1

r′jqj

 = cs−1 ⊗

 k∑
j=1

r′jqj

 ,

where cs−1 =
∑s−1

i=1
pi

s−1 is the centroid of the first (s− 1) points. Using this, the second term
can be simplified as

2
〈
ys,E

(
s−1∑
i=1

xi

)〉
= 2

〈
ps ⊗ qi, cs−1 ⊗

 k∑
j=1

r′jqj

〉 = 2 〈ps, cs−1〉

〈
qi,

k∑
j=1

r′jqj

〉

= 2〈ps, cs−1〉

r′i‖qi‖2 − ∑
vivj∈E

r′j

 = 〈ps, cs−1〉Ri,

where Ri = 2
(
r′i‖qi‖2 −

∑
vivj∈E r

′
j

)
. The third term is

2
〈
ys,

n∑
j=s+1

yj

〉
= 2

n∑
j=s+1

〈ys, yj〉 = 2
n∑

j=s+1

〈
ps ⊗ qi, pj ⊗ qij

〉
= 2

n∑
j=s+1

〈ps, pj〉〈qi, qij 〉 = 2
〈
ps,
∑
p∈Ti

p‖qi‖2 −
∑

j:vivj∈E

∑
p∈Tj

p

〉

=
〈
ps, 2

‖qi‖2 ∑
p∈Ti

p−
∑

j:vivj∈E

∑
p∈Tj

p

〉 = 〈ps, Ui〉,

where Ui = 2
(
‖qi‖2

∑
p∈Ti

p−
∑
j:vivj∈E

∑
p∈Tj

p
)
and Tj represents the set of points in

ps+1, . . . , pn that was lifted using qj in the traversal. Collecting the three terms, we get

‖ps‖2‖qi‖2 + 〈ps, cs−1〉Ri + 〈ps, Ui〉 = αsNi + βsRi + 〈ps, Ui〉, (8)

with Ni = ‖qi‖2, αs := ‖ps‖2, βs := 〈ps, cs−1〉. The terms αs, βs, ps are fixed for iteration s.

Algorithm. For each s ∈ [1, n], we pre-compute the prefix sums
∑s
a=1 pa, and αs and

βs. With this information, it is straightforward to compute a traversal in O(ndk) time by
evaluating the expression for each choice of ps. We describe a more careful method that
reduces this time to O(nddlog ke).

We assume that G is a balanced µ-ary tree. Recall that each node vi of G corresponds to
a vector qi. We augment G with the following additional information for each node vi:

Ni = ‖qi‖2: recall that this is the degree of vi.
Nst
i : this is the average of the Nj over all elements vj in the subtree rooted at vi.

r′i: as before, this is the number of elements of the set Ti of the partition that are yet to
be determined. We initialize each r′i := ri.
Ri = 2

(
r′iNi −

∑
vivj∈E r

′
j

)
, that is, r′iNi minus the r′j for each node vj that is a neighbor

of vi in G, times two. We initialize Ri := 0.
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Rsti : this is the average of the Rj values over all nodes vj in the subtree rooted at vi. We
initialize this to 0.
Ti, ui: as before, Ti is the set of vectors of the traversal that was lifted using qi. ui is the
sum of the vectors of Ti. We initialize Ti = ∅ and ui = 0.
Ui = 2

(
‖qi‖2

∑
p∈Ti

p−
∑
j:vivj∈E

∑
p∈Tj

p
)

= 2
(
uiNi −

∑
vivj∈E uj

)
, initially 0.

Usti : this is the average of the vectors Uj for all nodes vj in the subtree of vi. Ust is
initialized as 0 for each node.

Additionally, each node contains pointers to its children and parents. Nst, Rst are initialized
in one pass over G.

In step s, we find an i ∈ [k] for which Equation (8) has a value at most the average

As = 1
k

(
k∑
i=1

αsNi + βsRi + 〈ps, Ui〉
)

= αs
k

k∑
i=1

Ni + βs
k

k∑
i=1

Ri +
〈
ps,

1
k

k∑
i=1

Ui

〉
= αsN

st
1 + βsR

st
1 + 〈ps, Ust1 〉,

where v1 is the root of G. Then ys satisfies Equation (6).
To find such a node vi, we start at the root v1 ∈ G. We compute the average As and

evaluate Equation (8) at v1. If the value is at most As, we report success, setting i = 1. If
not, then for at least one child vm of v1, the average for the subtree is less than As, that is,
αsN

st
m + βsR

st
m + 〈ps, Ustm 〉 < As. We scan the children of v1 and compute the expression to

find such a node vm. We recursively repeat the procedure on the subtree rooted at vm, and
so on until we find a suitable node. There is at least one node in the subtree at vm for which
Equation (8) evaluates to less than As, so the procedure is guaranteed to find such a node.

Let vi be the chosen node. We update the information stored in the nodes of the tree for
the next iteration. We set

r′i := r′i − 1 and Ri := Ri − 2Ni. Similarly we update the Ri values for neighbors of vi.
We set Ti := Ti ∪ {ps}, ui := ui + ps and Ui := Ui + 2Nips. Similarly we update the Ui
values for the neighbors.
For each child of vi and each ancestor of vi on the path to v1, we update Rst and Ust.

After the last step of the algorithm, we get a partition T1, . . . , Tk of P . The set of points
{T1⊗q1, . . . , Tk⊗qk} is a traversal of {P1, . . . , Pn}, hence using Lemma 2.2 the sets T1, . . . , Tk
form the required partition of P . This completes the description of the algorithm.

Proof of Theorem 4.1 for the general case. Computing the prefix sums and αs, βs takes
O(nd) time in total. Creating and initializing the tree takes O(k) time. In step s, computing
the average As and evaluating Equation 8 takes O(d) time per node. Therefore, computing
Equation 8 for the children of a node takes O(dµ) time, as G is a µ-ary tree. In the worst
case, the search for vi starts at the root and goes to a leaf, exploring O(µdlogµ ke) nodes in
the process and hence takes O(dµdlogµ ke) time. For updating the tree, the information local
to vi and its neighbors can be updated in O(dµ) time. To update Rst and Ust we travel on
the path to the root, which can be of length O(dlogµ ke) in the worst case, and hence takes
O(dµdlogµ ke) time. There are n steps in the algorithm, each taking O(dµdlogµ ke) time.
Overall, the running time is O(ndµdlogµ ke) which is minimized for a 3-ary tree. J

4.2 Algorithm for the balanced case
In the case of balanced traversals, G is chosen to be a star graph as was done in Section 2.
Let q1 correspond to the root of the graph and q2, . . . , qk correspond to the leaves. In this
case the objective function αsNi + βsRi + 〈ps, Ui〉 from the general case can be simplified:
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for i = 2, . . . , k, we have that Ri = 2
(
r′i‖qi‖2 −

∑
vivj∈E r

′
j

)
= 2 (r′i − r′1). Also, we have

Ui = 2
(∑

p∈Ti
p‖qi‖2 −

∑
p∈Tj∧vivj∈E p

)
= 2

(∑
p∈Ti

p−
∑
p∈T1

p
)
.

for the root v1, Ri = 2
(
r′i‖qi‖2 −

∑
vivj∈E r

′
j

)
= 2

(
(k − 1)r′1 −

∑k
j=2 r

′
j

)
. Also, we can

write Ui = 2
(
‖qi‖2

∑
p∈Ti

p−
∑
p∈Tj∧vivj∈E p

)
= 2

(
(k − 1)

∑
p∈Ti

p−
∑
p∈T2∪···∪Tk

p
)
.

We can augment G with information at the nodes just as in the general case, and use the
algorithm to compute the traversal. However, this would need time O(ndµdlogµ ke) = O(ndk)
since µ = (k − 1) and the height of the tree is 1. Instead, we use an auxiliary balanced
ternary rooted tree T for the algorithm. T contains k nodes, each associated to one of the
vectors q1, . . . , qk in an arbitrary fashion. We augment the tree with the same information
as in the general case, but with one difference: for each node vi, the values of Ri and Ui are
updated according to the adjacency in G and not using the edges of T . Then we can simply
use the algorithm for the general case to get a balanced partition. The modification does not
affect the complexity of the algorithm.

5 Conclusion and future work

We gave efficient algorithms for a no-dimensional version of Tverberg theorem and for a
colorful counterpart. To achieve this end, we presented a refinement of Sarkaria’s tensor
product construction by defining vectors using a graph. The choice of the graph was different
for the general- and the balanced-partition cases and also influenced the time complexity of
the algorithms. It would be a worthwhile exercise to look at more applications of this refined
tensor product method. Another option could be to look at non-geometric generalizations
based on similar ideas.

The radius bound that we obtain for the Tverberg partition is
√
k off the optimal bound

in [1]. This seems to be a limitation in handling Equation (4). It is not clear if this is an
artifact of using tensor product constructions. It would be interesting to explore if this factor
can be brought down without compromising on the algorithmic complexity. In the general
partition case, setting r1 = · · · = rk gives a bound that is

√
dlog ke worse than the balanced

case, so there is some scope for optimization. In the colorful case, the radius bound is again√
k off the optimal [1], but with a silver lining. The bound is proportional to maxiD(Pi) in

contrast to D(P1 ∪ · · · ∪ Pn) in [1], which is better when the colors are well-separated.
The algorithm for colorful Tverberg has a worse runtime than the regular case. The

challenge in improving the runtime lies a bit with selecting an optimal graph as well as
the nature of the problem itself. Each iteration in the algorithm looks at each of the
permutations π1, . . . , πk and computes the respective expectations. The two non-zero terms
in the expectation are both computed using the chosen permutation. The permutation that
minimizes the first term can be determined quickly if G is chosen as a path graph. This
worsens the radius bound by

√
k − 1. Further, computing the other (third) term of the

expectation still requires O(k) updates per permutation and therefore O(k2) updates per
iteration, thereby eliminating the utility of using an auxiliary tree to determine the best
permutation quickly. The optimal approach for this problem is unclear at the moment.
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