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Abstract
This paper considers a particular case of the Optimal Homologous Chain Problem (OHCP) for
integer modulo 2 coefficients, where optimality is meant as a minimal lexicographic order on chains
induced by a total order on simplices. The matrix reduction algorithm used for persistent homology
is used to derive polynomial algorithms solving this problem instance, whereas OHCP is NP-hard in
the general case. The complexity is further improved to a quasilinear algorithm by leveraging a dual
graph minimum cut formulation when the simplicial complex is a pseudomanifold. We then show
how this particular instance of the problem is relevant, by providing an application in the context of
point cloud triangulation.
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1 Introduction

1.1 Problem statement
The computation of minimal simplicial homology generators has been a wide subject of interest
for its numerous applications related to shape analysis, computer graphics or computer-aided
design. Coined in [22], we recall the Optimal Homologous Chain Problem (OHCP):

I Problem 1 (OHCP). Given a d-chain A in a simplicial complex K and a set of weights
given by a diagonal matrix W of appropriate dimension, find the L1-norm minimal chain
Γmin homologous to A:

Γmin = min
Γ,B
||W · Γ||1 such that Γ = A+ ∂d+1B and Γ ∈ Cd (K) , B ∈ Cd+1 (K)

It has been shown that OHCP is NP-hard in the general case when using coefficients in Z2
[15, 9]. However, we consider a specialization of this problem: the Lexicographic Optimal
Homologous Chain Problem (Lex-OHCP). Using coefficients in Z2, minimality is now meant
according to a lexicographic order on chains induced by a total order on simplices. Formulated
in the context of OHCP, this would require ordering the simplices using a total order and
taking a weight matrix W with generic term Wii = 2i, allowing the L1-norm minimization
to be equivalent to a minimization along the lexicographic order.

1.2 Contributions
After providing some required definitions and notations (Section 2), we show how an algorithm
based on the matrix reduction algorithm used for the computation of persistent homology [26]
allows to solve this particular instance of OHCP in O(n3) worst case complexity (Section 3).
Using a very similar process, we show that the problem of finding a minimal d-chain bounding
a given (d−1)-cycle admits a similar algorithm with the same algorithmic complexity (Section
4). Section 5 then considers Lex-OHCP in the case where the simplicial complex K is a
strongly connected (d+ 1)-pseudomanifold. By formulating it as a Lexicographic Minimum
Cut (LMC) dual problem, the algorithm can be improved to a quasilinear complexity: the
cost of sorting the dual edges and performing a O(Eα(E)) algorithm based on disjoint-sets,
where E is the number of dual edges and α is the inverse Ackermann function. Finally,
Section 6 legitimizes this restriction of OHCP by characterizing the quality of lexicographic
optimal homologous chains, namely in the context of point cloud triangulation. After defining
a total order closely related to the Delaunay triangulation, we provide details on an open
surface algorithm given a boundary as well as a watertight surface reconstruction algorithm
given an interior and exterior information.

1.3 Related work
Several authors have studied algorithm complexities for the computation of L1-norm optimal
cycles in homology classes [28, 13, 9, 10, 14, 38, 24, 15, 22, 23]. However, to the best
of our knowledge, considering lexicographic-minimal chains in their homology classes is a
new idea. When minimal cycles are of codimension 1 in a pseudo-manifold, the idea of
considering the minimal cut problem on the dual graph has been previously studied [36]. In
particular, Chambers et al. [9] have considered graph duality to derive complexity results for
the computation of optimal homologous cycles on 2-manifolds. Chen et al. [15] also use a
reduction to a minimum cut problem on a dual graph to compute minimal non-null homologous
cycles on d-complexes embedded in Rd. Their polynomial algorithm (Theorem 5.2.3 in [15]) for
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computing a homology class representative of minimal radius is reminiscent of our algorithm
for computing lexicographic minimal representatives (Algorithm 4). In a recent work [23],
Dey et al. consider the dual graph of pseudo-manifolds in order to obtain polynomial
time algorithms for computing minimal persistent cycles. Since they consider arbitrary
weights, they obtain the O(n2) complexity of best known minimum cut/maximum flow
algorithms [35]. The lexicographic order introduced in our work can be derived from the idea
of a variational formulation of the Delaunay triangulation, first introduced in [16] and further
studied in [1, 17]. Finally, many methods have been proposed to answer the problem of surface
reconstruction in specific acquisition contexts [31, 32, 34]: [33] classifies a large number of
these methods according to the assumptions and information used in addition to geometry.
In the family of purely geometric reconstruction based on a Delaunay triangulation, one early
contribution is the sculpting algorithm by Boissonnat [6]. The crust algorithm by Amenta
et al. [2, 3] and an algorithm based on natural neighbors [7] were the first algorithms to
guarantee a triangulation of the manifold under sampling conditions. However, these general
approaches usually have difficulties far from these sampling conditions, in applications where
point clouds are noisy or under-sampled. This difficulty can be circumvented by providing
additional information on the nature of the surface [21, 25, 8]. Our contribution lies in this
category of approaches. We provide some topological information of the surface: a boundary
for the open surface reconstruction and interior and exterior regions for the closed surface
reconstruction.

2 Definitions

2.1 Simplicial complexes

Consider an independent family A = (a0, . . . , ad) of points of RN . We call a d-simplex σ

spanned by A the set of all points: x =
∑d

i=0 tiai, where ∀i ∈ [0, d], ti ≥ 0 and
∑d

i=0 ti = 1.
Any simplex spanned by a subset of A is called a face of σ.

A simplicial complex K is a collection of simplices such that every face of a simplex of
K is in K and the intersection of two simplices of K is either empty either a common face.

2.2 Simplicial chains

Let K be a simplicial complex of dimension at least d. The notion of chains can be defined
with coefficients in any ring but we restrict here the definition to coefficients in the field
Z2 = Z/2Z. A d-chain A with coefficients in Z2 is a formal sum of d-simplices :

A =
∑

i

xiσi, with xi ∈ Z2 and σi ∈ K (1)

We denote Cd (K) the vector space over the field Z2 of d-chains in the complexK. Interpreting
the coefficient xi ∈ Z2 = {0, 1} in front of simplex σi as indicating the existence of σi in the
chain A, we can view the d-chain A as a set of simplices : for a d-simplex σ and a d-chain A,
we write that σ ∈ A if the coefficient for σ in A is 1. With this convention, the sum of two
chains corresponds to the symmetric difference on their sets. In what follows, a d-simplex σ
can also be interpreted as the d-chain containing only the d-simplex σ.

SoCG 2020
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2.3 Boundary operator

For a d-simplex σ = [a0, . . . , ad], the boundary operator is defined as the operator:

∂d : Cd (K)→ Cd−1 (K)

∂dσ =
def.

d∑
i=0

[a0, . . . , âi, . . . , ad]

where the symbol âi means the vertex ai is deleted from the array. The kernel of the
boundary operator Zd = Ker ∂d is called the group of d-cycles and the image of the operator
Bd = Im ∂p+1 is the group of d-boundaries. We say two d-chains A and A′ are homologous
if A−A′ = ∂d+1B, for some (d+ 1)-chain B.

2.4 Lexicographic order

We assume now a total order on the d-simplices of K, σ1 < · · · < σn, where n = dim Cd (K).
From this order, we define a lexicographic total order on d-chains.

I Definition 2 (Lexicographic total order). For C1, C2 ∈ Cd (K):

C1 vlex C2 ⇐⇒
def.


C1 + C2 = 0
or
σmax = max {σ ∈ C1 + C2} ∈ C2

This total order naturally extends to a strict total order @lex on Cd (K).

3 Lexicographic optimal homologous chain

3.1 Problem statement

In this section, we define the Lexicographic Optimal Homologous Chain Problem (Lex-OHCP),
a particular instance of OHCP (Problem 1):

I Problem 3 (Lex-OHCP). Given a simplicial complex K with a total order on the d-simplices
and a d-chain A ∈ Cd (K), find the unique chain Γmin defined by :

Γmin = min
vlex

{Γ ∈ Cd (K) | ∃B ∈ Cd+1 (K) ,Γ−A = ∂d+1B}

I Definition 4. A d-chain A ∈ Cd (K) is said reducible if there is a d-chain Γ ∈ Cd (K)
(called reduction) and a (d+ 1)-chain B ∈ Cd+1 (K) such that:

Γ @lex A and Γ−A = ∂d+1B

If this property cannot be verified, the d-chain A is said irreducible. If A is reducible, we
call total reduction of A the unique irreducible reduction of A. If A is irreducible, A is
said to be its own total reduction.

Problem 3 can be reformulated as finding the total reduction of A.
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3.2 Boundary matrix reduction
With m = dim Cd (K) and n = dim Cd+1 (K), we now consider the m-by-n boundary matrix
∂d+1 with entries in Z2. We enforce that rows of the matrix are ordered according to a given
strict total order on d-simplices σ1 < · · · < σm, where the d-simplex σi is the basis element
corresponding to the ith row of the boundary matrix. The order of columns, corresponding
to an order on (d+ 1)-simplices, is not relevant for this section and can be chosen arbitrarily.

For a matrix R, the index of the lowest (i.e. closest to the bottom) non-zero coefficient of
a non-zero column Rj is denoted by low(j), or sometimes low(Rj) when we want to explicit
the considered matrix.

Algorithm 1 is a slightly modified version of the boundary reduction algorithm presented
in [26]. Indeed, for our purpose, we do not need the boundary matrix storing all the simplices
of all dimensions and apply the algorithm to the sub-matrix ∂d+1 : Cd+1 (K) → Cd (K).
One checks easily that Algorithm 1 has O(mn2) time complexity.

Algorithm 1 Reduction algorithm for the ∂d+1 matrix.

R = ∂d+1
for j ← 1 to n do

while Rj 6= 0 and ∃j0 < j with low(j0) = low(j) do
Rj ← Rj +Rj0

end
end

We now introduce a few lemmas useful for solving Problem 3. We allow ourselves to
consider each column Rj of the matrix R, formally an element of Zm

2 , as the corresponding
d-chain in the basis (σ1, . . . , σm).

I Lemma 5. A d-chain A is reducible if and only if at least one of its d-simplices is reducible.

Proof. If there is a reducible d-simplex σ ∈ A, A is reducible by the d-chain A′ = A− σ +
Red(σ), where Red(σ) is a reduction for σ.
We suppose A to be reducible. Let Γ @lex A be a reduction for A and B the (d+ 1)-chain
such that Γ−A = ∂B. We denote σmax = max {σ ∈ A− Γ}. Note that σmax is homologous
to Γ − A + σmax. The chain Γ − A + σmax only contains simplices smaller than σmax, by
definition of the lexicographic order (Definition 2). We have thus shown that if A is reducible,
it contains at least one simplex that is reducible. J

I Lemma 6. After matrix reduction (Algorithm 1), a non-zero column Rj 6= 0 can be
described as

Rj = σlow(j) + Γ, where Γ is a reduction for σlow(j).

Proof. As all matrix operations performed on R by the reduction algorithm are linear, each
non-zero column Rj of R is in the image of ∂d+1. Therefore, there exist a (d+ 1)-chain B
such that Rj = σlow(j) + Γ = ∂d+1B, which, is equivalent in Z2 to Γ− σlow(j) = ∂d+1B. By
definition of the low of a column, we also have immediately: Γ @lex σlow(j). For each non-zero
column, the largest simplex is therefore reducible by the other d-simplices of the column. J

I Lemma 7. After matrix reduction (Algorithm 1), there is a one-to-one correspondence
between the reducible d-simplices and non-zero columns of R:

σi ∈ Cd (K) is reducible ⇐⇒ ∃j ∈ [1, n], Rj 6= 0 and low(j) = i

SoCG 2020
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Proof. Lemma 6 shows immediately that the simplex corresponding to the lowest index of a
non-zero column is reducible. Suppose now that a d-simplex σ̃ is reducible and let Γ̃ be a
reduction of it: σ̃ + Γ̃ = ∂d+1B and Γ̃ @lex σ̃. Algorithm 1 realizes the matrix factorization
R = ∂d+1 · V , where matrix V is invertible [26]. It follows that ImR = Im ∂d+1. Therefore,
non-zero columns of R span Im ∂d+1 and since σ̃ + Γ̃ = ∂d+1B ∈ Im ∂d+1, there is a family
(Rj)j∈J = (σlow(j),Γj)j∈J of columns of R such that :

σ̃ + Γ̃ =
∑
j∈J

σlow(j) + Γj

Every σlow(j) represents the largest simplex of a column, and Γj a reduction chain for σlow(j).
As observed in section VII.1 of [26], one can check that the low indexes in R are unique after
the reduction algorithm. Therefore, there is a jmax ∈ J such that for all j in J \ {jmax},
low(j) < low(jmax), which implies:

σjmax = max{σ ∈
∑
j∈J

σlow(j) + Γj} = max
{
σ ∈ σ̃ + Γ̃

}
= σ̃

We have shown that for the reducible simplex σ̃, there is a non-zero column Rjmax with
σ̃ = σlow(jmax) as its largest simplex. J

3.3 Total reduction algorithm
Combining the three previous lemmas give the intuition on how to construct the total
reduction solving Problem 3: Lemma 5 allows to consider each simplex individually, Lemma
7 characterizes the reducible nature of a simplex using the reduced boundary matrix and
Lemma 6 describes a column of the reduction boundary matrix as a simplex and its reduction.
We now present Algorithm 2, referred to as the total reduction algorithm. For a d-chain
Γ, Γ[i] ∈ Z2 denotes the coefficient of the ith simplex in the chain Γ.

Algorithm 2 Total reduction algorithm.

Inputs :A d-chain Γ, the reduced boundary matrix R
for i← m to 1 do

if Γ[i] 6= 0 and ∃j ∈ [1, n] with low(j) = i in R then
Γ← Γ +Rj

end
end

I Proposition 8. Algorithm 2 finds the total reduction of a given d-chain in O(m2) time
complexity.

Proof. In Algorithm 2, let Γi−1 be the value of the variable Γ after iteration i. Since
the iteration counter i decreases from m to 1, the input and output of the algorithm are
respectively Γm and Γ0. At each iteration, Γi−1 are either equal to Γi or Γi + Rj . Since
Rj ∈ Im ∂d+1, Γi−1 is in both cases homologous to Γi. Therefore, Γ0 is homologous to Γm.
We are left to show that Γ0 is irreducible. From Lemma 5, it is enough to check that it does
not contain any reducible simplex.
Let σi be a reducible simplex and let us show that σi /∈ Γ0. Two possibilities may occur:
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if σi ∈ Γi, then Γi−1 = Γi + Rj . Since low(j) = i, we have σi ∈ Rj and therefore
σi /∈ Γi−1.
if σi /∈ Γi, then Γi−1 = Γi and again σi /∈ Γi−1.

Furthermore, from iterations i− 1 to 1, the added columns Rj contain only simplices smaller
than σi and therefore σi /∈ Γi−1 ⇒ σi /∈ Γ0.

Observe that using an auxiliary array allows to compute the correspondence low(j)→ i

in time O(1). The column addition nested inside the loop lead to a O(m2) time complexity
for Algorithm 2. J

It follows that Problem 3 can be solved in O(mn2) time complexity, by applying successively
Algorithms 1 and 2, or in O(N3) complexity if N is the size of the simplicial complex.

4 Lexicographic-minimal chain under imposed boundary

4.1 Problem statement
This section will study a variant of Lex-OHCP (Problem 9) in order to solve the subsequent
problem of finding a minimal d-chain bounding a given (d− 1)-cycle (Problem 10).

I Problem 9. Given a simplicial complex K with a total order on the d-simplices and a
d-chain Γ0 ∈ Cd (K), find :

Γmin = min
vlex

{Γ ∈ Cd (K) | ∂dΓ = ∂dΓ0}

I Problem 10. Given a simplicial complex K with a total order on the d-simplices and a
(d− 1)-cycle A, check if A is a boundary:

BA =
def.
{Γ ∈ Cd (K) | ∂dΓ = A} 6= ∅

If it is the case, find the minimal d-chain Γ bounded by A:

Γmin = min
vlex

BA

In Problem 10, finding a representative Γ0 in the set BA 6= ∅ such that ∂dΓ0 = A is
sufficient: we are then taken back to Problem 9 to find the minimal d-chain Γmin such that
∂dΓmin = ∂dΓ0 = A.

4.2 Boundary reduction transformation matrix
As in Section 3, we will derive an algorithmic solution to Problem 9 from the result of
the boundary matrix reduction algorithm. Note that, unlike Section 3 that used the ∂d+1
boundary operator, we are now considering ∂d, meaning the given total order on d-simplices
applies to the greater dimension of the matrix. An arbitrary order can be taken for the
(d− 1)-simplices to build the matrix ∂d. Indeed, if we see the performed reduction in matrix
notation as R = ∂d · V , the minimization steps in this section will be performed on the
transformation matrix V , whose rows do follow the given simplicial ordering. The number of
zero columns of R is the dimension of Zd = Ker ∂d [26]. Let’s denote it by nKer = dim(Zd).
By selecting all columns in V corresponding to zero columns in R, we obtain the matrix
V Ker, whose columns V Ker

1 , . . . , V Ker
nKer form a basis of Zd. We first show a useful property

on the matrix V Ker. Note that the low index for any column in V Ker is well defined, as V
is invertible.

SoCG 2020
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I Lemma 11. Indexes
{

low(V Ker
i )

}
i∈[1,nKer] are unique. If A ∈ Ker ∂d \ {0}, there exists a

unique column V Ker
max of V Ker with low(V Ker

max) = low(A).

Proof. Before the boundary matrix reduction algorithm, the initial matrix V is the identity:
the low indexes are therefore unique. During iterations of the algorithm, the matrix V is
right-multiplied by an column-adding elementary matrix Lj0,j , adding column j0 to j with
j0 < j.

Lj0,j =

j



1
1 1 j0

. . .
1

. . .
1

Therefore, the indexes {low(Vi), Vi ∈ V } stay on the diagonal during the reduction algorithm
and are therefore unique. The restriction of V to V Ker does not change this property.

If A ∈ Ker ∂d \ {0}, A can be written as a non-zero linear combination A =
∑

i∈I V
Ker

i of
columns of V Ker. By unicity of the lows of V Ker, the largest low of the combination - i.e.
maxi∈I{low(V Ker

i )} is in A and has to be the low of A. J

4.3 Total reduction with imposed boundary
We apply a similar total reduction algorithm as previously introduced in Section 3 but using
the matrix V Ker. In the following algorithm, m = dim Cd (K).

Algorithm 3 Total reduction variant.

Inputs :A d-chain Γ and V Ker

for i← m to 1 do
if Γ[i] 6= 0 and ∃j ∈ [1, nKer] with low(j) = i in V Ker then

Γ← Γ + V Ker
j

end
end

I Proposition 12. Algorithm 3 computes the solution for Problem 9 in O(m2) time com-
plexity.

The proof is very similar to the one of Proposition 8 and available in [19].

4.4 Finding a representative of BA

As previously mentioned, solving Problem 10 requires deciding if the set BA is empty
and in case it is not empty, finding an element of the set BA. Algorithm 3 can then
be used to minimize this element under imposed boundary. In the following algorithm,
m = dim Cd−1 (K) and n = dim Cd (K).
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Algorithm 4 Finding a representative.

Inputs :A (d− 1)-chain A, a boundary matrix R reduced by V
Γ0 ← ∅
A0 ← A

for i← m to 1 do
if A0[i] 6= 0 then

if ∃j ∈ [1, n] with low(j) = i in R then
A0 ← A0 +Rj

Γ0 ← Γ0 + Vj

else
The set BA is empty.

end
end

end

I Proposition 13. Algorithm 4 decides if the set BA is non-empty, and in that case, finds a
representative Γ0 such that ∂Γ0 = A in O(m2) time complexity.

Proof. We start by two trivial observations from the definition of a reduction. First, A is a
boundary if and only if its total reduction is the null chain. Second, if a non-null chain is a
boundary, then its greatest simplex is reducible.

If, at iteration i, A0[i] 6= 0, then σi is the greatest simplex in A0. In the case R has no
column Rj such that low(j) = i, σi is not reducible by Lemma 7 and therefore A0 is not a
boundary. Since A and A0 differ by a boundary (added columns of R), A is not a boundary
either. This means the set BA is empty.
The main difference with the previous chain reduction is we keep track of the column
operations in Γ0. If the total reduction of A is null, we have found a linear combination
(Rj)j∈J such that A =

∑
j∈J Rj . We have also computed Γ0 as the sum of the corresponding

columns in V : Γ0 =
∑

j∈J Vj . As R = ∂d · V , we can now verify:

∂dΓ0 = ∂d

∑
j∈J

Vj

 =
∑
j∈J

Rj = A J

5 Efficient algorithm for codimension 1 (dual graph)

In this section we focus on Problem 17, a specialization of Problem 3, namely when K is a
subcomplex of a (d+ 1)-pseudomanifold.

5.1 Problem statement
Recall that a d-dimensional simplicial complex is said pure if it is of dimension d and any
simplex has at least one coface of dimension d.

I Definition 14. A d-pseudomanifold is a pure d-dimensional simplicial complex for
which each (d− 1)-face has exactly two d-dimensional cofaces.

I Definition 15. The dual graph of a d-pseudomanifoldM is the graph whose vertices are
in one-to-one correspondence with the d-simplices ofM and whose edges are in one-to-one
correspondence with (d− 1)-simplices ofM : an edge e connects two vertices v1 and v2 of the
graph if and only if e corresponds to the (d− 1)-face with cofaces corresponding to v1 and v2.

SoCG 2020
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I Definition 16. A strongly connected d-pseudomanifold is a d-pseudomanifold whose
dual graph is connected.

Given a strongly connected (d+ 1)-pseudomanifoldM and τ1 6= τ2 two (d+ 1)-simplices of
M, we consider a special case of Problem 3 where K =M\ {τ1, τ2} and A = ∂τ1:

I Problem 17. Given a strongly connected (d+ 1)-pseudomanifoldM with a total order on
the d-simplices and two distinct (d+ 1)-simplices (τ1, τ2) ofM, find:

Γmin = min
vlex

{Γ ∈ Cd (M) | ∃B ∈ Cd+1 (M\ {τ1, τ2}) ,Γ− ∂τ1 = ∂B}

I Definition 18. Seeing a graph G as a 1-dimensional simplicial complex, we define the
coboundary operator ∂0 : C0 (G)→ C1 (G) as the linear operator defined by the transpose
of the matrix of the boundary operator ∂1 : C1 (G) → C0 (G) in the canonical basis of
simplices.1

For a given graph G = (V, E), V and E respectively denote its vertex and edge sets. For a
d-chain α ∈ Cd (M) and a (d + 1)-chain β ∈ Cd+1 (M), α̃ and β̃ denote their respective
dual 1-chain and dual 0-chain in the dual graph G(M) ofM. We easily see that:

I Remark 19. For a set of vertices V0 ⊂ V, ∂0V0 is exactly the set of edges in G = (V, E)
that connect vertices in V0 with vertices in V \ V0.

I Remark 20. LetM be a (d+ 1)-pseudomanifold. If α ∈ Cd (M) and β ∈ Cd+1 (M), then
α̃ = ∂0β̃ ⇐⇒ α = ∂d+1β.

5.2 Codimension 1 and Lexicographic Min Cut (LMC)
The order on d-simplices of a (d+ 1)-pseudomanifoldM naturally defines a corresponding
order on the edges of the dual graph: τ1 < τ2 ⇐⇒ τ̃1 < τ̃2. This order extends similarly to
a lexicographic order vlex on sets of edges (or, equivalently, 1-chains) in the graph.

In what follows, we say a set of edges Γ̃ disconnects τ̃1 and τ̃2 in the graph (V, E) if τ̃1
and τ̃2 are not in the same connected component of the graph (V, E \ Γ̃).

Given a graph with weighted edges and two vertices, the min-cut/max-flow problem
[27, 35] consists in finding the minimum cut (i.e. set of edges) disconnecting the two vertices,
where minimum is meant as minimal sum of weights of cut edges. We consider a similar
problem where the minimum is meant in term of a lexicographic order: the Lexicographic
Min Cut (LMC).

I Problem 21 (LMC). Given a connected graph G = (V, E) with a total order on E and
two vertices τ̃1, τ̃2 ∈ V, find the set Γ̃LMC ⊂ E minimal for the lexicographic order vlex, that
disconnects τ̃1 and τ̃2 in G.

I Proposition 22. Γmin is solution of Problem 17 if and if only its dual 1-chain Γ̃min is
solution of Problem 21 on the dual graph G(M) ofM where τ̃1 and τ̃2 are respective dual
vertices of τ1 and τ2.

1 In order to avoid to introduce non essential formal definitions, the coboundary operator is defined over
chains since, for finite simplicial complexes, the canonical inner product defines a natural bijection
between chains and cochains.
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Proof. Problem 17 can be equivalently formulated as:

Γmin = min
vlex

{∂d+1(τ1 +B) | B ∈ Cd+1 (M\ {τ1, τ2})} (2)

Using Observation 20, we see that Γmin is the minimum in Equation (2) if and only if its
dual 1-chain Γ̃min satisfies:

Γ̃min = min
vlex

{
∂0(τ̃1 + B̃) | B̃ ⊂ V \ {τ̃1, τ̃2}

}
(3)

Denoting Γ̃LMC the minimum of Problem 21, we need to show that Γ̃LMC = Γ̃min.
As Γ̃LMC disconnects τ̃1 and τ̃2 in G = (V, E), τ̃2 is not in the connected component of τ̃1
in (V, E \ Γ̃LMC). We define B̃ as the connected component of τ̃1 in (V, E \ Γ̃LMC) minus
τ̃1. We have that B̃ ⊂ V \ {τ̃1, τ̃2}. Consider an edge e ∈ ∂0(τ̃1 + B̃). From Observation 19,
e connects a vertex va ∈ {τ̃1} ∪ B̃ with a vertex vb /∈ {τ̃1} ∪ B̃. From the definition of B̃,
Γ̃LMC disconnects va and vb in G, which in turn implies e ∈ Γ̃LMC. We have therefore shown
that ∂0(τ̃1 + B̃) ⊂ Γ̃LMC. Using Equation (3), we get:

Γ̃min vlex ∂
0(τ̃1 + B̃) vlex Γ̃LMC (4)

Now we claim that if there is a C̃ ⊂ V \ {τ̃1, τ̃2} with Γ̃ = ∂0(τ̃1 + C̃), then Γ̃ disconnects τ̃1
and τ̃2 in (V, E). Consider a path in G from τ̃1 to τ̃2. Let va be the last vertex of the path
that belongs to {τ̃1} ∪ C̃ and vb the next vertex on the path (which exists since τ̃2 is not in
{τ̃1}∪ C̃). From Observation 19, we see that the edge (va, vb) must belong to Γ̃ = ∂0(τ̃1 + C̃).
We have shown that any path in G connecting τ̃1 and τ̃2 has to contain an edge in Γ̃ and the
claim is proved.
In particular, the minimum Γ̃min disconnects τ̃1 and τ̃2 in (V, E). As Γ̃LMC denotes the
minimum of Problem 21, Γ̃LMC vlex Γ̃min which, together with Equation (4), gives us
Γ̃LMC = Γ̃min. We have therefore shown the minimum defined by Equation (3) coincides
with the minimum defined in Problem 21. J

5.3 Algorithm for Lexicographic Min Cut
In light of the new problem equivalency, we will study an algorithm solving Problem 21. As
we will only consider the dual graph for this section, we leave behind the dual chain notation:
vertices τ̃1 and τ̃2 are replaced by α1 and α2, and the solution to the problem is simply noted
ΓLMC. The following lemma exposes a constructive property of the solution on subgraphs.

I Lemma 23. Consider ΓLMC solution of Problem 21 for the graph G = (V, E) and α1, α2 ∈ V.
Let e0 be an edge in V × V such that e0 < min{e ∈ E}. Then:
(a) The solution for (V, E ∪ {e0}) is either ΓLMC or ΓLMC ∪ {e0}.
(b) ΓLMC ∪ {e0} is solution for (V, E ∪ {e0}) if and only if α1 and α2 are connected in

(V, E ∪ {e0} \ ΓLMC).

Proof. Let’s call Γ′LMC the solution for (V, E ∪ {e0}). Since Γ′LMC ∩ E disconnects α1 and α2
in (V, E), one has ΓLMC vlex Γ′LMC. Since ΓLMC∪{e0} disconnects α1 and α2 in (V, E ∪{e0}),
we also have Γ′LMC vlex ΓLMC ∪ {e0}. Therefore, ΓLMC vlex Γ′LMC vlex ΓLMC ∪ {e0}.

As e0 < min{e ∈ E}, there is no set in E ∪ {e0} strictly between ΓLMC and ΓLMC ∪ {e0}
for the lexicographic order. It follows that Γ′LMC is either equal to ΓLMC or ΓLMC ∪ {e0}.
The choice for Γ′LMC is therefore ruled by the property that it should disconnect α1 and α2:
if α1 and α2 are connected in (V, E ∪ {e0} \ ΓLMC), ΓLMC does not disconnect α1 and α2 in
(V, E ∪ {e0}) and ΓLMC ∪ {e0} has to be the solution for (V, E ∪ {e0}). On the other hand,
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if α1 and α2 are not connected in (V, E ∪ {e0} \ ΓLMC), then both ΓLMC and ΓLMC ∪ {e0}
disconnect α1 and α2 in (V, E ∪ {e0}), but as ΓLMC @lex ΓLMC ∪ {e0}, ΓLMC ∪ {e0} is not
the solution for (V, E ∪ {e0}). J

Building an algorithm from Lemma 23 suggests a data structure able to check if vertices
α1 and α2 are connected in the graph: the disjoint-set data structure, introduced for finding
connected components [29], does exactly that. In this structure, each set of elements has a
different root value, called representative. Calling the operation MakeSet on an element
creates a new set containing this element. The FindSet operation, given an element of a
set, returns the representative of the set. For all elements of the same set, FindSet will of
course return the same representative. Finally, the structure allows merging two sets, by
using the UnionSet operation. After this operation, elements of both sets will have the
same representative.

We now describe Algorithm 5. The algorithm expects a set of edges sorted in decreasing
order according to the lexicographic order.

Algorithm 5 Lexicographic Min Cut.

Inputs :G = (V, E) and α1, α2 ∈ V, with E = {ei, i = 1, . . . , n} in decreasing order
Output : ΓLMC
ΓLMC ← ∅
for v ∈ V do

MakeSet(v)
end
for e ∈ E in decreasing order do

e = (v1, v2) ∈ V × V
r1 ← FindSet(v1), r2 ← FindSet(v2)
c1 ← FindSet(α1), c2 ← FindSet(α2)
if {r1, r2} = {c1, c2} then

ΓLMC ← ΓLMC ∪ e
else

UnionSet(r1, r2)
end

end

I Proposition 24. Algorithm 5 computes the solution of Problem 21 for a given graph (V, E)
and two vertices α1, α2 ∈ V. Assuming the input set of edges E are sorted, the algorithm
has O(nα(n)) time complexity, where n is the cardinal of E and α the inverse Ackermann
function.

Proof. We denote by ei the ith edge along the decreasing order and Γi
LMC the value of the

variable ΓLMC of the algorithm after iteration i. The algorithm works by incrementally
adding edges in decreasing order and tracking the growing connected components of the set
associated with α1 and α2 in (V, {e ∈ E , e ≥ ei} \ Γi

LMC), for i = 1, . . . , n.
At the beginning, no edges are inserted, and Γ0

LMC = ∅ is indeed solution for (V,∅). With
Lemma 23, we are guaranteed at each iteration i to find the solution for (V, {e ∈ E , e ≥ ei}) by
only adding to Γi−1

LMC the current edge ei if α1 and α2 are connected in {e ∈ E , e ≥ ei}\Γi−1
LMC,

which is done in the if-statement. If the edge is not added, we update the connectivity of the
graph (V, {e ∈ E , e ≥ ei} \ Γi

LMC) by merging the two sets represented by r1 and r2. After
each iteration, Γi

LMC is solution for (V, {e ∈ E , e ≥ ei}) and when all edges are processed,
Γn

LMC is solution for (V, E).
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The complexity of the MakeSet, FindSet and UnionSet operations have been shown
to be respectively O(1), O(α(v)) and O(α(v)), where α(v) is the inverse Ackermann function
on the cardinal of the vertex set [37]. Assuming sorted edges as input of the algorithm –
which is performed in O(n ln(n)), the algorithm runs in O(nα(n)) time complexity. J

The similarity of Algorithm 5 with Kruskal’s algorithm for minimum spanning-tree
suggests an even better theoretical time complexity, by using Chazelle’s algorithm [12] for
minimum spanning-tree, running in O(nα(n)) complexity without requiring sorted edges.

6 Application to point cloud triangulation

In all that precedes, the order on simplices was not specified and one can wonder if choosing
such an ordering makes the specialization of OHCP too restrictive for it to be useful. In
this section, we give a concrete example where this restriction makes sense and provides a
simple and elegant application to the problem of point cloud triangulation. Whereas all that
preceded dealt with an abstract simplicial complex, we now consider a bijection between
vertices and a set of points in Euclidean space, allowing to compute geometric quantities on
simplices.

6.1 Simplicial ordering
Recent works have studied a characterization of the 2D Delaunay triangulation as a lexico-
graphic minimum over 2-chains. Denote by RB(σ) the radius of the smallest enclosing ball
and RC(σ) the radius of the circumcircle of a 2-simplex σ. Based on [20, 18], we define the
total order on 2-simplices:

σ1 ≤ σ2 ⇐⇒


RB(σ1) < RB(σ2)
or
RB(σ1) = RB(σ2) and RC(σ1) ≥ RC(σ2)

(5)

Under generic condition on the position of points, we can show this order is total. In what
follows, the lexicographic order vlex is induced by this order on simplices. The following
proposition from [20] shows a strong link between the simplex ordering and the 2D Delaunay
triangulation.

I Proposition 25 (Proposition 7.9 in [20]). Let P = {P1, . . . , PN} ⊂ R2 with N ≥ 3 be
in general position and let KP be any 2-dimensional complex containing the Delaunay
triangulation of P. Denote by βP ∈ C1(KP) the 1-chain made of edges belonging to the
boundary of convex hull CH(P). If Γmin = minvlex

{Γ ∈ C2 (KP) , ∂Γ = βP}, the simplicial
complex |Γmin| support of Γmin is the Delaunay triangulation of P.

As the 2D Delaunay triangulation has some well-known optimality properties, such as
maximizing the minimal angle, we can hope that using the same order to minimize 2-chains
in dimension 3 will keep some of those properties. In fact, it has been shown that for a
Čech or Vietoris-Rips complex, under strict conditions linking the point set sampling, the
parameter of the complex and the reach of the underlying manifold of Euclidean space,
the minimal lexicographic chain using the described simplex order is a triangulation of the
sampled manifold [18]. Experimental results (Figure 2) show that this property remains true
relatively far from these theoretical conditions.
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Figure 2 Watertight reconstructions under different perturbations. Under small perturbations
(first two images from the left), the reconstruction is a triangulation of the sampled manifold. A few
non-manifold configurations appear however under larger perturbations (Rightmost image).

6.2 Open surface triangulation

Given a point cloud sampling an open surface and a 1-cycle sampling the boundary of the
surface, we generate a Čech complex of the point cloud using the Phat library [5]. The
parameter of the complex should be sufficient to capture the homotopy type of the surface to
reconstruct and should contain the provided cycle. After constructing the 2-boundary matrix,
we apply the boundary reduction algorithm, slightly modified to store the transformation
matrix V (Section 4.2). We then apply Algorithm 4 to find out if a 2-chain bounded by the
cycle exists in the current Čech complex. In this case, we get a chain bounded by the provided
cycle and apply Algorithm 3 to minimize the chain under imposed boundary. Otherwise, we
might have to increase the Čech parameter to capture the homotopy type of the surface to
reconstruct [11, 4]. Figure 1 shows results of this method.

6.3 Closed surface triangulation

Using Algorithm 5 requires a strongly connected 3-pseudomanifold: we therefore use a 3D
Delaunay triangulation, for its efficiency and non-parametric nature, using the CGAL library
[30], and complete it into a topological 3-sphere by connecting, for any triangle on the convex
hull of the Delaunay triangulation, its dual edge to an “infinite” dual vertex.

Experimentally, sorting triangles does not require exact predicates: the RB and RC
quantities can simply be calculated in fixed precision. The quasilinear complexity of Algorithm
5 makes it competitive in large point cloud applications. Outliers are naturally ignored and,
being parameter free, the algorithm adapts to non uniform point densities, as seen in the
closeup of Figure 3.

The choice of α1 and α2 defines the location of the closed separating surface and are
chosen interactively. Although we could devise an algorithm where these inputs are not
required – the algorithm would simply merge regions until only two connected components
remain – this would only work for uniform and non-noisy point clouds but not make for a
robust algorithm. On the contrary, adding multiple interior and exterior regions can guide
the algorithm by providing better topological constraints, as depicted in Figure 4. Algorithm
5 requires to be slightly modified to take as input multiple α1, α2: after creating all sets with
MakeSet, we need to combine all α1 sets together, and all α2 sets together. The algorithm
remains unchanged for the rest.
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Figure 3 Closed surface triangulation of 440K points in 7.33 seconds. Beside the point cloud,
the only user input is one inner tetrahedron. The closeup shows that small features are correctly
recovered.

IN

OUT

IN

OUT

OUT

Figure 4 Providing additional topological information can improve the result of the reconstruction.
Here, the lexicographic order on 1-chains is induced by edge length comparison.
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