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—— Abstract

Independent set is a fundamental problem in combinatorial optimization. While in general graphs

the problem is essentially inapproximable, for many important graph classes there are approximation
algorithms known in the offline setting. These graph classes include interval graphs and geometric
intersection graphs, where vertices correspond to intervals/geometric objects and an edge indicates
that the two corresponding objects intersect.

We present dynamic approximation algorithms for independent set of intervals, hypercubes and
hyperrectangles in d dimensions. They work in the fully dynamic model where each update inserts
or deletes a geometric object. All our algorithms are deterministic and have worst-case update times
that are polylogarithmic for constant d and € > 0, assuming that the coordinates of all input objects
are in [0, N]¢ and each of their edges has length at least 1. We obtain the following results:

For weighted intervals, we maintain a (1 + £)-approximate solution.

For d-dimensional hypercubes we maintain a (1 + 5)2d—approximate solution in the unweighted

case and a O(Qd)-approximate solution in the weighted case. Also, we show that for maintaining

an unweighted (1 + ¢)-approximate solution one needs polynomial update time for d > 2 if the

ETH holds.

For weighted d-dimensional hyperrectangles we present a dynamic algorithm with approximation

ratio (1 4+ ¢)log? ' N.
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Dynamic Independent Set of Intervals, Hypercubes and Hyperrectangles

1 Introduction

A fundamental problem in combinatorial optimization is the independent set (IS) problem.
Given an undirected graph G = (V, E) with n vertices and m edges, the goal is to select a set
of nodes V’ C V of maximum cardinality such that no two vertices u,v € V' are connected
by an edge in E. In general graphs, IS cannot be approximated within a factor of n'=¢ for
any € > 0, unless P = NP [31]. However, there are many approximation algorithms known
for special cases of IS where much better approximation ratios are possible or the problem
is even polynomial-time solvable. These cases include interval graphs and, more generally,
geometric intersection graphs.

In interval graphs each vertex corresponds to an interval on the real line and there is an
edge between two vertices if their corresponding intervals intersect. Thus, an IS corresponds
to a set of non-intersecting intervals on the real line; the optimal solution can be computed in
time O(n+m) [20] when the input is presented as an interval graph and in time O(nlogn) [26,
Chapter 6.1] when the intervals themselves form the input (but not their corresponding
graph). Both algorithms work even in the weighted case where each interval has a weight
and the objective is to maximize the total weight of the selected intervals.

When generalizing this problem to higher dimensions, the input consists of axis-parallel
d-dimensional hypercubes or hyperrectangles and the goal is to find a set of non-intersecting
hypercubes or hyperrectangles of maximum cardinality or weight. This is equivalent to
solving IS in the geometric intersection graph of these objects which has one (weighted) vertex
for each input object and two vertices are adjacent if their corresponding objects intersect.
This problem is NP-hard already for unweighted unit squares [19], but if all input objects
are weighted hypercubes then it admits a PTAS for any constant dimension d [10, 18]. For
hyperrectangles there is a O((log n)?~2loglog n)-approximation algorithm in the unweighted
case [9] and a O((logn)?~!/loglogn)-approximation algorithm in the weighted case [12, 9].
IS of (hyper-)cubes and (hyper-)rectangles has many applications, e.g., in map labelling [2, 29],
chip manufacturing [24], or data mining [25]. Therefore, approximation algorithms for these
problems have been extensively studied, e.g., [12, 9, 2, 1, 11, 14].

All previously mentioned algorithms work in the static offline setting. However, it is a
natural question to study IS in the dynamic setting, i.e., where (hyper-)rectangles appear or
disappear, and one seeks to maintain a good IS while spending only little time after each
change of the graph. The algorithms above are not suitable for this purpose since they
©(1/¢) many sub-solutions might change after
an update or they solve linear programs for the entire input. For general graphs, there are
several results for maintaining a mazimal IS dynamically [4, 5, 22, 15, 28, 13, 7], i.e., a set
V' CV such that V' U{v} is not an IS for any v € V' \ V'. However, these algorithms do not
imply good approximation ratios for the geometric setting we study: Already in unweighted
interval graphs, a maximal IS can be by a factor Q(n) smaller than the maximum IS. For

are based on dynamic programs in which n

dynamic IS of intervals, Gavruskin et al. [21] showed how to maintain an exact maximum IS
with polylogarithmic update time in the special case when no interval is fully contained in
any another interval.

Our contributions. In this paper, we present dynamic algorithms that maintain an approx-
imate IS in the geometric intersection graph for three different types of geometric objects:
intervals, hypercubes and hyperrectangles. We assume throughout the paper that the given
objects are axis-parallel and contained in the space [0, N]%, that we are given the value N in
advance, and that each edge of an input object has length at least 1 and at most N. We
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Table 1 Summary of our dynamic approximation algorithms and lower bounds. All algorithms
are deterministic and work in the fully dynamic setting where in each update one interval/hypercube
is inserted or deleted. We assume that all input objects are contained in [0, N]¢ and have weights in
[1, W]; we do not assume that the input objects have integer-coordinates. Here, we write O.(1) and
O4,-(1) to hide terms which only depend on d and e.

Approximation Worst-case update time
ratio
Unweighted intervals 1+e¢ O:(1)log® nlog®> N
1 Q(log N/loglog N)
Weighted intervals 1+ 0O:(1)log® nlog® Nlog W
Unweighted d-dimensional hypercubes (1+4¢)2¢ Oa,c(1) log?* ! nlog?*™* N
l+e n (/9%
Weighted d-dimensional hypercubes (44¢)2¢ Oa.-(1)10g?? ! nlog??*! Nlog W
Weighted d-dimensional hyperrectangles | (1 + ¢)log?™* N Oua.(1)log? nlog® N log W

study the fully dynamic setting where in each update an input object is inserted or deleted.
Note that this corresponds to inserting and deleting vertices of the corresponding intersection
graph. In particular, when a vertex is inserted/deleted then potentially Q(n) edges might be
inserted/deleted, i.e., there might be more edge changes per operation than in the standard
dynamic graph model in which each update can only insert or delete a single edge.

(1) For independent set in weighted interval graphs we present a dynamic (1 + ¢)-approxi-
mation algorithm. For weighted d-dimensional hypercubes our dynamic algorithm
maintains a (4 + ¢)2%approximate solution; in the case of unweighted d-dimensional
hypercubes we obtain an approximation ratio of (14¢)2¢%. Thus, for constant d we achieve
a constant approximation ratio. Furthermore, for weighted d-dimensional hyperrectangles
we obtain a dynamic algorithm with approximation ratio of (1 + ¢) logd~ ! N.

Our algorithms are deterministic with worst-case update times that are polylogarithmic
in n, N, and W, where W is the maximum weight of any interval or hypercube, for
constant d and e; we also show how to obtain faster update times using randomized
algorithms that compute good solutions with high probability. In each studied setting
our algorithms can return the computed IS I in time Og.(|I| - poly(logn,log N)), where
1] denotes the cardinality of I and the Og(-) notation hides factors which only depend
on d and . Up to a (1 + €)-factor our approzimation ratios match those of the best
known near-linear time offline approxzimation algorithms for the respective cases (with
ratios of 2¢ and O(2%) via greedy algorithms for unweighted and weighted hypercubes
and log?~! N for hyperrectangles [2]). See Table 1 for a summary of our algorithms.

(2) Apart from the comparison with the static algorithm we show two lower bounds: We
prove that one cannot maintain a (1 + ¢)-approximate IS of unweighted hypercubes in
d > 2 dimensions with update time nO(/9)' ") for any 0 > 0 (so even with polynomial
instead of polylogarithmic update time), unless the Exponential Time Hypothesis fails.
Also, we show that maintaining a maximum weight IS in an interval graph requires
Q(log N/loglog N) amortized update time.

Techniques. Our main obstacle is that the maximum IS is a global property, i.e., when the
input changes slightly, e.g., a single interval is inserted or deleted, then it can cause a change
of the optimal IS which propagates through the entire instance (see Figure 1). Even worse,
there are instances in which any solution with a non-trivial approximation guarantee requires
Q(n) changes after an update (see Figure 2).
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Figure 1 An instance of unweighted IS of intervals. Observe that before inserting the red interval
at the left, the solution consisting of the blue intervals in the bottom row is optimal. However, after
inserting the red interval, the optimal solution is unique and consists of the red interval together
with all black intervals in the top row.

1000000

Figure 2 An instance of weighted IS of intervals. Note that when the large black interval with
weight 1000000 is present, any solution with non-trivial approximation ratio must contain the black
interval. However, when the black interval is not present, the solution must contain many small blue
intervals. Thus, inserting or deleting the black interval requires Q(n) changes to the solution.

To limit the propagation effects, our algorithms for intervals and hypercubes use a
hierarchical grid decomposition. We partition the space [0, N]¢ recursively into equally-sized
grid cells with log IV levels, halving the edge length in each dimension of each cell when going
from one level to the next (similar to the quad-tree decomposition in [3]). Thus, each grid
cell Q has 2% children cells which are the cells of the respective next level that are contained
in Q. Also, each input object C (i.e., interval or hypercube) is contained in at most log N
grid cells and it is assigned to the grid level £(C) in which the size of the cells is “comparable”
to the size of C. When an object C' is inserted or deleted, we recompute the solution for each
of the log N grid cells containing C, in a bottom-up manner. More precisely, for each such
cell @ we decide which of the hypercubes assigned to it we add to our solution, based on the
solutions of the children of ). Thus, a change of the input does not propagate through our
entire solution but only affects log IV grid cells and the hypercubes assigned to them.

Also, we do not store the computed solution explicitly as this might require Q(n) changes
after each update. Instead, we store it implicitly. In particular, in each grid cell () we store
a solution only consisting of objects assigned to @ and pointers to the solutions of children
cells. Finally, at query time we output only those objects that are contained in a solution of a
cell @ and which do not overlap with an object in the solution of a cell of higher level. In this
way, if a long interval with large weight appears or disappears, only the cell corresponding to
the interval needs to be updated, the other changes are done implicitly.

Another challenge is to design an algorithm that, given a cell @ and the solutions for the
children cells of @), computes an approximate solution for @ in time poly(logn,log N). In
such a small running time, we cannot afford to iterate over all input objects assigned to Q.
We now explain in more detail how our algorithm overcome this obstacle.
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Weighted hypercubes. Let us first consider our (4 + ¢)2%-approximation algorithm for
weighted hypercubes. Intuitively, we consider the hypercubes ordered non-decreasingly by
size and add a hypercube C' to the IS if the weight of C' is at least twice the total weight of
all hypercubes in the current IS overlapping with C. We then remove all hypercubes in the
solution that overlap with C.

To implement this algorithm in polylogarithmic time, we need to make multiple adjust-
ments. First, for each cell @ we maintain a range counting data structure P(Q) which
contains the (weighted) vertices of all hypercubes that were previously selected in the IS
solutions of children cells Q' C Q. We will use P(Q) to estimate the weight of hypercubes
that a considered hypercube C' overlaps with. Second, we use P(Q) to construct an auziliary
grid within Q. The auxiliary grid is defined such that in each dimension the grid contains
O, (polylog N) grid slices; thus, there are (log N)©¢<(1) subcells of @ induced by the auxil-
iary grid. Third, we cannot afford to iterate over all hypercubes contained in @ to find the
smallest hypercube C that has at least twice the weight w’ of the hypercubes in the current
solution that overlap with C'. Instead, we iterate over all subcells S C @) which are induced
by the auxiliary grid and look for a hypercube C' of large weight within .S; we show that the
total weight of the points in SN P(Q) is a sufficiently good approximation of w’. If we find a
hypercube C with these properties, we add C to the current solution for @, add the vertices
of C to P(Q) and adjust the auxiliary grid accordingly. In this way, we need to check only
(log N )Od’f(l) subcells of Q which we can do in polylogarithmic time, rather than iterating
over all hypercubes assigned to (). We ensure that for each cell ) we need to repeat this
process only a polylogarithmic number of times. To show the approximation bound we use a
novel charging argument based on the points in P(Q). We show that the total weight of the
points stored in P(Q) estimates the weight of the optimal solution for @ up to a constant
factor. We use this to show that our computed solution is a (4 + ¢)2¢-approximation.

Weighted intervals. Next, we sketch our dynamic (1 + ¢)-approximation algorithm for
weighted IS of intervals. A greedy approach would be to build the solution such that the
intervals are considered in increasing order of their lengths and then for each interval to
decide whether we want to select it and whether we want to remove some previously selected
intervals to make space for it. However, this cannot yield a (1 + ¢)-approximate solution.
There are examples in which one can choose only one out of multiple overlapping short
intervals and the wrong choice implies that one cannot obtain a (1 + ¢)-approximation
together with the long intervals that are considered later (see Figure 3). However, in these
examples the optimal solution (say for a cell Q) consists of only O(1) intervals. Therefore,
we show that in this case we can compute a (1 4 €)-approximate solution in time O (log?n)
by guessing the rounded weights of the intervals in the optimal solution, guessing the order
of the intervals with these weights, and then selecting the intervals greedily according to this
order. On the other hand, if the optimal solution for a cell ) contains Q. (1) many intervals
with similar weights then we can take the union of the previously computed solutions for the
two children cells of ). This sacrifies at most one interval in the optimal solution for ) that
overlaps with both children cells of ) and we can charge this interval to the Q.(1) intervals
in the solutions for the children cells of Q.

Our algorithm interpolates between these two extreme cases. To this end, we run the
previously described O(1)-approximation algorithm for hypercubes as a subroutine and use
it to split each cell Q) into segments, guided by the set P(Q) above. Then we use that for
each set S C @ the weight of S N P(Q) approximates the weight of the optimal solutions of
intervals contained in S within a constant factor. This is crucial for some of our charging
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Figure 3 An instance of unweighted IS of intervals. Observe that the optimal solution has size 3
and consists of the small blue interval and the two large black intervals at the top. If an algorithm
decides to pick any of the small red intervals, its solution can have size at most 2.

arguments in which we show that the intervals contained in some sets S can be ignored. We
show that for each cell @ there is a (1 + €)-approximate solution in which @ is partitioned
into segments such that each of them is either dense or sparse. Each dense segment contains
many intervals of the optimal solution and it is contained in one of the children cells of
Q. Therefore, we can copy the previously computed solution for the respective child of Q.
Each sparse segment only contains O, (1) intervals and hence we can compute its solution
directly using guesses as described above. In each level, this incurs an error and we use
several involved charging arguments to ensure that this error does not accumulate over the
log N levels, but that instead it stays bounded by 1+ ¢.

Other related work. Emek et al. [17], Cabello and Pérez-Lantero [8] and Bakshi et al. [6]
study IS of intervals in the streaming model and obtain algorithms with sublinear space
usage. In [17, 8] insertion-only streams of unweighted intervals are studied. They present
algorithms which are (3/2 4+ €)-approximate for unit length intervals and (2 + £)-approximate
for arbitrary-length intervals; they also provide matching lower bounds. Bakshi et al. [6] study
turnstile streams in which intervals can be inserted and deleted. They obtain algorithms
which are (2 4 ¢)-approximate for weighted unit length intervals and a O(logn)-approximate
for unweighted arbitrary length intervals; they also prove matching lower bounds.

In two dimensions, Agarwal et al. [2] presented a static algorithm which computes
O(logn) approximation of the maximum IS of n arbitrary axis-parallel rectangles in time
O(nlogn). They also show how to compute a (1 + 1/k)-approximation of unit-height
rectangles in time O(nlogn + n?*~1) for any integer k > 1.

Problem definition and notation. We assume that we obtain a set C = {Cy,...,C,} of
d-dimensional hyperrectangles in the space [0, N]¢ for some global value N € R. Each
hyperrectangle C; € C is characterized by coordinates acl(-l), ygl), e ,xl(d), yl-(d) € [0, N] such
that C; := (:I:Z(-l), yfl)) X e X (xgd),yl(d)) and a weight w; € [1, W] for some global value W;
we do not assume that the coordinates of the input objects are integer-valued. We assume
that 1 < yl(j) — xgj) < N for each j € [d]. If C; is a hypercube then we define s; such that
S; = yl(j) — :cgj) for each dimension j. Two hypercubes C;, C; € C with ¢ # i’ are independent
if C; N Cy = 0. Note that we defined the hypercubes as open sets and, hence, two dependent
hypercubes cannot overlap in only a single point. A set of hyperrectangles C' C C is an
independent set (IS) if each pair of hypercubes in C’ is independent. The mazimum IS

problem is to find an IS C' C C, that maximizes w(C’) := > ccr Wi

Due to space constraints we present some results and missing proofs in the full version [23].
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2  Hierarchical Grid Decomposition

We describe a hierarchical grid decomposition that we use for all our algorithms for hypercubes
(for any d), that is similar to [3]. It is based on a hierarchical grid G over the space [0, N|¢
where we assume w.l.o.g. that N is a power of 2 and N is an upper bound on the coordinates
of every object in each dimension. The grid G has log N levels. In each level, the space
[0, N]? is divided into cells; the union of the cells from each level spans the whole space.
There is one grid cell of level 0 that equals to the whole space [0, N]¢. Essentially, each grid
cell of a level ¢ < log N contains 2¢ grid cells of level £ + 1. We assign the input hypercubes
to the grid cells. In particular, for a grid cell @ € G we assign a set C'(Q) C C to @ which
are all input hypercubes that are contained in @ and whose side length is a ©(¢/d)-fraction
of the side length of @ (we will make this formal later). This ensures the helpful property
that any IS consisting only of hypercubes in C'(Q) has size at most O ((g)d). For each cell
Q we define C(Q) := UQ,:Q,QQ C'(Q) which are all hypercubes contained in Q). One subtlety
is that there can be input hypercubes that are not assigned to any grid cell, e.g., hypercubes
that are very small but overlap more than one very large grid cell. Thus, we shift the grid by
some offset a € [0, N] in each dimension which ensures that those hypercubes are negligible.

Formally, let € > 0 such that 1/¢ is an integer and a power of 2. For each ¢ € {0, ... ,log N}
let Gy denote the set of grid cells of level ¢ defined as Q , := [0, N]dﬂl_[?:l[a—&—k(j) N/2°7 a+
(k) 4+ 1) - N/271] for each k = (kM) ... k(9)) € Z?. Then Gy consists of only one cell
[0, N]? =: Q*.We define G := Uf:goN Ge. For a grid cell Q € G, we let £(Q)) denote the level
of Q in G. Note that for each cell Q of level £(Q) < log N, there are at most 2% grid cells
Q; of level £(Q;) = £(Q) + 1 and that are contained in @, i.e., such that Q; C Q. We call
the latter cells the children of @) and denote them by ch(Q). Informally, a hypercube C;
has level £ if s; is within a ©(g/d)-fraction of the side length of grid cells of level ¢; formally,
C; has level £ if s; € [eN/(d2¢71),2-eN/(d2¢71)) for £ = 1,...,log N and s; € [eN/d, N]
for £ = 0. For each C' € C denote by ¢(C) the level of C. We assign a hypercube C to a
cell Q if C; C Q and ¢(C) = £(Q); the set of all these hypercubes for a cell C' is defined by
C'(Q):={C; eC|IC; CQNLC) =£(Q)}. For each grid cell Q we define C(Q) to be the set
of all hypercubes contained in ) that are assigned to @ or to grid cells contained in @), i.e.,
(@) == UQ/;Q/QQ c'(Q).

For each cell @, we partition the hypercubes in C(Q) and C’'(Q) based on their weights in
powers of 1+¢. For each k € Z we define C, := {C; € C: w; € [(1+¢)¥,(1+¢)**1)} and for
each grid cell Q we define Ci,(Q) := C,, N C(Q) and Cp,(Q) := Cx NC'(Q). Note that Cp, = 0 if
k<Oork>log , W.

In the next lemma we prove that there is a value for the offset a such that there is a
(1 + e)-approximate solution OPT’ that is grid-aligned, i.e., for each C € OPT’ there is a
grid cell @ in the resulting grid for a such that C € C'(Q).

» Lemma 1. In time (d/c)°/%) log N we can compute a set off (¢) with |off (¢)| < (d/e)C (/%)
that is independent of the input objects C and that contains an offset a € off(¢) for the grid for
which the optimal grid-aligned solution OPT’ satisfies that w(OPT’) > (1—0(e))w(OPT). If
we draw the offset a uniformly at random from off (), then E[w(OPT")] > (1 — O(e))w(OPT)
and w(OPT’) > (1 — O(e))w(OPT) with constant probability.

For the deterministic results in this paper we run our algorithms for each choice of a € off (¢)
in parallel and at the end we output the solution with maximum weight over all choices of a.
For our randomized results we choose O(log N) offsets a € off (¢) uniformly at random and
hence there exists a grid-aligned solution OPT’ with w(OPT’) > (1 — O(e))w(OPT) with
high probability (i.e., with probability at least 1 — (1/N)°™M).

51:7
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» Lemma 2. Each grid cell Q € G has a volume of (N/249) 1) and can contain at most
(d/e)?* independent hypercubes from C'(Q). Also, each hypercube C; € C is contained in C'(Q’)
for at most one grid cell Q' and in C(Q’) for at most log N cells Q.

Data structures. We define a data structure which will allow us to access the hypercubes in
the sets C(Q), C'(Q), ete. for each cell @ efficiently. Roughly speaking, these data structures
let us insert and delete hypercubes and answer queries of the type: “Given a hyperrectangle B,
return a hypercube which is contained in B.” They are constructed using data structures for
range counting/reporting [27, 30, 16].

» Lemma 3. Let d € N. There is a data structure that maintains a set C' of weighted
hypercubes in R% and allows the following operations:

1. Initialize the data structure, report whether C' =, both in worst-case time O(1).

2. Insert or delete a hypercube into (from) C' in worst-case time O(log®* ™' |C’|).

3. For a hyperrectangle B C R%, check whether there is a hypercube C; € C' with C; C B in
time O(log®*~* |C'|). If yes, return one such hypercube in time O(log>* = |C'|) and the
smallest such hypercube (i.e., with smallest size s;) in time O(log**** |C’]).

4. If d =1, given a value t € R, return the element C; = (xgl), yi(l)) with minimum value

ygl) among all elements Cy = (zg}),yg,l)) with t < xg,l), in time O(log®n).

Using Lemma 3 for each cell @ we define data structures D(Q), D'(Q), Dr(Q), and
D;,(Q) for maintaining the sets C(Q), C'(Q), Cr(Q), and C,(Q) for each k =1,...,log, . W,
respectively, where W is an upper bound on the maximum weight of all hypercubes. The
grid G as defined above contains Q(N?) cells in total. However, there are only O(nlog N)
cells in G such that C(Q) # 0 (by Lemma 2), denote them by G’. We use a data structure
that maintains these cells G’ such that in worst-case time O(log |G’|) we can add and remove
a cell, get pointers to the data structures D(Q), D'(Q), Di(Q), D;.(Q) for a cell Q, and get
and set pointers to a solution that we compute for a cell Q. See [23] for details.

Algorithmic framework. Now we sketch the framework for implementing our dynamic
algorithms. Due to space constraints we postpone its formal definition to the full version [23].

For each cell @ we maintain a solution DP(Q) C C(Q) that is near-optimal, i.e., with
w(OPT(Q)) < a- w(DP(Q)) for the approximation ratio a of the respective setting. We
ensure that DP(Q) depends only on C(Q) and not on hypercubes C with C' ¢ C(Q).

We implement update operations as follows. When a hypercube C' is inserted or deleted,
we update only the solutions DP(Q) for the at most log N cells @ such that C' € C(Q). We
update the solutions DP(Q) in a bottom-up manner, i.e., we order the cells @ with C' € C(Q)
decreasingly by level and update their respective solutions DP(Q) in this order. To ensure a
total update time of (logn + log N)94<(1) we will define algorithms that update DP(Q) for
a cell Q in time (logn + log N)P4<(1) | given that we already updated the solutions DP(Q’)
for all cells Q' & Q. In fact, we will essentially re-compute the solution DP(Q) for a cell Q
from scratch, using only the solutions {DP(Q')}Q,ECh(Q) computed for the children of Q.

Finally, to implement query operations, i.e., to output an approximate solution for the
whole space [0, N]¢, we return the solution DP(Q*) (recall that Q* is the grid cell at level
0 which contains the whole space). We will show in the respective sections how we can
output the weight of DP(Q*) in time Og4(1)poly(logn,log N) DP(Q*) and how to output
all hypercubes in DP(Q*) in time Og4(|DP(Q*)|poly(logn,log N)).
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3 Weighted Hypercubes

We study now the weighted case for which we present a dynamic (4 + ¢)2%-approximation
algorithm for d-dimensional hypercubes. Our strategy is to mimic a greedy algorithm that
sorts the hypercubes by size s; and adds a hypercube C; with weight w; if it does not overlap
with any previously selected hypercube or if the total weight of the previously selected
hypercube that C; overlaps with is at most w;/2. Using a charging argument one can show
that this yields a 29t2-approximate solution. The challenge is to implement this approach
such that we obtain polylogarithmic update time.

From a high-level point of view, our algorithm works as follows. In each cell @), we
maintain a set of points P(Q) containing the vertices of all hypercubes which have been
added to independent sets DP(Q’) for cells @' C Q. The weight of each point is the weight
of the corresponding hypercube. Based on the points in P(Q), we construct an auxiliary
grid inside @) which allows to perform the following operation efficiently: “Given a set of
auxiliary grid cells A, find a hypercube C' € C'(Q) in A whose weight is at least twice the
weight of all points in P(Q) N A” When we try to add a hypercube to ) we do not iterate
over all hypercubes contained in ) but instead enumerate a polylogarithmic number of sets
A and perform the mentioned query for each of them. Also, we do not maintain the current
independent set explicitly (which might change a lot after an update), but we update only
the weight of the points in P(Q) N A, which can be done efficiently. For each cell Q we add
only a polylogarithmic number of hypercubes to DP(Q). If a hypercube C; € DP(Q) overlaps
with a hypercube C; € DP(Q’) for some cell Q' C @ then we exclude C; from the solution
that we output, but do not delete C;: from DP(Q’). In this way, we obtain polylogarithmic
update time, even if our computed solution changes a lot.

Before we describe our algorithm in detail, let us first elaborate on how we maintain
the points P(Q). In the unweighted settings, for each cell  we stored in DP(Q) a set of

hypercubes or pointers to such sets. Now, we define each set DP(Q) to be a pair (C(Q), P(Q)).

Here, C(Q) C C'(Q) is a set of hypercubes from C’(Q) that we selected for the independent
set (recall that C'(Q) contains the hypercubes C C Q with ¢(C;) = £(Q)); and P(Q) is the
data structure for the range counting/reporting problem according to Lemma 4. We will
often identify P(Q) with the set of points stored in P(Q).

» Lemma 4 ([27, 30, 16]). There exists a data structure that maintains a set of weighted
points P C R% and allows the following operations:
add or delete a point in P in worst-case time O(log® |P|),
report or change the weight of a point in P in worst-case time O(logd |P]),
given an open or closed hyperrectangle B C R®, report the total weight of the points BN P,
in worst-case time O(log? ™t |P|).
given d’ € [d] and an interval I = [x,z] C R, in worst-case time O(log|P|) report a
value y such that at most I' := ’P n (Rd/’l X [z, 2] x Rd*d/) ’ /2 points are contained in
RY =1 % (z,y) x R4 and at most T points are contained in R ~1 x (y, z) x R4~

Now we describe our algorithm in detail. Let again :cg), . 795%) and yS), ey yégd) be

such that Q = [xg), yg)] X e X [xg), ygi)] We construct a data structure P(Q) according

to Lemma 4 such that initially it contains the points Jg/ca(q) P(Q'); this will ensure that

initially the points in P(Q) are the vertices of all hypercubes in C(Q’) for each Q' C Q.

Constructing P(Q) might take more than polylogarithmic time since the sets P(Q’) with
Q' € ch(Q) might contain more than polylogarithmically many points. However, we show in
the full version [23] how to adjust our hierarchical grid decomposition and the algorithm to
obtain polylogarithmic update time.
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We want to compute a set C(Q) C C'(Q) containing the hypercubes from C’(Q) that we add
to the independent set. At the beginning, we initialize C (Q) := (. We compute an auxiliary
grid (Z W ...,z (d)) in order to search for hypercubes to insert, similar to the unweighted
case. To define this auxiliary grid, we first compute the total weight W = w(P(Q)) of all
points that are in P(Q) at the beginning of the algorithm in time O(log? ! |P(Q)|), where we
define w(P) =3 p
within @ such that in the interior of each grid slice the points in P(Q) have a total weight
at most 21V /(d? ! log N), where a grid slice is a set of the form R% ~! x (z,y) x Ré~¢
for some d’ € [d]. We emphasize here that this property only holds for the interior of the
grid slices and that the sets in the first point of Lemma 5 are open.

wy, for any set of weighted points P. Then we define the auxiliary grid

» Lemma 5. Given a cell Q and the data structure P(Q), in O ((g)d+2 -1log? |P(Q)] - log N)

time we can compute sets ZM | ..., Z\D of coordinates with z@) = {z%d/), zéd/), ...} for each
d’' such that / /
the total weight of the points in (Rdl*l X (z](d),zj(-ii) X Rdid/) N P(Q) is at most
29 /(d log N) for each d’ € [d] and each j € {1,...,|Z2()| =1},
d ay _(d
Q= Hd/:1[2§ )7Z|(Z()d'>|]7 and
|Z(@)] < d¥t 1 log N/e¥2 4+ 1 for each d' € [d).

To select hypercubes to add to C(Q) our algorithm runs in iterations, and in each iteration
we add one hypercube to C(Q). In each iteration we enumerate all hyperrectangles A C Q
that are aligned with Z(),..., Z(9); note that there are only (d?+!log N/e4*2 + 1)2d such
hyperrectangles (by the third point of Lemma 5). For each such hyperrectangle A we use the
data structures {Dj,(Q)}, oy to determine whether there is a hypercube C; C A contained
in C;(Q) for some k such that (1+¢)* > 2w(P(Q) N A) (recall that D} (Q) maintains the
intervals in C’ which have weights in the range [(1 + ¢)*, (1 + ¢)¥*!) and also recall that
D;.(Q) is contained in the input D(Q) of the algorithm as discussed in Section 2). We say
that such a hypercube C; is addible. If there is no addible hypercube C; then we stop and
return (C(Q), P(Q)). Otherwise, we determine the smallest addible hypercube C; (i.e., with
minimum value s;) and we add C; to C(Q). We add to P(Q) the 2¢ vertices of C; with
weight w;; if a vertex of C; has been in P(Q) before then we increase its weight by w;. We
remove from C (Q) all hypercubes that C; overlaps with. Intuitively, we remove also all other
previously selected hypercubes that C; intersects; however, we do not do this explicitly since
this might require Q(n) time, but we will ensure this implicitly via the query algorithm that
we use to output the solution and that we define below. Finally, we add the coordinates of
C; to the coordinates of the grid ZW ..., Z@ je., we make the grid finer; formally, for
each d’ € [d] we add to Z(¢) the coordinates {xgd,), yfd/)}. This completes one iteration.

» Lemma 6. The algorithm runs for at most (g)dlogW iterations and computes C(Q) in
2
time O ((g)zd AL logW - logzd*1 nlode N).

After the computation above, we define that our solution SOL(Q) for @ contains all
hypercubes in a set C(Q’) for some cell Q' C @ that are not overlapped by a hypercube
in a set C(Q") for some cell Q" O Q'. So if two hypercubes C; € C(Q'), Cyn € C(Q")
overlap and £(Q") < £(Q"), then we select Cy» but not C;». We can output SOL(Q) in time
O4.-(|SOL(Q)[log?** N), see [23]. If we only want return the approximate weight of SOL(Q),
we can return w(P(Q)) which is a O(24)-approximation by Lemma 7 below.

Finally, we bound our approximation ratio. Whenever we add a hypercube C; to a set
C(Q) for some cell @, then we explicitly or implicitly remove from our solution all hypercubes
Cy with C; N Cyr # () such that Cy € C(Q’) for a cell Q" C Q . However, the total weight of
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these removed hypercubes is bounded by w;/2 since in the iteration in which we selected a
hypercube C; € Cj, there was a set A O C; with (14 ¢)* > 2w(p(Q) N A) and by definition of

Ci, w; > (14 ¢)*. Thus, we can bound our approximation ratio using a charging argument.

» Lemma 7. For each cell Q € G', we have that
w(SOL(Q)) < w(OPT(Q)) < (2+ O(e))w(P(Q)) < (4+ 0(2))2"w(SOL(Q))).-

Before we prove Lemma 7, we prove three intermediate results. To this end, recall that
SOL(Q) consists of hypercubes in sets C(Q’) for cells Q' C Q. First, we show via a token
argument that the total weight of all hypercubes of the latter type is at most 2w(SOL(Q)),
using that when we inserted a new hypercube in our solution then it overlapped with
previously selected hypercubes of weight at most w; /2.

» Lemma 8. We have that w(P(Q)) < 2971w (SOL(Q)).

Proof. We assign to each hypercube C; € SOL(Q) a budget of 2w;. We define now an
operation that moves these budgets. Assume that a hypercube Cy € C(Q’) for some cell @’
now has a budget of 2w; units. For each hypercube Cj» € C(Q") for some cell Q" C Q' such
that one of the vertices of C;» is overlapped by Cy/, we move 2w, units of the budget of Cy
to the budget of C;». Note that a hypercube C;» € C'(Q") in a cell Q" C Q' overlaps Cy if
and only if C; overlaps a vertex of C;» since s;» < s;. When we selected Cy € Ci,(Q) then
there was a corresponding set A C Q' such that w; > (1 + &)* > 2w(p(Q") N A). Therefore,
when we move the budget of C;/ as defined then Cy keeps w;s units of its budget. After this
operation, we say that Cy is processed. We continue with this operation until each hypercube
Cyr with a positive budget is processed. At the end, each hypercube Cy such that Cy € C(Q’)
for some cell Q" has a budget of w;. Therefore, >0/ >0, cc(on Wi < 2w(SOL(€2)).
Given the previous inequality and since we insert 2¢ points for each C; € C(Q’), we
obtain that w(P(Q)) =2%-23" .o Yciecon Wi < 249+ (SOL(Q)). <

We want to argue that w(OPT(Q)) < (4 + O(e)) - 2¢w(SOL(Q)). To this end, we classify
the hypercubes in OPT(Q). For each C; € OPT(Q) such that C; € C'(Q’) for some grid cell
Q' C Q we say that C; is light if w; < w(P(Q’))e?*!/(d?log N) and heavy otherwise (for the
set P(Q') when the algorithm finishes).

Next, we show that the total weight of light hypercubes is ew(P(Q)). We do this
by observing that since each cell Q' C @ contains at most (d/¢)? light hypercubes in
OPT(Q)NC'(Q") (by Lemma 2), we can charge their weights to w(P(Q)).

» Lemma 9. The total weight of light hypercubes is at most ew(P(Q)).

Proof. Let Q' C Q. For each light hypercube C; € C'(Q') N OPT(Q) we charge w; <
w(P(Q"))e%! /(d%log N) to the points p € P(Q’), proportionally to their respective weight
wy. There are at most (d/e)? light hypercubes in C'(Q")NOPT(Q) (by Lemma 2). Hence, the
total charge is at most w(P(Q’))-¢/log N and each point p € P(Q’) receives a total charge of
at most wy, -¢/log N for Q. Each point p is contained in at most log N sets in {P(Q’)}Q,QQ.
Thus, the total weight of all light hypercubes in OPT(Q) is at most ew(P(Q)). <

For the heavy hypercubes, we pretend that we increase the weight of each point in P(Q)
by a factor 24 O(e). We show that then each heavy hypercube C; € OPT(Q) contains points
in P(Q) whose total weight is at least w;. Hence, after increasing the weight, the weight of
the points in P(Q) “pays” for all heavy hypercubes in OPT(Q).
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Let 8 := 1/(ﬁ —2¢) = 2+ 0O(e). For each cell Q' C @ and for each hypercube
C; € C(Q") we place a weight of fw; essentially on each vertex of C;. Since each hypercube
C; is an open set, C; does not contain any of its vertices. Therefore, we place the weight
Bw; not exactly on the vertices of C;, but on the vertices of C; slightly perturbed towards
the center of C;. Then, the weight we placed for the vertices of C; contributes towards
“paying” for C;. Formally, for a small value § > 0 we place a weight of Sw; on each point
of the form (z{"” + kWs; + 6 — kM .26, ... 2\ + k@D, + 5 — k@ . 25) with k@) € {0,1}
for each d’ € [d]. We choose ¢ such that any input hypercube C; overlaps each point
(:rl(l) + kMg +6— kM .26+, ... ,xgd) +k@s; +6 — k@ . 26) corresponding to C; if and only
if C;NCy # (. We say that these points are the charge points of C;. If on one of these points
we already placed some weight then we increase its weight by Sw;. Let ]5(@’ ) denote the
points on which we placed a weight in the above procedure for @’ or for a cell Q" C @Q’. For
each point p € P(Q) let %0, denote the total weight that we placed on p in this procedure.
Since for each point p; € P(Q’) with weight w; we introduced a point ; € P(Q’) with weight
W; > Pw; > wi, we have that 3 pon Wp < 3, por) Wp-

» Lemma 10. The total weight of heavy hypercubes is at most (2 + O(e))w(P(Q)).

Proof. Let C; € OPT(QR) be a heavy hypercube. We claim that for each heavy hyper-
cube C; € OPT(Q) it holds that }°  5g)nc, Wp = w;. This implies the claim since
(24 0(€) Xopep@)ne: Wo = 2pep@)nc; Wp- )

Let @' denote the cell such that C; € C'(Q’). Let C(Q’) denote the hypercubes that
are in the set C(Q') at some point while the algorithm processes the cell Q. If C; € C(Q')
then the claim is true since we placed a weight of Sw; on essentially each of its vertices
(slightly perturbed by & towards the center of C;). Assume that C; ¢ C(Q'). Let k be such
that C; € Cr(Q’). Consider the first iteration when we processed @’ such that we added a
hypercube C; with size s;; > s; or the final iteration if no hypercube with size larger s; is
added. Let A C Q' denote the smallest set that is aligned with the auxiliary grid Z(", ..., Z(®
for the cell Q' such that C; C A. If (1+¢)* > 2w(P(Q") N A) then in this iteration we would
have added C; instead of C; which is a contradiction. If (1+4¢)* < 2w(P(Q’)N A) for the set
P(Q’) at the beginning of this iteration then w; < (1 + &)**! < (1 +¢)2w(P(Q’) N A) and

~Z Wy = ~Z Bwp
pEP(Q)NC; PEP(Q)NC;
> B (w(P(Q) N A) — 2de™ W /(d™ log N))
> B (w(P(Q) N A) —2e™w(P(Q")/(d log N))
> B (w(P(Q") N A) — 2ew;)
> B (w; /(24 2¢) — 2ew;)

= W;.

To see that the first inequality holds, note that w(P(Q') N A) < w(P(Q')NC;) +Y, where
Y is the weight of the points in the auxiliary grid slices of A which C; does not fully overlap.
Since A is the smallest aligned hyperrectangle containing C;, in each dimension there are
only two slices which are in A and which C; partially overlaps (and none which are in A
and do not overlap with C; at all). Thus, there are at most 2d such slices in total. Using
the definition of the auxiliary grid (Lemma 5), we obtain that Y < 2d - e*2W /(d%+! log N),
where W = w(P(Q")). This provides the first inequality. The third inequality holds because
C; is heavy, the fourth inequality uses the above condition on w; and the last equality is
simply the definition of 3. |
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Proof of Lemma 7. We can bound the weight of all light and heavy hypercubes by (2 +
O(e))w(P(Q)) by Lemmas 9 and 10. Then applying Lemma 8 yields that

(2+0() Y wy<(2+0(e)) - 2 w(SOL(Q))) = (4+ O(2))2"w(SOL(Q)))-

PEP(Q)

Thus, w(SOL(Q)) < w(OPT(Q)) < (2+ O(e))w(P(Q)) < (4 + O(¢))2"w(SOL(Q))). <

In [23] we describe how to adjust the hierarchical grid decomposition and the algorithm

slightly such that we obtain polylogarithmic update time overall. We output the solution
SOL := SOL(Q*). Using the data structure P(Q*), in time O(1) we can also output w(P(Q*))
which is an estimate for w(SOL) due to Lemma 7. We obtain the following theorem.

» Theorem 11. For the weighted mazximum independent set of hypercubes problem with

weights in [1, W] there are fully dynamic algorithms that maintain (4+0(e))2¢-approzimate so-
lutions deterministically with worst-case update time (d/e)o(d2+1/€)«log Wlog? T nlog?tt N

2
and with high probability with worst-case update time (g)o(d ) log W - log?? 1 nlog??*2 N.
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