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Abstract
Let P be a set of 2n points in convex position, such that n points are colored red and n points
are colored blue. A non-crossing alternating path on P of length ` is a sequence p1, . . . , p` of `

points from P so that (i) all points are pairwise distinct; (ii) any two consecutive points pi, pi+1

have different colors; and (iii) any two segments pipi+1 and pjpj+1 have disjoint relative interiors,
for i 6= j.

We show that there is an absolute constant ε > 0, independent of n and of the coloring, such that
P always admits a non-crossing alternating path of length at least (1 + ε)n. The result is obtained
through a slightly stronger statement: there always exists a non-crossing bichromatic separated
matching on at least (1 + ε)n points of P . This is a properly colored matching whose segments are
pairwise disjoint and intersected by common line. For both versions, this is the first improvement of
the easily obtained lower bound of n by an additive term linear in n. The best known published
upper bounds are asymptotically of order 4n/3 + o(n).
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1 Introduction

We study a family of problems that were discovered independently in two different (but
essentially equivalent) settings. Researchers in discrete and computational geometry found a
geometric formulation, while researchers in computational biology and stringology studied
circular words. Around 1989, Erdős asked the following geometric question [4, p. 409]: given
a set P of n red and n blue points in convex position, how many points of P can always be
collected by a non-intersecting polygonal path π with vertices in P such that the vertex-color
along π alternates between red and blue. Taking every other segment of π, we obtain a
properly colored set of pairwise disjoint segments with endpoints in P . A closely related
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Figure 1 Left: a set P of 18 points in convex position, 9 of them red and 9 of them blue, with
an alternating path of length 15 (this is not a longest such path). Taking every other segment,
we obtain a properly colored disjoint matching on P . Middle: a separated matching on P , with a
dashed line that intersects all matching edges (this is not a maximum such matching). Right: an
antipalindromic subsequence on a circular word of 18 bits, 9 of them 0 and 9 of them 1.

problem asks for a large separated matching, a collection of such segments with the extra
property that all of them are intersected by a common line. This is equivalent to finding
a long antipalindromic subsequence in a circular sequence of 2n bits, where n bits are 0
and n bits are 1, see Figure 1. This formulation was stated in 1999 in a paper on protein
folding [10]. Similar questions were also studied for palindromic subsequences [14]. One such
question is equivalent to finding many disjoint monochromatic segments with endpoints in
P , a problem that was also studied by the geometry community.

An easy lower bound for alternating paths is n, and the best known lower bound is
n+ Ω(

√
n) [11]. We increase this to cn+ o(n), for a constant c > 1. Similarly, for the other

mentioned problems, we improve the lower bounds by an additive term of εn, for some fixed
ε > 0. Also here, this constitutes the first Ω(n) improvement over the trivial lower bounds.

The (geometric) setting. We have a set P of 2n points p0, p1, . . . , p2n−1 in convex position,
numbered in clockwise order. The points in P are colored red and blue, so that there are
exactly n red points and n blue points. The goal is to find a long non-crossing alternating
path in P . That is, a sequence π : q0, q1, . . . , q`−1 of points in P such that (i) each point
from P appears at most once in π; (ii) π is alternating, i.e., for i = 0, . . . , ` − 2, we have
that qi is red and qi+1 is blue or that qi is blue and qi+1 is red; (iii) π is non-crossing, i.e.,
for i, j ∈ {0, . . . , ` − 2}, i 6= j, the two segments qiqi+1 and qjqj+1 intersect only in their
endpoints and only if they are consecutive in π, see Figure 1(left). We will also just say
alternating path for π. Alternating paths for planar point sets in general (not just convex)
position have been studied in various previous papers, e.g., [1–3,5, 6].

For most of this work, we will focus on another, closely related, structure. A non-crossing
separated bichromatic matching M in P is a set {p1q1, p2q2, . . . , pkqk} of k pairs of points in
P , such that (i) all points p1, . . . , pk, q1, . . . , qk are pairwise distinct; (ii) the segments piqi
and pjqj are disjoint, for all 1 ≤ i < j ≤ k; (iii) for i = 1, . . . , k, the points pi and qi have
different colors; and (iv) there exists a line that intersects all segments p1q1, p2q2, . . . , pkqk,
see Figure 1(middle). Often, we will just use the term separated bichromatic matching or
simply separated matching for M .

Previous results. The following basic lemma says that a large separated matching immedi-
ately yields a long alternating path. The (very simple) proof was given by Kynčl, Pach, and
Tóth [9, Section 3].
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I Lemma 1. Suppose that a bichromatic convex point set P admits a separated matching
with k segments. Then, P has an alternating path of length 2k.

Let l(n) be the largest number such that for every set P of n red and n blue points in
convex position, there is an alternating path of length at least l(n). Around 1989, Erdős and
others [9] conjectured that limn→∞ l(n)/n = 3/2. Abellanas, García, Hurtado, and Tejel [1]
and, independently, Kynčl, Pach, and Tóth [9, Section 3] disproved this by showing the
upper bound l(n) ≤ 4n/3 +O(

√
n). Kynčl, Pach, and Tóth [9] also improved the (almost

trivial) lower bound l(n) ≥ n to l(n) ≥ n + Ω(
√
n/ logn). They conjectured that in fact

l(n) = 4n/3 + o(n). In her PhD thesis [11] (see also [8, 12, 13]), Mészáros improved the
lower bound to l(n) ≥ n+ Ω(

√
n), and she described a wide class of configurations where

every separated matching has at most 2n/3 + O(
√
n) edges. This also implies the upper

bound l(n) ≤ 4n/3 + O(
√
n) mentioned above [1, 9]. It was announced to us in personal

communication that E. Csóka, Z. Blázsik, Z. Király, and D. Lenger constructed configurations
with an upper bound of cn + o(n) on the size of the largest separated matching, where
c = 2−

√
2 ≈ 0.5858 [7].

Our results. We improve the almost trivial lower bound n/2 for separated matchings to
n/2 + εn.

I Theorem 2. There is a fixed ε > 0 such that any convex point set P with n red and n blue
points admits a separated matching with at least n/2 + εn edges.

By Lemma 1, we obtain the following corollary about long alternating paths.

I Theorem 3. There is a fixed ε > 0 such that any convex point set P with n red and n blue
points admits an alternating path with at least n+ εn vertices.

A variant of Theorem 2 also holds for the monochromatic case. The definition of a non-
crossing separated monochromatic matching, or simply separated monochromatic matching, is
obtained from the definition of a separated bichromatic matching by changing condition (iii)
to (iii’) for i = 1, . . . , k, the points pi and qi have the same color. Some of the upper bound
constructions for separated bichromatic matchings apply to the monochromatic setting, also
giving the upper bound 2n/3 +O(

√
n). Here is a monochromatic version of Theorem 2. Due

to space reasons, the proof of Theorem 4 has been omitted from this extened abstract. It
can be found in the full version of this paper.

I Theorem 4. There are constants ε > 0 and n0 ∈ N such any convex point set P with
n ≥ n0 points, colored red and blue, admits a separated monochromatic matching with at
least n/2 + εn vertices.

There are two differences between the statement of Theorem 2 and Theorem 4: we do
not require that the number of red and blue points in P is equal (and hence the size of the
matching is stated in terms of vertices instead of edges), and we need a lower bound on the
size of P . This is necessary, because Theorem 4 does not always hold for, e.g., n = 4. It was
announced to us in a personal communication that the construction of E. Csóka, Z. Blázsik,
Z. Király and D. Lenger from above also gives the upper bound cn+ o(n) on the size of a
largest separated monochromatic matching, where c = 2−

√
2 ≈ 0.5858 [7].

Our results in the setting of finite words. As we already said, the problems in this paper
were independently discovered by researchers in computational biology and stringology. In
a study on protein folding algorithms, Lyngsø and Pedersen [10] formulated a conjecture
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that is equivalent to saying that the bound in Theorem 2 can be improved to 2n/3 (for n
divisible by 3). Müllner and Ryzhikov [14, p. 461] write that this conjecture “has drawn
substantial attention from the combinatorics of words community”. For the convenience of
readers from this community, we rephrase our theorems for separated matchings in the finite
words setting. We use the terminology of Müllner and Ryzhikov [14], without introducing it
here. The following corresponds to Theorem 2.

I Theorem 5. There is a fixed ε > 0 such that for any even n ∈ N, every binary circular
word of length n with equal number of zeros and ones has an antipalindromic subsequence of
length at least n/2 + εn.

The following corresponds to Theorem 4.

I Theorem 6. There are constants ε > 0 and n0 ∈ N so that for any n ∈ N, n ≥ n0, every
binary circular word of length n has a palindromic subsequence of length at least n/2 + εn.

2 Existence of large separated bichromatic matchings

In this section, we prove our main result: large separated bichromatic matchings exist.

2.1 Runs and separated matchings
A run of P is a maximal sequence pi, pi+1, . . . , pi+` of consecutive points with the same
color.1 That is, for j = i, . . . , i + ` − 1, the color of pj and of pj+1 are the same, and the
colors of pi−1 and pi and the colors of pi+` and pi+`+1 are different. The number of runs is
always even. Kynčl, Pach, and Tóth showed that if P contains t runs, then P admits an
alternating path of length n+ Ω(t) [9, Lemma 3.2]. We will need the following analogous
result for separated matchings. The proof can be found in the full version.

I Theorem 7. Let c1 = 1/32 and t ≥ 4. Let P be a bichromatic convex point set with
2n points, n red and n blue, and suppose that P has t runs. Then, P admits a separated
matching with at least n/2 + c1t

2/n edges.

2.2 Chunks, partitions, and configurations
Let k ∈ {1, . . . , n}. A k-chunk is a sequence of consecutive points in P with exactly k points
of one color and less than k points of the other color. Hence, a k-chunk has at least k and
at most 2k − 1 points. A clockwise k-chunk with starting point pi is the shortest k-chunk
that starts from pi in clockwise order. A counterclockwise k-chunk with starting point pi is
defined analogously, going in the counterclockwise direction. For a k-chunk C, we denote by
r(C) the number of red points and by b(C) the number of blue points in C. We call C a red
chunk if r(C) = k (and hence b(C) < k) and a blue chunk if b(C) = k (and hence r(C) < k).
The index of C is b(C)/k for a red chunk and r(C)/k for a blue chunk. Thus, the index of C
lies between 0 and (k − 1)/k, and it measures how “mixed” C is.

Next, let k ∈ {1, . . . , n} and λ ∈ N ∪ {0}. We define a (k, λ)-partition. Suppose that k is
odd. First, we construct a maximum sequence C0, C1, . . . of clockwise disjoint k-chunks, as
follows: we begin with the clockwise k-chunk C0 with starting point p0, and we let `0 be
the number of points in C0. Next, we take the clockwise k-chunk C1 with starting point

1 When calculating with indices of points in P , we will always work modulo 2n.
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p0 p0

Figure 2 A set of 18 points and its (3, 0)-partition (left) and (3, 1)-partition (right). In the
(3, 0)-partition, the first chunk is red with index 2/3, the second chunk is blue with index 1/3, the
third chunk is blue with index 2/3, and the fourth chunk is red with index 0. The average red index
is 1/3, the average blue index is 1/2. The index of the (3, 0)-partition is 1/2. The (3, 1)-partition
has one clockwise 3-chunk and one counterclockwise 6-chunk. The 3-chunk is red with index 2/3,
the 6-chunk is red with index 5/6. The average red index is 3/4, the average blue index is 0 The
index of the (3, 1)-partition is 3/4.

p`0 , and let `1 be the number of points in C1. After that, we take the clockwise k-chunk C2
with starting point p`0+`1 , and so on. We stop once we reach the last k-chunk that does not
overlap with C0. Next, we construct a maximum sequence D0, D1, . . . of counterclockwise
(k+3)-chunks, starting with the point p2n−1, in an analogous manner. Let λ′ be the minimum
of λ and the number of (k + 3)-chunks Di. Now, to obtain the (k, λ)-partition, we take λ′
counterclockwise (k+3)-chunks D0, . . . , Dλ′−1 and a maximum number of clockwise k-chunks
C0, C1, . . . that do not overlap with D0, . . . , Dλ′−1. If k is even, the (k, λ)-partition is defined
analogously, switching the roles of the clockwise and the counterclockwise direction. There
may be some points that do not lie in any chunk of the (k, λ)-partition. We call these points
uncovered.

The average red index of Γ is the average index in a red chunk of Γ (0, if there are no red
chunks). The average blue index of Γ is defined analogously. The index of Γ is the maximum
of the average red index and the average blue index of Γ. The max-index color is the color
whose average index achieves the index of Γ, the other color is called the min-index color,
see Figure 2 for an illustration of the concepts so far. The following simple proposition helps
us bound the number of chunks. The (somewhat technical) proof can be found in the full
version.

I Proposition 8. Let P be a convex bichromatic point set with 2n points, n red and n blue,
and let Γ be a (k, λ)-partition of P . In Γ, there are at most 2k − 2 uncovered points, at most
k − 1 of them red and at most k − 1 of them blue. Furthermore, let R be the number of red
chunks and B the number of blue chunks in Γ, and let α be the index of Γ. Then,

R+B ≤ 2n
k

and max{R,B} ≤ n

k
. (1)

Furthermore, we have

R+B ≥
⌊

2n
2k + 5

⌋
>

2n
7k − 1, max{R,B} ≥ 1

2

⌊
2n

2k + 5

⌋
>

n

7k −
1
2 ,

and min{R,B} ≥ 1− α
2

⌊
2n

2k + 5

⌋
− k − 1
k + 3 > (1− α) n7k − 2. (2)
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p0

Figure 3 A set of 18 points and a 3-configuration for it. The chunk from p0 is red with index
2/3, the next clockwise chunk is blue with index 2/3, followed by another blue chunk of index 1/3
and a final red chunk of index 1/3. The average blue index and the average red index are both 1/2.
Note that the chunks are not minimal.

If λ = 0, the lower bounds improve to

R+B ≥
⌊

2n
2k − 1

⌋
≥ n

k
− 1, max{R,B} ≥ 1

2

⌊
2n

2k − 1

⌋
>

n

2k −
1
2 ,

and min{R,B} ≥ 1− α
2

⌊
2n

2k − 1

⌋
− k − 1

k
> (1− α) n2k − 2. (3)

The purpose of the (k, λ)-partitions is to transition smoothly between the (k, 0)-partition
and the (k + 3, 0)-partition. In our proof, this will enable us to gradually increase the
chunk-sizes, while keeping the index under control.

A k-configuration of P is a partition of P into k-chunks, leaving no uncovered points, see
Figure 3. In contrast to a (k, λ)-partition, the chunks in a k-configuration are not necessarily
minimal. Note that while P always has a (k, λ)-partition, it does not necessarily admit a
k-configuration. The average red index, the average blue index, etc. of a k-configuration are
defined as for a (k, λ)-partition. The following proposition helps us bound the number of
chunks in a k-configuration. The proof can be found in the full version.

I Proposition 9. Let P be a convex bichromatic point set with 2n points, n red and n blue,
and let Γ be a k-configuration of P . Let R be the number of red chunks, B the number of
blue chunks,α the average red index and β the average blue index of Γ. Then,

n = kR+ βkB = kB + αkR. (4)

Furthermore, R + B ≥ n/k, max{R,B} ≥ n/2k, and min{R,B} ≥ (1 − max{α, β})n/2k.
Finally, max{R,B} = R if and only if α ≥ β.

In our proof, the key challenge will be to analyze k-configurations with small constant
index (say, around 0.1).

2.3 From (k, λ)-partitions to k-configurations
Our first goal is to show that we can focus on (k, λ)-partitions with large k and constant,
but not too large index. We begin by noting that if the (k, 0)-partition of P for a constant k
has a large index, then we can find a long alternating path in P . The proof can be found in
the full version.
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I Lemma 10. Set c2 = 1/12800. Let k, n ∈ N with 8k2 ≤ n. Let P be a convex bichromatic
point set with 2n points, n red and n blue. If the (k, 0)-partition Γ of P has index at least
0.1, then P admits a separated matching of size at least (1/2 + c2/k

4)n.

Next, we show that if the (k, 0)-partition still has a small index for k = Ω(n), then we
can find a large separated matching. The proof, which is inspired by a simlar argument of
Kynčl, Pach, and Tóth [9, Lemma 3.1], can be found in the full version.

I Lemma 11. Set c3 = 1/81. Let k, n ∈ N with k ≤ n and 6480n ≤ k2. Let P be a convex
bichromatic point set with 2n points. If the (k, 0)-partition Γ of P has index at most 0.1,
then P admits a separated matching of size at least (1/2 + c3(k/n)2)n.

Our goal now is to show that we can focus on k-configurations with k neither too small
nor too large, and of index approximately 0.1. Here, we only sketch the argument, and we
will make it more precise below, once all the lemmas have been stated formally: we choose
k1 = O(1) and k2 = Ω(n) to satisfy the previous two lemmas, and we consider the sequence of
the (k1, 0)-partition, the (k1, 1)-partition, the (k1, 2)-partition, . . ., up to the (k2, 0)-partition
of P . By Lemma 10 and Lemma 11, we can assume that the first partition in the sequence
has index less than 0.1 and the last partition in the sequence has index larger than 0.1. Thus,
at some point the index has to jump over 0.1. Our definition of (k, λ)-partition ensures that
this jump is gradual. The proof can be found in the full version.

I Lemma 12. Let k, n ∈ N with n ≥ 210000k. Let P be a convex bichromatic point set with
2n points, n red and n blue. Let Γ1 be the (k, λ)-partition and Γ2 the (k, λ+ 1)-partition of
P . Suppose that the index of Γ1 is at most 0.1. Then, the average red index and the average
blue index of Γ1 and Γ2 each differ by at most 0.001.

It follows that we can assume that we are dealing with a (k, λ)-partition of index
approximately 0.1. Actually, we will see that it suffices to consider k-configurations of index
0.1. This will be the focus of the next section.

2.4 Random chunk-matchings in k-configurations
In this section, we will focus on convex bichromatic point sets P that admit a k-configuration
Γ with special properties. Later, we will see how to reduce to this case.

Let C0, C1, . . . , C`−1 be the chunks of the k-configuration Γ. We define a notion of
chunk-matching, as illustrated in Figures 4 and 5. A chunk matching pairs each of the `
chunks with another chunk (possibly itself). Our goal is to define chunk matchings in such
a way that we can easily derive from a chunk matching a separated matching between the
points in P .

Formally, we define ` matchings M0, . . . ,M`−1 by saying that for i, j = 0, . . . , `− 1, the
matching Mi pairs the chunks Cj and C(i−j) mod `. Again, refer to Figures 4 and 5 for
examples. The matching rule is symmetric, i.e., if Ca is matched to Cb then Cb is matched
to Ca. Note that if j ≡ (i − j) (mod `), the chunk Cj is matched to itself in Mi. If ` is
even, this happens only for even i, namely for j = i/2 and for j = i/2 + `/2. If ` is odd,
this happens in every matching, namely for j ≡ (` + 1)i/2 (mod `). By construction, for
every Mi, if we connect the matched chunks by straight line edges, we obtain a set of plane
segments such that there is one line that intersects all segments. Furthermore, every pair
Ci, Cj of chunks, 0 ≤ i ≤ j ≤ `− 1 appears in exactly one chunk matching. In essence, these
matchings correspond to partitioning the chunks of Γ with a line, where the line can possibly
pass through one or two chunks of Γ that are then matched to themselves.

SoCG 2020
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Figure 4 The six chunk matchings M0, . . . , M5 for a set of six chunks. If i is even, the chunks
Ci/2 and Ci/2+3 are matched to themselves. If i is odd, every chunk is matched to a different chunk.
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C2
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Figure 5 The five chunk matchings M0, M1, . . . , M4 for a set of five chunks. In matching Mi, the
chunk C(3i mod 5) is matched to itself. Every other chunk is matched to a different chunk.
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red blue
blue red

red red red w/ itself

Figure 6 Going from a matched pair of chunks to a separated matching. If the two chunks have
different colors, we can match k edges. If the two colors are the same, there are two reasonable
options, matching the red points in one chunk with the blue points in the other chunk. We choose
the one that matches more edges. A special case occurs if a chunk is matched to itself. In this case,
we split the majority color into half and match between the halves.

Next, we describe how to derive from a given chunk matching M a separated matching
on P , see Figure 6 for an illustration. We look at every two chunks C and D paired my M
(possibly, C = D). If C is red and D blue, we match the k red points in C to the k blue points
in D, getting k matched edges. The case that C is blue and D is red is analogous. If C 6= D

and both C and D are red, we could match the k red points in C to the b(D) < k blue points
in D, or vice versa. We choose the option that gives more edges, yielding max{b(C), b(D)}
matched edges. The case that C 6= D and both are blue is similar. Finally, suppose that
C = D, and for concreteness, suppose that C is red. In this case, we split the points in C
into two parts, containing dk/2e red points each (if k is odd, the median point belongs to
both parts). In one part, we have at least db(C)/2e blue points, and we match these blue
points to the red points in the other part. This yields db(C)/2e ≥ b(C)/2 matched edges.
Thus, a chunk matching M gives a separated matching with at least

1
2

( ∑
(C,D)∈M
C red,D red

max{b(C), b(D)}+
∑

(C,D)∈M
C red,D blue

k

+
∑

(C,D)∈M
C blue,D red

k +
∑

(C,D)∈M
C blue,D blue

max{r(C), r(D)}
)

(5)

matched edges, where the sums go over all ordered pairs of matched chunks in M , i.e.,
a matched pair (C,D) with C 6= D appears twice (which is compensated by the leading
factor of 1/2) and a matched pair (C,C) appears once. The next lemma shows that a chunk
matching that is chosen uniformly at random usually matches half the points of P .

I Lemma 13. Let Γ be a k-configuration of P and M a random chunk matching in Γ. The
expected number of matched edges in the corresponding separated matching is at least n/2.

SoCG 2020
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Proof. Let R be the number of red chunks in Γ and B the number of blue chunks in Γ.
Let α be the average index of the red chunks, and β the average index of the blue chunks.
We sum (5) over all R+B possible chunk matchings and take the average. This gives the
expected number of matched edges (the sums range over all ordered pairs of chunks in Γ).

1
2(R+B)

( ∑
C red,D red

max{b(C), b(D)}+ 2
∑

C red,D blue
k

+
∑

C blue,D blue
max{r(C), r(D)}

)

Since there are R red chunks and B blue chunks, this is

= 1
2(R+B)

 ∑
C red,D red

max{b(C), b(D)}+ 2kRB +
∑

C blue,D blue
max{r(C), r(D)}


We lower bound the maximum by the average to estimate this as

≥ 1
2(R+B)

 ∑
C red,D red

b(C) + b(D)
2 + 2kRB +

∑
C blue,D blue

r(C) + r(D)
2

 (**)

Simplifying the sums, this is

= 1
2(R+B)

(
R
∑
C red

b(C) + 2kRB +B
∑
C blue

r(C)
)

Since the total number of blue points in red chunks is αkR and the total number of red
points in blue chunks is βkB, this equals

= αkR2 + 2kRB + βkB2

2(R+B)

Regrouping the terms and using (4), this becomes

= R(αkR+ kB) +B(βkB + kR)
2(R+B) = (R+B)n

2(R+B) = n

2 . J

2.5 Taking advantage of k-configurations
One inefficiency in the calculation in Lemma 13 is that we bound the maximum by the
average in inequality (**). If these two quantities often differ significantly, we can gain an
advantage over Lemma 13. This is made precise in the next lemma.

I Lemma 14. Set c4 = 1/40. Let δ > 0 and let P be a convex bichromatic point set with 2n
points, n red and n blue, and Γ a k-configuration for P with index at most 0.11 that contains
at least δ(n/k) red chunks or at least δ(n/k) blue chunks with index at least 0.22. Then, P
admits a separated matching of size at least (1/2 + c4δ

2)n.

Proof. Suppose without loss of generality that there are at least δ(n/k) red chunks with
index at least 0.2. Let R be the number of red chunks and B the number of blue chunks.
The average red index of Γ is at most 0.11. Thus, if writing γ1(n/k) for the number of red
chunks with index in (0.11, 0.22) and γ2(n/k) ≥ δ(n/k) for the number of red chunks with
index in [0.22, 1), we have

0.11R ≥ 0.11γ1
n

k
+ 0.22γ2

n

k
= 0.11(γ1 + 2γ2)n

k
.
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It follows that R ≥ (γ1 + 2γ2)(n/k), and there must be at least γ2(n/k) ≥ δ(n/k) red chunks
of index in [0, 0.11]. Now, consider the following sum over all ordered pairs (C,D) of red
chunks, where one chunk (C or D) has red index at most 0.11 and the other chunk (D or C)
has red index at least 0.22:

1
2(R+B)

(∑
C

∑
D

max{b(C), b(D)} − b(C) + b(D)
2

)

Since 2 max{a, b} − a− b = max{a, b} −min{a, b}, for all a, b ∈ R, this equals

= 1
4(R+B)

∑
C

∑
D

(max{b(C), b(D)} −min{b(C), b(D)})

One chunk in each summand contains at least 0.22k blue points, the other chunk contains at
most 0.11k blue points, so we can lower bound this as

≥ 1
4(R+B)

∑
C

∑
D

(0.22− 0.11)k

≥ 1
4(R+B)

∑
C

∑
D

k

10 ≥
δ2(n/k)2

R+B

k

20 ≥
δ2

40n,

since we are adding over at least 2δ2(n/k)2 ordered pairs (C,D) (recall that each ordered
pair (C,D) has a partner (D,C) in the sum) and since by (1), we have R+B ≤ 2n/k. Thus,
comparing with (**), the lemma follows. J

Lemma 14 shows that we can assume that few chunks in the k-configuration Γ of P have
index larger than 0.22. In fact, suppose now that Γ contains no chunk of index at least 0.3
(this will be justified below). From now on, we will also assume that k is divisible by 3. We
subdivide each chunk in our k-configuration Γ into three (k/3)-subchunks. Since all k-chunks
have index less than 0.3, the subchunks have the same color as the original chunk. Let C be
a k-chunk. The middle subchunk of C, denoted by CM , is the (k/3)-subchunk of C that lies
in the middle of the three subchunks. Now, we consider the middle subchunks. If the middle
subchunks of the max-index color contain many points of the min-index color, we can gain
an advantage by considering two cross-matchings between chunks of the max-index color.

I Lemma 15. Set c5 = 1/4. Let δ > 0 and let P be a convex bichromatic point set with 2n
points, n red and n blue. Let Γ be a k-configuration for P such that (i) k is divisible by 3;
(ii) every chunk in Γ has index less than 0.3; and (iii) the middle subchunks of the max-index
color contain in total at least δn points of the min-index color. Then P admits a separated
matching of size at least (1/2 + c5δ)n.

Proof. Suppose that the max-index color is red. We take a random chunk matching M
of Γ, and we derive a separated matching from M as described above. However, when
considering a pair (C,D) of two red chunks, we proceed slightly differently. First, suppose
that C 6= D, and let C1, C2, C3 be the three subchunks of C, and D1, D2, D3 be the three
subchunks of D (in clockwise order). We have r(Ci) = r(Di) = k/3, for i = 1, 2, 3; and
b(C1) + b(C2) + b(C3) < k/3 and b(D1) + b(D2) + b(D3) < k/3. We consider two separated
matchings between C and D (see Figure 7(left): (a) match all blue points in C1 and C2 to
red points in D3 and all blue points in D1 and D2 to red points in C3; and (b) match all blue
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C2

C1

CC

Figure 7 The two different separated matchings between two distinct red chunks (left) and the
same red chunk (right).

points in D2 and D3 to red points in C1 and all blue points in C2 and C3 to red points in
D1. We take the better of the two matchings. The number of matched edges matched(C,D)
is lower-bounded by the average, so

matched(C,D) ≥ 1
2 (b(C1) + b(C2) + b(D1) + b(D2) + b(D3) + b(D2) + b(C2) + b(C3))

= 1
2 (b(C) + b(D) + b(C2) + b(D2)) . (6)

Second, if C = D, we subdivide C into the three subchunks C1, C2, C3 with (C1) = r(C2) =
r(C3) = k/3 and b(C1) + b(C2) + b(C3) < k/3. Again, we consider two different matchings
for C (see Figure 7(right): (a) match the blue points in C1 and C2 to the red points in C3,
and (b) match the blue points in C2 and C3 to the red points in C1. Again, the number of
matched edges matched(C,C) is at least

matched(C,C) ≥ 1
2(b(C1) + b(C2) + b(C2) + b(C3)) = 1

2(b(C) + b(C2)). (7)

Now, we set R to the number of red chunks and B to the number of blue chunks in Γ. Then,
in a random chunk matching, the expected number of edges in the separated matchings
between the pairs (C,D) of red chunks is

1
2(R+B)

 ∑
C 6=D,C,D red

matched(C,D) +
∑
C red

2matched(C,C)

 . (8)

Note that in the first sum, each unordered pair {C,D} of distinct red chunks appears twice,
even though it appears once in a random chunk matching. This is compensated by the
leading factor of 1/2, which again leads to a coefficient of 2 for the expected number of edges
in the separated matching in a chunk that is paired with itself. Using (6, 7), we can write

(8) ≥ 1
2(R+B)

(∑
C red

∑
D red

b(C) + b(D) + b(CM ) + b(DM )
2

)
,



W. Mulzer and P. Valtr 57:13

where we sum over all ordered pairs (C,D) of red chunks and CM and DM denote the middle
chunks of C and D. Now we compare with (**).

1
2(R+B)

(∑
C red

∑
D red

b(C) + b(D) + b(CM ) + b(DM )
2 − b(C) + b(D)

2

)

= 1
2(R+B)

(∑
C red

∑
D red

b(CM ) + b(DM )
2

)

In the sum, every middle chunk CM and every middle chunk DM appears exactly R times,
and by assumption, the total number of blue points in the red middle chunks is at least δn.
Thus, this is lower-bounded as

≥ 1
2(R+B)Rδn ≥

1
4RRδn = δ

4n,

since red is the max-index color and hence by Proposition 9, we have B ≤ R and R+B ≤ 2R.
Thus, the lemma follows. J

Finally, we consider the case that the middle subchunks of the max-index color contain
relatively few points. Since the index of Γ is relatively small, it means that the indices of the
middle subchunks of the max-index color have a large variance. As in Lemma 14, this leads
to a large separated matching. The proof is very similar to the proof of Lemma 14, and it
can be found in the full version.

I Lemma 16. Set δ = 10−4 and ε = 10−5. Let P be a convex bichromatic point set with 2n
points, n red and n blue, and let Γ be a k-configuration for P such that (i) k is divisible by 3;
(ii) Γ has index at least 0.09; and (iii) every chunk in Γ has index less than 0.3. Then, if the
middle subchunks of the max-index color contain in total at most δn points of the min-index
color, P admits a separated matching of size at least (1/2 + ε)n.

2.6 Putting it together
From Theorem 7, it follows that if P has at least four runs, there is always a separated
matching with strictly more than n/2 edges. Moreover, if P has two runs, then P has a
separated matching with n > n/2 edges. Therefore, the following theorem implies Theorem 2.

I Theorem 17. There exist constants ε∗ > 0 and n0 ∈ N with the following property: let P
be a convex bichromatic point set with 2n ≥ 2n0 points, n red and n blue. Then, P admits a
separated matching on at least (1 + ε∗)n vertices.

Proof. Set n0 = 10100 and ε = 10−5, as in Lemma 16. Let k1 the smallest integer larger than
103ε−3 = 1018 that is divisible by 3. Since n ≥ 10100 ≥ 8k2

1, Lemma 10 shows that if the
(k1, 0)-partition Γ1 of P has index at least 0.1, the theorem follows with ε∗ = Ω(1/k4

1) = Ω(1).
Thus, we may assume the following claim:

B Claim 18. The (k1, 0)-partition Γ1 of P has index less than 0.1, where k1 is a fixed
constant with k1 ≥ 103ε−3 = 1018.

Next, let k2 be the largest integer in the interval [10−4ε3n, 10−3ε3n] that is divisible by 3. Since
n ≥ 10100, it follows that k2 exists. Furthermore, since n ≥ k2 and 6480n ≤ 10−8ε6n2 ≤ k2

2,
Lemma 11 implies that if the (k2, 0)-partition Γ2 of P has index at most 0.1, the theorem
follows with ε∗ = Ω((k2/n)2) = Ω(1). Hence, we may assume the following claim:
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B Claim 19. The (k2, 0)-partition Γ2 of P has index more than 0.1, where k2 is the largest
integer in the interval [10−4ε3n, 10−3ε3n] that is divisible by 3.

We now interpolate between Γ1 and Γ2. Consider the sequence of (k, λ)-partitions of P
for the parameter pairs

(k1, 0), (k1, 1), . . . , (k1, λ(k1)), (k1 + 3, 0), (k1 + 3, 1), . . . ,
(k1 + 3, λ(k1 + 3)), (k1 + 6, 0), . . . , (k2, 0),

where λ(k) denotes the largest λ for which the (k, λ)-partition of P still contains a k-chunk.
Let (k∗, λ∗) be the first parameter pair for which the index of the (k∗, λ∗)-partition Γ3 of P
is larger than 0.1. This parameter pair exists, because (k2, 0) is a candidate.

B Claim 20. The (k∗, λ∗)-partition Γ3 of P has index in [0.1, 0.101]. Here, k∗ is divisible by
3 and lies in the interval [103ε−3, 10−3ε3n].

Proof. The claim on k∗ and the fact that Γ3 has index at least 0.1 follow by construction.
Furthermore, let (k∗∗, λ∗∗) be such that Γ3 is the (k∗∗, λ∗∗ + 1) partition of P (we either
have k∗∗ = k∗ and λ∗∗ = λ∗ − 1; or k∗∗ = k∗ − 1 and λ∗∗ = λ(k∗∗)). Since 210000k∗∗ ≤
106 · 10−3ε3n ≤ n, Lemma 12 implies that the index of Γ3 is at most 0.101. C

We rearrange P to turn Γ3 into a k∗-configuration Γ4 of a closely related point set P2.

B Claim 21. There exists a convex bichromatic point set P2 with 2n points, n red and n
blue, and a k∗-configuration Γ4 of P2 such that (i) P2 differs from P in at most 10−1ε3n

points; and (ii) the index of Γ4 lies in [0.097, 0.103].

Proof. We remove from P all the uncovered points of Γ3 as well as 3 points of the majority
color from each (k∗ + 3)-chunk of Γ3 (and, if necessary, up to 3 points of the minority color,
to keep chunk structure valid). If we consider a single red (k∗ + 3)-chunk C and denote
the original number of blue points in C by b(C) and the resulting number of blue points by
b′(C), then the index of C changes by at most∣∣∣∣ b(C)

k∗ + 3 −
b′(C)
k∗

∣∣∣∣ =
∣∣∣∣k∗b(C)− (k∗ + 3)b′(C)

k∗(k∗ + 3)

∣∣∣∣ ≤ |b(C)− b′(C)|
k∗ + 3 + 3b′(C)

k∗(k∗ + 3) ≤
6

k∗ + 3 ,

since |b(C)− b(C ′)| ≤ 3 and b′(C) ≤ k∗. A similar bound holds for a blue (k∗ + 3)-chunk.
By (1), there are at most 2n/k∗ ≤ 2 ·10−3ε3n many (k∗+3)-chunks, and by Proposition 8,

there at most 2k∗ − 1 ≤ 2 · 10−3 · ε3n uncovered points, so in total we remove at most
14 · 10−3ε3n ≤ 10−1ε3n points. We arrange these points into as many pure chunks of k∗ red
points or of k∗ blue points as possible. This creates at most 10−1ε3(n/k∗) new k∗-chunks,
all of which have index 0. Now, less than k∗ red points and less than k∗ blue points remain.
By (2), there are at least

(1− 0.101) n

7k∗
− 2 ≥ 10−1 · 103ε−3 − 2 ≥ 103

chunks of each color in Γ3. Thus, we can partition the remaining red points into at most 103

groups of size at most 10−3k∗ and add each group to a single blue chunk; and similarly for
the remaining blue points. This changes the index of each chunk by at most 10−3.

We call the resulting rearranged point set P2 and the resulting k∗-configuration Γ4. As
mentioned, P2 was obtained from P by moving at most 10−1 · ε3n points. We change the
index of any existing chunk by at most 6/(k∗ + 3) + 10−3 ≤ 2 · 10−3. Furthermore, we
create at most 10−1ε3(n/k∗) new k∗-chunks (all of index 0) and by (2), we have at least
(1− 0.101)n/(7k∗)− 2 ≥ (10−1 − 10−2 · ε3)(n/k∗) original chunks of each color in Γ3. Thus,
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if we denote by α the average index of the existing red chunks after the rearrangement, by R
the number of existing red chunks, and by R′ the number of new red chunks, the average red
index of Γ4 can differ from α by at most

α− R

R+R′
α = α

R′

R+R′
≤ αR

′

R
≤ 0.102 10−1ε3

10−1 − 10−2ε3 ≤ 10−3,

and similarly for the average blue index of Γ5. It follows that Γ4 has index in [0.097, 0.103].
C

Now, using Lemma 14 with δ = 10−1ε, we get that if the k∗-configuration Γ4 contains at
least δ(n/k∗) red chunks or at least δ(n/k∗) blue chunks with index at least 0.22, then the
rearranged point set P2 admits a separated matching of size at least(

1
2 + 1

40 · 10−2ε2
)
n ≥

(
1
2 + 10−4 · ε2

)
n.

By Claim 21, P2 differs from P by at most 10−1ε3n points. Since ε = 10−5, it follows that
after deleting all matching edges incident to a rearranged point, we obtain the theorem.
Thus, we may assume the following claim:

B Claim 22. At most 10−1 · ε(n/k∗) red chunks and at most 10−1 · ε(n/k∗) blue chunks in
Γ4 have index more than 0.22.

We again rearrange the point set P2 to obtain a point set P3 and a k∗-configuration Γ5
for P3 such that every k∗-chunk in Γ5 has index less than 0.3.

B Claim 23. There exists a convex bichromatic point set P3 with 2n points, n red and n
blue, and a k∗-configuration Γ5 of P3 such that (i) P3 differs from P2 in at most 2 · 10−1εn

points; (ii) the index of Γ5 is at least 0.096; (iii) all chunks in Γ5 have index less than 0.3;
and (iv) k∗ is divisible by 3.

Proof. We remove all the blue points from red chunks of index at least 0.22 and all the red
points from all blue chunks of index at least 0.22. These are at most 2 · 10−1 · εn points
in total. By removing these points, we decrease the index of at most 10−1ε(n/k∗) existing
chunks of each color to 0. By Proposition 9, there are at least

(1− 0.103) n

2k∗
≥ 10−1 · n

k∗
(9)

existing chunks of each color, so this step decreases the average index by at most ε.
We rearrange the deleted points into as many pure chunks with k∗ red points or with k∗

blue points as possible. Less than k∗ red points and less than k∗ blue points remain. By (9),
there are at least 10−1(n/k∗) ≥ 103 chunks of each color, so we group the remaining points
into blocks of size 10−3 · k∗ and distribute the blocks over the existing red and blue chunks.
This increases the average index of the existing chunks by at most 10−3.

Finally, we create at most 10−1 · ε(n/k∗) new chunks of each color (all with index 0), and
the existing number of chunks of the max-index color of Γ4 is at least n/2k∗, by Proposition 9.
Suppose for concreteness that the max-index color of Γ4 is red, and let R be the number of
existing red chunks, R′ the number of new red chunks, and α the average index of the existing
red chunks after the rearrangement. Then, the average red index after the rearrangement
differs from α be at most

α− R

R+R′
α ≤ αR

′

R
≤ 0.104 · 10−1ε

1/2 ≤ ε.

Thus, the red index in the resulting k∗-configuration Γ5 is at least 0.097− 2ε ≥ 0.096. This
implies that the index of Γ5 is at least 0.096. C
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Now, we consider the k∗-configuration Γ5. By Lemma 16, if in Γ5 the middle-chunks of
the max-index color contain in total at most 10−4n points of the min-index color, we get a
separated matching for P3 of size at least (1/2 + ε)n. By deleting all the matching edges that
are incident to the at most 2 · 10−1εn+ 10−1ε3n ≤ 0.3εn points that were moved to obtain
P3 from P , the theorem follows. Similarly, if in Γ5 the middle-chunks of the max-index color
contain in total more than 10−4n points of the min-index color, by Lemma 15, we get a
separated matching for P3 of size at least (1/2 + 104/4)n ≥ (1/2 + ε)n. Again, we obtain the
theorem after deleting edges that are incident to the rearranged points. J
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