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Abstract
We prove general topological Radon-type theorems for sets in Rd, smooth real manifolds or finite
dimensional simplicial complexes. Combined with a recent result of Holmsen and Lee, it gives
fractional Helly theorem, and consequently the existence of weak ε-nets as well as a (p, q)-theorem.

More precisely: Let X be either Rd, smooth real d-manifold, or a finite d-dimensional simplicial
complex. Then if F is a finite, intersection-closed family of sets in X such that the ith reduced Betti
number (with Z2 coefficients) of any set in F is at most b for every non-negative integer i less or
equal to k, then the Radon number of F is bounded in terms of b and X. Here k is the smallest
integer larger or equal to d/2− 1 if X = Rd; k = d− 1 if X is a smooth real d-manifold and not a
surface, k = 0 if X is a surface and k = d if X is a d-dimensional simplicial complex.

Using the recent result of the author and Kalai, we manage to prove the following optimal bound
on fractional Helly number for families of open sets in a surface: Let F be a finite family of open sets
in a surface S such that the intersection of any subfamily of F is either empty, or path-connected.
Then the fractional Helly number of F is at most three. This also settles a conjecture of Holmsen,
Kim, and Lee about an existence of a (p, q)-theorem for open subsets of a surface.
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1 Introduction

The classical Radon’s theorem [15] states that it is possible to split any d+ 2 points in Rd
into two disjoint parts whose convex hulls intersect. It is natural to ask what happens to the
statement, if one starts varying the notion of convexity.

Perhaps the most versatile generalization of the convex hull is the following. Let X be an
underlying set and let F be a finite family of subsets of X. Let S ⊆ X be a set. The convex
hull convF (S) of S relative to F is defined as the intersection of all sets from F that contain
S. If there is no such set, the convex hull is, by definition, X. If convF S = S, the set S is
called F-convex.
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61:2 Bounding Radon Number via Betti Numbers

This definition is closely related to so called convexity spaces1, as defined for example
in [18, 2, 17]. The only difference is that most authors require that in a convexity space
conv ∅ = ∅, which is not needed in any of our considerations. Moreover, it can be easily
forced by including ∅ to F .

In our examples we are also going to use the definition of convF for the family F of all
(standard) convex sets in Rd. We note that in this case convF coincides with the standard
convex hull.

We say that F has Radon number r(F) if r(F) is the smallest integer r such that any
set S ⊆ X of cardinality r can be split into two parts S = P1 t P2 satisfying convF (P1) ∩
convF (P2) 6= ∅. If no such r exists, we put r(F) = ∞. We note that Radon number is
anti-monotone in the sense that r(F) ≤ r(G) for G ⊆ F .

In this paper we show that very mild topological conditions are enough to force a bound
on Radon number for sets in Euclidean space (Theorem 1). A simple trick allows us to
give a version of the result for smooth manifolds or simplicial complexes, see Section 2.1.
Furthermore, the proof technique also works for surfaces (Theorem 2). In Section 2.2 we list
some important consequences, most notably a fractional Helly theorem (Theorem 3), which
allows us to solve a conjecture of Holmsen, Kim, and Lee (a special case of Theorem 6).

2 New results

One can observe that bounded Radon number is not a property of a standard convexity
since it is preserved by topological deformations of Rd. In fact, we can even show that if the
family F is “not too topologically complicated”, its Radon number is bounded. Let us first
explain what “not too topologically complicated” means.

Topological complexity. Let k ≥ 1 be an integer or∞ and F a family of sets in a topological
space X. We define the k-level topological complexity of F as:

sup
{
β̃i

(⋂
G;Z2

)
: G ⊆ F , 0 ≤ i < k

}
and denote it by TCk(F). We call the number TC∞(F) the (full) topological complexity.

Examples. Let us name few examples of families with bounded topological complexity:
family of convex sets in Rd, good covers2, families of spheres and pseudospheres in Rd, finite
families of semialgebraic sets in Rd defined by a constant number of polynomial inequalities,
where all polynomials have a constant degree, etc.

We can now state our main theorem.

I Theorem 1 (Bounded mid-level topological complexity implies Radon). For every non-
negative integers b and d there is a number r(b, d) such that the following holds: If F is a
finite family of sets in Rd with TCdd/2e(F) ≤ b, then r(F) ≤ r(b, d).

Qualitatively, Theorem 1 is sharp in the sense that all (reduced) Betti numbers β̃i,
0 ≤ i < dd/2e, need to be bounded in order to obtain a bounded Radon number, see [7,
Example 3].

1 A pair (X, C) is called a convexity space on X if C ⊂ 2X is a family of subsets of X such that ∅, X ∈ C
and C is closed under taking intersections; and unions of chains. The sets in C are called convex. Note
that the last condition is trivially satisfied whenever C is finite.

2 A family of sets in Rd where intersection of each subfamily is either empty or contractible.
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2.1 Embeddability
We have seen that for a finite family of sets in Rd, in order to have a bounded Radon
number, it suffices to restrict the reduced Betti numbers up to dd/2e − 1. Which Betti
numbers do we need to restrict, if we replace Rd by some other topological space X? The
following paragraphs provide some simple bounds if X is a simplicial complex or a smooth
real manifold. The base for the statements is the following simple observation: Given a
topological space X embeddable into Rd, we may view any subset of X as a subset of Rd
and use Theorem 1.

Since any (finite) k-dimensional simplicial complex embeds into R2k+1, we have:

If K is a (finite) k-dimensional simplicial complex and F is a finite family of sets in
K with TCk+1(F) ≤ b, then r(F) ≤ r(b, 2k + 1).

Again, this bound is qualitatively sharp in the sense that all β̃i, 0 ≤ i ≤ k, need to be
bounded in order to have a bounded Radon number, see [7, Example 3].

Using the strong Whitney’s embedding theorem [19], stating that any smooth real
k-dimensional manifold embeds into R2k, we obtain the following:

If M is a smooth k-dimensional real manifold and F is a finite family of sets in M
with TCk(F) ≤ b, then r(F) ≤ r(b, 2k).

Unlike in the previous statements we do not know whether bounding all reduced Betti
numbers β̃i, 0 ≤ i ≤ k − 1, is necessary. The following result about surfaces indicates that it
possibly suffices to bound less. Let F be a finite family F of sets in a surface3 S. In order to
have a finite Radon number r(F), it is enough to require that TC1(F) is bounded, that is, it
only suffices to have a universal bound on the number of connected components.

I Theorem 2. For each surface S and each integer b ≥ 0 there is a number rS(b) such that
each finite family F of sets in S satisfying TC1(F) ≤ b has r(F) ≤ rS(b).

See Section 3.2 for the proof.
However, at the present time the author does not know how to generalize this result to

higher dimensional manifolds. Given a d-dimensional manifold M , it is an open question
whether r(F) is bounded for all families F ⊆M with bounded TCdd/2e(F).

2.2 Consequences and related results
We say that F has Helly number h(F), if h(F) is the smallest integer h with the following
property: If in a finite subfamily S ⊆ F each h members of S have a point in common,
then all the sets of S have a point in common. If no such h exists, we put h(F) =∞. By
older results, bounded Radon number implies bounded Helly number [12] as well as bounded
Tverberg numbers4 [10, (6)]. From these consequences only the fact that for sets in Rd
bounded TCdd/2e implies bounded Helly number has been shown earlier [7].

Due to recent results by Holmsen and Lee, bounded Radon number implies colorful Helly
theorem [9, Lemma 2.3] and bounded fractional Helly number [9, Theorem 1.1]. Thus, in
combination with Theorem 1 and the results from the previous section, we have obtained
the following fractional Helly theorem.

3 By a surface we mean a compact two-dimensional real manifold.
4 Given an integer k ≥ 3, we say that F has kth Tverberg number rk(F), if rk(F) is the smallest integer
r such that any set S ⊆ X of size rk can be split into k parts S = P1 t P2 t . . . t Pk satisfying⋂k

i=1 convF Pi 6= ∅. We set rk(F) =∞ if there is no such rk.

SoCG 2020



61:4 Bounding Radon Number via Betti Numbers

I Theorem 3. Let X be either Rd, in which case we set k = dd/2e, or a smooth real
d-dimensional manifold, d ≥ 3, in which case we set k = d, or a surface, in which case we set
k = 1, or a (finite) d-dimensional simplicial complex, in which case we set k = d+ 1. Then
for every integer b ≥ 0 there is a number hf = hf (b,X) such that the following holds. For
every α ∈ (0, 1] there exists β = β(α, b,X) > 0 with the following property. Let F be a family
of sets in X with TCk(F) ≤ b and G be a finite family of F-convex sets, having at least an α
fraction of the hf -tuples with non-empty intersection, then there is a point contained in at
least β|G| sets of G.

We note that Theorem 3 can be applied to many spaces X that are often encountered in
geometry. Let us mention Rd, Grassmanians, or flag manifolds.

We refer to the number hf from the theorem as the fractional Helly number. Bounded
fractional Helly number in turn provides a weak ε-net theorem [1] and a (p, q)-theorem [1].
The existence of a fractional Helly theorem for sets with bounded topological complexity
might be seen as the most important application of Theorem 1, not only because it implies
an existence of weak ε-nets and a (p, q)-theorem, but also in its own right. Its existence
answers positively a question by Matoušek (personal communication), also mentioned in [3,
Open Problem 3.6].

The bound on hf we obtain from the proof is not optimal. So what is the optimal bound?
The case of (d− 1)-flats in Rd in general position shows that we cannot hope for anything
better than d+ 1. In Section 4 we establish a reasonably small bound for a large class of
families F of open subsets of surfaces using a bootstrapping method based on the result of
the author and Kalai [11]. In particular, for families F of open sets with TC1(F) = 0, we
obtain the optimal bound.

I Theorem 4 (Fractional Helly for surfaces). Let b ≥ 0 be an integer. We set k = 3 for b = 0
and k = 2b + 4 for b ≥ 1, respectively. Then for any surface S and α ∈ (0, 1) there exists
β = β(α, b, S) > 0 with the following property. Let A be a family of n open subsets of a
surface S with TC1(A) ≤ b. If at least α

(
n
k

)
of the k-tuples of A are intersecting, then there

is intersecting subfamily of A of size at least βn.

We note that the statement holds also for a family of open sets in R2, since the plane
can be seen as an open subset of a 2-dimensional sphere.

The author conjectures that k in Theorem 4 is independent of b, more precisely, the
conjectured value is three. The author also conjectures that the fractional Helly number for
families in Rd is d+ 1.

I Conjecture 5. For any integers b ≥ 1, d ≥ 2 and α ∈ (0, 1) there exists β = β(α, b, d) > 0
with the following property. Let A be a family of n ≥ d+ 1 sets in Rd with TCdd/2e(A) ≤ b.
If at least α

(
n
d+1
)
of the (d+ 1)-tuples of A intersect, then there is an intersecting subfamily

of A of size at least βn.

The proof of Theorem 4 is given in Section 4. By the results in [1], the fractional Helly
theorem is the only ingredient needed to prove a (p, q)-theorem, hence combining Theorem 4
with results in [1] immediately gives Theorem 6. Let us recall that a family F of sets has the
(p, q)-property if among every p sets of F , some q have a point in common.

I Theorem 6. Let b ≥ 0 be an integer. Set k = 3 for b = 0 and k = 2b + 4 for b ≥ 1,
respectively. For any integers p ≥ q ≥ k and a surface S, there exists an integer C = C(p, q, S)
such that the following holds. Let F be a finite family of open subsets of S with TC1(F) ≤ b.
If F has the (p, q)-property, then there is a set X that intersects all sets from F and has at
most C elements.
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The case b = 0 in Theorem 6 settles a conjecture by Holmsen, Kim, and Lee [8, Conj. 5.3].

We have seen that bounded topological complexity has many interesting consequences.
However, there is one parameter of F that cannot be bounded by the topological complexity
alone. We say that F has Carathéodory number c(F), if c is the smallest integer c with the
following property: For any set S ⊆ X and any point x ∈ convF (S), there is a subset S′ ⊆ S
of size at most c such that x ∈ convF (S′). If no such c exists, we put c(F) =∞.

It is easy to construct an example of a finite F of bounded full-level topological complexity
with arbitrarily high Carathéodory’s number.

I Theorem 7 (Bounded topological complexity does not imply Carathéodory). For every positive
integers c ≥ 2 and d ≥ 2 there is a finite family F of sets in Rd of full-level topological
complexity zero, satisfying c(F) = c.

Proof. Indeed, consider a star with c spines T1, T2, . . . , Tc each containing a point ti. Let
Ai :=

⋃
j 6=i Tj and F = {A1, A2, . . . , Ac}.

Then any intersection of the sets Ai is contractible, and hence topologically trivial. Let
S = {t1, . . . , tc}. Observe that convF S = Rd. Let x be any point in (convF S) \

⋃c
i=1Ai.

Then x ∈ convF S, and x /∈ convF S′ for any S′ ( S. Thus c(A) = c.

t1

t2

t3
t4 t5

tc

tc−1

J

3 Technique

The introduction of relative convex hulls allows us to strengthen and polish the techniques
developed in [7]. Independently of these changes we also manage to separate the combinatorial
and topological part of the proof, which improves the overall exposition. We start with the
topological tools (Sections 3.1 and 3.2) including the proof of Theorem 1 modulo Proposition
13. We divide the proof of the main ingredient (Proposition 13) into two parts: Ramsey-type
result (Section 3.3) and induction (Section 3.4).

Notation & convention. For an integer n ≥ 1, let [n] = {1, . . . , n}. If P is a set, we use the
symbol 2P to denote the set of all its subsets and

(
P
n

)
to denote the family of all n-element

subsets of P . We denote by ∆n the standard n-dimensional simplex. If K is a simplicial
complex, V (K) stands for its set of vertices and K(k) stands for its k-dimensional skeleton,
i.e. the subcomplex formed by all its faces of dimension up to k. Unless stated otherwise, we
only work with abstract simplicial complexes.5 All chain groups and chain complexes are
considered with Z2-coefficients.

3.1 Homological almost embeddings
Homological almost embeddings are the first ingredient we need. Before defining them, let
us first recall (standard) almost embeddings. Let R be a topological space.

5 The definition of singular homology forces us to use the geometric standard simplex ∆n on some places.

SoCG 2020
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v1 v2

v3

v4 v′4 v′′4

⇒

1 2

3

4

Figure 1 An example of a homological almost-embedding of K4 into the plane.

I Definition 8. Let K be an (abstract) simplicial complex with geometric realization |K|
and R a topological space. A continuous map f : |K| → R is an almost-embedding of K
into R, if the images of disjoint simplices are disjoint.

I Definition 9. Let K be a simplicial complex, and consider a chain map γ : C∗(K;Z2)→
C∗(R;Z2) from the simplicial chains in K to singular chains in R.

(i) The chain map γ is called nontrivial6 if the image of every vertex of K is a finite set
of points in R (a 0-chain) of odd cardinality.

(ii) The chain map γ is called a homological almost-embedding of K in R if it is nontrivial
and if, additionally, the following holds: whenever σ and τ are disjoint simplices of K,
their image chains γ(σ) and γ(τ) have disjoint supports, where the support of a chain
is the union of (the images of) the singular simplices with nonzero coefficient in that
chain.

In analogy to almost-embeddings, there is no homological almost-embedding of the
k-skeleton of (2k + 2)-dimensional simplex into R2k:

I Theorem 10 (Corollary 13 in [7]). For any k ≥ 0, the k-skeleton ∆(k)
2k+2 of the (2k + 2)-

dimensional simplex has no homological almost-embedding in R2k.

Let us say a few words about the proof. It is based on the standard cohomological proof
of the fact that ∆(k)

2k+2 does not “almost-embed” into R2k and combined with the fact that
cohomology “does not distinguish” between maps and non-trivial chain maps. For details
see [7].

3.2 Constrained chain maps
We continue developing the machinery from [7] in order to capture our more general setting.
To prove Theorem 1, we need one more definition (Definition 11). A curious reader may
compare our definition of constrained chain map with the definition from [7]. Let us just
remark that the definition presented here is more versatile. (Although it might not be
obvious on the first sight.) Unlike the previous definition, the current form allows us to prove
the bound on the Radon number. Nevertheless, both definitions are equivalent under some
special circumstances.

6 If we consider augmented chain complexes with chain groups also in dimension −1, then being nontrivial
is equivalent to requiring that the generator of C−1(K) ∼= Z2 (this generator corresponds to the empty
simplex in K) is mapped to the generator of C−1(R) ∼= Z2.
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Let R be a topological space, let K be a simplicial complex and let γ : C∗(K)→ C∗(R)
be a chain map from the simplicial chains of K to the singular chains of R.

I Definition 11 (Constrained chain map). Let F be a finite family of sets in R and P be a
(multi-)set7 of points in R. Let γ : C∗(K)→ C∗(R) be the aforementioned chain map. We
say that γ is constrained by (F ,Φ) if:

(i) Φ is a map from K to 2P such that Φ(σ ∩ τ) = Φ(σ) ∩ Φ(τ) for all σ, τ ∈ K and
Φ(∅) = ∅.

(ii) For any simplex σ ∈ K, the support of γ(σ) is contained in convF Φ(σ).

If there is some Φ such that a chain map γ from K is constrained by (F ,Φ), we say that
γ is constrained by (F , P ).

We can now prove an analogue of Lemma 26 from [7] and relate constrained maps and
homological almost embeddings.

I Lemma 12. Let γ : C∗(K)→ C∗(R) be a nontrivial chain map constrained by (F , P ). If
convF S ∩ convF T = ∅ whenever S ⊆ P and T ⊆ P are disjoint, then γ is a homological
almost-embedding of K to R.

Proof. Let σ and τ be two disjoint simplices of K. The supports of γ(σ) and γ(τ) are
contained, respectively, in convF Φ(σ) and convF Φ(τ). By the definition of Φ, Φ(σ) and
Φ(τ) are disjoint. Thus, by the assumption

convF Φ(σ) ∩ convF Φ(τ) = ∅.

Therefore, γ is a homological almost-embedding of K. J

The most important ingredient for the proof of Theorem 1 is the following proposition:

I Proposition 13. For any finite simplicial complex K and a non-negative integer b there
exists a constant rK(b) such that the following holds. For any finite family F in R with
TCdimK(F) ≤ b and a set P of at least rK(b) points in R there exists a nontrivial chain
map γ : C∗(K)→ C∗(R) that is constrained by (F , P ).

Furthermore, if dimK ≤ 1, one can even find such γ that is induced by some continuous
map f : |K| → R from the geometric realization |K| of K to R.

Before proving Theorems 1 and 2, let us relate Proposition 13 to the Radon number.

I Proposition 14. Let R be a topological space and K a simplicial complex that does not
homologically embed into R. Then for each integer b ≥ 0 and each finite family F of sets in
R satisfying TCdimK(F) ≤ b, one has r(F) ≤ rK(b), where rK(b) is as in Proposition 13.

Moreover, if dimK ≤ 1, it suffices to assume that K does not almost embed into R.

Proof. If r(F) > rK(b), then there is a set P of rK(b) points such that for any two disjoint
subsets P1, P2 ⊆ P we have convF (P1) ∩ convF (P2) = ∅. Let γ : C∗(K) → C∗(R) be a
nontrivial chain map constrained by (F , P ) given by Proposition 13. By Lemma 12, γ is a
homological almost-embedding of K, a contradiction.

7 However, the switch to multisets requires some minor adjustments. If P = {pi | i ∈ I} is a multiset, one
needs to replace the multiset P by the index set I in all definitions and proofs; and if J ⊆ I consider
convF (J) as a shorthand notation for convF ({pi | i ∈ J}). However, we have decided not to clutter the
main exposition with such technical details.

SoCG 2020



61:8 Bounding Radon Number via Betti Numbers

If dimK ≤ 1, one can take γ to be induced by a continuous map f : |K| → R. However,
one can easily check that in that case γ is a homological almost embedding if and only if f is
an almost embedding. J

Theorems 1 and 2 are now immediate consequences of Proposition 14.

Proof of Theorem 1. Let k = dd/2e. By Theorem 10, ∆(k)
2k+2 does not homologically almost

embeds into Rd, so Proposition 14 applies and yields Theorem 1. J

Proof of Theorem 2. By results in [6], for each surface S there is a finite graph G that does
not almost embed8 into S, so Proposition 14 applies. J

3.3 Combinatorial part of the proof
The classical Ramsey theorem [16] states that for all positive integers k, n and c there is
a number Rk(n; c) such that the following holds. For each set X satisfying |X| ≥ Rk(n; c)
and each coloring9 ρ :

(
X
k

)
→ [c], there is a monochromatic subset Y ⊆ X of size n, where

a subset Y is monochromatic, if all k-tuples in Y have the same color. Note that the case
k = 1 corresponds to the pigeon hole principle and R1(n; c) = n(c− 1) + 1.

In order to perform the induction step in the proof of Proposition 13, we need the following
Ramsey type theorem.

I Proposition 15. For any positive integers k, m, n, c there is a constant Nk = Nk(n;m; c)
such that the following holds. Let X be a set and for every V ⊆ X let ρV :

(
V
k

)
→ [c] be a

coloring10 of the k-element subsets of V . If |X| ≥ Nk, then there always exists an n-element
subset Y ⊆ X and a map M(·) :

(
Y
m

)
→ 2X\Y such that all sets MZ for Z ∈

(
Y
m

)
are disjoint,

and each Z ∈
(
Y
m

)
is monochromatic in ρZ∪MZ

.

The fact that each k-tuple is colored by several different colorings ρV reflects the fact
that we are going to color a cycle z by the singular homology of γ(z) inside convF Φ(V ) for
various different sets V . There, it may easily happen that z and z′ have the same color in V
but different in V ′.

Proof. Let r = Rk(m; c). We claim that it is enough to take

Nk = Rr

(
n+

(
n

m

)
· (r −m);

(
r

m

))
.

Suppose that |X| ≥ Nk and choose an arbitrary order of the elements of X.
By the choice of r, if V ∈

(
X
r

)
, then there is a subset A ⊆ V of size m such that ρV

assigns the same color to all k-tuples in A. Let us introduce another coloring, η :
(
X
r

)
→
([r]
m

)
,

that colors each V ∈
(
X
r

)
by the relative11 position of the first monochromatic A inside V

(with respect to the lexicographic ordering).
By the definition of Nk and the fact that |X| ≥ Nk, there is a subset U of size n+

(
n
m

)
·

(r −m), such that all r-tuples in U have the same color in η, say color Ω.

8 Compared to [6], recent works by Paták, Tancer [14], and Fulek, Kynčl [5] provide much smaller graphs
which are not almost-embeddable into S.

9 A coloring is just another name for a map. However, it is easier to say “the color of z”, instead of “the
image of z under ρ”.

10 If |V | < k, the coloring cV is, by definition, the empty map.
11For illustration: If V = {2, 4, 6, 8, . . . , 36} and A = {2, 4, 34, 36} we assign V the “color” {1, 2, 17, 18},

since the elements of A are on first, second, 17th and 18th position of V .
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Consider the set Y ′ = {1, 2, . . . , n}. Since the rational numbers are dense, we can find an
assignment

N :
(
Y ′

m

)
→

(
Q \ Y ′

r −m

)
Z ′ 7→ NZ′

of mutually disjoint sets NZ′ such that Z ′ is on the position Ω inside Z ′ ∪NZ′ .
The unique order-preserving isomorphism from Y ′ ∪

⋃
NZ′ to U then carries Y ′ to the

desired set Y and NZ′ to the desired sets MZ . J

3.4 The induction
Proof of Proposition 13. We proceed by induction on dimK, similarly as in [7]. If the
reader finds the current exposition too fast, we encourage him/her to consult [7] which goes
slower and shows motivation and necessity of some ideas presented here. Note however, that
our current setup is much more general.

Induction basis. IfK is 0-dimensional with vertices V (K) = {v1, . . . , vm}, we set rK(b) = m.
If P = {x1, . . . , xn} is a point set in R with |P | ≥ m, we can take as Φ the map Φ(vi) = {xi}.
It remains to define γ. We want it to “map” vi to xi. However, γ should be a chain map
from simplicial chains of K to singular chains in Rd. Therefore for each vertex vi we define
γ(vi) as the unique map from12 ∆0 to xi; and extend this definition linearly to the whole
C0(K). By construction, γ is nontrivial and constrained by (F ,Φ).

Induction step. Let dimK = k ≥ 1. The aim is to find a chain map γ : C∗(K(k−1)) →
C∗(R) and a suitable map Φ such that γ is nontrivial, constrained by (F ,Φ) and γ(∂σ) has
trivial homology inside convF Φ(σ) for each k-simplex σ ∈ K. Extending such γ to the whole
complex K is then straightforward.

Let s ≥ 1 be some integer depending on K which we determine later. To construct γ we
will define three auxiliary chain maps

C∗

(
K(k−1)

)
α−−−→ C∗

(
(sdK)(k−1)

) β−−−−−→ C∗

(
∆(k−1)
s

) γ′−−−→ C∗(R),

where sdK is the barycentric subdivision13 of K.

Definition of α. We start with the easiest map, α. It maps each l-simplex σ from K(k−1)

to the sum of the l-simplices in the barycentric subdivision of σ.

Definition of γ′. The map γ′ is obtained from induction. Let the cardinality of P be large
enough. Since dim ∆(k−1)

s = k − 1, by induction hypothesis, there is a nontrivial chain map
γ′ : C∗(∆(k−1)

s )→ C∗(R) and a map Ψ: ∆(k−1)
s → 2P such that γ′ is constrained by (F ,Ψ).

In order to define Φ easily, we need to extend Ψ to ∆s, hence for σ ∈ ∆s we define

Ψ(σ) =
⋃

τ∈∆(k−1)
s ,τ⊆σ

Ψ(τ). (1)

12This is the only place where ∆n is considered to be a geometric simplex.
13The barycentric subdivision sdK of an abstract simplicial complex K is the complex formed by all the

chains contained in the partially ordered set (K \ {∅},⊆), so called the order complex of (K \ {∅},⊆).
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If τ ⊆ σ ∈ ∆(k−1)
s , then Ψ(τ)∩Ψ(σ) was equal to Ψ(τ ∩σ) = Ψ(τ). Thus the equality (1)

does not change the value of Ψ(σ) if σ ∈ ∆(k−1)
s and it is indeed an extension of Ψ. Moreover,

easy calculation shows that Ψ(A) ∩Ψ(B) = Ψ(A ∩B) for any A,B ∈ ∆s.

Definition of β. With the help of Proposition 15 it is now easy to find the map β. Indeed,
for each simplex τ ∈ ∆s, let cτ be the coloring that assigns to each k-simplex σ ⊆ τ the
singular homology class of γ′(∂σ) inside convF (Ψ(τ)). Let m be the number of vertices of
sd ∆k, n the number of vertices of sdK and c the maximal number of elements in H̃k(

⋂
G;Z2),

where G ⊆ F . Clearly c ≤ 2b.
Thus if s ≥ Nk+1(n;m; c) from Proposition 15, the following holds.

(a) There is an inclusion j of (sdK)(k−1) to a simplex Y ⊆ ∆s. We let ϕ : K → 2V (∆s) be
the map that to each σ ∈ K assigns the set j(V (sdσ)).

(b) For each k-simplex µ in K there is a simplexMµ in ∆s with the following three properties:

(i) For all k-simplices τ inside sdµ, the singular homology class of γ′(j(∂τ)) inside
convF Ψ(Mµ ∪ ϕ(µ)) is the same,

(ii) each Mµ is disjoint from Y ,
(iii) all the simplices Mµ are mutually disjoint.

We define Mµ := ∅ for µ ∈ K a simplex of dimension at most k − 1. We set Φ(µ) :=
Ψ(Mµ ∪ ϕ(µ)). Note that for a simplex σ ∈ K(k−1), Φ(σ) reduces to Ψ(ϕ(σ)).

Let β be the chain map induced by j. Observe that Φ satisfies Φ(∅) = ∅ and Φ(A ∩B) =
Φ(A) ∩ Φ(B), A,B ∈ K. Indeed, the first claim is obvious and for the second one let σ, τ be
distinct simplices in K:

Φ(µ) ∩ Φ(τ) = Ψ (Mµ ∪ ϕ(µ)) ∩Ψ (Mτ ∪ ϕ(τ)) = Ψ ([Mµ ∪ ϕ(µ)] ∩ [Mτ ∪ ϕ(τ)])
= Ψ(ϕ(µ) ∩ ϕ(τ)),

where the the second equality express the fact that Ψ respects intersections and the last
equality uses both (bii) and (biii). Then

Φ(µ) ∩ Φ(τ) = Ψ(ϕ(µ) ∩ ϕ(τ)) = Ψ(ϕ(µ ∩ τ)) = Φ(µ ∩ τ)

since ϕ obviously respects intersections and dim(µ ∩ τ) ≤ k − 1.

We define γ on K(k−1) as the composition γ′ ◦ β ◦ α. Then, by the definition, γ is a
nontrivial chain map constrained by (F ,Φ). It remains to extend it to the whole complex K.

If σ is a k-simplex of K, all the k-simplices ζ in sdσ have the same value of γ′β(∂ζ)
inside convF Φ(σ). Since there is an even number of them and we work with Z2-coefficients,
γ(∂σ) has trivial homology inside convF Φ(σ). So for each such σ we may pick some
γσ ∈ Ck (convF Φ(σ);Z2) such that ∂γσ = γ(∂σ) and extend γ by setting γ(σ) := γσ. Then,
by definition, γ is a non-trivial chain map from C∗(K;Z2) to C∗(R;Z2) constrained by (F ,Φ)
and hence by (F , P ).

It remains to show that if dimK ≤ 1, we can take γ that is induced by a continuous map
f : |K| → R. If dimK = 0, we map each point to a point, so the statement is obviously true.

If dimK = 1, we inspect the composition γ = γ′ ◦ β ◦ α. It maps points of K to points
in R in such a way that the homology class of γ(∂τ) inside convF (Ψ(τ)) is trivial for each
edge τ of K. But this means that the endpoints of τ get mapped to points in the same
path-component of convF (Ψ(τ)) and can be connected by an actual path. J
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4 A fractional Helly theorem on surfaces

The aim is to bring the constant hf from Theorem 3 (applied to a surface S) down to three
for b = 0 and to 2b + 4 for b ≥ 1, respectively. This will give Theorem 4. The presented
method is based on the recent result of Kalai and the author [11] and allow us to significantly
decrease hf to a small value as soon as we have a finite upper bound on hf .

Before we perform the bootstrapping, we need few definitions. Let A = {A1, . . . , An}
be subsets of a surface S. Set AI =

⋂
i∈I Ai and let N(A) = {I ∈ [n] : AI 6= ∅} be the

nerve of A. We put fk(A) = |{I ∈ N(A) : |I| = k + 1}|. In words, fk counts the number if
intersecting (k + 1)-tuples from A.

The main tool for the bootstrapping is the following proposition.

I Proposition 16. Let b ≥ 0 and k ≥ 2 be integers satisfying that for b = 0, k ≥ 2 and for
b ≥ 1, k ≥ 2b+ 3, respectively. Let S be a surface. Then for every α1 ∈ (0, 1) there exists
α2 = α2(α1, b, k, S) > 0 such that for any sufficiently large family A of n open sets in S with
TC1(A) ≤ b the following holds:

fk(A) ≥ α1

(
n

k + 1

)
⇒ fk+1(A) ≥ α2

(
n

k + 2

)
.

Let b ≥ 0 and let k0 = k0(b) be an integer depending on b. Namely, we set k0(0) = 3 and
k0(b) = 2b+ 4 for b ≥ 1. Let k ≥ k0 + 1. By a successive application of the proposition we
get that if at least an α-fraction of all k0-tuples intersect, then also some α′-fraction of all
k-tuples intersect. By the (non-optimal) fractional Helly theorem (Theorem 3), we already
know that if some α′-fraction of all hf -tuples intersect, there is some β-fraction of all sets
that have a point in common. Putting k = hf proves Theorem 4.

As mentioned, the proof of Proposition 16 heavily relies on [11, Theorem 4], which can
be reformulated14, in terms of bounded topological complexity, as follows:

I Theorem 17 ([11]). Let S be a surface, b ≥ 0 an integer and let k = k(b) be an integer
depending on b, namely k(0) ≥ 2 and k(b) ≥ 2b + 3 for b ≥ 1. Let A be a finite family of
open sets in S with TC1(A) ≤ b. Then

fk+1(A) = 0 ⇒ fk(A) ≤ c1fk−1(A) + c2,

where c1 > 0, c2 ≥ 0 are constants depending only on k, b and the surface S.

Hypergraphs. A hypergraph is `-uniform if all its edges have size `. A hypergraph is
`-partite, if its vertex set V can be partitioned into ` subsets V1, . . . , V`, called classes, so
that each edge contains at most one point from each Vi. Let K`(t) denote the complete
`-partite `-uniform hypergraph with t vertices in each of its ` vertex classes.

We need the following theorem of Erdős and Simonovits [4] about super-saturated
hypergraphs (see also [13, Chapter 9.2]):

I Theorem 18 ([4]). For any positive integers ` and t and any ε > 0 there exists δ > 0 with
the following property: Let H be an `-uniform hypergraph on n vertices and with at least
ε
(
n
`

)
edges. Then H contains at least bδn`tc copies (not necessarily induced) of K`(t).

14We note that our reformulation is slightly weaker, however, we prefer a simpler exposition which is
moreover adapted to our notion of topological complexity.
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Proof of Proposition 16. Let A = {A1, . . . , An} be a family of sets in S satisfying the
assumptions of the proposition. By Theorem 17, there exist constants c1 > 0, c2 ≥ 0
depending on b, k and S such that fk(A) ≤ c1fk−1(A) + c2 provided fk+1(A) = 0. Since
fk−1(A) ≤

(
n
k

)
, we have

fk+1(A) = 0 ⇒ fk(A) ≤ (c1 + c2)
(
n

k

)
. (2)

Let H be a (k + 1)-uniform hypergraph whose vertices and edges correspond to the
vertices and k-simplices of the nerve N of A. Set

t :=
⌈

(c1 + c2) · (k + 1)k

k!

⌉
By Erdős-Simonovits theorem (ε = α1, ` = k + 1), there is at least δn(k+1)t copies of

Kk+1(t) in H.
Since Kk+1(t) has (k + 1)t vertices and tk+1 edges, it follows by (2) that for every copy

of Kk+1(t) in H there is an intersecting subfamily of size k + 2 among the corresponding
members of A. Indeed, the implication (2) translates into checking that for k ≥ 2,

tk+1 > (c1 + c2)
(

(k + 1)t
k

)
.

On the other hand, each such intersecting (k+2)-tuple is contained in at most n(k+1)t−(k+2)

distinct copies of Kk+1(t) (this is the number of choices for the vertices not belonging to the
considered (k + 2)-tuple), and the result follows (i.e. fk+1(A) ≥ δnk+2 ≥ α2

(
n
k+2
)
). J
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