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Abstract
We study the problem of finding a minimum homology basis, that is, a shortest set of cycles that
generates the 1-dimensional homology classes with Z2 coefficients in a given simplicial complex K.
This problem has been extensively studied in the last few years. For general complexes, the current
best deterministic algorithm, by Dey et al. [8], runs in O(Nω + N2g) time, where N denotes the
number of simplices in K, g denotes the rank of the 1-homology group of K, and ω denotes the
exponent of matrix multiplication. In this paper, we present two conceptually simple randomized
algorithms that compute a minimum homology basis of a general simplicial complex K. The first
algorithm runs in Õ(mω) time, where m denotes the number of edges in K, whereas the second
algorithm runs in O(mω + Nmω−1) time.

We also study the problem of finding a minimum cycle basis in an undirected graph G with n

vertices and m edges. The best known algorithm for this problem runs in O(mω) time. Our algorithm,
which has a simpler high-level description, but is slightly more expensive, runs in Õ(mω) time.
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1 Introduction

Minimum cycle bases in graphs have several applications, for instance, in analysis of elec-
trical networks, analysis of chemical and biological pathways, periodic scheduling, surface
reconstruction and graph drawing. Also, algorithms from diverse application domains like
electrical circuit theory and structural engineering require cycle basis computation as a
preprocessing step. Cycle bases of small size offer a compact description that is advantageous
from a mathematical as well as from an application viewpoint. For this reason, the problem
of computing a minimum cycle basis has received a lot of attention, both in its general setting
as well as in special classes of graphs such as planar graphs, sparse graphs, dense graphs,
network graphs, and so on. We refer the reader to [15] for a comprehensive survey.

In topological data analysis, “holes” of different dimensions in a geometric dataset
constitute “features” of the data. Algebraic topology offers a rigorous language to formalize
our intuitive picture of holes in these geometric objects. More precisely, a basis for the first
homology group H1 can be taken as a representative of the one-dimensional holes in the
geometric object. The advantages of using minimum homology bases are twofold: firstly,
one can bring geometry in picture by assigning appropriate weights to edges, and secondly,
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smaller cycles are easier to understand and analyze, especially visually. We focus solely
on the bases of the first homology group since the problem of computing a shortest basis
for higher homology groups with Z2 coefficients was shown to be NP-hard by Chen and
Freedman [5].

2 Background and Preliminaries

2.1 Cycle Basis
Let G = (V,E) be a connected graph. A subgraph of G which has even degree for each
vertex is called a cycle of G. A cycle is called elementary if the set of edges form a connected
subgraph in which each vertex has degree 2. We associate an incidence vector C, indexed on
E, to each cycle, so that Ce = 1 if e is an edge of the cycle, and Ce = 0 otherwise. The set of
incidence vectors of cycles forms a vector space over Z2, called the cycle space of G. It is a
well-known fact that for a connected graph G, the cycle space is of dimension |E| − |V |+ 1.
Throughout, we use ν to denote the dimension of the cycle space of a graph. A basis of the
cycle space, that is, a maximal linearly independent set of cycles is called a cycle basis.

Suppose that the edges of G have non-negative weights. Then, the weight of a cycle is the
sum of the weights of its edges, and the weight of a cycle basis is the sum of the weights of
the basis elements. The problem of computing a cycle basis of minimum weight is called the
minimum cycle basis problem. Since we assume all edge weights to be non-negative, there
always exists a minimum cycle basis of elementary cycles, allowing us to focus on minimum
cycle basis comprising entirely of elementary cycles.

A simple cycle C is tight if it contains a shortest path between every pair of points in
C. We denote the set of all tight cycles in the graph by T . Tight cycles are sometimes
also referred to as isometric cycles [1, 15]. Tight cycles play an important role in designing
algorithms for minimum cycle basis, owing to the following theorem by Horton.

I Theorem 1 (Horton [13]). A minimum cycle basisM consists only of tight cycles.

A key structural property about minimum cycle bases was proved by de Pina.

I Theorem 2 (de Pina [7]). Cycles C1 . . . , Cν form a minimum cycle basis if there are vectors
S1, . . . , Sν such that for all i, 1 ≤ i ≤ ν, the following hold:
Prefix Orthogonality: 〈Cj , Si〉 = 0 for all 1 ≤ j ≤ i.
Non-Orthogonality: 〈Ci, Si〉 = 1.
Shortness: Ci is a minimum weight cycle in T with 〈Ci, Si〉 = 1.

The vectors S1, . . . , Sν in Theorem 2 are called support vectors. The recent line of
algorithmic work [1, 7, 16, 17, 18] on the minimum cycle basis problem rely on Theorem 2.
In fact, these algorithms may all be seen as refinements of the algorithm by de Pina, see
Algorithm 1.

Algorithm 1 De Pina’s Algorithm for computing a minimum cycle basis.

1: Initialize Si to the i-th unit vector ei for 1 ≤ i ≤ ν
2: for i← 1, . . . , ν do
3: Compute a minimum weight cycle Ci with 〈Ci, Si〉 = 1.
4: for j ← i+ 1, . . . , ν do
5: Sj = Sj + 〈Ci, Sj〉Si
6: end for
7: end for
8: Return {C1, . . . , Cν}.
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Algorithm 1 works by inductively maintaining a set of support vectors {Si} so that the
conditions of Theorem 2 are satisfied when the algorithm terminates. In particular, Lines 4
and 5 of the algorithm ensure that the set of vectors Sj for j > i are orthogonal to vectors
C1, . . . , Ci. Updating the vectors Sj as outlined in Lines 4 and 5 of Algorithm 1 takes time
O(m3) time in total. Using a divide and conquer procedure for maintaining Sj , Kavitha et
al. [17] improved the cost of maintaining the support vectors to O(mω). See Algorithm 2.

Algorithm 2 Divide and conquer procedure for fast computation of support vectors by Kavitha
et al. [17].

1: Initialize Si to the i-th unit vector ei for 1 ≤ i ≤ ν.
2: MinCycleBasis(1, ν).

3: procedure MinCycleBasis(`, u)
4: if ` = u then
5: Compute a minimum weight cycle C` with 〈C`, S`〉 = 1.
6: else
7: q ← b(`+u)/2c.
8: MinCycleBasis(`, q).
9: C← [C`, . . . , Cq].
10: W← (CT [S`, . . . , Sq])−1CT [Sq+1, . . . , Su].
11: [Sq+1, . . . , Su]← [Sq+1, . . . , Su] + [S`, . . . ., Sq]W.
12: MinCycleBasis(q + 1, u).
13: end if
14: end procedure
15: Return {C1, . . . , Cν}.

I Lemma 3 (Lemma 5.6 in [15]). The total number of arithmetic operations performed in
lines 9 to 11 of Algorithm 2 is O(mω). That is, the support vectors satisfying conditions of
Theorem 2 can be maintained in O(mω) time.

Finally, in [1], Amaldi et al. designed an O(mω) time algorithm for computing a minimum
cycle basis by improving the complexity of Line 5 of Algorithm 2 to o(mω) (from O(m2n)
in [17]), while using the O(mω) time divide-and-conquer template for maintaining the support
vectors as presented in Algorithm 2. The o(mω) procedure for Line 3 is achieved by performing
a Monte Carlo binary search on the set of tight cycles (sorted by weight) to find a minimum
weight cycle Ci that satisfies 〈Ci, Si〉 = 1. An efficient binary search is made possible on
account of the following key structural property about tight cycles.

I Theorem 4 (Amaldi et al. [1]). The total length of the tight cycles is at most nν.

Amaldi et al. [1] also show that there exists an O(nm) algorithm to compute the set of
all the tight cycles of an undirected graph G. See Sections 2 and 3 of [1] for details about
Amaldi et al.’s algorithm.

2.2 Matrix operations
The column rank profile (respectively row rank profile) of an m× n matrix A with rank r, is
the lexicographically smallest sequence of r indices [i1, i2, . . . , ir] (respectively [j1, j2, . . . , jr])
of linearly independent columns (respectively rows) of A. Suppose that {a1, a2, . . . , an}
represent the columns of A. Then, following Busaryev et al. [3], we define the earliest basis
of A as the set of columns E(A) = {ai1 , ai2 , . . . , air}.

SoCG 2020
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It is well-known that classical Gaussian elimination can be used to compute rank profile
in O(nmr) time. The current state-of-the-art deterministic matrix rank profile algorithms
run in O(mnrω−2) time.

I Theorem 5 ([10,14]). There is a deterministic O(mnrω−2) time algorithm to compute the
column rank profile of an m× n matrix A.

In case of randomized algorithms, Cheung, Kwok and Lau [6] presented a breakthrough
Monte Carlo algorithm for rank computation that runs in (nnz(A) + rω)1+o(1) time, where
o(1) in the exponent captures some missing multiplicative logn and logm factors, and nnz(A)
denotes the number of nonzero entries in A. Equivalently, the complexity for Cheung et al.’s
algorithm can also be written as Õ(nnz(A)+rω). The notation Õ(·) is often used in literature
to hide small polylogarithmic factors in time bounds. While the algorithm by Cheung et al.
also computes r linearly independent columns of A, the columns may not correspond to the
column rank profile. However, building upon Cheung et al.’s work, Storjohann and Yang
established the following result.

I Theorem 6 (Storjohann and Yang [19,20,21]). There exists a Monte Carlo algorithm for
computing row (resp. column) rank profile of a matrix A that runs in (nnz(A) + rω)1+o(1)

time. The failure probability of this algorithm is 1/2.

Once again, the o(1) in the exponent captures some missing multiplicative logn and
logm factors, see [19], and hence the complexity can also be written as Õ(nnz(A) + rω).

2.3 Homology
In this work, we restrict our attention to simplicial homology with Z2 coefficients. For a
general introduction to algebraic topology, we refer the reader to [12]. Below we give a brief
description of homology over Z2.

Let K be a connected simplicial complex. We will denote by K(p) the set of p-dimensional
simplices in K, and np the number of p-dimensional simplices in K. Also, the p-dimensional
skeleton ofK will be denoted byKp. In particular, the 1-skeleton ofK (which is an undirected
graph) will be denoted by K1.

We consider formal sums of simplices with Z2 coefficients, that is, sums of the form∑
σ∈K(p) aσσ, where each aσ ∈ {0, 1}. The expression

∑
σ∈K(p) aσσ is called a p-chain. Since

chains can be added to each other, they form an Abelian group, denoted by Cp(K). Since
we consider formal sums with coefficients coming from Z2, which is a field, Cp(K), in this
case, is a vector space of dimension np over Z2. The p-simplices in K form a (natural) basis
for Cp(K). This establishes a natural one-to-one correspondence between elements of Cp(K)
and subsets of K(p). Thus, associated with each chain is an incidence vector v, indexed on
K(p), where vσ = 1 if σ is a simplex of v, and vσ = 0 otherwise. The boundary of a p-simplex
is a (p− 1)-chain that corresponds to the set of its (p− 1)-faces. This map can be linearly
extended from p-simplices to p-chains, where the boundary of a chain is the Z2-sum of the
boundaries of its elements. Such an extension is known as the boundary homomorphism, and
denoted by ∂p : Cp(K)→ Cp−1(K). A chain ζ ∈ Cp(K) is called a p-cycle if ∂pζ = 0, that is,
ζ ∈ ker ∂p. The group of p-dimensional cycles is denoted by Zp(K). As before, since we are
working with Z2 coefficients, Zp(K) is a vector space over Z2. A chain η ∈ Cp(K) is said to
be a p-boundary if η = ∂p+1c for some chain c ∈ Cp+1(K), that is, η ∈ im ∂p+1. The group
of p-dimensional boundaries is denoted by Bp(K). In our case, Bp(K) is also a vector space,
and in fact a subspace of Cp(K).
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Figure 1 Consider complexes K and L in the figure above with unit weights on the edges.
Since K has no 2-simplices, its 1-skeleton K1 is identical to K itself. The set of cycles C =
{{1, 2, 5}, {1, 4, 8}, {3, 4, 7}, {2, 3, 6}, {1, 2, 3, 4}} constitutes a minimum cycle basis for the respective
1-skeletons K1 and L1 (viewed as graphs). The set C also constitutes a minimum homology basis for
K. The set C′ = {{1, 2, 3, 4}, {3, 4, 7}} constitutes a minimum homology basis for L.

Thus, we can consider the quotient space Hp(K) = Zp(K)/Bp(K). The elements of the
vector space Hp(K), known as the p-th homology group of K, are equivalence classes of
p-cycles, where p-cycles are equivalent if their Z2-difference is a p-boundary. Equivalent cycles
are said to be homologous. For a p-cycle ζ, its corresponding homology class is denoted by
[ζ]. Bases of Bp(K), Zp(K) and Hp(K) are called boundary bases, cycle bases, and homology
bases respectively. The dimension of the p-th homology group of K is called the p-th Betti
number of K, denoted by βp(K). We are primarily interested in the first Betti number
β1(K). For notational convenience, let g = β1(K), and denote the dimension of B1(K) by b.

Using the natural bases for Cp(K) and Cp−1(K), the matrix [∂pσ1 ∂pσ2 · · · ∂pσnp ] whose
column vectors are boundaries of p-simplices is called the p-th boundary matrix. Abusing
notation, we denote the p-th boundary matrix by ∂p. For the rest of the paper, we use n,m
and N to denote the number of vertices, edges and simplices in the complex respectively.

A set of p-cycles {ζ1, . . . , ζg} is called a homology cycle basis if the set of classes
{[ζ1], . . . , [ζg]} forms a homology basis. For brevity, we abuse notation by using the term
“homology basis” for {ζ1, . . . , ζg}. Assigning non-negative weights to the edges of K, the
weight of a cycle is the sum of the weights of its edges, and the weight of a homology basis is
the sum of the weights of the basis elements. The problem of computing a minimum weight
basis of H1(K) is called the minimum homology basis problem. Note that, when the input
simplicial complex is a graph, the notions of homology basis and cycle basis coincide. Please
refer to Figure 1 for an example.

For the special case when the input complex is a surface, Erickson and Whittlesey [11]
gave a O(N2 logN + gN2 + g3N)-time algorithm. Recently, Borradaile et al. [2] gave an
improved deterministic algorithm that runs in O((h+ c)3

n logn+m) where c denotes the
number of boundary components, and h denotes the genus of the surface. For small values
of c and h, the algorithm runs in nearly linear time.

For general complexes, Dey et al. [9] and Chen and Freedman [4] generalized the results
by Erickson and Whittlesey [11] to arbitrary complexes. Subsequently, introducing the
technique of annotations, Busaryev et al. [3] improved the complexity to O(Nω +N2gω−1).
More recently, Dey et al. [8] designed an O(Nω +N2g) time algorithm by adapting the divide
and conquer algorithm for computing a minimum cycle basis of Kavitha et al. [17] for the
purpose of computing a minimum homology basis. Dey et al. also designed a randomized
2-approximation algorithm for the same problem that runs in O(Nω

√
N logN) expected time.

SoCG 2020
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3 An algorithm for computing minimum cycle basis

Given a graph G = (V,E), let {C1, . . . , C|T |} be the list of tight cycles in G sorted by
weight, and let MT (G) = [C1 C2 . . . C|T |] be the matrix formed with cycles Ci as its columns.
Using Theorem 4, since the total length of tight cycles is at most nν, and since each tight
cycle consists of at least three edges, we have that |T | ≤ nν

3 . Also, the rank of MT (G) is ν
and MT (G) is a sparse matrix with nnz(MT (G)) bounded by nν. This sparsity is implicitly
used in the design of the Monte Carlo binary search algorithm for computing minimum cycle
basis, as described in [1]. We now present a simple and fast algorithm for minimum cycle
basis that exploits the sparsity and the low rank of MT (G) more directly.

Algorithm 3 Algorithm for minimum cycle basis.

1: Compute the sorted list of tight cycles in G, and assemble the matrix MT (G).
2: Compute the column rank profile [i1, i2, . . . , iν ] of MT (G) using Storjohann and Yang’s

algorithm described in [20].
3: Return E(MT (G)).

I Theorem 7. There is a Monte Carlo algorithm that computes the minimum cycle basis in
Õ(mω) time, with failure probability at most 1/2.

Proof. The correctness of the algorithm follows immediately from Theorem 1. For instance,
if E(MT (G)) is not a minimum cycle basis, then let k be the smallest integer such that
the k-th smallest cycle in a minimum cycle basis contained in MT (G) is smaller than the
k-th smallest cycle in E(MT (G)). Since the columns in MT (G) are sorted by weight, the
existence of such a k contradicts the fact that E(MT (G)) is the earliest basis of MT (G).

The list of tight cycles in G can be computed in O(nm) time using the algorithm described
in Section 2 of [1]. Hence, Step 1 of Algorithm 3 takes O(nm log(nm)) time (which in turn is
same as O(nm logn) time). Moreover, using Theorem 6, the complexity of Step 2 is bounded
by Õ(nν + νω). Since n, ν < m, the complexity of Algorithm 3 is bounded by Õ(mω). Using
Theorem 6, the failure probability of the algorithm is at most 1/2. J

4 Minimum homology basis, minimum cycle basis and tight cycles

To begin with, note that since every graph is a 1-dimensional simplicial complex, the minimum
cycle basis problem is a restriction of the minimum homology basis problem to instances
(simplicial complexes) that have no 2-simplices. In this section, we refine this observation by
deriving a closer relation between the two problems.

We assume that we are provided a complex K in which all edges are assigned non-negative
weights. Given a non-negative weight w(σ) for each edge σ, we define the weight of a cycle
z as the sum of the weights of the edges, w(z) =

∑
σ∈z w(σ). Let B = {η1, . . . , ηb} be a

basis for the boundary vector space B1(K) indexed so that w(ηi) ≤ w(ηi+1), 1 ≤ i < b

(with ties broken arbitrarily). Also, let H = {ζ1, . . . , ζg} be a minimum homology basis of
K indexed so that w(ζi) ≤ w(ζi+1), 1 ≤ i < g (with ties broken arbitrarily). Then, the
set C = {η1, . . . , ηb, ζ1, . . . , ζg} is a cycle basis for K1. LetM be a minimum cycle basis of
K1. Every element C ∈ M is homologous to a cycle

∑g
i=1 aiζi where ai ∈ {0, 1} for each

i. Then, for some fixed integers p and q,M = {B1, . . . , Bq, C1, . . . , Cp} is indexed so that
the elements B1, . . . , Bq are null-homologous and the elements C1, . . . , Cp are non-bounding
cycles. Also, we have w(Bj) ≤ w(Bj+1) for 1 ≤ j < q (with ties broken arbitrarily), and
w(Cj) ≤ w(Cj+1) for 1 ≤ j < p (with ties broken arbitrarily).
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I Lemma 8.
1. For every minimum homology basis, w(ζ1) = w(C1).
2. There exists a minimum homology basis H with ζ1 homologous to C1.

Proof. Suppose there exists a minimum homology basis with w(ζ1) < w(C1). Let ζ1 =∑p
i=1 aiCi +

∑q
j=1 bjBj , where ai ∈ {0, 1} for each i and bj ∈ {0, 1} for each j. Since

ζ1 is a non-bounding cycle, there exists at least one i with ai = 1. Let ` ∈ [1, p] be the
largest index in the above equation with a` = 1. Rewriting the equation, we obtain C` =∑`−1
i=1 aiCi +

∑q
j=1 bjBj + ζ1. Since w(ζ1) < w(C1) by assumption, we have w(ζ1) < w(C`)

because w(C`) ≥ w(C1) by indexing ofM. It follows that the basis obtained by exchanging
C` for ζ1, that is, {B1, . . . , Bq, ζ1, C1, . . . , C`−1, C`+1, . . . , Cp} gives a smaller cycle basis than
the minimum one, a contradiction.

Now, suppose there exists a minimum homology basis with w(ζ1) > w(C1). Let C1 =∑g
i=1 aiζi +

∑b
j=1 bjηj . As before, since C1 is not null-homologous, there exists at least one

i with ai = 1. Let ` ∈ [1, g] be the largest index in the above equation with a` = 1. Then,
ζ` =

∑`−1
i=1 aiζi +

∑b
j=1 bjηj + C1. Note that w(ζ`) ≥ w(ζ1) because of the indexing, and

w(ζ1) > w(C1) by assumption. Therefore, the set {C1, ζ1, . . . , ζ`−1, ζ`+1, . . . , ζp} obtained by
exchanging ζ` for C1 gives a smaller homology basis than the minimum one, a contradiction.
This proves the first part of the lemma.

From the first part of the lemma, we have w(ζ1) = w(C1) for every minimum homology
basis. Let H be an arbitrary minimum homology basis. Then, if C1 is not homologous to
ζ1 ∈ H, by using basis exchange we can obtain H = {C1, ζ1, . . . , ζ`−1, ζ`+1, . . . , ζp}, which is
the minimum homology basis with its first element homologous to C1, and having the same
weight as w(C1), proving the claim. J

We now prove a theorem which allows us to harness fast algorithms for minimum cycle
basis in service of improving time complexity of algorithms for minimum homology basis.

I Theorem 9. Given a simplicial complex K, and a minimum cycle basisM = {B1, . . . , Bq,

C1, . . . , Cp} of K1, there exists a minimum homology basis H of K, and a set {Ci1 , . . . , Cig} ⊂
{C1, . . . , Cp} ⊂ M such that, for every k ∈ [1, g], we have Cik homologous to a cycle spanned
by ζ1, . . . , ζk, and w(Cik ) = w(ζk). Moreover, i1 = 1, and ik for k > 1 is the smallest index
for which Cik is not homologous to any cycle spanned by {Ci1 , . . . , Cik−1}. In particular, the
set {Ci1 , . . . , Cig} ⊂ M constitutes a minimum homology basis of K.

Proof. The key argument is essentially the same as for the proof of Lemma 8. Nonetheless,
we present it here for the sake of completeness. We shall prove the claim by induction.
Lemma 8 covers the base case. By induction hypothesis, there is an integer k, and a minimum
homology basis H = {ζ1, . . . , ζg}, for which, vectors {Ci1 , . . . , Cik} ⊆ {C1, . . . , Cp} are such
that, for every j ∈ [1, k], we have Cij homologous to a cycle spanned by ζ1, . . . , ζj , and
w(Cij ) = w(ζj). Let ik+1 be the smallest index for which Cik+1 ∈ {C1, . . . , Cp} is not
homologous to any cycle spanned by {Ci1 , . . . , Cik}.

Suppose that w(ζk+1) < w(Cik+1). Let ζk+1 =
∑p
i=1 aiCi +

∑q
j=1 bjBj . Let ` ∈ [1, p] be

the largest index in the above equation with a` = 1. Then, C` =
∑`−1
i=1 aiCi +

∑q
j=1 bjBj +

ζk+1. From the induction hypothesis, we can infer that ` ≥ ik+1, and hence w(C`) ≥ w(Cik+1)
by indexing ofM. Thus, if w(ζk+1) < w(Cik+1), then we have w(ζk+1) < w(C`). It follows
that, {B1, . . . , Bq, ζk+1, C1, . . . , C`−1, C`+1, . . . , Cp} obtained by exchanging C` for ζk+1 gives
a smaller cycle basis than the minimum one, contradicting the minimality of H.

Now, suppose that w(ζk+1) > w(Cik+1). Let Cik+1 =
∑g
i=1 aiζi+

∑b
j=1 bjηj . Let ` ∈ [1, g]

be the largest index in the above equation with a` = 1. Rewriting the equation, we obtain
ζ` =

∑`−1
i=1 aiζi +

∑b
j=1 bjηj + Cik+1 . Again, using the induction hypothesis, ` ≥ k + 1, and

SoCG 2020
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hence, w(ζ`) ≥ w(ζk+1) because of the indexing. Since we have assumed w(ζk+1) > w(Cik+1),
this gives us w(ζ`) > w(Cik+1). Hence, the set {Cik+1 , ζ1, . . . , ζ`−1, ζ`+1, . . . , ζp} obtained by
exchanging ζ` for Cik+1 gives a smaller homology basis than the minimum one, contradicting
the minimality of H.

From the first part of the proof, we have established that w(Cik+1) = w(ζk+1). So, if
Cik+1 is not homologous to ζk+1 ∈ H and w(ζk+1) = w(Cik+1), then H = {Cik+1 , ζ1, . . . ,

ζ`−1, ζ`+1, . . . , ζp} obtained by exchanging ζ` for Cik+1 is the desired minimum homology
basis, proving the induction claim. J

Previously, it was known from Erickson and Whittlesey [11] that H is contained in T .

I Theorem 10 (Erickson and Whittlesey [11]). With non-negative weights, every cycle in a
shortest basis of H1(K) is tight. That is, if H is any minimum homology basis of K, then
H ⊂ T .

Using Theorems 1 and 9, we can refine the above observation.

I Corollary 11. Let T denote the set of tight cycles of K1, and letM be a minimum cycle
basis of K1. Then, there exists a minimum homology basis H of K such that H ⊂M ⊂ T .

5 Algorithms for minimum homology basis

To begin with, note that since Cp(K),Zp(K),Bp(K) and Hp(K) are vector spaces, the problem
of computing a minimum homology basis can be couched in terms of matrix operations.

Given a complex K, let {C1, . . . , C|T |} be the list of tight cycles in K1 sorted by weight,
and let MT (K1) = [C1 C2 . . . C|T |] be the matrix formed with cycles Ci as its columns. Then,
the matrix Ẑ = [∂2 | MT (K1)] has O(N +nν) columns and O(N +nν) non-zero entries since
MT (K1) has O(nν) columns and O(nν) non-zero entries by Theorem 4, and ∂2 has O(N)
columns and O(N) non-zero entries. Since Ẑ has m rows, the rank of Ẑ is bounded by m.
This immediately suggests an algorithm for computing minimum homology basis analogous
to Algorithm 3.

Algorithm 4 Algorithm for minimum homology basis.

1: Compute the sorted list of tight cycles in MT (K1), and assemble matrix Ẑ.
2: Compute the column rank profile [j1, j2, . . . , jb, i1, i2, . . . , ig] of Ẑ using Storjohann and

Yang’s algorithm [20], where columns {Ẑjk
} and {Ẑi`} are linearly independent columns

of ∂2 and MT (K1) respectively.
3: Return Columns {Ẑi1 , Ẑi2 , . . . , Ẑig}.

I Theorem 12. Algorithm 4 is a Monte Carlo algorithm for computing a minimum homology
basis that runs in Õ(mω) time with failure probability at most 1

2 .

Proof. The correctness of the algorithm is an immediate consequence of Theorem 9 since,
by definition, ik is the smallest index for which Ẑik is not homologous to any cycle spanned
by {Ẑi1 , . . . , Ẑik−1}.

The list of tight cycles in G can be computed in O(nm) time using the algorithm described
in Section 2 of [1]. Hence, Step 1 of Algorithm 4 takes O(nm logn) time. Moreover, using
Theorem 6, the complexity of Step 2 is bounded by Õ(N + nν +mω), which is the same as
Õ(mω) since N and nν are both in Õ(mω), and the failure probability is at most 1/2. J
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When the number of 2-simplices in complex K is significantly smaller than the number
of edges, the complexity for minimum homology can be slightly improved by decoupling
the minimum homology basis computation from the minimum cycle basis computation, as
illustrated in Algorithm 5.

Algorithm 5 Algorithm for minimum homology basis.

1: Compute a minimum cycle basisM of K1 using the Monte Carlo algorithm by Amaldi
et al. [1]. Let BM be the matrix whose columns are cycle vectors inM sorted by weight.

2: Assemble the matrix Z̃ = [∂2 | BM].
3: Compute the column rank profile [j1, j2, . . . , jb, i1, i2, . . . , ig] of Z̃ using the determin-

istic algorithm by Jeannerod et al. [14], where columns {Z̃jk
} and {Z̃i`} are linearly

independent columns of ∂2 and BM respectively.
4: Return Columns {Z̃i1 , Z̃i2 , . . . , Z̃ig}.

I Theorem 13. Minimum homology basis can be computed in O(mω +Nmω−1) time using
the Monte Carlo algorithm described in Algorithm 5. The algorithm fails with probability at
most ν log(nm) 2−k, where k = m0.1.

Proof. As in Theorem 12, the correctness of the algorithm is an immediate consequence of
Theorem 9. The algorithm fails only when Step 1 returns an incorrect answer, the probability
of which is as low as ν log(nm) 2−k, where k = m0.1, see Theorem 3.2 of [1].

The minimum cycle basis algorithm by Amaldi et al. [1] runs in O(mω) time (assuming
the current exponent of matrix multiplication ω > 2). Furthermore, using Theorem 5, the
complexity of Line 3 is bounded by O(Nmω−1). So, the overall complexity of the algorithm
is O(mω +Nmω−1). J

Note that in Line 3 of Algorithm 5, it is possible to replace the deterministic algorithm by
Jeannerod et al. [14] with the Monte Carlo algorithm by Storjohann and Yang’s algorithm [20].
In that case, the complexity of the algorithm will once again be Õ(mω), and the failure
probability will be at most 1− 1

2 (1− ν log(nm)2−k).
We would like to point out that the complexities of Algorithm 4 and Algorithm 5 are,

in general, not comparable. For instance, for families of complexes with N1−ε = ω(m), for
some ε > 0, Algorithm 4 is faster than Algorithm 5. However, for families of complexes with
N = o(m), Algorithm 5 is faster than Algorithm 4. Moreover, for families of complexes with
g = Θ(N), where, as before, g denotes the rank of H1(K), Algorithms 4 and 5 are both faster
than Dey et al.’s algorithm [8] (which runs in O(Nω +N2g) time).

6 Discussion

In this paper, we show that questions about minimum cycle basis and minimum homology
basis can be naturally recast into the problem of computing rank profiles of matrices, leading
to fast algorithms with simple and elegant high-level descriptions. The column rank profile
(or the earliest basis) of a matrix has previously been used to compute the minimum homology
basis of a simplicial complex [3, 8]. Such a greedy approach that picks, at each step, an
independent cycle of the smallest index, works because of the matroid structure of homology
bases and cycle bases. What’s novel about our approach is that we point out that, for both
problems, independence can be efficiently checked owing to the sparsity of the matrices
comprising of candidate cycles.

SoCG 2020
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It is also worth noting that for the algorithms presented in this paper, the simplicity of
high-level description doesn’t translate to simple algorithms that can be easily implemented
because the black-box subroutines employed by these algorithms are fairly complex.

Maintenance of support vectors has served as a key ingredient in designing algorithms for
minimum cycle basis since de Pina. Our algorithm, however, does not explicitly maintain
support vectors, and in that sense, is somewhat conceptually different from the recent
algorithms for computing minimum cycle bases.
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