Algorithms for Subpath Convex Hull Queries and
Ray-Shooting Among Segments

Haitao Wang
Department of Computer Science, Utah State University, Logan, UT 84322, USA
haitao.wang@usu.edu

—— Abstract
In this paper, we first consider the subpath convex hull query problem: Given a simple path 7 of n
vertices, preprocess it so that the convex hull of any query subpath of 7 can be quickly obtained.
Previously, Guibas, Hershberger, and Snoeyink [SODA 90’] proposed a data structure of O(n)
space and O(lognloglogn) query time; reducing the query time to O(logn) increases the space to
O(nloglogn). We present an improved result that uses O(n) space while achieving O(logn) query
time. Like the previous work, our query algorithm returns a compact interval tree representing the
convex hull so that standard binary-search-based queries on the hull can be performed in O(logn)
time each. Our new result leads to improvements for several other problems.

In particular, with the help of the above result, we present new algorithms for the ray-shooting
problem among segments. Given a set of n (possibly intersecting) line segments in the plane,
preprocess it so that the first segment hit by a query ray can be quickly found. We give a data
structure of O(nlogn) space that can answer each query in (y/nlogn) time. If the segments are
nonintersecting or if the segments are lines, then the space can be reduced to O(n). All these are
classical problems that have been studied extensively. Previously data structures of 5(\/5) query
time! were known in early 1990s; nearly no progress has been made for over two decades. For all
problems, our results provide improvements by reducing the space of the data structures by at least
a logarithmic factor while the preprocessing and query times are the same as before or even better.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms;
Theory of computation — Computational geometry

Keywords and phrases subpath hull queries, convex hulls, compact interval trees, ray-shooting, data
structures

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.69

Related Version A full version of this paper is available at https://arxiv.org/abs/2002.10672.

1 Introduction

We first consider the subpath convex hull query problem. Let 7 be a simple path of n vertices
in the plane. A subpath hull query specifies two vertices of 7 and asks for the convex hull of
the subpath between the two vertices. The goal is to preprocess 7 so that the subpath hull
queries can be answered quickly. Ideally, the query should return a representation of the
convex hull so that standard queries on the hull can be performed in logarithmic time.

The problem has been studied by Guibas, Hershberger, and Snoeyink [18], who proposed
a method of using compact interval trees. After O(nlogn) time preprocessing, Guibas et
al. [18] built a data structure of O(n) space that can answer each query in O(lognloglogn)
time. Their query algorithm returns a compact interval tree that represents the convex hull
so that all binary-search-based queries on the hull can be performed in O(logn) time each.
The queries on the hull include (but are not limited to) the following: find the most extreme
vertex of the convex hull along a query direction; find the intersection between a query

! The notation O suppresses a polylogarithmic factor.

© Haitao Wang; [l
37 licensed under Creative Commons License CC-BY HHH

36th International Symposium on Computational Geometry (SoCG 2020). }
Editors: Sergio Cabello and Danny Z. Chen; Article No. 69; pp. 69:1-69:14 TN

\\v Leibniz International Proceedings in Informatics BN
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

]

[N
[

https://orcid.org/0000-0001-8134-7409
mailto:haitao.wang@usu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.69
https://arxiv.org/abs/2002.10672
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2

Subpath Convex Hull Queries and Ray-Shooting

line and the convex hull; find the common tangents from a query point to the convex hull;
determine whether a query point is inside the convex hull, etc. Guibas et al. [18] reduced the
subpath hull query time to O(logn) but the space becomes O(nloglogn). A trade-off was
also made with O(lognlog” n) query time and O(nlog* n) space [18].

As compact interval trees are quite amenable, the results of Guibas et al. [18] have found
many applications, e.g., [4,9-13,25]. Clearly, there is still some room for improvement on the
results of Guibas et al. [18]; the ultimate goal might be an O(n) space data structure with
O(logn) query time. We achieve this goal. The preprocessing time of our data structure is
O(n), after the vertices of m are sorted by z-coordinate. Like the results of Guibas et al. [18],
our query algorithm also returns a compact interval tree that can support logarithmic time
queries for all binary-search-based queries on the convex hull of the query subpath; the edges
of the convex hull can be retrieved in time linear in the number of vertices of the convex hull.
Note that like those in [18] our results are for the random access machine (RAM) model.

With our new result, previous applications that use the results of Guibas et al. [1§]
can now be improved accordingly. These include the problem of enclosing polygons by two
minimum area rectangles [4,5], computing a guarding set for simple polygons in wireless
location [12], computing optimal time-convex hulls [13], L, top-k weighted sum aggregate
nearest and farthest neighbor searching [25], etc. For all these problems, we reduce the space
of their algorithms by a loglogn factor while the time complexities are the same as before or
even better. See the full paper for the details of our improvements.

Wagener [24] proposed a parallel algorithm for computing a data structure, called bridge
tree, for representing the convex hull of a simple path 7. If using one processor, for any query
subpath of 7w, Wagener [24] showed that the bridge tree can be used to answer decomposable
queries on the convex hull of the query subpath in logarithmic time each. Wagener [24]
claimed that some non-decomposable queries can also be handled; however no details were
provided. In contrast, our approach returns a compact interval tree that is more amenable
(indeed, the bridge trees [24] were mainly designed for parallel processing) and can support
both decomposable and non-decomposable queries. In addition, if one wants to output the
convex hull of the query subpath, our approach can do so in time linear in the number of the
vertices of the convex hull while the method of Wagener [24] needs O(n) time.

1.1 Ray-shooting

With the help of our above result and other new techniques, we present improved results for
several classical ray-shooting problems. Previously, data structures of 5(\/71) query time and
near-linear space were known in early 1990s; nearly no progress has been made for over two
decades. Our results reduce the space by at least a logarithmic factor while achieving the
same or better preprocessing and query times. In the following, we use O(T'(n), S(n), Q(n))
to represent the complexity of a data structure, where T'(n) is the preprocessing time, S(n) is
the space, and Q(n) is the query time. We will confine the discussion of the previous work to
data structures of linear or near-linear space. Refer to Table 1 for a summary. Throughout
the paper, we use 0 to refer to an arbitrarily small positive constant.

Ray-shooting among lines. Given a set of n lines in the plane, the problem is to build a
data structure so that the first line hit by a query ray can be quickly found.

Bar-Yehuda and Fogel [3] gave a data structure of complexity O(n'?, nlog?n, /nlogn).
Cheng and Janardan [11] gave a data structure of complexity O(n'-® log® n, nlogn, /nlogn).
Agarwal and Sharir [2] developed a data structure of complexity O(nlogn,nlogn,n'/?*9).

H. Wang

Table 1 Summary of the results. The big-O notation is omitted. é can be any small positive
constant. The results marked with * hold with high probability (except that the result of Chan [6]
is expected).

Preprocessing time Space Query time Source
nls nlog®n vnlogn BF [3]
Ray-shooting n'®log?n nlogn Vnlogn CJ [11]
among lines nlogn nlogn n0-5+9 AS [2]
nls n V/nlogn this paper
nlogn n Vnlogn * this paper
i n'®log?n nlogn Vnlogn CJ [11]
Intersection 1.5 NG thi
detection n n nlogn is paper
nlogn n vnlogn * this paper
na(n)log® n nlog®n n%%9% logn 0SS [23]
na(n)log®n na(n) n?/3+9 GOS [19]

) n'®log?**n na(n)log®n /na(n)log’n A [1]
Ray-shooting (na(n))*® na(n)log?n y/na(n)logn BF [3]
among 1.57,,2 2
. . n'>log®n nlog“n Vvnlogn CJ [11]
intersecting N 9 0.546
segments nlog®n nlog”n n- AS [2]

nlog®n nlog®n Vnlog?n * C [6]
nts nlogn Vnlogn this paper
nlog®n nlogn Vnlogn * this paper

. nlogn n n%%9% logn 0SS [23]
Ray-shooting n'®log*3¥n na(n)log®n /nlog®n A [1]
amons 1.5 nlogn Vnlogn BF [3]
nonintersecting L5 & &)
segments n- n vnlogn this paper

nlogn n vnlogn * this paper

By using our subpath hull query data structure and a result from Chazelle and Guibas [7],
we present a new data structure of complexity O(n'® n,/nlogn).

In addition, we also consider a more general first-k-hits query, i.e., given a query ray and
an integer k, report the first & lines hit by the ray. This problem was studied by Bar-Yehuda

and Fogel [3], who gave a data structure of complexity O(n'®,nlog®n, /nlogn + klog?n).

Our new result is a data structure of complexity O(n!-®,n,/nlogn + klogn).

Intersection detection. Given a set of n line segments in the plane, the problem is to

build a data structure to determine whether a query line intersects at least one segment.
Cheng and Janardan [11] gave a data structure of complexity O(n'-® log® n, nlogn, /nlogn).

By adapting the interval partition trees of Overmars et al. [23] to the partition trees of
Matousek [20,21], we obtain a data structure of complexity O(n'® n,+/nlogn).

Ray-shooting among segments. Given a set of n (possibly intersecting) line segments in
the plane, we want to build a data structure to find the first segment hit by a query ray.
The result of Overmars et al. [23] has complexity O(na(n)log® n,nlog®n,n%% logn),
where «a(n) is the inverse Ackermann’s function. Guibas et al. [19] presented a data structure
of complexity O(na(n)log® n, na(n), n?/3+%). Agarwal [1] gave a data structure of complexity
O(n*®log** n, na(n)log* n, \/na(n)log? n). Bar-Yehuda and Fogel [3] gave a data structure

69:3

SoCG 2020

69:4

Subpath Convex Hull Queries and Ray-Shooting

of complexity O((na(n))', na(n)log? n, \/na(n)logn). Cheng and Janardan [11] developed
a data structure of complexity O(n'®log?n,nlog?n,/nlogn). Agarwal and Sharir [2]
proposed a data structure of complexity O(n log® n, nlog? n,n%°+9). Chan’s randomized
result [6] has complexity O(nlog® n,nlog?n,/nlog®n), where the query time is expected.

Cheng and Janardan’s algorithm [11] relies on their results for the ray-shooting problem
among lines and the intersection detection problem. Following their algorithmic scheme
and using our above new results for these two problems, we obtain a data structure for the
ray-shooting problem among segments with complexity O(n!®, nlogn,/nlogn). This is the
first data structure of O(y/n) query time that uses only O(nlogn) space.

If the segments are nonintersecting, Overmars et al. [23] gave a data structure of com-
plexity O(nlogn,n,n%%%logn). Agarwal [1] presented a data structure of complexity
O(n'51og** n, na(n)log® n, \/nlog? n). Bar-Yehuda and Fogel [3] proposed a data struc-
ture of complexity O(n!®, nlogn,/nlogn). Our result has complexity O(n'-%,n,/nlogn).

Randomized results. Using Chan’s randomized techniques [6], the preprocessing time of all
our above results can be reduced to O(nlogn) (except O(nlog?n) time for the ray-shooting
problem among intersecting segments), while the same query time complexities hold with
high probability (i.e., probability at least 1 — 1/n° for any large constant c).

Outline. Section 2 reviews some previous work of the subpath hull queries; Section 3
presents our new data structure for the problem. Section 4 solves the ray-shooting problem.

2 Preliminaries

Let p1,...,pn be the vertices of a simple path 7 ordered along 7. For any two indices i and
j with 1 <i <j <n, we use 7(4,) to refer to the subpath of 7 from p; to p;. Given a pair
(4,7) of indices with 1 < i < j < n, the subpath hull query asks for the convex hull of (i, j).

The convex hull of a simple path can be found in linear time, e.g., [17,22]. Note that the
convex hull of a simple path is the same as the convex hull of its vertices. For this reason, in
our discussion a subpath 7’ of 7 actually refers to its vertex set. For each subpath 7’ of 7,
we use |7'| to denote the number of vertices of «’.

For any set P of points in the plane, let H(P) denote the convex hull of P. Denote by
Hy(P) and H,(P) the upper and lower hulls, respectively.

Interval trees. Let S be a set of n points in the plane. The interval tree T(S) is a complete
binary tree whose leaves from left to right correspond to the points of S sorted from left to
right. Each internal node corresponds to the interval between the rightmost leaf in its left
subtree and the leftmost leaf in its right subtree. We say that a segment joining two points
of S spans an internal node v if the projection of the interval of v on the z-axis is contained
in the projection of the segment on the z-axis.

We store each edge e of the upper hull Hy(S) at the highest node of T'(S) that e spans
(e.g., see Fig. 1). By also storing the edges of the lower hull Hy(S) in T'(S) in the same way,
we can answer all standard binary-search-based queries on the convex hull H(S) in O(logn)
time, by following a path from the root of T'(S) to a leaf (see Lemma 4.1 of [18] for details).

Compact interval trees. As the size of T'(S) is ©(n) while |H(S)| may be much smaller
than n, where |H(S)| is the number of edges of H(S), using T'(S) to store H(S) may not be
space-efficient. Guibas et al. [18] proposed to use a compact interval tree Ty (S) of O(|Hy (S)])

H. Wang

Figure 1 Illustrating an interval tree that stores upper hull edges.

size to store Hy (S), as follows. In T'(S), a node v is empty if it does not store an edge of
Hy(S); otherwise it is full. It was shown in [18] that if two nodes of T'(S) are full, then their
lowest common ancestor is also full. We remove empty nodes from 7'(S) by relinking the
tree to make each full node the child of its nearest full ancestor. Let Ty (S) be the new tree
and we still use T'(S) to refer to the original interval tree without storing any hull edges.
Each node of Ty (S) stores exactly one edge of Hy(S), and thus Ty (S) has |Hy (S)| nodes.
After O(n) time preprocessing on T'(S), Ty (S) can be computed from Hy (S) in O(|Hy (S)])
time (see Lemma 4.4 in [18]). Similarly, we use a compact interval tree T (S) of |[HL(S)|
nodes to store Hy(S). Then, using the three trees Ty (S), T1(5), and T(S), all standard
binary-search-based queries on H(S) can be answered in O(logn) time. The main idea is
that the algorithm walks down through the compact interval trees while keeping track of the
corresponding position in T'(S) (see Lemma 4.3 [18] for details). We call T'(S) a reference
tree. In addition, using Ty (S) and T1(S), H(S) can be output in O(|H(S)|) time.

As discussed above, to represent H(S), we need two compact interval trees, one for Hy (.59)
and the other for H(S). To make our discussion more concise, we will simply say “the
compact interval tree” for S and use T+ (S) to refer to it, which actually includes two trees.

Compact interval trees for w. Consider two consecutive subpaths 71 and 7o of w. Suppose
their compact interval trees T (m1) and T (m2) and the interval tree T'(w) of 7w are available.
We know that H(m) and H(m2) have at most two common tangents [7]. Using the path-
copying method of persistent data structures [14], Guibas et al. [18] obtained the following,.

» Lemma 1 (Guibas et al. [18]). Without altering T (m1) and T (w2), the compact interval
tree TF(m Uma) can be produced in O(logn) time and O(logn) additional space.

» Lemma 2 (Guibas et al. [18]). Given the interval tree T(m), with O(n) time preprocessing,

we can compute TT(n') for any subpath 7' of © in O(|7’|) time.

3 Subpath convex hull queries

We present our new data structure for subpath hull queries. We first sort all vertices of 7 by
z-coordinate. The rest of the preprocessing of our data structure takes O(n) time in total.

3.1 A decomposition tree

After having the interval tree T'(7), we construct a decomposition tree W¥(rw), which is a
segment tree on the vertices of 7 following their order along 7. Specifically, ¥ () is a complete
binary tree with n leaves corresponding to the vertices of 7 in order along 7. Each internal

69:5

SoCG 2020

69:6

Subpath Convex Hull Queries and Ray-Shooting

node v of ¥(r) corresponds to the subpath 7(a,,b,), where a, (resp., b,) is defined to be the
index of the vertex of m corresponding to the leftmost (resp., rightmost) leaf of the subtree
of ¥(r) rooted at v; we call 7(ay,,b,) a canonical subpath of m and use 7(v) to denote it.

Next, we remove some nodes in the lower part of ¥(7), as follows. For each node v whose
canonical path has at most log? n vertices and whose parent canonical subpath has more
than log? n vertices, we remove both the left and the right subtrees of v from W(7) but
explicitly store 7(v) at v, after which v becomes a leaf of the new tree. From now on we use
W (1) to refer to the new tree. It is not difficult to see that W(7) now has O(n/log®n) nodes.

We then compute compact interval trees T7(m(v)) for all nodes v of ¥(7) in a bottom-up
manner. Specifically, if v is a leaf, then 7(v) has at most log? n vertices, and we compute
T+ (m(v)) from scratch, which takes O(log?n) time by Lemma 2. If v is not a leaf, then
T (m(v)) can be obtained by merging the two compact interval trees of its children, which
takes O(logn) time by Lemma 1. In this way, computing compact interval trees for all nodes
of W(r) takes O(n) time in total, for ¥ () has O(n/log® n) nodes.

3.2 A preliminary query algorithm

Consider a subpath hull query (i,7). We first present an O(log®n) time query algorithm
using ¥(7r) and then reduce the time to O(logn). Depending on whether the two vertices p;
and p; are in the same canonical subpath of a leaf of ¥(7), there are two cases.

Case 1. If yes, let v be the leaf. Then, 7 (i,) is a subpath of 7(v) and thus has at most
log? n vertices. We compute T (n(i, 7)) from scratch in O(log® n) time by Lemma 2.
Case 2. Otherwise, let v be the leaf of ¥(7) whose canonical subpath contains p; and u the
leaf whose canonical subpath contains p;. Let w be the lowest common ancestor of u
and v. As in [18], we partition 7 (4, j) into two subpaths 7 (i, k) and 7(k + 1, 7), where
k = by with w’ being the left child of w (recall the definition of b, given before). We
will compute the compact interval trees for the two subpaths separately, and then merge
them to obtain T (7 (i, j)) in additional O(logn) time by Lemma 1. We only discuss

how to compute 77 (7 (i, k)), for the other tree can be computed likewise.

We partition 7(¢, k) into two subpaths 7 (i,b,) and 7(b, + 1,k). We will compute the
trees for them separately and then merge the two trees to obtain T+ (7 (i, k)).

For computing T (7 (i, b,)), as 7 (i, b,) is a subpath of 7(v), it has at most log? n vertices.
Hence, we can compute T (7 (i, b,)) from scratch in O(log® n) time.

For T (7w(b, + 1,k)), observe that 7 (b, + 1, k) is the concatenation of canonical subpaths
of O(logn) nodes of ¥(r); precisely, these nodes are the right children of their parents
that are in the path of ¥(rm) from v’s parent to w’ and these nodes themselves are not on
the path. Since the compact interval trees of these nodes are already computed in the
preprocessing, we can produce TF (7 (b, + 1,k)) in O(log? n) time by merging these trees.

3.3 Reducing the query time to O(logn)

We now reduce the query time to O(logn), with additional preprocessing (but still O(n)).
To reduce the time for Case 1, we perform the following preprocessing. For each leaf v
of ¥(m), we preprocess the path 7(v) in the same way as above for preprocessing 7. This
means that we construct an interval tree T'(7(v)) as well as a decomposition tree ¥ (7 (v)) for
the subpath w(v). To answer a query for Case 1, we instead use ¥ (7 (v)) (and use T'(7(v))
as the reference tree). The query time becomes O(log? logn) as |7 (v)| < log® n. Note that
to construct T'(m(v)) and ¥ (7 (v)) in O(|7w(v)|) time, we need to sort all vertices of 7(v) by

H. Wang

a-coordinate in O(|m(v)|) time. Recall that we already have a sorted list of all vertices of m,
from which we can obtain sorted lists for 7(v) for all leaves v of ¥() in O(n) time altogether.
Hence, the preprocessing for 7(v) for all leaves v of U(w) takes O(n) time.

We proceed to Case 2. To reduce the query time to O(logn), we will discuss how to
perform additional preprocessing so that T (7 (i,k)) can be computed in O(logn) time.
Computing 7% (7(k + 1, 7)) can be done in O(logn) time similarly. Finally we can merge the
two trees to obtain T (7 (i,7)) in additional O(logn) time by Lemma 1.

To compute T (7 (i, k)) in O(log n) time, according to our algorithm it suffices to compute
both T (4,b,) and T (b, + 1, k) in O(logn) time. We discuss T (7, b,,) first.

Dealing with T+ (m(i,b,)). To compute T (i,b,) in O(logn) time, we preform the fol-
lowing additional preprocessing. For each leaf v of ¥(r), recall that |7 (v)| < log®n; we
partition 7(v) into ¢, < logn subpaths each of which contains at most logn vertices. We
use (1), m,(2),...,m,(ty) to refer to these subpaths in order along 7(v). For each subpath
7, (1), we compute T (7, (4)) from scratch in O(logn) time. The total time for computing
all such trees is O(log®n). Next, we compute compact interval trees for t, prefir subpaths of
7(v). Specifically, for each t € [1,t,], we compute TF(m,[1,1]), where m,[1,] is the concate-
nation of the paths 7, (1), 7,(2), ..., m,(t). This can be done in O(log® n) time by computing
T+ (my[1,¢]) incrementally for t = 1,2, ...,t, using the merge algorithm of Lemma 1. Indeed,
initially T (m,[1,t]) = T7(7,(1)), which is already available. Then, for each 2 < t < t,,
T (my[1,t]) can be produced by merging T (m,[1,t — 1]) and T (7, (¢)) in O(logn) time.
Similarly, we compute compact interval trees for ¢, suffiz subpaths of w(v): T (m,[t, t,]) for
allt =1,2,...,t,, where m,[t, t,] is the concatenation of the paths 7, (¢), m,(t+1),..., 7, (t,).
This can be done in O(log2 n) time by a similar algorithm as above. Thus, the preprocessing
on v takes O(log®n) time; the preprocessing on all leaves of () takes O(n) time in total.

We can now compute T (i,b,) in O(logn) time as follows. Recall that 7(i,b,) is a
subpath of m(v) and b, is the last vertex of 7(v). We first determine the subpath 7, (t) that
contains i. Let g be the last vertex of m,(t). We partition 7 (4, b,) into two subpaths = (i, g)
and (g +1,b,), and we will compute their compact interval trees separately and then merge
them to obtain T (m(i,b,)). For 7(i,g), as (4, g) is a subpath of 7,(¢) and |7, (t)| < logn,
we can compute T (7 (i,g)) from scratch in O(logn) time. For w(g + 1,b,), observe that
m(g+1,b,) is exactly the suffix supath [t + 1,¢,], whose compact interval tree has already
been computed in the preprocessing. Hence, T (i, b,) can be produced in O(logn) time.

Dealing with Tt (7 (b, + 1,k)). To compute T (b, + 1,k) in O(logn) time, we perform
the following preprocessing, which was also used by Guibas et al. [18]. Recall that (b, + 1, k)
is the concatenation of the canonical paths of O(logn) nodes that are right children of the
nodes on the path in ¥(7) from v’s parent to the left child of w (and these nodes themselves
are not on the path). Hence, this sequence of nodes can be uniquely determined by the
leaf-ancestor pair (v,w); we use 7, ., to denote the above concatenated subpath of 7.

Correspondingly, in the preprocessing, for each leaf v we do the following. For each
ancestor w of v, we compute the compact interval tree for the subpath m,,. As v has
O(logn) ancestors, computing the trees for all ancestors takes O(log® n) time using the merge
algorithm of Lemma 1. Hence, the total preprocessing time on v is O(log?n), and thus the
total preprocessing time on all leaves of () is O(n), for ¥(7) has O(n/log?n) leaves. Due
to the above preprocessing, T7 (b, + 1, k) is available during queries.

69:7

SoCG 2020

69:8

Subpath Convex Hull Queries and Ray-Shooting

Wrapping up. In summary, the query time is O(logn). Comparing with the method of
Guibas et al. [18], our innovation is threefold. First, we process subpaths individually to
handle queries of Case 1. Second, we precompute compact interval trees for convex hulls
of the prefix and suffix subpaths of 7(v) for each leaf v of ¥(7). Third, we use a smaller
decomposition tree ¥(7) of only O(n/log®n) nodes. Theorem 3 summarizes our result.

» Theorem 3. After all vertices of m are sorted by x-coordinate, a data structure of O(n)
space can be built in O(n) time so that each subpath hull query can be answered in O(logn)
time. The query algorithm produces a compact interval tree representing the convex hull of
the query subpath, which can support all binary-search-based operations on the convex hull in
O(logn) time each. These operations include (but are not limited to) the following (let ©’
denote the query subpath and let H (") be its convex hull):

1. Given a point, decide whether the point is in H(n').

Given a point outside H(w'), find the two tangents from the point to H(w').

Given a direction, find the most extreme point of ©' along the direction.

Given a line, find its intersection with H(n').

LA

Given a convez polygon (represented in a data structure supporting binary search), decide
whether it intersects H(n'), and if not, find their common tangents (both outer and inner).
In addition, H(7') can be output in time linear in the number of vertices of H(w').

4 Ray-shooting

The ray-shooting problem among lines is discussed in Section 4.1. Section 4.2 is concerned
with the intersection detection problem and the ray-shooting problem among segments.

4.1 Ray-shooting among lines

Given a set of n lines in the plane, we wish to build a data structure so that the first line
hit by a query ray can be found efficiently. The problem is usually tackled in the dual
plane, e.g., [11]. Let P be the set of dual points of the lines. In the dual plane, the problem
is equivalent to the following: Given a query line [;, a pivot point ¢ € l,, and a rotation
direction (clockwise or counterclockwise), find the first point of P hit by rotating [, around gq.

A spanning path 7(P) of P is a polygonal path connecting all points of P such that P is
the vertex set of the path. Hence, w(P) corresponds to a permutation of P. For any line [in
the plane, let o(l) denote the number of edges of m(P) crossed by I. The stabbing number
of w(P) is the largest o(l) of all lines [in the plane. It is known that a spanning path of
P with stabbing number O(y/n) always exists [8], which can be computed in O(n'*%) time
using Matousek’s partition tree [21] (e.g., by a method in [8]). Let 7/(P) denote such a path.
Note that #'(P) may have self-intersections. Using #'(P), Edelsbrunner et al. [15] gave an
algorithm that can produce another spanning path 7w (P) of P such that the stabbing number
of m(P) is also O(y/n) and 7(P) has no self-intersections (i.e., 7(P) is a simple path); the
runtime of the algorithm is O(n!?). Below we will use 7(P) to solve our problem.

» Lemma 4 (Chazelle and Guibas [7]). We can build a data structure of O(n) size in O(nlogn)
time for any simple path of n vertices, so that given any query line lg, if l; intersects the
path in k edges, then these edges can be found in O(klog %) time.

We first build the data structure in Lemma 4 for 7(P). Then, we construct the subpath
hull query data structure of Theorem 3 for 7(P). This finishes our preprocessing.

H. Wang

Given a query line [, along with the pivot ¢ and the rotation direction, we first use
Lemma 4 to find the edges of w(P) intersecting l,. As the stabbing number of 7(P) is O(y/n),
this steps finds O(y/n) edges intersecting I, in O(y/nlogn) time. Then, using these edges
we can partition 7(P) into O(y/n) subpaths each of which does not intersect /,. For each
subpath, we use our subpath hull query data structure to compute its convex hull in O(log n)
time. Next, we compute the tangents from the pivot ¢ to each of these O(y/n) convex hulls,
in O(logn) time each by Theorem 3. Using these O(y/n) tangents, based on the rotation
direction of l,, we can determine the first point of P hit by [, in additional O(y/n) time.
Hence, the total time of the query algorithm is O(y/nlogn).

» Theorem 5. There exists a data structure of complexity O(n*® n,\/nlogn) for the ray-
shooting problem among lines. The preprocessing time can be reduced to O(nlogn) time by a
randomized algorithm while the query time is bounded by O(y/nlogn) with high probability.

Proof. The deterministic result has been discussed above. For the randomized result, Chan [6]
gave an O(nlogn) time randomized algorithm to compute a spanning path «”/(P) for P such
that 7”(P) is a simple path and the stabbing number of 7”/(P) is at most O(y/n) with high
probability. After having 7" (P), we build the data structure for Lemma 4 and the subpath
hull query data structure. Hence, the preprocessing takes O(nlogn) time and O(n) space,
and the query time is bounded by O(y/nlogn) with high probability. <

We can extend the algorithm to obtain the result for the first-k-hit queries. The details
are omitted but can be found in the full paper.

4.2 Intersection detection and ray-shooting among segments

Given a set S of n segments in the plane, an intersection detection query asks whether a
query line intersects at least one segment of S. One motivation to study the problem is that
it is a subproblem in our algorithm for the ray-shooting problem among segments.

To find a data structure to store the segments of S, we adapt the techniques of Overmars
et al. [23] to the partition trees of Matousek [20,21] (to obtain the deterministic result) as
well as that of Chan [6] (to obtain the randomized result). To store segments, Overmars
et al. [23] used a so-called interval partition tree, whose underling structure is a conjugation
tree of Edelsbrunner and Welzl [16]. The idea is quite natural due to the nice properties
of conjugation trees: Fach parent region is partitioned into exactly two disjoint children
regions by a line. The drawback of conjugation trees is the slow O(n%69)
adapting the techniques to more query-efficient partition trees such as those in [6,20,21], two
issues arise. First, each parent region may have more than two children. Second, children
regions may overlap. Chan’s partition tree [6] does not have the second issue while both issues
appear in Matousek’s partition trees [20,21]. As a matter of fact, the second issue incurs
a much bigger challenge. In the following, we first present our randomized result by using
Chan’s partition tree [6], which is relatively easy, and then discuss the more complicated
deterministic result using Matousek’s partition trees [20, 21].

We begin with the following lemma, which solves a special case of the problem. The
lemma will be needed in both our randomized and deterministic results.

query time. When

» Lemma 6. Suppose all segments of S intersect a given line segment.

1. We can build a data structure of O(n) space in O(nlogn) time so that whether a query
line intersects any segment of S can be determined in O(logn) time.

2. If the segments of S are nonintersecting, we can build a data structure of O(n) space in
O(nlogn) time so that the first segment hit by a query ray can be found in O(logn) time.

69:9

SoCG 2020

69:10

Subpath Convex Hull Queries and Ray-Shooting

4.2.1 The randomized result

We briefly review Chan’s partition tree [6] (for simplicity we only discuss it in 2D, which
suffices for our problem). Chan’s tree for a set P of n points, denoted by T, is a hierarchical
structure by recursively subdividing the plane into triangles. Each node v of T' corresponds
to a triangle, denoted by A(v). If v is the root, then A(v) is the entire plane. If v is not
a leaf, then v has O(1) children whose triangles form a disjoint partition of A(v). Define
P(v) = PN A(v). The set P(v) is not explicitly stored at v unless v is a leaf, in which
case |P(v)| = O(1). The height of T is O(logn). Let «(T') denote the maximum number of
triangles of T that are crossed by any line in the plane. Chan [6] gave an O(nlogn) time
randomized algorithm to compute T" such that (7" is at most O(y/n) with high probability.
Let P be the set of the endpoints of all segments of S (so |P| = 2n). We first build the
tree T' as above. We then store the segments of S in T, as follows. For each segment s, we
do the following. Starting from the root of T, for each node v, we assume that s is contained
in A(v), which is true when v is the root. If v is a leaf, then we store s at v; let S(v) denote
all segments stored at v. If v is not a leaf, then we check whether s is in A(u) for a child
u of v. If yes, we proceed on u. Otherwise, for each child u, for each edge e of A(u), if s
intersects e, then we store s at the edge e (in this case we do not proceed to the children of
u); denote by S(e) the set of edges stored at e. This finishes the algorithm for storing s. As
each node of T' has O(1) children, s is stored O(1) times and the algorithm runs in O(logn)
time. In this way, it takes O(nlogn) time to store all segments of S, and the total sum of
|S(e)| and |S(v)]| for all triangle edges e and all leaves v is O(n). In addition, |S(v)| = O(1)
for any leaf v, since |P(v)| = O(1) and both endpoints of each segment s € S(v) are in P(v).
Next, for each triangle edge e, since all edges of S(e) intersect e, we preprocess S(e) using
Lemma 6(1). Doing this for all triangle edges e takes O(nlogn) time and O(n) space.
Consider a query line [. Our goal is to decide whether [intersects a segment of S. Starting
from the root, we determine the set of nodes v whose triangles A(v) are crossed by [. For
each such node v, if v is a leaf, then we check whether s intersects [for each segment s € S(v);
otherwise, for each edge e of A(v), we use the query algorithm of Lemma 6(1) to determine
whether [intersects any segment of S(e). As the number of nodes v whose triangles A(v)
crossed by [is at most x(T") and S(v) = O(1) for each leaf v, the total time of the query
algorithm is O(k(T') -logn). The algorithm correctness is discussed in the proof of Theorem 7.

» Theorem 7. There exists a data structure of complexity O(nlogn,n,/nlogn) for the
intersection detection problem, where the query time holds with high probability.

Proof. We have discussed the preprocessing time and space. Since the query time is
O(k(T) - logn) and k(T) is at most O(y/n) with high probability, the query time is bounded
by O(y/nlogn) with high probability. For the correctness of the query algorithm, suppose [
intersects a segment s, say, at a point p. If s is stored at S(v) for a leaf v, then I must cross
A(v) and thus our algorithm will detect the intersection. Otherwise, s must be stored in S(e)
for an edge e of a triangle A(u) that contains p. Since p € I, | must cross A(u). According
to our query algorithm, the query algorithm of Lemma 6(1) will be invoked on S(e), and
thus the algorithm will report the existence of intersection. |

If the segments of S are nonintersecting, by replacing Lemma 6(1) with Lemma 6(2) in
both the above preprocessing and query algorithms, we can obtain the following result.

» Theorem 8. There erists a data structure of complexity O(nlogn,n,/nlogn) for the
ray-shooting among nonintersecting segments, where the query time holds with high probability.

H. Wang

To solve the ray-shooting problem among (possibly intersecting) segments, as discussed
in Section 1.1, using our results in Theorems 5 and 7 and following the algorithmic scheme
of Cheng and Janardan [11], we can obtain Theorem 9 (see the full paper for details).

» Theorem 9. There exists a data structure of complexity O(nlog? n,nlogn,/nlogn) for
the ray-shooting among intersecting segments, where the query time holds with high probability.

4.2.2 The deterministic result

To obtain the deterministic result, we resort to Matousek’s partition trees [20,21].

An overview. To solve the simplex range searching problem (e.g., the counting problem),
Matousek built a partition tree in [20] with complexity O(nlogn,n, v/n(logn)°M); subse-
quently, he presented a more query-efficient result in [21] with complexity O(n'*® n,/n).
Ideally, we want to use his second approach. In order to achieve the O(n'*?) preprocessing
time, Matousek used multilevel data structures (called partial simplex decomposition scheme
in [21]). In our problem, however, the multilevel data structures do not work any more
because they do not provide a “nice” way to store the segments of S. Without using multilevel
data structures, the preprocessing time would be too high (indeed Matousek [21] gave a basic
algorithm without using multilevel data structures but he only showed that its runtime is
polynomial). By a careful implementation, we can bound the preprocessing time by O(n?).
To improve it, we resort to the simplicial partition in [20]. Roughly speaking, let P be the
set of endpoints of the segments of S; we partition P into r = ©(y/n) subsets of size v/n
each, using r triangles such that any line in the plane only crosses O(,/r) triangles. Then,
for each subset, we apply the algorithm of [21]. This guarantees the O(n'-3) upper bound on
the preprocessing time for all subsets. To compute the simplicial partition, Matousek [20]
first provided a basic algorithm of polynomial time and then used other techniques to reduce
the time to O(nlogn). For our purpose, these techniques are not suitable (for a similar
reason to multilevel data structures). Hence, we can only use the basic algorithm, whose
time complexity is only shown to be polynomial in [20]. Further, we cannot directly use the
algorithm because the produced triangles may overlap (the algorithm in [21] has the same
issue). Nevertheless, we manage to modify the algorithm and bound its time complexity
by O(n'®). Also, even with the above modification that avoids certain triangle overlap,
using the approach in [21] directly still cannot lead to an O(y/nlogn) time query algorithm.
Instead we have to further modify the algorithm (e.g., choose a different weight function).
In the following, we first describe our algorithm for computing the simplicial partition.

4.2.3 Computing a simplicial partition

Recall that P is the set of the endpoints of S and |S| = n. To simplify the notation, we let
|P| = n in the following (and thus |S| = n/2).

A simplicial partion of size m for P is a collection IT = {(P1, 1), ..., (P, &m)} with
the following properties: (1) The subsets P;’s form a disjoint partition of P; (2) each A; is
an open triangle containing P;; (3) maxi<i<m |P;| < 2 - mini<;<m | P;|; (4) the triangles may
overlap and a triangle A\; may contain points in P\ P;. We define the crossing number of II
as the largest number of triangles that are intersected by any line in the plane.

» Lemma 10 ([20]). For any integer z with 2 < z < |P|, there exists a simplicial partition
IT of size O(r) for P, whose subsets P;’s satisfy z < |P;| < 2z, and whose crossing number is

O(\/r), where r = |P|/z.

69:11

SoCG 2020

69:12

Subpath Convex Hull Queries and Ray-Shooting

Figure 2 Illustrating the weakly-overlapped property: P; consists of all circle points and P;
consists of all disk points. A point p € P; is also contained in A\;, but all points of P; are outside A;.

To compute such a simplicial partition as in Lemma 10, Matousek [20] first presented
a basic algorithm whose runtime is polynomial and then improved the time to O(nlogn)
by other techniques. As discussed before, the techniques are not suitable for our purpose
and we can only use the basic algorithm. In addition, the above property (4) prevents us
from using the partition directly. Instead we use an enhanced simplicial partition with the
following modified /changed properties. In property (2), each A; is either a triangle or a
convex quadrilateral; we now call AA; a cell. In property (4), the cells may still overlap, and a
cell A; may still contain points in P\ P;; however, if A; contains a point p € P; with j # i,
then all points of P; are outside A; (e.g., see Fig. 2). This modified property (4), which
we call the weakly-overlapped property, is the key to guarantee the success of our approach.
We use convex quadrilaterals instead of only triangles to make sure the weakly-overlapped
property can be achieved. The crossing number of the enhanced partition is defined as
the largest number of cells that are intersected by any line in the plane. By modifying
Matousek’s basic algorithm [20], we can compute in O(n!-?) time an enhanced simplicial
partition IT = {(Py,A1),..., (Pm, Am)} with m = O(r), which satisfies the property of
Lemma 10 with z = \/n (and thus r = \/n); in particular, the crossing number of II is O(y/7).
The algorithm is omitted but can be found in the full paper.

Storing the segments in II. For each segment s of 5, if both endpoints of s are in the same
subset P; of II, then s is in the cell A; and we store s in A;; let S; denote the set of segments
stored in A;. Otherwise, let P; and P; be the two subsets that contain the endpoints of s,
respectively. The weakly-overlapped property of II leads to the following observation.

» Observation 11. The segment s intersects the boundary of at least one cell of /\; and A;.

By Observation 11, we find a cell A of A; and A; whose boundary intersects s. Let e be
an edge of A that intersects s. We store s at e; let S(e) denote the set of segments of S that
are stored at e. In this way, each segment of S is stored exactly once. Next, for each cell
A € 1I and for each edge e of A, we preprocess S(e) using Lemma 6. With II, the above
preprocessing on S takes O(nlogn) time and O(n) space.

We further have the following Lemma 12, whose proof can be found in the full paper.

» Lemma 12.

1. For each subset P; of 11, with O(|P;|?) time and O(|P;]) space preprocessing, we can
decide whether a query line intersects any segment of S; in O(ﬂlog |P;|) time.

2. If segments of S; are nonintersecting, with O(|P;|?) time and O(|P;|) space preprocessing,
we can find the first segment of S; hit by a query ray in O(\/|P;|log |P;|) time.

H. Wang

We preprocess each P; using Lemma 12. As IT has O(y/n) subsets P; and the size of each
P; is O(y/n), the total preprocessing time is O(n'-) and the total space is O(n).

Answering queries. Consider a query line ¢. First, for each cell A; of II, for each edge e of

A\;, we determine whether £ intersects a segment of S(e), in O(logn) time by Lemma 6(1).

As 1T has ©(y/n) cells and each cell has at most four edges, the total time of this step is

O(y/nlogn). Second, by checking every cell of II, we find those cells that are crossed by £.

For each such cell A;, by Lemma 12(1), we determine whether ¢ intersects any segment of S;
in O(n'/*logn) time, for |P;| = ©(y/n). As £ can cross at most O(n'/4) cells of II, this step
takes O(y/nlogn) time. Hence, the query time is O(y/nlogn).

If the segments of S; are nonintersecting, the ray-shooting query algorithm is similar. We
can thus obtain our results for the segment intersection and the ray-shooting problems.

—— References

1 P.K. Agarwal. Ray shooting and other applications of spanning trees with low stabbing
number. SIAM Journal on Computing, 21:540-570, 1992.

2 P.K. Agarwal and M. Sharir. Applications of a new space-partitioning technique. Discrete
and Computational Geometry, 9(1):11-38, 1993.

3 R. Bar-Yehuda and S. Fogel. Variations on ray shootings. Algorithmica, 11:133-145, 1994.

4 B. Becker, P.G. Franciosa, S. Gschwind, S. Leonardi, T. Ohler, and P. Widmayer. Enclosing a
set of objects by two minimum area rectangles. Journal of Algorithms, 21:520-541, 1996.

5 B. Becker, P.G. Franciosa, S. Gschwind, T. Ohler, T. Ohler, G. Thiemt, and P. Widmayer.
An optimal algorithm for approximating a set of rectangles by two minimum area rectangles.

In Workshop on Computational Geometry, pages 13—25, 1991.

6 T.M. Chan. Optimal partition trees. Discrete and Computational Geometry, 47:661-690, 2012.

7 B. Chazelle and L. Guibas. Fractional cascading: II. Applications. Algorithmica, 1(1):163-191,
1986.

8 B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension.

Discrete and Computational Geometry, 4(5):467-489, 1989.

9 D.Z. Chen, J. Li, and H. Wang. Efficient algorithms for the one-dimensional k-center problem.

Theoretical Computer Science, 592:135-142, 2015.

10 D.Z. Chen and H. Wang. Approximating points by a piecewise linear function. Algorithmica,
88:682-713, 2013.

11 S.W. Cheng and R. Janardan. Algorithms for ray-shooting and intersection searching. Journal
of Algorithms, 13:670-692, 1992.

12 T. Christ, M. Hoffmann, Y. Okamoto, and T. Uno. Improved bounds for wireless localization.

Algorithmica, 57:499-516, 2010.

13 B.-S. Dai, M.-J. Kao, and D.T. Lee. Optimal time-convex hull under the L, metrics. In
Proceedings of the 13rd Algorithms and Data Structures Symposium (WADS), pages 268-279,
2013.

14 J. Driscoll, N. Sarnak, D. Sleator, and R.E. Tarjan. Making data structures persistent. Journal
of Computer and System Sciences, 38(1):86-124, 1989.

15 H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, M. Sharir, J. Snoeyink, and E. Welzl.

Implicitly representing arrangements of lines or segments. Discrete and Computational
Geometry, 4:433-466, 1989.

16 H. Edelsbrunner and E. Welzl. Halfplanar range search in linear space and O(n
time. Information Processing Letters, 23:289-293, 1986.

17 R.L. Graham and F.F. Yao. Finding the convex hull of a simple polygon. Journal of Algorithms,
4:324-331, 1983.

04695) query

69:13

SoCG 2020

69:14

Subpath Convex Hull Queries and Ray-Shooting

18

19

20

21

22

23

24

25

L. Guibas, J. Hershberger, and J. Snoeyink. Compact interval trees: A data structure for
convex hulls. International Journal of Computational Geometry and Applications, 1(1):1-22,
1991. First appeared in SODA 1990.

L. Guibas, M. Overmars, and M. Sharir. Intersecting line segments, ray shooting, and other
applications of geometric partitioning techniques. In Proceedings of the 1st Scandinavian
Workshop on Algorithm Theory (SWAT), pages 64-73, 1988.

J. Matousek. Efficient partition trees. Discrete and Computational Geometry, 8(3):315-334,
1992.

J. Matousek. Range searching with efficient hierarchical cuttings. Discrete and Computational
Geometry, 10(1):157-182, 1993.

A. Melkman. On-line construction of the convex hull of a simple polygon. Information
Processing Letters, 25:11-12, 1987.

M.H. Overmars, H. Schipper, and M. Sharir. Storing line segments in partition trees. BIT
Numerical Mathematics, 30:385-403, 1990.

H. Wagener. Optimal parallel hull construction for simple polygons in O(loglogn) time. In
Proceedings of the 33rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 593-599, 1992.

H. Wang and W. Zhang. On top-k weighted sum aggregate nearest and farthest neighbors in
the L plane. International Journal of Computational Geometry and Applications, 29:189-218,
2019.

	Introduction
	Ray-shooting

	Preliminaries
	Subpath convex hull queries
	A decomposition tree
	A preliminary query algorithm
	Reducing the query time to O(log n)

	Ray-shooting
	Ray-shooting among lines
	Intersection detection and ray-shooting among segments
	The randomized result
	The deterministic result
	Computing a simplicial partition

