
Computing Low-Cost Convex Partitions for Planar
Point Sets Based on a Memetic Approach
Laurent Moalic
Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France
Université de Strasbourg, France
laurent.moalic@uha.fr

Dominique Schmitt
Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France
Université de Strasbourg, France
dominique.schmitt@uha.fr

Julien Lepagnot
Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France
Université de Strasbourg, France
julien.lepagnot@uha.fr

Julien Kritter
Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France
Université de Strasbourg, France
julien.kritter@uha.fr

Abstract
We present a memetic approach designed to tackle the 2020 Computational Geometry Challenge on
the Minimum Convex Partition problem. It is based on a simple local search algorithm hybridized
with a genetic approach. The population is brought down to its smallest possible size – only 2
individuals – for a very simple implementation. This algorithm was applied to all the instances,
without any specific parameterization or adaptation.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases metaheuristics, memetic algorithms, convex partition optimization

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.84

Category CG Challenge

Related Version A description of the 2020 CG:SHOP Challenge with related work and overall
outcomes can be found at [2] https://arxiv.org/abs/2004.04207.

1 Introduction

Given a set P of points in the plane, the Minimum Convex Partition problem is that of
identifying a partition of the convex hull of P into the smallest number of convex polygons
whose vertices are the points of P . Finding the minimum convex partition of given instances
of points with integer coordinates was the aim of the 2020 CG:SHOP Challenge [2].

It has recently be shown that the Minimum Convex Partition problem is NP-hard, when
the point sets are not necessarily in general position [3]. Thus, simple local search algorithms,
which are prone to be trapped in local optima, are not efficient enough and do not yield
the best solutions for several instances of this problem. For these reasons, we propose to
use a memetic approach, an effective class of metaheuristics commonly used to solve various
combinatorial problems [5].

© Laurent Moalic, Dominique Schmitt, Julien Lepagnot, and Julien Kritter;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 84; pp. 84:1–84:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3749-3227
mailto:laurent.moalic@uha.fr
mailto:dominique.schmitt@uha.fr
mailto:julien.lepagnot@uha.fr
https://orcid.org/0000-0002-0450-4287
mailto:julien.kritter@uha.fr
https://doi.org/10.4230/LIPIcs.SoCG.2020.84
https://arxiv.org/abs/2004.04207
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


84:2 SOCG Challenge: A Memetic Approach

s
l

s
r

s

t
l

F
l F

r

t
r

t

Figure 1 The edge st is rotatable at s.

2 Algorithmic Methods

2.1 A memetic approach
The main idea is to hybridize two mechanisms, a local search which intensifies the search
(exploitation phase, which improves a solution by converging to a nearby local optimum), and
a crossover which diversifies it (exploration phase, to escape from local optima and explore
new areas of the search space). The goal is to cover all parts of the search space as well as
possible and find the best local solution in each part. The idea of using only two individuals
in the population was first successfully introduced in [4], for the graph coloring problem. It
has the advantage of removing the selection phase, as well as the replacement strategy.

The memetic scheme starts here with two identical individuals which are the Delaunay
triangulation of the point-set. In order to avoid wasting time with reparations, the individuals
are kept legal, that is, convex partitions of the point-set. The fitness value of a solution is
given by the number of its polygons, which we aim at minimizing.

2.2 A simple descent local search
Let P be a set of n points in the plane and let P be a convex partition of P , i.e., a partition
of the convex hull of P into convex polygons whose vertices are the points of P .

The aim of the descent local search is to remove internal edges of P, i.e. edges that do
not belong to the boundary of the convex hull of P . Thereby, the two faces of P on each
side of the removed edge are merged to become a single face. The descent local search never
degrades the current convex partition.

Let st be an internal edge of P and let Fl and Fr be the faces of P that share the edge
st, and that are respectively on the left side and on the right side of st (see Figure 1). Let
sl (resp., tl) be the vertex of Fl that precedes s (resp., succeeds t) on the boundary of Fl

in counterclockwise direction. Let sr (resp., tr) be the vertex of Fr that succeeds s (resp.,
precedes t) on the boundary of Fr in counterclockwise direction. Consider the two following
conditions:

1. The point sr is on the left side of or on the oriented straight line (sls).
2. The point tl is on the left side of or on the oriented straight line (trt).

The edge st is said to be immovable, rotatable, or removable respectively, when 0, 1, or 2
of the conditions 1 and 2 are satisfied. When st is rotatable, we say that st is rotatable at t

if condition 1 is satisfied, and we say that st is rotatable at s if condition 2 is satisfied.



L. Moalic, D. Schmitt, J. Lepagnot, and J. Kritter 84:3

Build a random edge sequence

For each edge in the sequence

Determine edge status

Removable edge

Rotatable edge
Immovable edge

Process edge according to status

next edge (if any)

Figure 2 One step of the local search: a remove, move, unmove approach.

Let F be the face obtained by removing st and by merging Fl and Fr. If the edge st is
removable, F is obviously convex. If st is immovable, F is not convex, neither in s, nor in t.
The only way to cut F into two convex faces is to put back the edge st.

If st is rotatable, suppose, without loss of generality, that it is rotatable at s. In this case,
F is not convex in s but is convex in all other vertices. To cut F into two convex faces, we
have to add an edge st′ that connects s to a vertex t′ of F other than s, sl, and sr. Whatever
the choice of t′, the two new faces are convex in all their vertices, except possibly in s. To
ensure the convexity in s, t′ must be chosen altogether on the left side of or on (ssr), and on
the left side of or on (sls). The vertices t′ that satisfy these conditions are called the valid
positions for t (relatively to st in P). The valid positions for t form a connected polyline on
the boundary of F . This polyline contains necessarily t and may be reduced to t.

The descent local search uses the above properties to improve the current convex partition
P . It proceeds by steps. In each step, a random sequence of internal edges of P is generated
(see Figure 2). For every edge st in the sequence:

if st is removable, it is removed from P,
if st is rotatable at s, the set of valid positions for t is generated, a point r in the set is
randomly chosen, and st is replaced by sr (the processing is symetric if st is rotatable
at t).

Clearly, every removable edge produces an improvement of the current convex partition.
Rotatable edges give rise neither to improvements nor to degradations, but by moving a
rotatable edge, another edge may become removable and may therefore be removed later on
in the process.

This process is repeated until no more improvement seems to be possible, i.e. until the
current convex partition is trapped in a local optimum. For all instances of the competition,
the number of steps was fixed to 10,000.

Let us now consider the complexity of one step. The generation of a random sequence
of edges, as well as the processing of all removable and immovable edges are linear in the
number of edges. Thus, the complexity will be determined by the processing of the rotatable

SoCG 2020



84:4 SOCG Challenge: A Memetic Approach

-4-2

0

-2

-3

-2

-2

P
1

P
2

Figure 3 The numbers in the faces of P1 are the scores of theses faces with respect to P2. If the
best face of P1 is transmitted to a child, then the faces of P2 with full edges are the only ones that
can still be transmitted to that child.

edges. For each edge st rotatable at, say, s, all vertices of the two faces on both sides of
st may be valid positions for t, except s and its two neighbors sl and sr. This leads to a
complexity of O(n) per edge, and thus to an overall complexity of O(n2) for one step of the
algorithm.

In practice, this complexity is much lower. Consider, for example, the instances of the
competition with 100,000 points. The largest set of valid positions encountered over 10 runs
for each of these instances contained only 16 points. The average size of the set was about
2.64 points. The sets are larger for instances with large numbers of collinear points. For the
instance “rop” with 64054 points, a set of 305 valid positions was found. The average size
was 7.56 points.

2.3 A crossover which gets the best of the parents
Diversification starts with two given convex partitions P1 and P2 of P - the parents -
generated by the descent local search. The crossover aims at getting part of each parent’s
“gene pool” to produce two new convex partitions of P - the children. To generate a child,
the idea is to get some non-overlapping faces from each parent. The child is then, at first, a
partial solution made of convex polygons and isolated points.

A “good” child is typically one which gathers “good” faces from its parents. Clearly,
the optimal convex partition of P minimizes the sum of its vertices’ degrees. We therefore
compute a score for every face of each partition, which measures the attractiveness of the
face relatively to the other partition. The score of a face of, say, P1 is obtained by summing
up the degrees of its vertices and by subtracting the degrees of these same vertices in P2 (see
Figure 3). Roughly speaking, if the score is negative, the environment of the face is better in
P1 than it is in P2. The best face is the one with lowest score.

The crossover algorithm first sorts the faces of P1 and P2 independently by increasing
scores. Then, it transmits alternatively one face from P1 and one face from P2 to one child, in
order. Ties are broken randomly. This stochasticity helps to generate two different children.
It is enhanced by the fact that the first face transmitted to the first child comes from P1,
while the first face transmitted to the second child comes from P2.

So that the faces transmitted to a same child do not intersect, intersection tests between
the faces in P1 and P2 have to be performed. To accelerate the intersection test when a face
in, say, P1 is transmitted to a child, the axis-parallel bounding box of the face is computed.
All faces in P2 which intersect the box are disabled, so that they cannot be transmitted to



L. Moalic, D. Schmitt, J. Lepagnot, and J. Kritter 84:5

Generate two copies of the Delaunay triangulation

While time limit not reached

For 10 generations

Perform local search on both convex partitions

Save best partition found in the current while loop

Save best partition found so far

Perform crossover with the two partitions

Replace the two parent-partitions with their children

Replace one children with the best partition of the previous while loop

Figure 4 General scheme of the memetic approach.

that child. When no more faces in P1 and no more faces in P2 can be transmitted to a child,
a constrained triangulation of P and of the set of transmitted faces is computed. The two
child-partitions constructed that way replace their parents and are used in the next iteration
of the algorithm (see Figure 4).

The algorithm alternates between the local search and the crossover phases until a time
limit is reached. As the local search is a simple descent, the best encountered solution is
recorded just before each crossover phase.

3 Practical Computation

3.1 Computational Environment
The program was written in C++ using data structures and functions from the CGAL
library [1]. Several experiments were carried out on the Strasbourg high-performance
computing cluster (HPC) using identical machines equipped with 2.6GHz Intel Xeon Gold
6126 CPUs. Some statistics on the results obtained by 10 executions of our algorithm are
presented and discussed. To obtain these statistics, each execution was stopped after one hour.
Note that the results submitted for the challenge were obtained without any information on
running time. However, it turns out that, for 80% of the instances, the algorithm achieved
the value submitted to the challenge in less than one hour.

3.2 Algorithm Engineering
It seems interesting to note that one of the strengths of the proposed approach is that there
are no instance-specific settings. The same program is applied to all instances, regardless of
their size or structure.

SoCG 2020



84:6 SOCG Challenge: A Memetic Approach

The only parameters are the local search duration between two crossovers, and the number
of generations in one cycle. We have set the local search duration to 10,000 for all instances.
That is to say that for each generation, each edge can move or be removed 10,000 times. The
size of a cycle is set to 10 for all instances. That is, after 10 generations the best solution of
the previous cycle is reintroduced. These values have been determined experimentally, and
can be improved for a better behavior of the algorithm.

3.3 Experimental Results
For each instance of the problem, let pimpr be the improvement between an intermediary
solution and a final solution (in percent). It is computed using the best fitness among the
ones found by the first descent local search over the 10 runs (ffirst), and the best fitness at
the end of the one-hour execution over the 10 runs (fend). It is given by 100 (ffirst−fend)

ffirst
. For

each class of instances, the evolution of this value is presented in Figure 5, over the number
of points in the instance on which the algorithm is applied.

A similar percentage of improvement, denoted by pcomp, is computed between fend and
the fitness of the solution submitted for the competition.

One can see in Figure 5 that three different behaviors are adopted by the algorithm,
depending on the class of instances on which it is applied:

1. On the class of “rop” instances, the values of pimpr are globally significantly greater than
for any other class of instances. Hence, the exploration phase using a genetic crossover
appears to be very useful for the “rop” instances. Among these instances, the one having
the highest value of pcomp is “rop0010050”, for which pcomp = 25.74.

2. On the “ortho_rect_union” instances, the opposite behavior is displayed by the algorithm,
i.e. the values of pimpr are globally significantly lower than for the other classes. Let
stdfirst be the standard deviation of the solutions found by the first descent for the 10
executions of our approach on a given instance. Among the “ortho_rect_union” instances,
the one having the highest value of stdfirst is “ortho_rect_union_47381”, for which
stdfirst = 4.93. It is the lowest value of stdfirst compared to 50,000 and even 40,000
point instances of all other classes. Furthermore, among these instances, the one having
the highest value of pcomp is “ortho_rect_union_7663”, for which pcomp = 0.10. It could
mean that a simple local search is sufficient to find good solutions for these instances.

3. On the other classes of instances except “mona-lisa”, our approach appears to behave
similarly. The values of pimpr are globally significantly greater than the ones of “or-
tho_rect_union” instances, but significantly lower than the ones of “rop” instances.
Among the instances of all classes except the “ortho_rect_union”, the “rop” and the
“mona-lisa” ones, the one having the highest value of pcomp is “uniform-0090000-1”, for
which pcomp = 0.13.

For “mona-lisa”, containing only one instance of 1,000,000 points, it is not possible to
observe how pimpr would evolve over the number of points. However, pcomp equals 0.65, which
is low compared to most “rop” instances. One can also notice significant fitness differences
between instances belonging to the same class, which could be due either to a stability issue
of the approach or to the nature of the instances.

The analyses presented in Figures 6, 7, and 8 are based on one of the 10 runs that leads
to the median performance. It shows the evolution of the number of faces of the best solution
found so far over the generations. These 3 figures correspond to a one hour run.

One can see that our approach is able to converge to a good solution in few generations.



L. Moalic, D. Schmitt, J. Lepagnot, and J. Kritter 84:7

1

10

100

1 10 100 1000 10000 100000 1000000

euro-night

jupiter

london

paris

protein

skylake

stars

sun

uniform-1

uniform-2

us-night

world

mona-lisa

ortho_rect_union

rop

Figure 5 Evolution of pimpr + 1 (in ordinate) depending on the number of points of the instance
(in abscissa). A logarithmic scale is used on both axes for clarity.

519

524

529

534

539

us-night uniform-1 euro-night paris

Figure 6 Convergence curve of the algorithm for 1,000 point instances over generations.

SoCG 2020



84:8 SOCG Challenge: A Memetic Approach

5100

5120

5140

5160

5180

5200

5220

us-night uniform-1 euro-night

Figure 7 Convergence curve of the algorithm for 10,000 point instances over generations.

50925

51125

51325

51525

51725

51925

1 6 11 16 21 26 31 36

us-night uniform-1 euro-night

Figure 8 Convergence curve of the algorithm for 100,000 point instances over generations.



L. Moalic, D. Schmitt, J. Lepagnot, and J. Kritter 84:9

4 Conclusion

The proposed memetic algorithm has proven its overall effectiveness by ranking second
among the best algorithms competing at the 2020 Computational Geometry Challenge on the
Minimum Convex Partition problem. As pointed out in the analysis of section 3.3, significant
fitness differences are observed between instances, belonging to the same class or not. In spite
of this, the proposed algorithm does not have instance-specific parameter settings. These
differences between instances should be studied, as well as the stability of the algorithm on
each class of instances, to lead to an improved variant of our approach.

References
1 CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.
2 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B.

Mitchell. Computing convex partitions for point sets in the plane: The cg:shop challenge 2020,
2020. arXiv:2004.04207.

3 Nicolas Grelier. Minimum convex partition of point sets is NP-hard, 2019. arXiv:1911.07697.
4 Laurent Moalic and Alexandre Gondran. Variations on memetic algorithms for graph coloring

problems. Journal of Heuristics, 24(1):1–24, 2018. doi:10.1007/s10732-017-9354-9.
5 Pablo Moscato and Carlos Cotta. A Gentle Introduction to Memetic Algorithms. In F. Glover

and G. A. Kochenberger, editors, Handbook of Metaheuristics, pages 105–144. Springer, 2003.

SoCG 2020

http://www.cgal.org
http://arxiv.org/abs/2004.04207
http://arxiv.org/abs/1911.07697
https://doi.org/10.1007/s10732-017-9354-9

	Introduction
	Algorithmic Methods
	A memetic approach
	A simple descent local search
	A crossover which gets the best of the parents

	Practical Computation
	Computational Environment
	Algorithm Engineering
	Experimental Results

	Conclusion

