
Computing Low-Cost Convex Partitions for Planar
Point Sets Based on Tailored Decompositions
Günther Eder
Universität Salzburg, FB Computerwissenschaften, Austria
geder@cs.sbg.ac.at

Martin Held
Universität Salzburg, FB Computerwissenschaften, Austria
held@cs.sbg.ac.at

Stefan de Lorenzo
Universität Salzburg, FB Computerwissenschaften, Austria
slorenzo@cs.sbg.ac.at

Peter Palfrader
Universität Salzburg, FB Computerwissenschaften, Austria
palfrader@cs.sbg.ac.at

Abstract
Our work on minimum convex decompositions is based on two key components: (1) different
strategies for computing initial decompositions, partly adapted to the characteristics of the input
data, and (2) local optimizations for reducing the number of convex faces of a decomposition. We
discuss our main heuristics and show how they helped to reduce the face count.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Computational Geometry, geometric optimization, algorithm engineering,
convex decomposition

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.85

Category CG Challenge

Supplementary Material The source code of our tools and heuristics is available at GitHub and can
be used freely under the GPL(v3) license: https://github.com/cgalab.

Funding Work supported by Austrian Science Fund (FWF): Grants ORD 53-VO and P31013-N31.

1 Introduction

The task of the 2020 Computational Geometry Challenge – called Challenge in the sequel
for the sake of brevity – was to compute minimum convex decompositions (MCD) of point
sets in the plane. We refer to the survey by Demaine et al. [2] for background information.

We employed several tools and heuristics to tackle the Challenge. All tools submitted
their solutions to a central database of ours, such that tool A could query and then improve
on solutions obtained by tool B, and vice versa. Most of our heuristics are based on local
search: Begin with a convex decomposition and iteratively modify it locally to reduce the
number of convex faces. The source code of our tools and heuristics is available at GitHub
and can be used freely under the GPL(v3) license: https://github.com/cgalab.

© Günther Eder, Martin Held, Stefan de Lorenzo, and Peter Palfrader;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 85; pp. 85:1–85:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4676-591X
mailto:geder@cs.sbg.ac.at
https://orcid.org/0000-0003-0728-7545
mailto:held@cs.sbg.ac.at
https://orcid.org/0000-0003-4981-805X
mailto:slorenzo@cs.sbg.ac.at
https://orcid.org/0000-0002-5796-6362
mailto:palfrader@cs.sbg.ac.at
https://doi.org/10.4230/LIPIcs.SoCG.2020.85
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/cgalab
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/cgalab
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

85:2 Low-Cost Convex Partitions Based on Tailored Decompositions

2 Algorithmic methods

2.1 3-Approximation
Our tool 3Apx implements the 3-approximation algorithm by Knauer and Spillner [3]. Tests
quickly showed that this approach generates decompositions that are clearly not optimal.
Hence, we extended 3Apx by an approach based on onion layers [1]: We construct all onion
layers and then find convex decompositions of the annuli between the layers. Contrary to [3],
this approach does not modify the layer boundaries. See Figure 1 for sample decompositions
obtained via 3-approximation and the onion layers. Experiments showed that computing a
convex decomposition based on onion layers is superior to the 3-approximation algorithm
even without merging convex faces across different onion layers, see the plot in Figure 7.

Figure 1 In reading order: When using the 3-approximation implemented in 3Apx for an instance
with 1000 vertices we obtain a convex decomposition with 1350 faces; 1125 faces when using our
approach based on onion layers without partitioning into cells; 1123 faces when partitioning into
four cells and subsequent onion-layer based decomposition; and 1148 faces when using 16 cells.

A visual inspections of the results achieved by 3Apx quickly made it apparent that the
decompositions computed contained lots of extremely long and thin triangles. Hence, we tried
to partition a given input P into smaller “cells” and then run 3Apx on each cell individually.
Then the individual decompositions are joined by triangulating the area between them and
randomly dropping triangulation edges if this is possible without violating convexity. This
produced visually nicer images such as the last two decompositions in Figure 1 but did not
reduce the face counts substantially.

2.2 Merging faces
One of our earliest ideas was to do the obvious: Start with a triangulation of P and then
merge adjacent faces by randomly dropping triangulation edges as long as faces remain
convex. Tests with an initial straightforward implementation, MergeRefine, suggested
that this is a promising approach, easily beating 3Apx (Figure 7). In order to be better
prepared for refined heuristics we quickly re-implemented it in a new tool called Recursor.
In particular, we resorted to a more advanced data structure for storing our decompositions.

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:3

Recursor keeps its state in a variant of a doubly-connected edge list (dcel) or half-edge
data structure. The base layer of our variant is a dcel of a triangulation of P . Additionally,
each half-edge pair is considered either constrained or not constrained, depending on whether
the edge is part of our convex decomposition of P . As a layer on top of the base dcel, each
constrained half-edge, in addition to the pointers to the next triangulation edges encountered
in clockwise (CW) or counter-clockwise (CCW) direction, also holds a reference to next CW
and CCW constrained edges; cf. Figure 2. This enables constant-time testing whether an
edge can be dropped, i.e., marked unconstrained, while keeping a fully fledged triangulation
of P during the entire process. To obtain a decomposition, Recursor first uses Shewchuk’s
Triangle [4] to construct a Delaunay triangulation of P , and then iterates over the edges
in a random order, dropping every edge that can be dropped. This process continues until
no further edge can be dropped, i.e., the decomposition is locally optimal.

Figure 2 Our two-layer doubly-connected edge list stores two planar graphs simultaneously, with
one planar graph being a subgraph of the other. A constrained half-edge h has references to its
neighbors in the convex decomposition (green) and to the underlying triangulation (blue). The
Challenge data set euro-night-10 is shown.

Hole refinement. It is not surprising that a locally optimal decomposition may consist of
many more faces than the true global optimum. Therefore, we worked on strategies that
allow us to move away from local optima: Recursor picks a face f of the decomposition
and a (random) number of its neighbors as a “hole” to work on. In general, it picks a face f

that is incident to a high-degree vertex. We consider a vertex of the decomposition to be of
high degree if its degree is larger than 3 or if its degree is equal to 3 and two incident edges
span an angle of 180°. In other words, high-degree vertices are vertices whose degree could
(locally) be reduced without violating convexity.

Once a hole has been selected, Recursor marks all its triangulation edges as constrained
again. In the next step it tries to drop these edges in a (different) random order. If this results
in a decomposition with no more faces than previously, we keep the new decomposition.
Otherwise, we abandon the modifications and restore the old decomposition. See Figure 3 for
a sample modification of a decomposition for the Challenge data set euro-night-0000100.

Recursor has several parameters to adjust, and we tried to fine-tune them “on the fly”
as we applied it to the Challenge instances. Eventually we settled on hole sizes of 7 + P

faces where P is a random number drawn from a geometric distribution with p = 0.4. In
each hole, we try a number of decompositions that is equal to the number of triangulation
edges in that hole.

Edge flips. Our initial decompositions were based on Delaunay triangulations of the input
points. But there is no argument to justify why Delaunay edges were to be preferred over
other triangulation edges. Hence, the next improvement of Recursor does a number of

SoCG 2020

85:4 Low-Cost Convex Partitions Based on Tailored Decompositions

Figure 3 Top: An initial decomposition of euro-night-0000100 by Recursor. Bottom: A
detail of the initial decomposition (of the dashed blue frame in the full image), with those seven
faces shaded in gray that were selected by the hole-refinement algorithm. The decomposition after
one round of local optimization is shown on the right. The edges affected are shown in blue and
bold. The improved variant has two faces less.

random edge flips on the triangulation of a hole before attempting to drop edges. The
number of edge flips used by our code changed over time. After a series of quick experiments
we ended up with using roughly 5

√
t edge flips, where t is the number of triangles in the hole.

Continuous refinement. So far, each run of Recursor always started from a triangulation
of an input. We modified Recursor such that it could load a previous decomposition and
work on it. This allowed us to run it on different instances whenever we had computational
resources to spare, with no need to run it for long continuous stretches of time.

Parallel recursor. RecurseSplit is a wrapper around Recursor that partitions a given
decomposition into a few dozen or a hundred non-overlapping sets of contiguous faces such
that each set of faces forms a simply-connected region. Each such region is handed to a
dedicated instance of Recursor which attempts to reduce the face count within that region.
Note that Recursor does not require such a region to be convex. Since every individual
run of Recursor operates strictly within its own region, the resulting decompositions can
be merged trivially upon the completion of all runs of Recursor.

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:5

2.3 Flipper
Flipper was implemented relatively late during the time of the Challenge, not even a month
prior to its end. It picks a point set and loads our currently best decomposition for that point
set. Then it performs the following steps repeatedly: First, Flipper picks a high-degree
vertex v and finds, if one exists, an incident edge (u, v) that can be rotated away from v

without violating convexity at either u or v. That is, if u0, u, u1 is a CCW ordering of the
vertices that share a decomposition edge with v then Flipper attempts to replace the edge
(u, v) by either (u, u0) or (u, u1) if permissible. See the green edge in Figure 4, left. As shown
in Figure 4, right, such a rotation may cause one of the edges incident at v or u to become
unnecessary. In that case, we drop it. If, however, no edge can be removed, then the degree
of v has decreased and the degree of either u0 or u1 has increased by one. Flipper then
applies this process to u0 or u1.

Variations, added even later, try to pick a specific input point p at regular intervals.
Then, with some probability, a rotation may only be carried out if the vertex whose degree
is increased by one gets closer to p. The motivation for this decision was that finding edges
that can be dropped gets easier if several vertices with higher degree are in close proximity.

v

uu1

u0
v

uu1

u0

Figure 4 A detail of the initial decomposition (within the dash-dotted green frame of Figure 3):
Rotating the green edge allows to drop the red edge while maintaining the convexity of all faces.

2.4 Orthogonal optimizer
Towards the end of the Challenge, a second batch of input instances was made available.
While the organizers had warned a priori that the inputs may contain collinear points, the
first batch of inputs contained relatively few subsets of collinear points per instance. In
contrast, in the second batch of data, each input instance contained points sampled from
a dense integer grid, resulting in every input instance containing many subsets of collinear
points aligned along horizontal and vertical lines

A visual inspection quickly revealed that the approaches implemented so far did not
generate decent decompositions for several inputs of the second batch. Therefore, we
were forced to devise and implement a new heuristic. OrthoOpt generates initial convex
decompositions geared towards this new type of input instances. It proceeds as follows: First,
it sorts the input points of P lexicographically. Then it connects input points that share
the same x-coordinate in order of increasing y-coordinates. Finally, it constructs a bottom
bounding chain B and a top bounding chain T by linking the bottom-most (top-most, resp.)
input points, and it triangulates all pockets between the convex hull of P and the current
decomposition, as bounded by B and T . Of course, OrthoOpt can also proceed relative
to y-coordinates rather than x-coordinates; see Figure 5. These initial decompositions were

SoCG 2020

85:6 Low-Cost Convex Partitions Based on Tailored Decompositions

passed to Flipper and Recursor for further optimization. In particular, these tools helped
to get rid of unnecessary triangulation edges inside of the pockets formed by the convex hull
of P and the two chains B and T .

3 Practical computation

3.1 Computational environment
Our tools were run on a diverse set of computers operated by our lab as well as by other
groups at the University of Salzburg. We used a varying number of standard PCs plus some
(rather small) compute servers, whenever a machine was available. (We did not have access
to a genuine high-performance computer.) In particular, we used our own desktop machines
whenever they were (partially) idle. One of them, an Intel Core i7-6700 CPU clocked at
3.40 GHz, was used to obtain the performance plot of Figure 6, which shows CPU-time
consumptions of several of our tools for Challenge instances with different numbers of points.

Our low-profile way of accessing computers resulted in a highly non-uniform consumption
of computational resources, which in turn had highly non-uniform performance levels, ranging
from 15-year-old compute servers to machines acquired just a year ago. The availability of a
particular machine or of some of its cores was discussed with the operator of that machine on
a day-by-day or week-by-week basis. We set up a database and engineered some scripts that
allowed all machines to fetch problem instances from and send results back to a home base.

Figure 5 The two top figures show initial decompositions generated by OrthoOpt for the
355-vertex instance rop0000355. The bottom left figure shows the best decomposition (with 44
faces) derived from an initial triangulation of rop0000355. The bottom right figure shows our overall
best decomposition (with 36 faces) derived from an initial decomposition generated by OrthoOpt.

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:7

101 102 103 104 105

Points

10−4

10−3

10−2

10−1

100

101

102
R

u
n

ti
m

e
[s

] 3Apx

MergeRefine

3Apx-onion

Recursor

Figure 6 Time needed to obtain one initial decomposition for the competition inputs.

The heterogeneity of (our use of) the computational resources makes it very difficult to
come up with a reliable ball-park figure of the total CPU time consumed. We estimate,
though, that our tools would have kept a standard desktop machine busy for a few years.

3.2 Experimental results
The estimated quality of a specific convex decomposition is based upon its score, where

score := number of edges in convex partition
number of edges in triangulation .

Figure 7 plots the score for the Challenge instance euro-night-0100000 over time. It
reflects the improvements achieved by refining our tools. While we did not generate such
a plot for each and every instance, we did compare sample plots for a few instances: No
significant differences were observed. That is, the plot shown in Figure 7 can be regarded
as representative for the progress that we made on the Challenge instances of the first
batch. The plot shows nicely how Recursor and Flipper interacted. Near the end of the
competition, Recursor and Flipper by themselves rarely found better decompositions.
However, even when a tool did not reduce the total number of faces, it still restructured the
decomposition and uploaded it to our central server, which in turn may have enabled another
tool to find some small improvement. The plot also indicates that each new tool yielded a
substantial improvement at the beginning, with the gains tapering off as time progressed. So,
likely, investing drastically more computational resources than what we had at our disposal
would have hardly led to truly substantial improvements. In our case, the availability of
human resources for devising and implementing new tools was the decisive limiting factor.

The second batch of Challenge instances made it apparent that our heuristics had been
(implicitly) geared towards the inputs that they had to handle. The rop* input class proved
to be particularly challenging for our initial strategy. Therefore, we introduced OrthoOpt

SoCG 2020

85:8 Low-Cost Convex Partitions Based on Tailored Decompositions

0.6

0.8

0.506

0.508

0.510

Nov Dec Jan Feb

0.5041

0.5042

0.5043

0.5044

0.5045

S
co

re
(s

m
a

ll
er

is
b

et
te

r)
3Apx

3Apx-onion

3Apx-onion+partition

MergeRefine

Recursor

Recursor (+ local refinement)

Recursor (+ random edge flips)

Recursor (+ improve on previous decompositions)

Recursor+partition

Flipper

Figure 7 Score over time for euro-night-0100000. Note that the y-axis changes scale twice.

to generate initial decompositions that are tailored towards inputs with lots of dense, grid-
aligned and, thus, collinear points. Figure 8 illustrates the score over time for rop0064054
and ortho_rect_union_47381, which act as representatives for their corresponding input
classes. Apparently, the introduction of OrthoOpt improved our solutions for the rop*
instances, whereas it provided no improvement for the ortho_rect_union* input class.

In Figure 9, we show the scores of the overall best decompositions for various Challenge
instances. Additionally, Figure 10 illustrates the development of the average score over time.
Note that the significant improvement of the average score in mid January is due to the
introduction of Flipper.

4 Conclusion

Our work makes it apparent that well-crafted heuristics run on moderate computing equipment
are good enough to achieve decent minimum convex decompositions. But the second batch of
Challenge instances made it also apparent that heuristics need not be universally applicable.
Rather, they may require an adaption relative to the characteristics of the input data.

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:9

Jan-20 Jan-27 Feb-03 Feb-10

0.34

0.36

0.38

0.40

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

Recursor

Flipper

OrthoOpt

Jan-20 Jan-27 Feb-03 Feb-10

0.40

0.45

0.50

0.55

0.60

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

Recursor

Flipper

OrthoOpt

Figure 8 Score over time for rop0064054 and ortho_rect_union_47381.

101 102 103 104 105 106

Instance Size

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

euro-night

uniform

us-night

mona-lisa

rop

ortho rect

Figure 9 Score per instance.

SoCG 2020

85:10 Low-Cost Convex Partitions Based on Tailored Decompositions

Nov Dec Jan Feb

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

S
co

re
(s

m
a

ll
er

is
b

et
te

r) Batch 1

Batch 2

Jan-20 Feb-01 Feb-15
0.3821340

0.3821345

0.3821350

0.3821355

0.3821360

A
ve

ra
ge

S
co

re
(s

m
a

ll
er

is
b

et
te

r) Batch 2

Dec Jan Feb
0.5389

0.5390

0.5391

0.5392

0.5393

0.5394

A
ve

ra
ge

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

Batch 1

Figure 10 Average score over time.

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:11

References
1 Bernard Chazelle. On the Convex Layers of a Planar Set. IEEE Transactions on Information

Theory, 31(4):509–517, July 1985. doi:10.1109/TIT.1985.1057060.
2 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B.

Mitchell. Computing Convex Partitions for Point Sets in the Plane: The CG:SHOP Challenge
2020, 2020. arXiv:2004.04207.

3 Christian Knauer and Andreas Spillner. Approximation Algorithms for the Minimum Convex
Partition Problem. In Algorithm Theory – SWAT 2006, pages 232–241, 2006.

4 Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and
Delaunay Triangulator. In Applied Computational Geometry: Towards Geometric Engineering,
volume 1148 of Lecture Notes in Computer Science, pages 203–222. Springer-Verlag, May 1996.
ISBN 3-540-61785-X.

SoCG 2020

https://doi.org/10.1109/TIT.1985.1057060
http://arxiv.org/abs/2004.04207

	Introduction
	Algorithmic methods
	3-Approximation
	Merging faces
	Flipper
	Orthogonal optimizer

	Practical computation
	Computational environment
	Experimental results

	Conclusion

