
Discriminative Coherence:
Balancing Performance and Latency Bounds in
Data-Sharing Multi-Core Real-Time Systems
Mohamed Hassan
McMaster University, Hamilton, Canada
mohamed.hassan@mcmaster.ca

Abstract
Tasks in modern multi-core real-time systems share data and communicate among each other.
Nonetheless, the majority of published research in real-time systems either assumes that tasks
do not share data or prohibits data sharing by design. Only recently, some works investigated
solutions to address this limitation and enable data sharing; however, we find these works to suffer
from severe limitations. In particular, approaches that bypass private caches to avoid coherence
interference altogether suffer from significant average-case performance degradation. On the other
hand, proposed predictable cache coherence protocols increase the worst-case memory latency (WCL)
quadratically due to coherence interference. In this paper, by carefully analyzing the scenarios that
lead to high coherence interference, we make the following observation. A protocol that distinguishes
between non-modifying (read) and modifying (write) memory accesses is key towards reducing the
effects of coherence interference on WCL. Accordingly, we propose DISCO, a discriminative coherence
solution that capitalizes on this observation to balance average-case performance and WCL. This is
achieved by disallowing modified data in private caches, and hence, the significant coherence delays
resulting from them are avoided. In addition, DISCO achieves high average performance by allowing
tasks to simultaneously read shared data in the private caches. Moreover, if the system supports
the distinction between private and shared data, DISCO further improves average performance by
allowing for the caching of private data in cores’ private caches regardless of whether it is modified
or not. Our evaluation shows that DISCO achieves 7.2× lower latency bounds compared to the
state-of-the-art predictable coherence protocol. DISCO also achieves up to 11.4× (5.3× on average)
better performance than private cache bypassing for the SPLASH-3 benchmarks.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Real-time system architecture; Computer systems organization → Multicore
architectures

Keywords and phrases Coherence, Shared Data, Caches, Multi-Core, Real-Time, Memory

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.16

1 Introduction

Demands from modern applications of embedded systems such as those in automotive,
avionics, industrial automation and healthcare are shaping the research directions in real-
time embedded systems. The high performance demands from these applications ignited the
transition from single-core to multi-core real-time systems [37]. In addition, meeting the
high data demand was a strong motive behind exploring the adoption of complex memory
hierarchies composed of multiple levels of caches [44] and include shared caches [10, 13, 25,
36, 29], shared interconnects [7, 15, 19] as well as off-chip memories [9, 12, 18, 22] instead
of the small-sized static on-chip memories found in traditional low-end embedded systems.
Despite this large volume of research, one demand from the aforementioned applications is
yet to be efficiently addressed: allowing a seamless, predictable, and high performance data
sharing among different running tasks. Unfortunately, most prior works in real-time systems
do not meet this demand. They either assume tasks are not sharing data or prohibit data
sharing by design [6]. This is mainly because data sharing is problematic and can lead to

© Mohamed Hassan;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 16; pp. 16:1–16:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohamed.hassan@mcmaster.ca
https://doi.org/10.4230/LIPIcs.ECRTS.2020.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Discriminative Coherence

significant interference delays [3, 11] or even unpredictable behaviors [14] if it is not carefully
addressed.

On the other hand, researchers have already realized the importance of enabling data
sharing in the context of real-time systems [4, 6, 11, 14, 16]. The common approach
followed by these works is to allow data to be shared among tasks but prevent tasks from
simultaneously accessing this shared data in an attempt to accommodate for the data sharing
demand, while ensuring system predictability. As a result, large interference delays due to
this simultaneous access are avoided altogether. This is achieved by either modifying the
task-to-core mapping [6], data-aware scheduling [4, 11], or bypassing caches [6, 3, 26]. The
main drawback of such approach is that by disallowing simultaneous access to shared data, it
can severely deteriorate the system performance. To improve system performance and enable
simultaneous access to shared data, [14, 39, 40, 23] propose predictable cache coherence
protocols. The problem with these protocols is that they require complex changes to cache
controllers and more importantly, they result in a significant increase in the worst-case latency
(WCL) upon accessing memory due to coherence interference. In this paper, we propose
DISCO: a discriminative coherence solution that addresses the aforementioned drawbacks.
Towards this target, we make the following contributions.
1. We exhaustively study all possible access scenarios under coherence protocols to distill

the main sources of their large coherence delays. As a result of our study we make the
following important observation. Significant coherence interference delays that arise from
the worst-case scenarios are exclusively due to cache lines being modified in the private
caches without an immediate update to the shared cache. The other key observation
that DISCO is based on is that the number of memory writes usually represents a small
percentage of the total memory requests of applications. We discuss these two observations
in details in Section 5.

2. Based on these two observations, we propose DISCO to prohibit the caching of modified
data in the cores’ private caches. All data modifications are carried out at the shared
cache. DISCO intentionally discriminates against write memory requests since they are
forced to access the shared cache even if data already exists in the requesting core’s
private cache, while read requests are allowed to hit in private caches if their data exists;
therefore, reads are managed exactly as in traditional coherence approaches deployed
in commodity systems. Since all writes are treated equally, we call this version of the
proposed solution, DISCO-AllW.

3. To further improve the system performance, we also propose another version of our
solution that we call DISCO-SharedW. DISCO-SharedW leverages information about tasks’
data (namely, whether data is shared or private). DISCO-SharedW relaxes the constraint of
DISCO-AllW by allowing private data to be modified in the private caches. It allows both
read and write hits to the private data that is not shared among tasks since it causes no
coherence interference. Both DISCO-AllW and DISCO-SharedW can be either implemented
as a hardware cache coherence protocol (Section 6) or realized in commodity platforms
using already available support on these platforms as we discuss in Section 7.3.3.

4. We conduct a detailed analysis to calculate the WCL incurred by any memory request as
well as the total WCL for both DISCO-AllW and DISCO-SharedW (Section 7).

5. We compare both versions of DISCO with the two state-of-the art competitive solutions:
PMSI coherence protocol [14] and cache bypassing [26, 3]. Our evaluation uses both the
SPLASH-3 [35] parallel data-sharing benchmarks as well as synthetic experiments that
are based on the EEMBC-Auto benchmarks [33]. Results in Section 8 show the notorious
improvements that DISCO-AllW and DISCO-SharedW achieve compared to both PMSI and
cache bypassing. We summarize these results in Table 1.

M. Hassan 16:3

Table 1 Summary of DISCO improvements over state-of-the-art competitive approaches.

Per-request WCL Total WCL Avg. Performance
PMSI Bypass PMSI Bypass PMSI Bypass

analytical up to avg. up to avg. up to avg. up to avg.
DISCO-AllW 7.2× same 3.3× 2× 65% 42% 100% 12% 2.8× 1.5×

DISCO-SharedW 7.2× same 6× 3.5× 3.8× 1.5× 3.2× 1.6× 11.4× 5.3×

2 Related Work

With the adoption of multi-core architectures in real-time embedded systems being on the
rise, several new challenges face the researchers in these systems. Predictably managing
the shared hardware components among different cores (such as interconnects, on-chip
caches, and off-chip memories) is one of the biggest challenges. This is because processing
elements in multi-core architectures compete to access these resources which results in
significant interference in the system. To address this challenge, several recent research
efforts aim at providing predictable access to shared interconnect [44, 7, 15, 31, 19], shared
caches [42, 36, 43, 10], and shared DRAM [32, 34, 1, 9, 22, 17, 12]. While these efforts
successfully address the timing interference problem, the data interference problem is usually
overlooked.

Most of the aforementioned solutions adopt the independent-task model, where tasks do
not share data. Recently, researchers recognized the importance of data sharing and proposed
solutions to handle it [6, 11, 14, 3, 4, 26, 39, 23, 40]. We classify these works into three
groups according to their research direction: 1) data-aware scheduling, 2) cache bypassing,
and 3) cache coherence protocols.
1) Data-aware scheduling. The first direction incorporates data-awareness in the task

scheduling to avoid data interference. This is achieved by one of the following means: 1.1)
scheduling tasks with shared data such that they never run in parallel [4]; hence, they do
not compete for shared data; 1.2) assigning tasks with shared data to the same core [6];
hence, they share the same private cache(s) and do not suffer coherence interference
from each other; or 1.3) incorporating run-time performance metrics collected through
hardware counters to make data-wise scheduling decisions that mitigate the data sharing
effects [11]. This direction enforces new constraints on the system scheduler interference,
which deteriorates system schedulability [40]. Unlike these solutions, DISCO does not
require any modifications to the system scheduler and coherently handles data sharing in
hardware.

2) Cache bypassing. A second alternative is cache bypassing, which was first utilized in
the context of reducing the shared cache conflict interference [13, 26] but is then used to
avoid coherence interference of shared data [6, 3]. If private caches are bypassed, coherence
interference is eliminated, but at the expense of degrading average-case performance.

3) Cache coherence. The third direction is to make data sharing transparent to the
application and the scheduler by handling it completely in hardware using cache coherence
protocols [14, 39, 23, 40]. Cache coherence is notoriously the main solution adopted by
commercial-of-the-shelf (COTS) multi-core architectures [30, 41]. It has the advantage
of enabling data sharing without imposing any restrictions on the real-time scheduler
compared to data-aware scheduling solutions. It is also shown to provide high average-case
performance compared to both data-aware scheduling and cache bypassing [14, 40]. On
the other hand, it suffers a notably high worst-case memory latency due to the introduced
coherence interference. For instance, PMSI [14] has a worst-case latency that is quadratic
in the number of cores in the system.

ECRTS 2020

16:4 Discriminative Coherence

Shared BUS

Shared Cache

states tag Data
Cache

Controller

C0C1C2CN
Private Cache

states tag Data
Cache

Controller

Figure 1 System model.

We discuss both cache bypassing and cache coherence in more details in Section 5 since
they are the most related to this work.

3 System Model

We assume the multi-core architecture depicted in Figure 1, where tasks running on this
architecture can share data. The proposed solution does not depend on the core architecture
and can be seamlessly deployed for in-order or out-of-order cores.

Memory Hierarchy. Each core has its own private cache(s) and all cores share a last-level
cache (LLC). LLC is accessed through a shared bus. Cores can also share an off-chip memory.
We also assume that timing interference is resolved in the shared cache using partitioning
or coloring [10], and in shared main memories using existing solutions orthogonal to this
work [12, 8].

Bus Arbitration. Without loss of generalization, we assume that accesses to the shared bus
are managed according to a Time Division Multiplexing (TDM) scheme. Solutions proposed
in this paper are independent of the deployed arbiter and can be applied to other arbiters as
well. However, the timing analysis we perform in Section 6 assumes a TDM bus arbitration.
Similar to existing work [14, 39], we set the slot width to accommodate for the one data
transfer between private and shared caches in addition to coherence messages. This slot
width is denoted as Lmiss

acc since it is incurred if a request misses in the corresponding core’s
private cache.

Task Scheduling. We do not make any assumption on how the executing tasks are scheduled
on cores. The proposed approach is orthogonal to task scheduling and should operate in
tandem with any schedule.

4 Cache Coherence Background

When multiple cores accessing the same data, the system has to maintain data correctness.
Data correctness is achieved when all cores have access to the most up-to-date data. On
the other hand, data incorrectness occurs when a core accesses a stale data that has been
already changed in another location in the system (e.g. another core’s cache). Modern
multi-core systems deploy cache coherence protocols to prevent such situation and preserve
data correctness. The Modified-Shared-Invalid (MSI) is considered the baseline coherence

M. Hassan 16:5

𝐼

𝑆

LD/HitST/
Issue Upg

OtherGetS or
OtherGetM

OtherGetS

𝑀

LD/Hit

OtherGetS/
SendDataST/Hit

Figure 2 MSI coherence states, messages, and transitions. Messages observed by the core on the
bus from other cores are indicated as Other (e.g. OtherGetS).

protocol [38], where many of the commercial-off-the-shelf architectures adopt protocols that
inherit its three fundamental states: Modified (M), Shared (S), and Invalid (I) such as
the MESIF protocl deployed in Intel’s i7 and the MOESI protocol deployed in AMD’s
Opteron [20]. Therefore, we use it as a mean to explain the basics of a coherence protocol.

Figure 2 depicts the three states of MSI as well as all possible transitions between them.
If a cache line does not exist in the private cache or its data is stale, its state will be I. The
S state indicates that the data of this cache line is valid and is not modified, while the M

state indicates that the data of this cache line is valid and modified. Therefore, multiple
cores can share a cache line in their private cache in the S state, while only one core can
have a cache line in the M state. All other cores in this case will have this line in the I state.
If a core has a load/read request to a cache line in the I state, the private cache controller of
this core (or for simplicity we refer to this throughout the paper as just the core) issues a
GetS coherence message on the bus to inform all other cores and the shared cache about
this request. Once the core receives the requested data, it moves to the S state. Similarly, if
a core has a write request to a cache line in the I state, it issues a GetM message on the
bus and moves to the M state once data is received. The core is not required to take any
action upon observing messages of other cores to a cache line that it has in the I state. Read
requests to a cache line in the S state are hits and no message is broadcasted on the bus. In
contrast, write requests to a cache line in the S state has to broadcast an Upg message on
the bus to ask other cores to invalidate their local copies in their private caches since it is
going to modify it. A core takes no action upon receiving an OtherGetS from another core
to a line that it has in the S state since multiple cores can simultaneously read the same
cache line. Read and write requests to a cache line in the M state are hits and no message is
broadcasted on the bus. If the core observes an OtherGetS on the bus from another core
requesting to read a cache line that it has in the M state, it sends the modified data to the
requesting core and/or the shared memory and moves to the S state.

5 Motivation

5.1 Performance Gains of Cache Coherence

PMSI [14] provides high performance gains compared to other approaches such as shared-
data aware scheduling and private cache bypassing by deploying cache coherence to orchestrate
accesses to share data. In Figure 3, we show the execution time of both PMSI and bypassing

ECRTS 2020

16:6 Discriminative Coherence

0
500

1000
1500
2000
2500
3000
3500
4000

Ex
ec

ut
io

n
tim

e
[c

yc
 in

 M
ill

io
ns

]

PMSI ByPassAll

Figure 3 Execution time.

private caches entirely (or simply bypassing1). The applications used in this experiment
are from the SPLASH3 benchmark suite [35], and the experimental setup is discussed in
details in Section 8. As Figure 3 illustrates, PMSI outperforms bypassing for all benchmarks.
Performance improvements reach up to 3.7× (barnes) and 7× (radiosity) with a geometric
mean performance improvement across all benchmarks of 2×. This clearly represents
promising results that motivate us to investigate cache coherence in the context of real-time
systems.

5.2 Per-Request WCL

Despite its average-case performance gains, PMSI suffers from large worst-case delays due to
the introduced coherence interference. For instance, with bypassing, all cores pay the price
of a shared cache access delay once granted access to the bus by the arbiter, regardless of
the access pattern of other cores. This results in an access latency of one TDM slot, which
we denoted as Lmiss

acc in Section 3 with no coherence latency at all. In addition to this access
latency, for a system with N cores and a fair TDM arbiter, a request can suffer an arbitration
latency up to one full TDM period or N · Lmiss

acc . Table 2 summarizes these worst-case values.
This is notably lower than the worst-case scenario under PMSI, where all cores compete
to simultaneously access the same shared cache line. As Table 2 illustrates, in addition to
the access latency and arbitration latency that is the same as those of bypassing, a memory
request under PMSI suffers from a significant worst-case coherence latency. The value of this
latency directly follows from [14]. From Table 2, total WCL of both bypassing and PMSI
can be calculated as follows.

WCLP MSI
perReq = 2 · N2 · Lmiss

acc + 2 · N · Lmiss
acc + Lmiss

acc (1)

WCLByP ass
perReq = N · Lmiss

acc + Lmiss
acc (2)

Figure 4a delineates this per-request WCL across different number of cores, which shows the
significant gap between WCLs of cache coherent solution (PMSI) and bypassing solution due
to coherence interference.

1 Bypassing throughout this paper refers to skipping the access to the private cache and access directly
the shared cache.

M. Hassan 16:7

Table 2 Worst-case latency components of private cache bypassing and PMSI techniques.

Latency Component Bypassing PMSI
Arbitration Latency N · Lmiss

acc N · Lmiss
acc

Coherence Latency 0 N · (2 · N + 1) · Lmiss
acc

Access Latency Lmiss
acc Lmiss

acc

0

2000

4000

6000

8000

0 2 4 6 8

Pe
r R

eq
ue

st
 W

CL
 [c

yc
]

Number of Cores

PMSI
ByPass

(a) Per-request WCL across different num-
ber of cores.

0

500

1000

1500

2000

2500

0 20 40 60 80 100

Ef
fe

ct
iv

e
W

CL
 [c

yc
]

% of Shared Data

PMSI
ByPass

(b) Effective WCL for various percentage
of shared data.

Figure 4 Per-request WCLs (Equations 1 and 2) and effective WCLs (Equation 5.

5.3 Total task’s WCL
To bound the task’s total Worst-Case Execution Time (WCET), the cumulative WCL over
all requests generated by the task under analysis has to be computed. Towards this target,
we are interested in calculating the total memory WCL suffered by the total number of
memory requests generated by a core during a period of time t, M(t) or simply M 2.

For bypassing, it is straightforward since all requests are serviced from the shared memory,
every request can suffer the same WCL that is indicated in Equation 2. Therefore, the total
WCL for by passing is computed as:

WCLBypass
tot = M · WCLBypass

perReq = M · Lmiss
acc · (N + 1) (3)

For PMSI, it is more involved since requests to private (non-shared) cache lines need
to be differently handled compared to requests to shared cache lines as the former will
not suffer from coherence interference. Considering a partitioned cache hierarchy, where
private and shared data are located in separate set such that shared data will not cause any
conflict interference to private data, it is safe to assume that the access pattern (private hits
and misses) to private cache lines (those not shared with other cores) can be analyzed in
isolation and remains the same when the core suffers interference from other N − 1 cores.
Additionally, with this partitioning, from the task’s analysis in isolation (either statically
or experimentally), one can compute the number of requests to private cache lines (let it
be Mprivate), and the number of requests to shared cache lines (Mshared) by examining
the addresses of memory requests. Moreover, accesses to private cache lines can be further
classified into hits and misses to the private cache, which we denote as Mprivate

hits and Mprivate
misses ,

respectively. Unlike Mprivate, it is not possible to statically determine the hits or misses
to the shared cache lines since this depends on the access behavior of other cores during
run time, which can also access these shared lines. Therefore, the WCL has to be assumed
for all accesses to shared lines. Assume the access latency to the core’s private cache is

2 For readability, we drop the usage of t from the remainder of the paper. For instance, we use W instead
of W (t) to refer to the number of total writes generated by a core during time t.

ECRTS 2020

16:8 Discriminative Coherence

Req arrives
at private

cache
controller

R or
W?

Hit, perform LD

Wait for slot

is
su

e
re

q

modified
by

others?Wait for WB
Other

core WB Wait for slot Req/WB
slot?

perform
WB

get Data,
perform

LD/ST

R or W?

Invalidate
all others

R

W

Hit Req slot

No

Modified
?

yes

Hit or
Miss?

Hit or
Miss?

Hit

Hit, perform ST

Wait for slot issue req

Hit or
Miss?

Modified/
requested By

Others?

1

2

3
No

W
B

sl
ot

4

5

6

7
yes

Figure 5 PMSI flow diagram.

Lprivate
acc and recall that the WCL to access a shared cache line (which includes coherence

interference if exists) is WCLP MSI
perReq as calculated by Equation 1. Accordingly, the cumulative

total worst-case memory latency suffered by the task, WCLtot, can be computed as:

WCLP MSI
tot = Mprivate

hits · Lprivate
acc + Mprivate

misses · (N + 1) · Lmiss
acc + Mshared · WCLP MSI

perReq

(4)

Dividing Equation 4 by the total number of task requests, we get the effective WCL of a
single request (WCLeff) as in Equation 5, which can be considered as the average WCL
suffered by a single request to the cache.

W CLeff = %Mprivate
hits · Lprivate

acc + %Mprivate
misses · (N + 1) · Lmiss

acc + %Mshared ·W CLP MSI
perReq (5)

To visualize this effect, Figure 4b plots the effective WCL for both bypass and PMSI
for different percentage of accesses to shared data. Figure 4b shows that with increased
percentage of shared data accesses, the gap between PMSI and bypass significantly increases.
The reason for this behavior is that since the WCLshared

perReq of PMSI (Equation 1) is much larger
than that of bypass (Equation 2), increasing shared data accesses, this latency component
will dominate the total WCL.

5.4 Distilling Coherence Effects on WCL
Now, our target is to reduce this high WCL resulting from cache interference. In doing so, we
study carefully the effect of coherence across all access scenarios. We find that the high WCL
is resulting from a pathological scenario and does not apply to all cases even for accesses
to shared lines. This is a key observation and one of the main contributions of this paper;
therefore, this subsection will discuss it in detail. We study all possible access scenarios in
the existence of coherence, and plot these scenarios in Figure 5. Figure 5 follows the design
guidelines of PMSI [14].

5.4.1 Hit Scenario
In case of a read hit (shown as event 1 in Figure 5) or a write hit to an already modified
cache line in the private cache (at 2), the core proceeds with the load/store instruction
without any arbitration or coherence delays. On the other hand, if the request is a write hit
to a non-modified cache line (at 3), the core has to wait for a slot to access the shared bus
as writes require to exchange coherence messages to invalidate copies of this line in all other
private caches.

M. Hassan 16:9

Rx(A) WB(A) RX(A) WB(A) RX(A)

St(A)
50 40

50 4050 40 3040 30

St(A)
40 30

St(A)
30 20

C0’s coherence interference C1’s coherence interference

C0: St(A)
C1: St(A)
C2: St(A)

Shared Cache

Arbitration Schedule

Figure 6 Coherence interference in case of writes for PMSI. C2 is the core under analysis and it
has to wait for both C0 and C1 before it gains access to block A.

5.4.2 Miss Scenario
If the request is not available in the core’s private cache, the core has to wait for its slot to
issue this request on the shared bus. Once the core is granted a slot, it issues the request
(4 in Figure 5 in case of a read, and 5 for a write). If the requested cache line is not
modified in another core’s private cache and no write requests are pending to this line, the
core receives the data from the shared memory in the same slot and proceed to finish the
load/store instruction. This is the scenario highlighted as 6 in Figure 5. On the other hand,
if one of these two conditions is not satisfied, the core has to wait for all pending writes (if
exist) to same line to finish first and the data to be updated in the shared memory (through
a write back by another core) before it can obtain the requested line in its private cache.
This is the scenario at 7 in Figure 5. As Figure 5 illustrates, the scenario at 7 is the one
that triggers coherence interference and causes the largest delays.

5.4.3 Worst-Case Scenario
Based on this discussion, the pathological worst-case scenario is to assume that all cores in
the system simultaneously ask to modify the same cache line. Accordingly, the request under
analysis in the worst case has to wait for all other cores, where each core performs its access
to obtain the cache line in its private cache, modifies it (performs the store instruction), and
writes the new data back to the shared memory. This requires two memory transfers per each
core of the other N − 1 cores before the core under analysis is able to proceed with its access.
Figure 6 depicts this scenario for a system with three cores, where the core under analysis
is C2 and it has to wait for store requests from the other two cores before it can issue its
own request. Under TDM scheduling, each transfer can wait for a complete TDM period
(arbitration effects) before it can gain access to bus, where a TDM period is a function of N .
This explains the quadratic effect of coherence interference on WCL.

Bypassing avoids this scenario by directly accessing the shared memory for every memory
request, which eliminates the need for write backs, and hence, the coherence interference.
However, this comes at the expense of not utilizing the private caches at all making every
request suffering the large shared cache access time. This explains the performance degrada-
tion of bypassing compared to PMSI as discussed in 5.1. In contrast, we observe that the
explained scenario can be avoided if only writes are made visible instantaneously to the
shared memory, while reads do not cause any additional coherence interference. In Figure 6,
if cores write directly to the shared memory, the resulting effect will be completely equivalent
to bypassing independent of how reads are handled. The other important observation is
that writes represent usually a small percentage of applications. Our analysis shows that
across the SPLASH3 suite, writes represent on average 30% of the memory requests of the
application as Figure 7 illustrates. The same observation holds for other benchmarks as well.
For instance, we find that the PARSEC benchmark [5] suite and the EEMBC-auto [33] suite
have on average 21% and 32% writes per application, respectively.

ECRTS 2020

16:10 Discriminative Coherence

0%
20%
40%
60%
80%

100%

private W% shared W% private R% shared R %

Figure 7 Breakdown of Splash benchmark memory requests.

𝐼 𝑆

OtherGetM LD/Hit

LD/ IssueGetS

ST/
Issue GetM
&UpdateMST/

IssueGetM
&UpdateM

OtherGetS or
OtherGetM

OtherGetS

Figure 8 Coherence states of the simple SI protocol adopted by DISCO.

6 Proposed Solution

Motivated by the observations we made in Section 5, we propose DISCO: a discriminative
coherence approach. The key idea behind DISCO is to eliminate by design the worst-case
scenarios covered in the previous section, and therefore, avoid its significant coherence delays.
On the other hand, DISCO still maintains a high average-case performance by employing
coherence and enabling simultaneous access to shared data. These two objectives are achieved
by intentionally discriminating write memory requests by forcing them to update the shared
memory immediately with any write (new) data from any core. This significantly simplifies
the coherence protocol as it eliminates all the transient states needed because of data being
updated privately by other cores such as in PMSI [14], and reduces the coherence protocol
to the simple SI (or sometimes referred to as VI) protocol [38]. Figure 8 shows the coherence
states of this SI protocol. It is worth noting that there are two different ways to realize DISCO,
either by 1) implementing this SI protocol in hardware, or 2) achieving the write bypass in
already existing platforms through available support in these platforms. For now, we will
detail the operation of DISCO, while we explain the required support in existing architectures
that can allow for the realization of DISCO without redesigning the coherence protocol in
Section 7.3.3. As Figure 8 illustrates, the M state is completely removed since no core will
have a cache line modified in its private cache without updating the shared cache.

If a core has a read request to a cache line that is in the I state in its private cache, it
issues a GetS message once granted access to the bus and moves to the S state once it receives
data from the shared cache. In contrast, if the request is a write to a line in the I state, it
modifies this line directly into the shared cache and it does not allocate it to the private
cache. Hence, it remains in the I state. Although allocating the cache line in the private
cache might improve average performance by potentially allowing future read hits to this
line, it requires an additional data transfer from the shared cache to the core, which increases
the WCL. In particular, the slot width of the shared bus arbiter has to accommodate for two
memory transfers instead of one. As a result, we choose not to allocate the line in this case

M. Hassan 16:11

Req type

WriteRead

Data type

PrivateShared

Data type

PrivateShared

Line state

MissHit

Line state

MissHit

3Scenario 1 2Scenario Scenario

(a) Handling of different access scen-
arios.

Req arrives
at private

cache
controller

R or W?

Hit, perform LD

Wait for slot
Write to
shared
cache

Invalidate
all others

R

W

Hit or
Miss?

Hit

Wait for slot
issue req

issue req

get Data,
perform LD

1

2Miss

3

(b) Flowchart of operations.

Figure 9 Proposed DISCO-AllW coherence approach.

to improve WCL. As explained in Section 4, a core with a cache line in the I state makes no
change to its state as a response to events on this line by other cores. If a core has a read
request to a cache line that is in S state in its private cache, it is a hit and no change in the
state is required. However, if the core has a write request to a line that is in the S state, it
has to issue a GetM message on the bus to invalidate copies of this line in all other private
caches and perform the write to its private cache as well as to the shared cache to keep
it updated. If while in the S state, a core observes an OtherGetS message on the bus, it
remains in the S state since the other core is requesting this line for a read and is not going
to modify it. Contrarily, if the core observes an OtherGetM message to a line it has in the
S state, it has to invalidate its copy since the data is going to be updated by the other core.

Leveraging this simple protocol, DISCO eliminates the large coherence delays due to write
requests that modify data in private caches of cores while not being reflected on the shared
memory. In other words, the long path in Figure 5 due to the modified/requested by others
condition (the scenario at 7) is eliminated since this condition will be always false (no cache
line will be modified in a core’s private cache). Figure 9 illustrates the operation of DISCO.
Since all writes are handled equally, we denote this approach as DISCO-AllW.

6.1 DISCO-AllW: Discriminative Coherence for All Cache Lines
A request to a cache line can be classified according to three factors.
1. Request type. With regard to the the instruction type, a request can be either a read

(e.g. from a load instruction), or a write (e.g. from a store instruction).
2. Data type. This is related to the nature of the data stored in this cache line, it can be

one of two possibilities: a private cache line (only accessed by the current task), or a
shared cache line across tasks.

3. Line state. Finally, a request can be either a hit if the requested data exists (and is
valid) in the private cache of the requesting core or a miss otherwise.

This results in a total of eight possibilities for any such request. For example, one request
can be a read hit to a private cache line, while another request could be a write hit to a
shared cache line, etc. DISCO-AllW operates on these cases based on the following four rules:

I Rule 1. Operating Rules of DISCO-AllW.
(A) It does not distinguish between shared and private lines, both are treated equally.
(B) It treats all writes equally by sending them to the shared cache.
(C) Read hits are allowed and can proceed without requesting an access to the shared bus.
(D) Read misses have to wait for an access to the shared bus to obtain data from the shared

cache.

ECRTS 2020

16:12 Discriminative Coherence

Req type

WriteRead

Data type

SharedPrivate

Data type

PrivateShared

Line state

MissHit

Line state

MissHit

31 2

Line state

MissHit

54Scenario Scenario Scenario Scenario Scenario

(a) Handling of different access scenarios.

Req arrives
at private

cache
controller

R or W?

Hit, perform LD

Wait for slot

get Data,
perform

LD/ST

R

W

Hit or
Miss?

Hit

Wait for slot issue req

issue req

Private?

Write to
shared
cache

get Data,
perform LD

Invalidate
all others

Hit or
Miss?

Hit, perform ST

Wait for slot
private

Hit

sh
ar

ed

Miss

Miss

1

2

3

4

5

(b) Flowchart of operations.

Figure 10 Proposed DISCO-SharedW coherence approach.

Based on these rules, the aforementioned eight cases are reduced to only three scenarios
under DISCO-AllW as illustrated in Figure 9a. Figure 9b depicts a flow chart for the operation
of DISCO-AllW in all these three scenarios.
1. Scenario 1 : A Read Hit in the Private Cache. Read hits are allowed immediately

in the private caches and operate similar to traditional coherence protocols. This is because
they do not require an access to the shared bus and do not result in any modification in
the coherence state of the requested cache line.

2. Scenario 2 : A Read Miss in the Private Cache. If the requested line is a read
miss in the private cache, it has to be requested from the shared memory. Thus, the
core has to wait for its slot and then issue its request on the shared bus. Since all writes
are reflected immediately in the shared cache, the shared cache will always have the
up-to-date data. Accordingly, the core will receive its requested line in the same slot and
perform its load operation.

3. Scenario 3 : A Write Request. As Figure 9b shows, any write request has to wait
for an access slot to the shared bus to update the shared cache with the new data. In
addition, all copies of the requested cache line in other cores’ private caches have to be
invalidated (since it is now outdated).

6.2 DISCO-SharedW: Discriminative Coherence for Shared Lines Only
DISCO-AllW operation does not make any assumption about the cache lines; in particular, it
does not rely on the knowledge of which lines are shared, which facilitates its adoption if such
knowledge is not made available during execution. On the other hand, if such knowledge is
available, we can improve the performance of the solution. This can be done by leveraging
the fact that if a line is private for a task (and hence not shared among tasks), DISCO can
safely allow write hits to this line without worrying about coherence interference. In doing
so, we introduce another alternative to DISCO-AllW that we call DISCO-SharedW. Figure 10
illustrates the details of DISCO-SharedW, which operates according to the following rules.

I Rule 2. Operating Rules of DISCO-SharedW.
(A) Read hits are allowed to both private and shared lines and can proceed without requesting

an access to the shared bus.
(B) Read misses have to wait for an access to the shared bus to obtain data from the shared

cache.
(C) Write hits are allowed only to private lines that are not shared with other tasks. Those

hits can proceed without requesting an access to the shared bus.

M. Hassan 16:13

(D) Write misses to private lines has to wait for an access slot to the bus since it has to be
requested from shared memory.

(E) Writes to shared lines have to go the shared cache.

According to these rules, DISCO-SharedW handles reads exactly as in DISCO-AllW. On the
other hand, writes are handled differently based on whether they are targeting a private or
a shared cache line. This results in the following five scenarios of any memory request as
depicted in Figure 10a.

1. Scenario 1 : A Read Hit in the Private Cache.
2. Scenario 2 : A Read Miss in the Private Cache.

As illustrated in Figure 10 (compared to Figure 9), DISCO-SharedW handles Scenarios 1
and 2 exactly the same as DISCO-AllW.

3. Scenario 3 : A write hit in the private cache for a private cache line. Write
hits to private lines are allowed based on Rule 2(C) and they execute immediately without
the need to exchange any coherence messages.

4. Scenario 4 : A write miss in the private cache for a private cache line. Write
misses to private cache lines are managed according to Rule 2(D) and they have to wait
for an access slot to be sent to the shared memory.

5. Scenario 5 : A write to a shared cache line. Write hits to shared cache lines are
still not allowed. This is necessary to avoid the high coherence delays resulting from it.
Therefore, a write request to a shared cache line has to wait for an access slot to the
shared bus since it has to update the shared cache (Rule 2(E)).

7 Worst-Case Latency

In this section, we derive both the per-request as well as the total WCL for a system that
deploys DISCO to manage shared data in its cache hierarchy.

7.1 Per-Request Worst-Case Latency

From the previous discussion, any memory request in either DISCO-AllW or DISCO-SharedW
requires in the worst case only one memory transfer between the shared cache and the
requesting core. For read requests, the shared cache sends data to the core, while for writes,
the core sends updated data to the shared cache. Consequently, any memory request suffers
only access and arbitration latencies. Excessive coherence delays because of multiple data
transfers as discussed in Section 5 are completely eliminated.

I Lemma 1. A request to a cache hierarchy deploying either versions of DISCO encounters a
latency that is at most:

WCLDISCO
perReq = WCLDISCO-AllW

perReq = WCLDISCO-SharedW
perReq = N · Lmiss

acc + Lmiss
acc (6)

Proof. The proof directly follows from the fact that under the deployed TDM arbitration, a
core in the worst case has to wait for all other cores before it can send an access to the shared
bus. Recall that we have N cores and that the slot width is Lmiss

acc . Thus, the worst-case
arbitration latency a memory request can suffer is N · Lmiss

acc . In addition, as per definition, a
request to the shared memory consumes an access latency of Lmiss

acc . J

ECRTS 2020

16:14 Discriminative Coherence

7.2 Total Worst-Case Latency
Although both DISCO-AllW and DISCO-SharedW have the same per-request WCL, DISCO-
SharedW improves the total WCL compared to DISCO-AllW. This is because leveraging the
distinction between private and shared lines, a core’s hit rate for private writes under
interference from competing tasks is maintained the same as it is calculated in isolation.
This is true since private lines by definition are not shared among tasks, and hence, do not
experience interference from requests of tasks running on other cores. It is important to
notice that although DISCO-AllW assumes that the knowledge of shared vs private lines is
not made available to the hardware online upon execution, we can still use this information
offline to derive the total WCL of the task.

I Lemma 2. Total worst case memory latency incurred by any task under DISCO-AllW can
be calculated as:

WCLDISCO-AllW
tot = Rprivate

hits · Lprivate
acc + (Rprivate

misses + Rshared + W) · WCLDISCO
perReq (7)

Proof. Based on the discussion of DISCO-AllW in Section 6.1, we prove Lemma 2 as follows.
Since all writes are treated equally, we denote write requests as simply W . By design,

each one of these W requests has to wait for the corresponding core’s slot to update the
shared cache. Thus, they suffer the worst case scenario in Lemma 1 and each of them can
have a WCL of WCLDISCO

perReq .
For the read requests to shared lines, denoted as Rshared: from Lemma 1, each one of

those requests under DISCO-AllW suffers a WCL of WCLDISCO
perReq . Finally, since tasks do not

interfere on private cache lines as aforementioned, tasks maintain the same hit rate calculated
in isolation for read requests to these private lines. Accordingly, the number of read hits
and misses to the private lines remain the same. Each one of the Rprivate

hits encounters a
hit latency of the private cache, Lprivate

acc , while every read miss has to access the shared
cache encountering the scenario of Lemma 1 with a WCL of WCLDISCO

perReq . This constructs
WCLDISCO-AllW

tot in Equation 7. J

I Lemma 3. Total worst case memory latency incurred by any task under DISCO-SharedW
can be calculated as:

WCLDISCO-SharedW
tot = Mprivate

hits · Lprivate
acc + (Mprivate

misses + Mshared) · WCLDISCO
perReq (8)

Proof. In DISCO-SharedW, requests (whether reads or writes) to private lines maintain their
hit rate calculated in isolation. This entails any memory request to suffer one of three possible
worst case scenarios as follows. Hits to private lines, Mprivate

hits = Rprivate
hits +W private

hits , encounter
the favorable private cache hit latency Lprivate

acc . Misses to private lines, Mprivate
misses , still has to

wait for a slot to access the shared cache, and thus, suffers the WCL of WCLDISCO
perReq as per

Lemma 1. Finally, Requests to shared lines, Mshared, also suffer the WCL of WCLDISCO
perReq

since we cannot decide whether they are misses or hits as they are susceptible to interference
from other tasks accessing same lines. Adding the WCL of these three scenarios lead to the
WCLDISCO-SharedW

tot in Equation 8. J

7.3 Other Considerations: A discussion
In this section, we discuss factors that we believe are important to consider for the generaliz-
ation of the proposed approaches.

M. Hassan 16:15

7.3.1 On the Derivation of the Total WCL
Private and Shared Data. Equations 4, and 7 – 8, which derive the total WCL for PMSI,
DISCO-AllW, and DISCO-SharedW, respectively, make an implicit assumption. They assume no
conflict interference between shared and private data in the core’s private cache (e.g. L1).
As aforementioned, this can be achieved by partitioning the cache such that private and
shared data are mapped to different memory spaces (e.g. different sets). Splitting memory
address space to private and shared locations is an already existing approach to mitigate
interference in the cache hierarchy [27]. However, if such partitioning is not possible, the
analysis conducted in isolation to derive the miss and hit rates of a task’s private data cannot
be used. When running in a contending environment, private cache lines suffer additional
conflict interference from shared data as they can be evicted because of the access pattern of
shared cache lines that are mapped to the same cache line (under a direct mapped cache) or
same set (under a set-associative cache). Therefore, to derive a safe bound, all private lines
have to be declared misses. In this case, the total WCL will change to:

WCLP MSI
tot =Mprivate · (N + 1) · Lmiss

acc + Mshared · WCLP MSI
perReq (9)

WCLDISCO
tot =M · WCLDISCO

perReq (10)

These two equations also can be used when no information is available about the requests
classification (i.e., misses or hits), and therefore, all requests have to be assumed misses.
Finally, it is important to highlight that this only affects the calculated analytical total WCL,
and it has no effect on the actual operation of different solutions during run time. In other
words, it does not affect the average-case performance of PMSI nor DISCO. Per-request WCL
also remains as previously calculated in Equations 1 and 6.

Reads and Writes. Another assumption that is made by Equation 7 is that it assumes the
knowledge of the number of read and write requests made by the task. This information can
be obtained from the task analysis (statically or dynamically) to obtain the number of load
and store instructions [24]. Nonetheless, if such information is not available, Equation 10
can be used instead. Again, this does not affect the run-time behavior (and hence, average
performance) of DISCO-AllW. It only affects the tightness of its derived bounds.

7.3.2 Effect of Write-backs Due to Replacement in DISCO-SharedW
Since DISCO-SharedW allows write hits to private cache lines, those lines become dirty: they
are modified in the core’s private cache and are not updated in the shared cache. Hence,
those lines need to be written to the shared memory at some point before they are evicted
from the private cache due to replacement. The analysis in Section 7 for DISCO-SharedW does
not take into account the effect of the write-back of these lines. Here, we discuss possible
alternatives to account for this additional delay.

1) At the Request Level. In worst case, a miss request to the private cache initiates a
replacement to a dirty cache line. This dirty line has to be written back to the shared
memory before fetching the newly requested data. Moreover, this write back has to wait
until the requesting core is granted access to the shared bus. As a result, a miss request
encounters an additional TDM period due to this write back of the evicted line. This adds
N · Lmiss

acc cycles to the WCLperReq in Equation 6 in case of DISCO-SharedW. However, this
delay is unnecessarily pessimistic since not every request is going to cause a replacement.

ECRTS 2020

16:16 Discriminative Coherence

2) At the Task Level. Recall that the number of write-backs are because of writes in the
private cache that are not updated at the shared memory. This number is obtainable for
the task in isolation by using static analysis or experimental means since private cache is
not shared among tasks running on other cores. We refer to the total number of write-backs
initiated by a core during a period of time t as WB. For instance, a safe, but rather
pessimistic, bound for WB is the total number of issued write requests to private cache lines
during the same period t. This is true because write backs are initiated only because of
dirty cache lines that are evicted, which in turn is bounded by the total number of writes to
private lines. Shared lines cannot be dirty under DISCO-SharedW since similar to DISCO-AllW,
they have to be sent directly to the shared memory. As a consequence, WB = W private

is a safe bound. We say that this bound can be pessimistic, and hence, can be further
tightened since a line can be written multiple times before it is evicted. However, obtaining
an accurate value of the maximum number of WB is the concern of the analysis of the task
in isolation, and is outside the scope of this paper. Lemma 4 calculates the new total WCL
under DISCO-SharedW, while accounting for the delay effect of the write-backs due to cache
replacement.

I Lemma 4. Total worst case memory latency incurred by any task under DISCO-SharedW
can be calculated as:

WCLDISCO-SharedW
tot = Mprivate

hits · Lprivate
acc + (Mprivate

misses + Mshared) · WCLDISCO
perReq

+ N · Lmiss
acc · WB (11)

Proof. The proof directly follows from the proof of Lemma 3, while adding the last term to
account for the write-backs effect. Since each one of those write-backs requests an access to
the shared memory, it can take a maximum of one TDM period to finish. This gives a total
delay of N · Lmiss

acc · WB, which is the last term in Equation 11. J

It is worth noting that even with adding the write-back delays to the total WCL, DISCO-
SharedW still provides a lower total WCL compared to DISCO-AllW. Comparing Equation 7
with 11, this is true for two reasons. 1) WB ≤ W private as previously explained, and 2)
WCLDISCO

P erReq > N · Lmiss
acc .

7.3.3 Realization in Existing Architectures
One of the main advantages of DISCO is that it significantly simplifies the coherence protocol,
while maintaining the average-case benefit of allowing tasks to simultaneously access coherent
data. In this section we discuss how to realize DISCO in existing architectures. The first
version of DISCO (DISCO-AllW) requires only the ability to bypass private caches for write
requests. Contrarily, the second version (DISCO-SharedW) requires, in addition to write
bypassing, the ability to distinguish between shared and private lines. We discuss these two
requirements below.

1) Selective Bypassing of Writes. Bypassing writes in the private caches can be realized
in existing hardware by multiple means. First, a write-through cache achieves exactly the
necessary behavior. Many existing architectures enable the user to set caches to operate as
write-through caches. For instance, ARM allows the user to switch to write-through caches
using a special register named Cache Behavior Override Register [2]. The same register
also allows for setting caches as non-write-allocate, which means upon a write request, the
cache line is written in the shared cache but is not fetched to the private cache. This is
the same behavior we adopted to reduce the WCL. However, it is worth noting that as

M. Hassan 16:17

explained at the beginning of this section, DISCO can operate correctly even if this capability
of non-write-allocate is not provided, albeit with two memory transfers per slot in the worst
case. It is important to notice that this register controls the core’s private cache only and is
independent of the shared cache as implemented in the ARM1176JZ-S processor [2], which
is again exactly the same behavior needed for DISCO. Intel processor also provides various
control registers to support setting caches to different cache types including write-through [21];
nonetheless, it seems to apply the setting for all cache levels, which forces writes to be sent
to the main memory.

2) Isolation Between Shared and Private Data. Isolation between shared and private
lines is needed only by the DISCO-SharedW. This can be achieved in existing hardware by
placing the shared memory in specific memory regions and then handle requests to every
cache line differently in DISCO-SharedW based on the address of this line (whether it is
within the boundaries of the shared region or not). This is possible since the aforementioned
support about write bypassing can be applied to only specific regions in the memory both
in ARM’s [2] and Intel’s platforms [21]. For instance, DISCO-SharedW can set those shared
regions to write-through, while private regions operate normally in a write-back fashion.

8 Evaluation

To quantitatively evaluate the behavior of DISCO and compare it with state-of-the-art
solutions, we simulate the behavior of a multi-core system with in-order pipelines, 8KB
direct-mapped L1 per-core private cache, and a 1MB L2 shared cache across all cores. Cores
are connected to the shared cache using a shared bus. Accesses to this shared bus are
managed using a TDM arbiter. The access latency of the L1 cache is 2 cycles, while access
latency of the L2 is 50 cycles. To eliminate the large delays of off-chip memory access, simialr
to existing solutions [14, 23], we set L2 to be a perfect cache, i.e. all requests to L2 are hits.
It is worth noting that this setup has no effect on the evaluated approaches, while it allows
to avoid the effect of off-chip memory interference on the total execution time. The DRAM
overheads are considered additive to the latencies derived in this work and can be computed
using existing work [12].

We deploy both versions of DISCO: DISCO-AllW and DISCO-SharedW. In addition, we also
implement PMSI [14] and ByPassAll solutions discussed in Section 5. We use benchmarks from
the SPLASH3 multi-threaded benchmark suite [33] as well as the EEMBC-Auto suite [33].
The simulation environment integrates with the Intel PIN tools [28] as follows. We run
each benchmark through the PIN tool and collect execution traces that we run through
the environment. For the SPLASH3 benchmarks, we run them using four threads in four
cores (a thread for each core). For the EEMBC benchmarks, we use them to emulate a
synthetic scenario that stresses the coherence effect. This is done by executing each of the
EEMBC-auto benchmarks through the PINtool and feed the collected trace to each of the
four cores in the environment. Doing so, all data is shared across all cores, which signifies
the coherence interference.

8.1 Per-Request Worst-Case Latency
Figure 11 delineates the WCL for any request to the cache hierarchy in a four-core system

for both SPLASH3 (Figure 11a) and EEMBC (Figure 11b). The figure shows both the
analytical WCL bounds (T bars) and the the observed (experimental) WCL (colored solid
bars) for both PMSI and the two versions of DISCO. From this experiment, we make the
following observations.

ECRTS 2020

16:18 Discriminative Coherence

0
500

1000
1500
2000
2500

W
CL

 [c
yc

]

PMSI DISCO-AllW DISCO-SharedW

(a) Splash3.

0

500

1000

1500

2000

2500

a2time01 aifirf01 basefp01 cacheb01 empty iirflt01 pntrch01 rspeed01 ttsprk01

W
CL

 [c
yc

]

PMSI DISCO-AllW DISCO-SharedW

(b) EEMBC.

Figure 11 Both analytical (T bars) and experimental (solid bars) per-request WCL.

1) DISCO is able to reduce the analytical WCL by 7.2× compared to PMSI. The analytical
WCL of PMSI is 2050 cycles compared to 250 cycles in DISCO. 2) PMSI incurs a large gap
between experimental and analytical WCLs. In the SPLASH3 benchmarks (Figure 11a), this
gap ranges from 70% (barnes and ocean) and reaches up to 3.4× (cholesky and radix). This
is because PMSI’s analytical WCL assumes a pathological worst-case scenario that is hard to
construct in real applications as explained in Section 5. Even with the synthetic experiments
of EEMBC (Figure 11a), the gap is more than 45% for most benchmarks. On the other hand,
DISCO’s analytical and experimental WCLs are identical, which indicates the tightness of
the derived bounds. DISCO achieves this tightness by deliberately avoiding the large-latency
scenarios created by write requests in private caches without updating the shared memory.
3) It is worth noting that DISCO achieves the same WCL as BypassAll solution (not shown in
Figure 11), while still allowing read hits to the private caches, which improves both total
WCL and average performance as we discuss in the next subsections.

8.2 Total WCL
Figure 12 delineates the total WCL of all the evaluated approaches for the SPLASH-3
benchmarks. To facilitate readability, all results in Figure 12 are normalized to the total
WCL of the ByPassAll approach. Recall that the total WCL is the worst-case memory latency
that is suffered by a core during a time period t and is calculated in Equations 3, 4, 7, and 11
for ByPassAll, PMSI, DISCO-AllW, and DISCO-SharedW, respectively. Figure 12 introduces
several interesting observations.

1) PMSI encounters the largest total WCL. This is due to the quadratic effect of coherence
interference as we discussed in details in Section 5. The normalized PMSI’s total WCL varies
per benchmark based on the percentage of shared data. For instance, the radix benchmark

M. Hassan 16:19

0
0.5

1
1.5

2
2.5

3
3.5

no
rm

al
ize

d
To

ta
l W

CL ByPassAll PMSI DISCO-AllW DISCO-SharedW

Figure 12 Total worst-case latency of Splash3.

suffers the maximum value of PMSI’s total WCL (3.3× ByPassAll’s). Investigating the reason
for this, we found that radix has the maximum percentage of shared data (around 38%).
Accordingly, from Equation 4, the term that suffers the maximum latency of WCLP MSI

perReq

dominates the total WCL. Interestingly, there are cases where PMSI has a lower total
WCL than ByPassAll. Namely, this is the case for the fft and radiosity benchmarks in
Figure 12. Analyzing both benchmarks, we found that both benchmarks in contrast to the
radix benchmark have the maximum percentage of private (non-shared) data: 94% and 96%
for fft and radiosity, respectively. This enables PMSI to leverage hits to this non-shared data,
which gives it an advantage over ByPassAll, which forces all requests to go to the shared
memory. 2) Compared to PMSI, DISCO-SharedW achieves up to 6x tighter total WCL (barnes)
and 3.5x on average. DISCO-AllW, on the other hand, has up to 3.3x tighter total WCL
(fmm) and 1.95x on average. PMSI has a lower total WCL than DISCO-AllW in case of fft
and radiosity benchmarks for the same reasons as in observation 1 because DISCO-AllW does
not allow write hits. An extended discussion about the behavior of these two benchmarks
is provided in Section 8.4. 3) Although DISCO-AllW and DISCO-SharedW offer the same
per-request WCL of ByPassAll as we highlighted in Section 8.1, both proposed approaches
provide a tighter total WCL than ByPassAll. The reason for that is that both solutions allow
read hits in cores’ L1 caches, while DISCO-SharedW also allows write hits to core’s private
(non-shared) cache lines. This improves the total WCL since as proved in Lemmas 2-4, those
hits will not suffer the arbitration latency due to contention on the shared bus. This enables
DISCO-AllW to provide up to 65% (barnes benchmark) and 42% on average tighter total WCL
than ByPassAll. Furthermore, DISCO-SharedW provides up to 3.8× (radiosity) and 1.5× on
average tighter WCL compared to ByPassAll.

8.3 Average-Case Performance (Execution Time)
Figure 13 depicts the overall execution time for both SPLASH3 (Figure 13a) and EEMBC
(Figure 13b) under four different approaches: PMSI, ByPassAll (all requests access L2), and
both versions of DISCO. From this experiment, we make the following observations.

1) Compared to ByPassAll, DISCO-AllW improves performance (reduced execution time) by
up to 2.8× and 1.5× on average for the SPLASH3 benchmarks. Recall from Section 8.1 that
DISCO achieves same WCL as ByPassAll, this verifies the ability of DISCO to balance WCL
and performance. 2) DISCO-AllW also has a better overall performance compared to PMSI for
SPLASH3 benchmarks (up to 100% and 12% better performance on average). Nonetheless,
PMSI has better performance than DISCO-AllW for four benchmarks: barnes, fft, radiosity,
and water_nsquared. We discuss the reasons behind these results in more details later in
Section 8.4. 3) Even with the synthetic maximum-sharing scenario of EEMBC experiments

ECRTS 2020

16:20 Discriminative Coherence

0

1000

2000

3000

4000

Ex
ec

ut
io

n
tim

e
[c

yc
 in

 M
ill

io
ns

]

ByPassAll PMSI DISCO-AllW DISCO-SharedW

13
15

8

14
45

0

(a) Splash3.

0

5

10

15

20

Ex
ec

ut
io

n
tim

e
[c

yc
 in

 M
ill

io
ns

]

ByPassAll PMSI DISCO-AllW DISCO-SharedW

(b) EEMBC.

Figure 13 Execution time.

(Figure 13b), PMSI outperforms ByPassAll, though slightly. In contrast, DISCO shows its
maximum performance benefit with increased sharing for two main reasons. a) On the one
hand, it does not suffer from the large coherence interference delays incurred by PMSI due to
writes. b) On the other hand, it does not suffer from large delays due to forcing all requests to
access L2 incurred by ByPassAll as DISCO allows read hits in the private caches. Please note
that both versions of DISCO incur exactly same behavior under the EEMBC experiment since
all requests (including writes) are shared among all cores. 4) Figure 13a clearly illustrates
the benefits of DISCO-SharedW. DISCO-SharedW outperforms all other approaches for all
benchmarks: it achieves up to 3.2× and 1.6× on average better performance than PMSI,
more than 11× and 5× on average better performance than ByPassAll, and 2× on average
better performance than DISCO-AllW. Again, using either version of DISCO depends on the
system capabilities. If the system has the capabilities (either in software or hardware) that
isolates between shared and unshared data, DISCO-SharedW represents a promising design
choice. Contrarily, if the system is not able to distinguish shared data, DISCO-AllW is the
best available design choice.

8.4 Average-Case Performance (Average-Case Memory Latency)

To further study the average-case performance behavior of DISCO compared to PMSI, we show
the average-case memory latency for SPLASH3 benchmarks in Figure 14. Figure 14 confirms
the same behavior observed in the execution time in Figure 13a. 1) DISCO-AllW outperforms
PMSI on average by 18%, while PMSI achieves better performance for some benchmarks;
namely, barnes, and fft. 2) DISCO-SharedW, on the other hand, considerably outperforms
PMSI and achieves up to 12× and 5.8× on average less average latency. The intuition

M. Hassan 16:21

0
20
40
60
80

100
120

Av
er

ag
e

La
te

nc
y

[c
yc

] PMSI DISCO-AllW DISCO-SharedW

Figure 14 Average latency of Splash3.

0

20

40

60

80

100
%shared W Hits

%private W Hits

Figure 15 Measured PMSI write hits for Splash3.

behind such behavior of benchmarks where PMSI outperforms DISCO-AllW is that they exhibit
larger number of write hits to private cache lines compared to other benchmarks. Because
DISCO-AllW forces all writes to access the shared cache, it does not leverage this temporal
locality characteristic of such benchmarks; hence, it incurs worse overall performance. In
contrast, DISCO-SharedW does leverage this locality by allowing write hits to private cache lines
and hence, achieves better performance. To investigate this theory, we deploy performance
counters in the simulation environment to count the number of write hits both to private
and shared cache lines under PMSI. Figure 15 plots write hit both to shared and private
lines as a percentage from the total number of issued requests. Benchmarks are shown in a
decreasing order in number of write hits to private lines. Figure 15 confirms our explanation
that PMSI achieves better performance for those benchmarks that exhibit high number of
write hits to private lines. Nonetheless, for those benchmarks, DISCO-SharedW still achieves
better performance than PMSI.

9 Conclusion

Modern real-time systems applications mandate data sharing. In this paper, we propose
DISCO: a discriminative coherence protocol that significantly reduces the coherence delays,
and hence, provides tighter bounds than existing predictable coherence protocols. DISCO
also achieves a high average-case performance by allowing tasks to simultaneously cache
and access data in the cores’ private caches. DISCO provides the tight latency bounds by
eliminating the scenarios that cause high coherence interference under traditional coherence
protocols. DISCO can be realized in systems that support write through caches or cache
bypassing without any modifications. If such support is not available, it can be realized
by modifying the cache controller to adopt the coherence protocol. DISCO achieves up to

ECRTS 2020

16:22 Discriminative Coherence

7.2× tighter latency bounds than existing predictable coherence protocols, while improving
performance by up to 11.4× (5.3× on average) compared to competitive cache bypassing
techniques.

References
1 Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: a predictable SDRAM

memory controller. In IEEE/ACM international conference on Hardware/software codesign
and system synthesis (CODES+ ISSS), 2007.

2 ARM. ARM arm1176jz-s technical reference manual, 2013.
3 Ayoosh Bansal, Jayati Singh, Yifan Hao, Jen-Yang Wen, Renato Mancuso, and Marco

Caccamo. Cache where you want! reconciling predictability and coherent caching. arXiv
preprint arXiv:1909.05349, 2019.

4 Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nélis, and
Thomas Nolte. Contention-free execution of automotive applications on a clustered many-core
platform. In IEEE Euromicro Conference on Real-Time Systems (ECRTS), 2016.

5 Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark
suite: Characterization and architectural implications. In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, pages 72–81. ACM, 2008.

6 M. Chisholm, N. Kim, B. C. Ward, N. Otterness, J. H. Anderson, and F. D. Smith. Reconciling
the tension between hardware isolation and data sharing in mixed-criticality, multicore systems.
In IEEE Real-Time Systems Symposium (RTSS), 2016.

7 B. Cilku, B. Frömel, and P. Puschner. A dual-layer bus arbiter for mixed-criticality systems
with hypervisors. In 2014 12th IEEE International Conference on Industrial Informatics
(INDIN), pages 147–151, July 2014. doi:10.1109/INDIN.2014.6945499.

8 Leonardo Ecco and Rolf Ernst. Improved dram timing bounds for real-time dram controllers
with read/write bundling. In 2015 IEEE Real-Time Systems Symposium, pages 53–64. IEEE,
2015.

9 Leonardo Ecco, Sebastian Tobuschat, Selma Saidi, and Rolf Ernst. A mixed critical memory
controller using bank privatization and fixed priority scheduling. In IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications (RTAS), 2014.

10 Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and Rodolfo
Pellizzoni. A survey on cache management mechanisms for real-time embedded systems. ACM
Comput. Surv., 2015.

11 Giovani Gracioli and Antônio Augusto Fröhlich. On the design and evaluation of a real-time
operating system for cache-coherent multicore architectures. ACM SIGOPS Oper. Syst. Rev.,
2015.

12 Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. A comparative study of
predictable dram controllers. ACM Transactions on Embedded Computing Systems (TECS),
2018.

13 D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET estimates for multi-core
processors with shared instruction caches. In IEEE Real-Time Systems Symposium (RTSS),
2009.

14 M. Hassan, A. M. Kaushik, and H. Patel. Predictable cache coherence for multi-core real-time
systems. In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
2017.

15 M. Hassan and H. Patel. Criticality- and requirement-aware bus arbitration for multi-core
mixed criticality systems. In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2016.

16 Mohamed Hassan. Heterogeneous mpsocs for mixed-criticality systems: Challenges and
opportunities. IEEE Design & Test, 2018.

https://doi.org/10.1109/INDIN.2014.6945499

M. Hassan 16:23

17 Mohamed Hassan and Hiren Patel. A framework for scheduling DRAM accesses for multi-core
mixed-time critical systems. In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2015.

18 Mohamed Hassan, Hiren Patel, and Rodolfo Pellizzoni. PMC: A requirement-aware DRAM
controller for multicore mixed criticality systems. ACM Trans. Embed. Comput. Syst., 2017.

19 Farouk Hebbache, Mathieu Jan, Florian Brandner, and Laurent Pautet. Shedding the shackles
of time-division multiplexing. In IEEE Real-Time Systems Symposium (RTSS), 2018.

20 John L Hennessy and David A Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011.

21 Intel. Intel 64 and IA-32 architectures software developer’s manual. Volume 3A: System
Programming Guide, Part, 1(64), 64.

22 Javier Jalle, Eduardo Quinones, Jaume Abella, Luca Fossati, Marco Zulianello, and Francisco J
Cazorla. A dual-criticality memory controller (dcmc): Proposal and evaluation of a space case
study. In IEEE Real-Time Systems Symposium (RTSS), 2014.

23 Anirudh M. Kaushik, Paulos Tegegn, Zhuanhao Wu, and Hiren Patel. Carp: A data com-
munication mechanism for multi-core mixed-criticality systems. In IEEE Real-Time Systems
Symposium (RTSS), 2019.

24 Sung-Kwan Kim, Sang Lyul Min, and Rhan Ha. Efficient worst case timing analysis of data
caching. In Proceedings Real-Time Technology and Applications, pages 230–240. IEEE, 1996.

25 NG Chetan Kumar, Sudhanshu Vyas, Ron K Cytron, Christopher D Gill, Joseph Zambreno,
and Phillip H Jones. Cache design for mixed criticality real-time systems. In IEEE International
Conference on Computer Design (ICCD), 2014.

26 Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Shared Data Caches Conflicts Reduction
for WCET Computation in Multi-Core Architectures. In International Conference on Real-
Time and Network Systems, 2010.

27 Benjamin Lesage, Isabelle Puaut, and André Seznec. PRETI: Partitioned real-time shared cache
for mixed-criticality real-time systems. In Proceedings of the 20th International Conference on
Real-Time and Network Systems (RTNS), 2012.

28 Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In Acm sigplan notices, volume 40(6), pages
190–200. ACM, 2005.

29 Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo, and Rodolfo
Pellizzoni. Real-time cache management framework for multi-core architectures. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 45–54.
IEEE, 2013.

30 MILO MK MARTIN, MARK D HILL, and DANIEL J SORIN. Why on-chip cache coherence
is here to stay. Communications of ACM, 2012.

31 Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat, and Mateo Valero.
Hardware support for WCET analysis of hard real-time multicore systems. In ACM Annual
International Symposium on Computer Architecture (ISCA), 2009.

32 Marco Paolieri, Eduardo Quiñones, Fransisco J. Cazorla, and Mateo Valero. An analyzable
memory controller for hard real-time CMPs. Embedded System Letters (ESL), 1:86–90, 2009.

33 Jason Poovey et al. Characterization of the EEMBC benchmark suite. North Carolina State
University, 2007.

34 Jan Reineke, Isaac Liu, Hiren D Patel, Sungjun Kim, and Edward A Lee. PRET DRAM
controller: Bank privatization for predictability and temporal isolation. In IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis (CODES+ ISSS),
2011.

35 Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. Splash-3: A properly
synchronized benchmark suite for contemporary research. In 2016 IEEE International Sym-

ECRTS 2020

16:24 Discriminative Coherence

posium on Performance Analysis of Systems and Software (ISPASS), pages 101–111. IEEE,
2016.

36 Martin Schoeberl, Wolfgang Puffitsch, and Benedikt Huber. Towards time-predictable data
caches for chip-multiprocessors. In Springer International Workshop on Software Technolgies
for Embedded and Ubiquitous Systems (IFIP), 2009.

37 Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, Man-Ki Yoon, Rodolfo Pellizzoni,
Heechul Yun, Russel Kegley, Dennis Perlman, Greg Arundale, et al. Single core equivalent
virtual machines for hard real—time computing on multicore processors, 2014.

38 Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consistency and cache
coherence. Synthesis Lectures on Computer Architecture, 2011.

39 N. Sritharan, A. M. Kaushik, M. Hassan, and H. Patel. Hourglass: Predictable time-based
cache coherence protocol for dual-critical multi-core systems. CoRR, 2017. URL: https:
//arxiv.org/abs/1706.07568.

40 Nivedita Sritharan, Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Patel. Enabling
predictable, simultaneous and coherent data sharing in mixed criticality systems. In IEEE
Real-Time Systems Symposium (RTSS), pages 433–445, 2019.

41 Per Stenstrom. A survey of cache coherence schemes for multiprocessors. IEEE Computer,
1990.

42 Vivy Suhendra and Tulika Mitra. Exploring locking & partitioning for predictable shared
caches on multi-cores. In ACM Annual Design Automation Conference (DAC), 2008.

43 B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson. Making shared caches more
predictable on multicore platforms. In IEEE Euromicro Conference on Real-Time Systems
(ECRTS), 2013.

44 Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, and Christian
Ferdinand. Memory hierarchies, pipelines, and buses for future architectures in time-critical
embedded systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 28(7):966–978, 2009.

https://arxiv.org/abs/1706.07568
https://arxiv.org/abs/1706.07568

	Introduction
	Related Work
	System Model
	Cache Coherence Background
	Motivation
	Performance Gains of Cache Coherence
	Per-Request WCL
	Total task's WCL
	Distilling Coherence Effects on WCL
	Hit Scenario
	Miss Scenario
	Worst-Case Scenario

	Proposed Solution
	DISCO-AllW: Discriminative Coherence for All Cache Lines
	DISCO-SharedW: Discriminative Coherence for Shared Lines Only

	Worst-Case Latency
	Per-Request Worst-Case Latency
	Total Worst-Case Latency
	Other Considerations: A discussion
	On the Derivation of the Total WCL
	Effect of Write-backs Due to Replacement in DISCO-SharedW
	Realization in Existing Architectures

	Evaluation
	Per-Request Worst-Case Latency
	Total WCL
	Average-Case Performance (Execution Time)
	Average-Case Performance (Average-Case Memory Latency)

	Conclusion

