
Putting Randomized Compiler Testing into
Production
Alastair F. Donaldson
Google, London, United Kingdom
Imperial College London, United Kingdom
afdx@google.com

Hugues Evrard
Google, London, United Kingdom
hevrard@google.com

Paul Thomson
Google, London, United Kingdom
paulthomson@google.com

Abstract
We describe our experience over the last 18 months on a compiler testing technology transfer project:
taking the GraphicsFuzz research project on randomized metamorphic testing of graphics shader
compilers, and building the necessary tooling around it to provide a highly automated process
for improving the Khronos Vulkan Conformance Test Suite (CTS) with test cases that expose
fuzzer-found compiler bugs, or that plug gaps in test coverage. We present this tooling for test
automation – gfauto – in detail, as well as our use of differential coverage and test case reduction
as a method for automatically synthesizing tests that fill coverage gaps. We explain the value
that GraphicsFuzz has provided in automatically testing the ecosystem of tools for transforming,
optimizing and validating Vulkan shaders, and the challenges faced when testing a tool ecosystem
rather than a single tool. We discuss practical issues associated with putting automated metamorphic
testing into production, related to test case validity, bug de-duplication and floating-point precision,
and provide illustrative examples of bugs found during our work.

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its
engineering → Software testing and debugging

Keywords and phrases Compilers, metamorphic testing, 3D graphics, experience report

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.22

Category Experience Report

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.3.

Acknowledgements We are grateful to David Neto and to the anonymous ECOOP 2020 reviewers
for their feedback on an earlier draft of this work.

1 Introduction

Graphics processing units (GPUs) provide hardware-accelerated graphics in many scenarios,
such as 3D and 2D games, applications, web browsers, and operating system user interfaces.
To utilize GPUs, developers must use a graphics programming API, such as OpenGL,
Direct3D, Metal or Vulkan, and write shader programs that execute on the GPU in an
embarrassingly-parallel manner. Shaders are written in a shading language such as GLSL,
HLSL, MetalSL, or SPIR-V (associated with the OpenGL, Direct3D, Metal and Vulkan
APIs, respectively), and are usually portable enough to run on many different GPU models.
A graphics driver contains one or more shader compilers to translate shaders from portable
shading languages to machine code specific to the system’s GPU.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Alastair F. Donaldson, Hugues Evrard, and Paul Thomson;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 22; pp. 22:1–22:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7448-7961
mailto:afdx@google.com
mailto:hevrard@google.com
mailto:paulthomson@google.com
https://doi.org/10.4230/LIPIcs.ECOOP.2020.22
https://doi.org/10.4230/DARTS.6.2.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Putting Randomized Compiler Testing into Production

Functional defects in graphics shader compilers can have serious consequences. Clearly,
as with any bug in any application, it is undesirable if a mis-compiled graphics shader causes
unintended visual effects. Furthermore, since shaders are compiled at runtime (because
the GPU and driver that will be present when an application executes is not known at the
application’s compile time), a shader compiler crash can lead to an overall application crash.
Additionally, developers cannot feasibly test for or workaround these issues, as the driver
version that crashes may not have even been written at the time of application development.
Worse still, because the graphics driver usually drives the whole system’s display, if a shader
compiler defect leads to the state of the driver being corrupted, the entire system may become
unstable. This can lead to device freezes and reboots, display corruption and information
leakage; see [15] for a discussion of some examples, including information leak bugs in iOS [2]
(CVE-2017-2424) and Chrome [5] caused by GPU driver bugs, and an NVIDIA machine
freeze [38] (CVE-2017-6259).

One way to provide a degree of graphics driver quality – and shader compiler quality in
particular – is via standardized test suites. An example is the Khronos Vulkan Conformance
Test Suite (Vulkan CTS, or just CTS for short) [25]. This is a large set of functional
tests for implementations of the Vulkan graphics API. The Khronos Group, who define
various standards and APIs including Vulkan, requires a Vulkan implementation (such as a
GPU driver and its associated GPU hardware) to demonstrate that they pass the Vulkan
CTS tests in order for the vendor to use the official Vulkan branding. Google’s Android
Compatibility Test Suite incorporates the Vulkan CTS, so that Android devices that provide
Vulkan capabilities must include drivers that pass the Vulkan CTS. Improving the quality
and thoroughness of the Vulkan CTS is thus an indirect method for improving the quality of
Vulkan graphics drivers in general, and on Android in particular.

GraphicsFuzz (originally called GLFuzz) [16, 15] is a technique and tool chain for auto-
matically finding crash and miscompilation bugs in shader compilers using metamorphic
testing [9, 42]. Whenever GraphicsFuzz synthesizes a test that exposes a bug in a conformant
Vulkan driver, this demonstrates a gap in the Vulkan CTS: the driver has passed the con-
formance test suite despite exhibiting this bug. If GraphicsFuzz synthesizes a test that covers
a part of a conformant driver’s source code, but the driver does not crash, and the code is
not covered by any existing CTS tests, then this also exposes a CTS gap (albeit arguably a
less severe one): it demonstrates that part of the driver’s source code can be covered but is
not covered by the CTS; bugs that creep into such code in the future would not be caught.

In this experience report we describe our activities at Google over the last 18 months put-
ting the GraphicsFuzz tool chain into production, with the aim of improving implementations
of the Vulkan API. We have set up a process whereby the randomized metamorphic testing
capabilities of GraphicsFuzz are used to find tests that expose driver bugs or CTS coverage
gaps, shrink such tests down to small examples that are simple enough for humans to read
and debug, and package the resulting tests into a form whereby they are almost completely
ready to be added to the Vulkan CTS. So far, this has led to 122 tests that exposed driver
and tooling bugs and 113 that exposed driver coverage gaps being added to CTS. The bugs
affect a range of mobile and desktop drivers, as well as tools in the SPIR-V ecosystem. Our
contribution of CTS tests that expose them means that future conformant Vulkan drivers
cannot exhibit them (at least not in a form that causes these tests to fail).

We start by presenting relevant background on graphics programming APIs, shader
processing tools, the Vulkan CTS, and the GraphicsFuzz testing approach (§2). We then
describe how we set up a pathway for incorporating tests that expose bugs found by
GraphicsFuzz into the CTS, and various practical issues we had to solve to ensure valid

A. F. Donaldson, H. Evrard, and P. Thomson 22:3

tests (§3). With this pathway in place we were empowered to build a fuzzing framework, gfauto,
for running GraphicsFuzz against a range of drivers and shader processing tools, automatically
shrinking tests that find bugs and getting them into a near-CTS-ready form (§4). To aid in
finding coverage gaps, we have built tooling for differential coverage analysis; we describe
how – by treating coverage gaps as bugs – gfauto can be used to synthesize tests that expose
such gaps in a highly automatic fashion (§5). A strength of GraphicsFuzz is that it facilitates
testing not only vendor graphics drivers, but also a variety of translation, optimization and
validation tools that are part of the Vulkan ecosystem. We explain how this also presents a
challenge: it can be difficult to determine which component of the ecosystem is responsible
for a bug (§6). Throughout, we provide illustrative examples of noteworthy bugs and tests
found and generated by our approach, including bugs that affect core infrastructure (such as
LLVM), bugs that affect multiple tools simultaneously, and bugs for which the responsible
tool is non-trivial to identify. We conclude by discussing related (§7) and future (§8) work.

Main takeaways. We hope this report is simply interesting for researchers and practitioners
to read as an example of successful technology transfer of research ideas to industrial practice.
In addition, we believe the following aspects could provide inspiration for follow-on research:

The pros and cons of fuzzing a low level language via a program generator for a higher
level language and a suite of translation and optimization tools, including the problem of
how to determine where in a tool chain a fault has occurred (§3.1 and §6);
The need for image differencing algorithms that are well-suited to tolerating the degree
of variation we expect from graphics shaders due to floating-point precision (§3.4);
Threats to test validity caused by undefined behavior, long-running loops and floating-
point precision, where more advanced program analyses have the potential to be ap-
plied (§3.5);
The difficulty of correctly maintaining a test case generator and a corresponding test case
reducer, especially when test case reduction needs to be semantics-preserving (also §3.5)
The challenge of de-duplicating bugs that do not exhibit distinguished characteristics,
such as wrong image bugs and message-free compile and link errors (§4.2);
The idea of using differential coverage analysis and test case reduction to fill coverage
gaps (§5), and the challenge of going beyond synthesizing tests that trivially cover new
code to tests that are also equipped with meaningful oracles (§5.4 specifically).

Open sourcing. Our extensions to the GraphicsFuzz tool, the new gfauto tool, and our
infrastructure for differential code coverage, are open source.1 The tests we have contributed
to Vulkan CTS are also open source.2

2 Background

2.1 The GLSL and SPIR-V Shading Languages
GLSL. The OpenGL Shading Language (GLSL) [22] is the main shading language in the
OpenGL graphics API [41] (analogous to HLSL and the Direct3D API). It is used for
rendering hardware-accelerated 2D and 3D graphics. OpenGL ES [32], and its associated

1 https://github.com/google/graphicsfuzz
2 https://github.com/KhronosGroup/VK-GL-CTS/tree/master/external/vulkancts/data/vulkan/

amber/graphicsfuzz

ECOOP 2020

https://github.com/google/graphicsfuzz
https://github.com/KhronosGroup/VK-GL-CTS/tree/master/external/vulkancts/data/vulkan/amber/graphicsfuzz
https://github.com/KhronosGroup/VK-GL-CTS/tree/master/external/vulkancts/data/vulkan/amber/graphicsfuzz

22:4 Putting Randomized Compiler Testing into Production

1 precision highp float ;
2
3 layout (location = 0) out vec4 _GLF_color ;
4
5 void main ()
6 {
7 vec2 a = vec2 (1.0);
8 vec4 b = vec4 (1.0);
9 pow(vec4(a, vec2 (1.0)) , b);

10 // Added manually to ensure that the shader writes red
11 _GLF_color = vec4 (1.0 , 0.0, 0.0, 1.0);
12 }

Figure 1 A reduced GLSL ES fragment shader that, after translation to SPIR-V, triggered a
bug leading to a crash in the GPU shader compiler for a popular Android device.

shading language GLSL ES [43], is a subset of the OpenGL API supported by mobile devices,
including Android devices.3 We focus on the GLSL ES shading language version 3.10 and
later, and henceforth drop the ES suffix and version number for brevity. Figure 1 shows an
example of a GLSL fragment shader (also known as a pixel shader in Direct3D). The code
is C-like, but with some additional features useful for graphics programming. The code in
main is conceptually executed n times on the GPU for each of the n pixels rendered into a
framebuffer (which stores the image) using the shader. The precision highp float; line
causes all subsequent floating-point values to be represented with 32 bits of precision by
default (lower precision can be specified via the mediump and lowp qualifiers on a per-variable
basis). Note that main has no parameters and a void return type; in GLSL, inputs and
outputs to the shader are instead expressed using special global variables. Global variable
_GLF_color4 is an output variable into which the fragment shader writes the RGBA colour
value that will be rendered at the pixel coordinate for which the shader is running. The vec2
and vec4 types are built-in float vector types (with 2 and 4 float components respectively).
The vector constructor form that takes one floating-point value (e.g. vec2(1.0)) creates a
vector with all components set to that value. A vector constructor can also take a combination
of vectors and/or scalars (e.g. vec4(a, vec2 (1.0))) to construct a vector made up of each
component in order, as long as the total number of components matches the vector type.
The pow(x,y) function yields an approximation of xy, and is an example of one of the many
built-in math functions provided in GLSL. The example of Figure 1 was minimized with
the aim of reproducing a shader compiler crash bug (discussed further as Example 1 below),
and is not representative of a practically useful graphics shader: the main function performs
some redundant computation and then writes the colour red (vec4(1.0, 0.0, 0.0, 1.0))
to the output colour variable. Thus, every pixel rendered by this shader will be red.

Shaders can also define uniform global variables (not shown in the example), using the
uniform keyword. These are shader inputs that yield the same value for every pixel
being shaded during a single shader invocation. For example, a uniform declaration
uniform float time; could be used to pass a representation of the current time into
a shader, allowing it to produce a time-varying visual effect.

3 Strictly, OpenGL ES is not quite a subset of OpenGL: over time it has evolved with some features that
have been deemed specifically important for mobile platforms.

4 The _GLF prefix comes from the fact that the tool was originally called GLFuzz. This prefix is used as a
default for any special variable, function or macro names used by GraphicsFuzz.

A. F. Donaldson, H. Evrard, and P. Thomson 22:5

SPIR-V (bin)

SwiftShader

spirv-crossglslang

spirv-dis spirv-opt

dxc

SPIR-V (txt)

GLSL HLSL
High-Level

IR

Driver

spirv-valspirv-as Yes/
No

GPU vendor A GPU vendor B

Figure 2 Diagram showing the various tools in the SPIR-V ecosystem and how they interact.

SPIR-V. In comparison to OpenGL, Vulkan [20] is a newer, lower-level graphics API. It is
widely supported by modern desktop GPUs, as well as being available on newer Android
devices. Standard, Portable Intermediate Representation - V (SPIR-V; the “V” does not
stand for anything) is the Vulkan shading language [23]. Unlike GLSL, SPIR-V was designed
as an intermediate representation to be stored in a binary form, and thus is not usually written
directly by programmers. Instead, programmers write their shaders in a higher-level language
like GLSL or HLSL, and use a tool to compile the shaders into SPIR-V. SPIR-V modules
use static single assignment (SSA) form [12], including the use of Phi instructions [12], and
functions contain blocks with branches.

2.2 The SPIR-V Tooling Ecosystem
Figure 2 summarizes various open source tools for analyzing and transforming SPIR-V
shaders, and translating to and from SPIR-V.

As mentioned in §2.1, most shaders are written in high level languages such as GLSL
and HLSL and translated to SPIR-V. For example, glslang [24] and DXC [37] can compile
GLSL and HLSL, respectively, to SPIR-V. A binary SPIR-V shader can be loaded by the
Vulkan API and executed as part of a graphics pipeline on a GPU device. Google provides
a software implementation of Vulkan, SwiftShader [18], which allows Vulkan applications
(including their SPIR-V shaders) to be executed in the absence of Vulkan-capable hardware.
This is useful to bring Vulkan support to old devices, as a fall-back renderer if a GPU driver
goes into an unstable state, and as a “second opinion” for GPU driver writers.

The code generated by front-ends such as glslang and DXC is not typically optimized. In
fact glslang deliberately performs as straightforward a syntax-directed translation of a GLSL
shader as possible. The spirv-opt tool, part of the Khronos SPIRV-Tools framework [27],
implements many target-agnostic optimizations as SPIRV-V-to-SPIR-V passes.

The philosophy of the Vulkan API is to allow drivers to assume that the Vulkan workloads
with which they are presented are valid, pushing the onus of validation to the application. In
support of this, the spirv-val tool (also part of the SPIR-V tools framework), checks whether
a SPIR-V shader obeys the (many) rules mandated by the SPIR-V specification [23]. The
spirv-dis and spirv-as disassembler and assembler (again, part of SPIRV-Tools) allow a shader
to be translated into text format and back, which is useful for debugging.

Finally, the spirv-cross tool [28] allows SPIR-V to be translated into various shading
languages including GLSL, HLSL and Apple’s Metal shading language (MetalSL, not shown
in the figure). Translation to these higher-level languages can help in understanding the

ECOOP 2020

22:6 Putting Randomized Compiler Testing into Production

intended behavior of a SPIR-V shader, and the SPIR-V-to-MetalSL pathway is used by the
MoltenVK project, which provides an implementation of most of Vulkan on top of Apple’s
Metal graphics API [26].

2.3 The Vulkan Conformance Test Suite
The Khronos Vulkan Conformance Test Suite (Vulkan CTS) [25] is a set of tests for the Vulkan
API. In theory, every part of the Vulkan specification should have one or more corresponding
tests in the Vulkan CTS. Each test should invoke the relevant Vulkan API functions to check
that a Vulkan implementation conforms to the Vulkan specification. Indeed, the Vulkan
CTS mostly consists of a set of functional tests (there are over 550,000 Vulkan CTS tests at
the time of writing) that attempt to test features in isolation. The Vulkan CTS is part of
the larger Khronos Conformance Test Suite called dEQP (drawElements Quality Program5)
that additionally contains tests for OpenGL ES and EGL.

Any implementation of Vulkan (including any Vulkan graphics driver with its associated
GPUs) must pass the Vulkan CTS (and upload the results to Khronos for peer review) before
the Vulkan name or logo can be used in association with the implementation. Thus, the
Vulkan CTS sets a minimum quality standard for every conformant Vulkan implementation.
Of course, the test suite is also extremely useful during development of a Vulkan driver; as
with most test suites, it can be used to identify bugs and regressions, and to measure progress
towards becoming a conformant implementation. The OpenGL ES and EGL test suite is
similarly used as part of the conformance process for those APIs, and as a useful aid during
driver development. The dEQP test suite is included in the Android Compatibility Test Suite
(Android CTS), which is an even larger test suite for Android devices. Original equipment
manufacturers (OEMs) will typically customize the Android OS for a given device, but
these Android implementations must still pass the Android CTS to be deemed “compatible”.
Thus, the Vulkan CTS also sets a minimum quality standard for Vulkan on every compatible
Android device, which can have a large impact on the Android ecosystem.

Vulkan CTS development is mostly done by Khronos members, although anybody can
contribute. New tests are reviewed by GPU vendors before being accepted. Tests need to be
deterministic, and clear enough to allow debugging of Vulkan implementations if a test fails.

2.4 Metamorphic Compiler Testing Using GraphicsFuzz
The GraphicsFuzz tool originated from a research project at Imperial College London, and
formed the basis of a spin-out company, GraphicsFuzz Ltd., founded by the authors of this
paper, which Google acquired during 2018.

Figure 3 gives an overview of the GraphicsFuzz approach to testing shader compilers. It
starts with an existing reference shader which, after being compiled by the shader compiler
embedded in the GPU driver and executed on the GPU hardware, leads to a given reference
image. A classic way to test a GPU driver would be to compare this resulting image to what
a reference implementation of the graphics API would produce. However, graphics API are
purposefully relaxed to let GPU vendors reach very high performance through aggressive
optimizations, such that there are various images that can be deemed acceptable. It is
currently not possible, and not desirable for GPU vendors, to agree on a strict reference
implementation that would serve as a test oracle.

5 dEQP was a commercial product developed by the drawElements company. Google acquired drawEle-
ments in 2014 and donated the dEQP test suite to Khronos, where it is now open source.

A. F. Donaldson, H. Evrard, and P. Thomson 22:7

GPU

reference
shader

variant
shader

GPU driver (shader compiler)

semantics
preserving

transformations

bug

bug
bug

crash

Figure 3 Illustration of the metamorphic testing approach used by GraphicsFuzz.

Inspired by the equivalence modulo inputs method for testing C compilers [31], GraphicsFuzz
works around this lack of oracle by using metamorphic testing [9, 42]: here the GPU input
(shader) is transformed in a way that should not change its output (image). In practice, the
glsl-fuzz tool applies semantics-preserving transformations to the reference shader source code
to obtain a family of variant shaders. As a very simple example, one can add zero to an existing
integer operation, int x = y + 0: this source code change should not impact the program
behavior. The glsl-fuzz tool contains many such semantics-preserving transformations [15],
including: arithmetic operations (such as adding zero, multiplying by one, etc), boolean
operations (e.g. bool b = x && true), dead code injection (adding valid yet unreachable
code, e.g. wrapped inside an if (false) { ... }), live code injection (adding code that
will be executed while making sure to save and restore all variables affected by it, e.g.
{t = x; x = foo(x); x = t;}), control flow wrapping (e.g. wrapping existing code in a
single-iteration loop do { ... } while(false)), packing scalar data into composite data
types (such as structs and vectors), and outlining expressions into functions. Some of the
values used in these transformations, such as zero, one, true and false, are obtained via
program inputs whose value is guaranteed at execution time, but unknown at compilation
time. This is to make sure compilers cannot trivially remove some transformations, e.g. by
statically detecting dead code injections to be unreachable.

Care is required when applying these transformations to ensure that program semantics
are preserved. For instance, one cannot wrap some code in a single-iteration loop if this code
contains a top-level break statement: the break would now apply to the newly-introduced
loop, rather than to the original loop or switch statement in which it originally appeared.

Each variant shader is syntactically distinct from the reference, yet has the same semantics
(modulo floating-point error). It may thus exercise a different path in the shader compiler but
should still lead to a visually similar image being rendered, so long as the reference shader
is sufficiently numerically stable. This is illustrated by the top, blue variant shader line in
Figure 3. However, some variants may lead to significantly different images, or a driver crash,
which are symptoms of bugs, most likely in the shader compiler but also potentially in other
parts of the driver or GPU hardware. These are illustrated by the lower two orange variant
shader lines in Figure 3. For a given GPU, we cannot know what to expect as a reference
image, but we do expect variants to lead to an extremely similar image.

Semantics-preserving transformations are used in other contexts, e.g. compiler optim-
izations and code obfuscation tools modifying a program representation while keeping the
same behavior. Code refactoring, when understood as improving the program structure
while keeping the same functional features, can also be considered as a semantics-preserving

ECOOP 2020

22:8 Putting Randomized Compiler Testing into Production

donor.glsldonor.glsl

reference.glsl

glsl-fuzz

variant.glsl

spirv-opt

reference(.opt).spv

variant(.opt).spvglslang

glslang

donor.glsl
GPU driver
under test

Figure 4 Targeting SPIR-V shader compilers from GLSL.

transformation at a bigger scale than the transformations used in glsl-fuzz. For our testing
purpose, we are interested in any kind of semantics-preserving transformation that may
potentially have interesting effects on how the shader is processed by the GPU.

Although a bug-inducing variant can be used as a starting point for debugging, its source
code is often barely understandable by a human because of the hundreds of transformations
that have been applied to it. To ease debugging, the glsl-reduce tool progressively shrinks
the variant source code while making sure that the bug is still triggered.

There are two reduction modes:

Semantics-preserving reduction. For shader miscompilation bugs leading to wrong images,
glsl-reduce performs semantics-preserving reduction by removing the glsl-fuzz transformations
in a way that still preserves semantics. This typically leads to a variant that differs from its
reference only by a handful of transformations necessary to trigger the wrong image bug.
The pair of semantically identical shaders is useful as a debugging starting point.

Semantics-changing reduction. For bugs leading to a driver crash, glsl-reduce performs
semantics-changing reduction by removing source code, the only requirement being to keep
it statically valid (which includes being syntactically valid and well-typed). No valid shader
should not cause a driver crash, so there is no need to keep a semantic equivalence with
the reference shader. Semantics-changing reductions can lead to very short crash-inducing
shaders (e.g. Figure 1), which are useful for debugging and as regression test cases.

3 Integrating GraphicsFuzz Tests With Vulkan CTS

As described in §2.4, the GraphicsFuzz tool was originally designed to find bugs in OpenGL
and OpenGL ES drivers by transforming shaders written in the GLSL shading language.
However, our interest is in making shader compilers for the more modern Vulkan API as
reliable as possible by improving the Vulkan CTS, and Vulkan uses SPIR-V as its shading
language (see §2.1). We explain the process we used to allow GLSL-based fuzzing of SPIR-V
shader compilers via translation (§3.1). We explain why we did not opt for embedding the
fuzzer inside CTS, or directly contributing large numbers of fuzzer-generated tests, instead
preferring to add tests that are known to expose shader compiler bugs (§3.2). We then
describe how we paved the way for tests that expose crash and wrong image bugs to be
added to CTS (§3.3 and §3.4, respectively).

A. F. Donaldson, H. Evrard, and P. Thomson 22:9

3.1 Fuzzing SPIR-V Compilers via GLSL Shaders
In order to target SPIR-V shader compilers with a tool that operates on GLSL, we leverage
the glslang translator, which takes GLSL as input and has a SPIR-V back-end. By design,
glslang performs a very straightforward translation from GLSL to SPIR-V, performing no
optimization beyond some basic constant folding and elimination of functions that are never
invoked. As a result, the SPIR-V that glslang emits is rather basic (e.g. it rarely exhibits uses
of Phi instructions). While it is vital that SPIR-V shader compilers correctly handle this
“vanilla” SPIR-V, we are also interested in testing their support for more interesting SPIR-V
features. Towards this aim, we optionally invoke the spirv-opt tool on the SPIR-V that glslang
generates, with its -O flag (optimize for speed), its -Os flag (optimize for size), or a random
selection of its finer-grained flags (which include things like --ssa-rewrite, which changes
variable uses to register uses, and can add Phi instructions, and --eliminate-dead-inserts,
which avoids unnecessary insertions of data into composite structures).

This use of glslang and spirv-opt allows us to perform metamorphic fuzzing at the GLSL
level to generate a variant from a reference, send both the variant and reference through
glslang to turn them into SPIR-V, and then (optionally, and at random) transform the variant
using a configuration of spirv-opt. The resulting SPIR-V shaders can then be compiled and
executed on a Vulkan driver, and the results they compute can be compared. This process is
illustrated graphically in Figure 4. This translation-based approach allows us to also find
bugs in glslang and spirv-opt, which benefits the Vulkan ecosystem. However, as discussed
further in §6, it can be hard to determine – in the case of wrong image bugs – which of these
tools or the driver’s shader compiler has miscompiled.

Making shaders “Vulkan-friendly”. Unlike in GLSL, where a global variable of almost
any type can be declared as uniform (see §2.1), SPIR-V requires that every uniform is
declared as a field of a structure called a uniform block, with the whole structure being
declared to be uniform. The number of uniform blocks allowed in a SPIR-V module is
implementation-dependent. GLSL has been updated with “Vulkan-friendly features” to
allow uniforms to be presented in this way, and glslang will only compile Vulkan-friendly
shaders into SPIR-V. We thus wrote a simple pass to turn a standard GLSL shader into
Vulkan-friendly form. For simplicity of implementation we approached this by placing each
original uniform variable in its own (single-field) uniform block. Our pass limits the number
of such blocks to 10, as we have not encountered a Vulkan implementation that supports
fewer than 10 uniform blocks, and none of the reference shaders we currently use for testing
feature more than 10 uniforms. When glsl-fuzz generates a variant shader with more than 10
uniforms (due to injecting code from other shaders), our Vulkan preparation pass demotes
superfluous uniforms to standard global variables initialized to concrete values.

3.2 Argument for Not Running Fuzzing in CTS
We briefly considered pitching to Khronos the idea of running GraphicsFuzz as part of
running CTS, so that to pass CTS a driver would have to pass all of the regular tests, and
additionally survive running a certain number of GraphicsFuzz-generated tests unscathed.
We quickly dismissed this idea because it is important to GPU driver makers that qualifying
as Vulkan-conformant involves passing a fixed number of tests that run in a deterministic
fashion. However much enthusiasm driver makers have for randomized testing as a way to
discover bugs, it is understandable that there is little appetite for a conformance test suite
that exhibits randomization.

ECOOP 2020

22:10 Putting Randomized Compiler Testing into Production

Another issue with embedding GraphicsFuzz in CTS is that inevitable defects in Graphic-
sFuzz (such as generating a variant shader that turns out not to be semantically equivalent
to the reference shader) would manifest as a driver failing to pass CTS.

An alternative to actually running GraphicsFuzz in CTS would be to generate a reasonably
large set of shaders – e.g. 1000 shaders – and contribute them as CTS tests. We also quickly
decided against this strategy for a few reasons. First, the intended behavior of a CTS test
should be feasible for a Vulkan expert to understand. The generated variant shaders are
large (in order to maximize the probability of finding a bug), and not feasible for humans
to realistically comprehend in isolation; the reducer, glsl-reduce, is essential in shrinking a
bug-inducing variant to a comprehensible form. Furthermore, 1000 large randomized shaders
would be a substantial addition to CTS in terms of the test suite’s runtime, but is not a large
enough number of tests to run with the expectation of thoroughly testing a shader compiler.

We opted instead for setting up a continuous fuzzing process whereby we could use
GraphicsFuzz to find bugs that affect current shader compilers, use glsl-reduce to shrink
the associated tests down to small examples that reproduce said bugs, and contribute the
resulting tests. We now explain the format we settled on for adding crash and wrong image
tests to CTS. We detail our tooling for continuous fuzzing in §4.

3.3 Supporting Crash Tests
Around the same time we commenced our plan to add tests exposing shader compiler crash
bugs to CTS, a new tool called Amber was launched [17]. Amber provides a simple domain-
specific language, AmberScript, in which some aspects of a Vulkan graphics pipeline can be
specified, including the SPIR-V shaders that should be executed, and input and output data
(including uniform blocks and framebuffers) on which the shaders should operate. It also
allows querying the results of running a shader, e.g. probing pixels in the output framebuffer.
The motivation for Amber was to make it easy to write stand-alone shader compiler tests,
hiding the (very substantial amount of) Vulkan API boilerplate required for even a simple
graphics pipeline. Since early 2019, Amber has been integrated into Vulkan CTS and is now
the preferred method for writing shader compiler tests.

We wrote a script that takes a reduced GLSL shader known to trigger a SPIR-V shader
compiler crash (after translation to SPIR-V and possibly optimization using some specific
spirv-opt flags) and produces an Amber test comprised of:

A brief comment, supplied as an argument to the script, to describe the test and the
reason why it should be expected to pass;
A comment showing the original GLSL code for the reduced shader; this is useful because
GLSL is much easier to read compared with SPIR-V;
Assembly code for the SPIR-V fragment shader that was obtained from this GLSL by
translation using glslang and (optional) optimization using spirv-opt;
A comment listing the spirv-opt arguments that were applied (if any);
Commands to create the target framebuffer and to populate the shader uniforms;
A command, supplied as an argument to the script, to check some property of the image
finally obtained in the framebuffer.

Figure 5 illustrates the process of Amber test creation following test case reduction.

I Example 1. The GLSL shader of Figure 1, which we used to illustrate the GLSL language
in §2.1, triggered a SPIR-V shader compiler crash in the GPU driver of a popular Android
device, after translation to SPIR-V (and without requiring any use of spirv-opt). This shader
was reduced from a much larger variant shader generated by GraphicsFuzz, which we edited

A. F. Donaldson, H. Evrard, and P. Thomson 22:11

glsl-reduce

variant.glsl glslang (+spirv-opt) GPU

reduced-variant.glsl

glslang (+spirv-opt)

AmberScript CTS test

hand-written
short description

GLSL as a comment

spirv code

boilerplate

reduction: shrink variant as long as it triggers a bug

Figure 5 Overview of the reduction process and the creation of a CTS test in AmberScript.

by making the variable names simpler, and by adding the final line of executable code, which
ensures that the colour red is written to the framebuffer. We believe the shader compiler
crash was due to an assertion failing in the lowering of the pow intrinsic to LLVM bytecode.
This is somewhat surprising given that the result of pow is not used, but was presumably
due to dead code elimination being executed after lowering.

An abbreviated version of the Amber test corresponding to this shader is shown in
Figure 6 (we omit some of the SPIR-V assembly). The test and its intent are described on
lines 1–6; line 8 indicates that a standard trivial vertex shader (not otherwise relevant in
this experience report) should be used in the test pipeline; lines 10-24 show the GLSL code
for the fragment shader, and match Figure 1; the corresponding SPIR-V shader (emitted
by glslang) is shown on lines 26–52 as SPIR-V assembly (notice the invocation of the Pow
intrinsic on line 49); line 55 declares a framebuffer, and lines 57–62 define a graphics pipeline
based on the vertex and fragment shaders, with the framebuffer attached; line 63 sets the
back buffer to black (so that any pixels not rendered to would remain black); lines 65-66 run
the pipeline, and line 68 asserts that the framebuffer ends up red at every pixel.

The purpose of adding this test to CTS was to expose the driver bug that it triggered,
so that future drivers cannot be Vulkan conformant unless the underlying bug is (at least
partially) fixed. We write red to the framebuffer and assert that the framebuffer indeed
ends up being red so that the test has at least some runtime oracle; it does a little more
than just checking that shader compilation succeeds. The test would be better if the shader
stored values into one or more components of _GLF_color using the result of the call to pow,
and then asserted a suitable framebuffer colour; as it stands the test would pass even if pow
were compiled incorrectly but without a compiler crash. We occasionally work to contribute
higher quality test oracles, but do not agonize over this since the main motivation for adding
these tests is to force the elimination of compiler crash bugs from conformant drivers.

I Example 2. Figure 7 shows a reduced shader that triggered a bug in AMD’s LLVM-Based
Pipeline Compiler (LLPC) [19]: an assertion failed during constant folding:
amdllpc: external/llvm/lib/Support/APFloat.cpp:1521: llvm::lostFraction llvm::detail::IEEEFloat::
addOrSubtractSignificand(const llvm::detail::IEEEFloat &, bool): Assertion ‘!carry’ failed.

We reported this bug,6 and the LLPC compiler developers traced its root cause to a bug
in LLVM’s floating-point emulation code related to handling of subnormal numbers, which
was promptly fixed.7 This demonstrates that shader compiler fuzzing can have positive
impact on common infrastructure (LLVM in this case) that is used by many compilers for
C-family languages. We contributed a Vulkan CTS test based on this bug, with a structure
similar to the example of Figure 6.8

6 https://github.com/GPUOpen-Drivers/llpc/issues/211
7 https://reviews.llvm.org/D69772
8 https://github.com/KhronosGroup/VK-GL-CTS/blob/master/external/vulkancts/data/vulkan/

amber/graphicsfuzz/mix-floor-add.amber

ECOOP 2020

https://github.com/GPUOpen-Drivers/llpc/issues/211
https://reviews.llvm.org/D69772
https://github.com/KhronosGroup/VK-GL-CTS/blob/master/external/vulkancts/data/vulkan/amber/graphicsfuzz/mix-floor-add.amber
https://github.com/KhronosGroup/VK-GL-CTS/blob/master/external/vulkancts/data/vulkan/amber/graphicsfuzz/mix-floor-add.amber

22:12 Putting Randomized Compiler Testing into Production

1 # A test for a bug found by GraphicsFuzz .
2
3 # Short description : A fragment shader that uses pow
4
5 # We check that all pixels are red. The test passes because main does
6 # some computation and then writes red to _GLF_color .
7
8 SHADER vertex variant_vertex_shader PASSTHROUGH
9

10 # variant_fragment_shader is derived from the following GLSL:
11 # # version 310 es
12 #
13 # precision highp float ;
14 # precision highp int;
15 #
16 # layout (location = 0) out vec4 _GLF_color ;
17 #
18 # void main ()
19 # {
20 # vec2 a = vec2 (1.0);
21 # vec4 b = vec4 (1.0);
22 # pow(vec4(a, vec2 (1.0)) , b);
23 # _GLF_color = vec4 (1.0 , 0.0 , 0.0 , 1.0);
24 # }
25 SHADER fragment variant_fragment_shader SPIRV -ASM
26 ; SPIR -V
27 ; Version : 1.0
28 ; Generator : Khronos Glslang Reference Front End; 7
29 ; Bound : 28
30 ; Schema : 0
31 OpCapability Shader
32 %1 = OpExtInstImport "GLSL.std .450"
33 OpMemoryModel Logical GLSL450
34 OpEntryPoint Fragment %main "main" % _GLF_color
35 OpExecutionMode %main OriginUpperLeft
36 OpSource ESSL 310
37 OpName %main "main"
38 OpName %a "a"
39 OpName %b "b"
40 OpName % _GLF_color " _GLF_color "
41 OpDecorate % _GLF_color Location 0
42 % void = OpTypeVoid
43 %3 = OpTypeFunction % void
44 % float = OpTypeFloat 32
45 % v2float = OpTypeVector % float 2
46 ...
47 %21 = OpCompositeConstruct % v4float %17 %18 %19 %20
48 %22 = OpLoad % v4float %b
49 %23 = OpExtInst % v4float %1 Pow %21 %22
50 OpStore % _GLF_color %27
51 OpReturn
52 OpFunctionEnd
53 END
54
55 BUFFER variant_framebuffer FORMAT B8G8R8A8_UNORM
56
57 PIPELINE graphics variant_pipeline
58 ATTACH variant_vertex_shader
59 ATTACH variant_fragment_shader
60 FRAMEBUFFER_SIZE 256 256
61 BIND BUFFER variant_framebuffer AS color LOCATION 0
62 END
63 CLEAR_COLOR variant_pipeline 0 0 0 255
64
65 CLEAR variant_pipeline
66 RUN variant_pipeline DRAW_RECT POS 0 0 SIZE 256 256
67
68 EXPECT variant_framebuffer IDX 0 0 SIZE 256 256 EQ_RGBA 255 0 0 255

Figure 6 CTS test that exposed a shader compiler crash bug, in AmberScript form. Some of the
SPIR-V assembly has been omitted.

A. F. Donaldson, H. Evrard, and P. Thomson 22:13

1 # version 310 es
2 precision highp float ;
3
4 layout (location = 0) out vec4 _GLF_color ;
5
6 vec3 GLF_live6mand ()
7 {
8 return mix(uintBitsToFloat (uvec3 (38730u, 63193u, 63173u)),
9 floor(vec3 (463.499 , 4.7, 0.7)) , vec3 (1.0) + vec3 (1.0));

10 }
11 void main ()
12 {
13 GLF_live6mand ();
14 _GLF_color = vec4 (1.0 , 0.0, 0.0, 1.0);
15 }

Figure 7 Reduced shader that triggered a floating-point constant folding bug in LLVM.

3.4 Supporting Wrong Image Tests

Recall from §2.4 and Figure 3 that GraphicsFuzz finds miscompilation bugs via a variant
shader that renders a significantly different image compared to the image rendered by the
associated reference shader. In this case glsl-reduce reverses as many of the transformations
that were applied to the variant shader as possible while the difference persists. To create
Vulkan CTS tests suitable for exposing such bugs we worked with the Amber developers to
add AmberScript features related to comparing the outputs of multiple graphics pipelines. In
particular, we added the ability to compare framebuffers in a fuzzy manner. This allows us
to turn a GraphicsFuzz reference and reduced-variant shader pair into a single AmberScript
file that (a) creates and runs a separate pipeline for each shader, rendering to distinct
framebuffers, and (b) asserts fuzzy equality between these framebuffers.

A challenge associated with this is the selection of a suitable fuzzy comparison metric
for our purpose. We collected a corpus of image pairs that – based on our shader compiler
fuzzing experience – we would like to be deemed similar, and a set of pairs that we would like
to be deemed different. The corpus includes image pairs produced by graphics drivers during
our testing efforts, plus a few manually crafted image pairs that we believe could occur in
theory and that we thought may prove challenging for certain comparison algorithms. We
experimented with various image comparison algorithms provided by the scikit-image [47]
Python library, including MSE, NRMSE, SSIM, and PSNR. We also tried several custom
image comparison algorithms based on obtaining and comparing image histograms. We
found that image histogram comparison was very effective at correctly classifying image pairs
in our corpus, except for some manually crafted image pairs where one image was a rotation
or mirror of the other. Indeed, the key weakness of image histogram comparison is that all
spatial information is lost. A key advantage is it is very resilient to minor differences that
other algorithms flag as important, but which we would typically like to be ignored. We
chose to initially proceed with an image histogram comparison algorithm for the following
reasons: it correctly classifies image pairs in our corpus as well as or better than most other
algorithms; it is very simple to understand and implement (which is important because
we don’t want GPU vendors to struggle to understand why a Vulkan CTS test has failed
and have to debug the image comparison algorithm itself); it has fairly low performance

ECOOP 2020

22:14 Putting Randomized Compiler Testing into Production

requirements;9 with a high tolerance value, it is fairly forgiving of minor differences, and –
to achieve a low false alarm rate – we would prefer to incorrectly classify an image pair as
similar than incorrectly classify the pair as different (most image differences we encounter in
practice are easily detected with a forgiving algorithm/tolerance).

We implemented our image comparison algorithm, Histogram EMD (where EMD stands
for Earth Mover’s Distance [29]), in the Amber code base, and added a command to
AmberScript of the form:

EXPECT buffer_1 EQ_HISTOGRAM_EMD_BUFFER buffer_2 TOLERANCE value
where buffer_1 and buffer_2 are framebuffers containing the images we wish to compare
and value is the tolerance value. The test fails if the difference value returned by the
algorithm exceeds the tolerance value.

These extensions to Amber provide a pathway for landing tests that expose wrong image
bugs in CTS, and we have implemented the necessary scripts to directly generate such tests.
We recently put several such tests up for Vulkan CTS code review, and a reviewer quickly
found that the validity of one of the tests was questionable due to floating-point precision
issues. We discuss this as Example 3 in §3.5. To err on the side of caution, we retracted the
other wrong image tests we had put forward and manually simplified each one to double-check
that it really did correspond to a driver bug rather than a floating-point precision issue.
After sufficient manual simplification, we were able to add an Amber test for each of these
bugs, consisting of a single shader (and a single pipeline) with a straightforward assertion to
check that the single output image is red.

In order to be able to add wrong image tests with a pair of shaders to CTS with confidence,
we are working on a corpus of reference shaders that are highly numerically stable.

3.5 Avoiding Invalid Tests
We are anxious not to waste Vulkan CTS reviewer time by proposing tests that turn out
to be invalid and get rejected, or – worse – that get accepted (due to the invalidity being
subtle, and not leading to failures on current drivers) and subsequently found to be invalid
(necessitating their removal from every CTS release they have made it into). We discuss our
main concerns related to possible invalid tests.

Preserving semantics during generation and reduction. As explained in §2.4, GraphicsFuzz
produces a variant shader by having glsl-fuzz repeatedly apply semantics-preserving trans-
formations to a reference, and upon finding a potential wrong image bug, invokes glsl-reduce
to reduce the test case by repeatedly attempting to reverse or simplify transformations. For
wrong image bugs, it is critical that all transformations preserve semantics both when applied
and reversed/simplified. The way GraphicsFuzz has been designed, all information about
the transformations that have been applied is recorded by glsl-fuzz via syntactic markers in
the generated shaders. Examples of syntactic markers include using special preprocessor
macros, and giving variables and functions special names or name prefixes. The glsl-reduce
tool then needs to understand these markers and use them to reverse and simplify certain
transformations without spoiling the syntactic markers that represent other transformations.

9 When running the Vulkan CTS on Android, the image comparison is done on the Android device using
the CPU, which has some overhead, especially when using a simulated (software) CPU, as is commonly
done when testing next-generation hardware.

A. F. Donaldson, H. Evrard, and P. Thomson 22:15

In practice we have encountered several hard-to-diagnose bugs where glsl-reduce has erro-
neously changed the semantics of a shader, usually due to reversal of one transformation
having messed up the syntactic markers associated with another transformation, which as a
result gets incorrectly reversed.10

We guard against this in practice via a degree of manual inspection of the final reduced
shader emitted by glsl-reduce, and as glsl-fuzz and glsl-reduce continue to become more stable
this issue becomes less relevant. However, based on our experience, we regard having a
separate generator and reducer that must understand one another in an intricate manner
to be a serious pitfall of the GraphicsFuzz approach. Recent research on internal test case
reduction has the potential to avoid the need for a separate generator and reducer [34], and
could thus be useful in our domain.

Loop limiters. Recall that the live code injection transformation performed by glsl-fuzz
(see §2.4) injects code from a donor shader into the shader under transformation in a manner
such that the injected code really gets executed at runtime. A problem here is that the
injected code may contain loops, and these loops may run for potentially large numbers of
iterations. In particular, if the declarations of variables that control loop execution are not
themselves injected, glsl-fuzz creates declarations for such variables and initializes them to
randomized expressions, which can lead to infinite loops. Programs that risk containing
infinite loops are used for compiler testing by tools such as Csmith [50], with the philosophy
that it is better to accept that some programs will not terminate, and to use a timeout to
bound the runtime of any individual test, than to put in place draconian measures to ensure
that all loops terminate. Unfortunately, in the world of GPU shader compilers, long-running
shaders cause display freezes, leading to the operating system’s GPU watchdog killing the
executing shader. This can lead to the shader rendering what appears to be an incorrect
image when in fact the image was simply incomplete.

We found that this problem confounded our test results, requiring significant manual
inspection of final shaders to check for long-running loops. To overcome this we decided to
go ahead and put a relatively draconian measure in place: every loop in every live-injected
shader is truncated via a loop limiter. This is an additional counter variable specific to a
loop. It is initialized to zero immediately before the loop. A conditional statement at the
start of the loop body breaks from the loop if the counter exceeds a small positive value
(randomly chosen at generation time), and increments the counter otherwise.

With reference to our discussion above about keeping the generator and reducer in
sync: loop limiters are given special names when inserted by glsl-fuzz, and when simplifying
live-injected code glsl-reduce checks for these names and takes care not to remove loop limiters
unless removing the entire associated loop. Again, this coupling between generator and
reducer is fragile and can be hard to maintain.

When reducing a compiler crash bug glsl-reduce aggressively shrinks a shader. In this case
we allow it to remove loop limiters, which can mean that finally-reduced shaders may contain
infinite loops. While the resulting shaders are good enough to reproduce a compiler crash,
they are not suitable for addition to CTS, as all CTS tests should be runnable. We therefore
inspect shaders manually and edit them to avoid any infinite loops – while preserving the
compiler crash – before submitting them for CTS review.

10See https://github.com/google/graphicsfuzz/pull/599 as an example pull request that fixes such
an issue.

ECOOP 2020

https://github.com/google/graphicsfuzz/pull/599

22:16 Putting Randomized Compiler Testing into Production

Array bounds clamping. Live-injected code may also contain access into arrays and vec-
tor/matrix types, which have the potential to be out-of-bounds if their indexing expressions
depend on variables that glsl-fuzz initializes to randomized expressions. SPIR-V for Vulkan
requires that all accesses are in-bounds. Fortunately, array and vector/matrix sizes are
always known statically in GLSL and there are no pointers in the language. We therefore
rewrite every array index expression e that appears in live-injected code as clamp(e, 0, N −1),
where N is the size of the array or vector/matrix being accessed, and clamp(a, b, c) is the
GLSL built-in that clamps a into the range [b, c]. An exception to this is when e is a literal
that is already in-bounds. As with loop limiters, glsl-reduce is responsible for preserving
these in-bounds clamping expressions during test case reduction.

Floating-point stability. We use an example to illustrate the risk of submitting invalid CTS
tests posed by floating-point instability.

I Example 3. A transformation that GraphicsFuzz may try to apply is to replace a floating-
point expression e with an expression e/ONE , where ONE is an expression guaranteed to
evaluate to 1.0 at runtime. GraphicsFuzz has many possible ways of synthesizing an expression
that is expected to evaluate to 1.0, one method being to generate an expression of the form
length(normalize(v)), where v is some non-zero vector. The normalize GLSL built-in
yields a unit vector (when applied to a non-zero vector), and length yields the length of a
vector, so the expression intuitively should evaluate to 1.0. However, it turns out that the
floating-point precision requirements on SPIR-V instructions mean that the result might not
quite evaluate to 1.0; some round-off error is allowed [20, pp. 1754–1759].

We thought we had found a wrong image bug in SwiftShader upon finding a major image
difference to be caused by transforming the following code snippet:

1 // ’ref ’ and ’s’ are ’float ’ variables ; ’ref ’ has value 32.0 at runtime
2 for (int i = 1; i < 800; i++) {
3 // ’mod ’ is the floating -point modulus operation
4 if (mod(float(i), ref) <= 0.01) {
5 s += 0.2;
6 }
7 ...
8 }

This code snippet causes s to increase by 0.2 every time i is a multiple of 32, since this is
the only scenario where mod(float(i), ref) will be sufficiently small for the if condition to
evaluate to true. GraphicsFuzz replaced ref with ref / length(normalize(vec3(...))),
where the ... is a placeholder for a non-trivial but sensible expression that evaluates to 1.0
(so that the resulting vector is (1.0, 1.0, 1.0)).

What we assumed was a bug in SwiftShader turned out to be a false alarm. After some
manual analysis we found that the divisor length(normalize(vec3(...))) evaluated to a
value slightly larger than 1.0, so that the second argument to the floating-point mod built-in
was slightly smaller than 32.0 (due to ref being exactly 32.0). As a result, the statement
s += 0.2 became unreachable, even for loop iterations where i is a multiple of 32 since the
modulus of a multiple of 32 with a value v slightly smaller than 32.0 leads to the value v.

Floating-point precision issues like this hammer home the importance of using numerically
stable shaders when searching for wrong image bugs using GraphicsFuzz – the code snippet
in Example 3 demonstrates that the shader in question was not numerically stable. It
is also important to maximize the extent to which the transformations that GraphicsFuzz
applies actually preserve floating-point semantics. The deliberately ambiguous approach that
graphics shading languages take to floating-point (in order to accommodate many disparate

A. F. Donaldson, H. Evrard, and P. Thomson 22:17

GPUs) means that we can never be certain that a program transformation will completely
preserve semantics (since it can affect the optimizations the shader compiler performs, and
those optimizations are permitted to have small effects on floating-point results). However,
where possible we try to take measures to avoid floating-point error; for instance we have
changed the representation of 1.0 discussed in Example 3 from length(normalize(v)) to
round(length(normalize(v))), where the round GLSL built-in rounds its floating-point
argument to the nearest integer value; this ensures that the result will indeed be 1.0.

4 gfauto

gfauto (short for GraphicsFuzz auto) is a set of tools for using GraphicsFuzz in a “push-button”
fashion with minimal interaction, geared towards generation of tests that can be added to
CTS using the pathways described in §3. Pre-gfauto, performing a fuzzing run required
manually generating a set of variant shaders offline from a set of reference shaders, followed
by a number of manual steps to run the reference and variant shaders on target devices,
waiting for the shaders to finish, and then manually triggering reductions of interesting
variant shaders. This approach is unnecessarily inefficient when the main objective is to
find as many interesting variants (i.e. those that expose bugs) for a given device as possible
within a fuzzing run. In contrast, the high-level, automatic workflow of gfauto is: generate
a variant shader from a reference shader; run the shaders on the target device; reduce the
variant if it is interesting, otherwise discard it; repeat. This process can run continuously for
long periods of time, without interaction, which maximizes the number of interesting variant
shaders, and thus the potential number of new CTS tests. Using gfauto greatly decreases
the length of time needed to perform a fuzzing run and submit a number of CTS tests from
that run; we estimate the time period has gone from about 1-2 days (pre-gfauto) down to 1-2
hours (when using gfauto).

We detail three key features of gfauto: creation and replay of self-contained tests (§4.1),
bug de-duplication and prioritization (§4.2), and automatic Vulkan CTS test export (§4.3).

4.1 Creation and replay of self-contained tests
Pre-gfauto, the output of a fuzzing run was a directory of images and log files from running
reference and variant shaders; the reference and variant shaders themselves were stored
in a different directory. Collecting the shaders and output files needed to reproduce and
investigate a bug required copying files from different directories, and these files were stored
in an ad-hoc format. Furthermore, the versions of the tools required in order to run the
test (such as glslang and spirv-opt) were not captured. Details about the target device were
available but were again outputted in yet another directory and were typically archived in
an ad-hoc format, if at all. Thus, reproducing and investigating a bug was difficult and
time-consuming, and useful information was often lost.

gfauto generates a self-contained test from the start. The generated test directory contains
a test.json metadata file and the reference and variant GLSL shaders. The metadata file
contains all information needed to run the test, including a list of required tools and their
versions (which are downloaded on-the-fly), an error signature for the test (described below,
and initially empty until a crash or wrong image is observed), details of the device on which
the test should be run (including the driver version), and the steps needed to run the test
(e.g. running spirv-opt with a given series of optimization passes). In particular, gfauto runs
the test for the first time using the test metadata file, and is restricted to the tools specified
in the metadata; this ensures that no tool dependency can be missed. A test directory can

ECOOP 2020

22:18 Putting Randomized Compiler Testing into Production

thus be replayed with a single command. In the case of Android, the test.json file even
captures the Android device serial number so that the test can be automatically replayed on
the target device, with no interaction, as long as it is connected to the host machine.

4.2 Bug de-duplication and prioritization
A fuzzing run pre-gfauto would often find a large number of crash-inducing variant shaders,
but upon inspection of crash stack traces it would become apparent that many variants
were exposing the same bug. Clearly, we would like to prioritize the unique bugs found. We
wrote several ad-hoc scripts to classify variants that caused crashes into unique “buckets”,
so that each bucket represents a unique bug (based on the top function name in the stack
trace). However, this process was still tedious (as it involved several manual steps) and
unreliable (as the scripts were typically hand-tuned for a given fuzzing run). Furthermore,
this classification was never made permanent, so the information would typically be absent
in future fuzzing runs. Thus, we would often re-find bugs that had already been found in
previous runs and we would have to manually avoid investigating these.

In gfauto, generated tests that expose bugs are stored in buckets in the file system, where
a bucket is a directory named using the “signature” (usually the top function name in the
stack trace). This makes it trivial to identify tests that expose unique bugs (pick one test
from each bucket). The signature is also stored in the test metadata, ensuring the information
is never lost, even if the test is moved. A Python function get_signature takes the log
contents as its only input and outputs the signature string; we update this function as needed
to get an accurate bug signature in a number of scenarios. For example, if a stack trace
is present (in one of several different formats), the top function name of the stack trace is
used, if available, falling back to the hex offset of the function otherwise. Alternatively, if
a recognized error message or assertion failure pattern is seen, the error message itself can
be used as the signature. This approach ensures we reliably classify tests in most cases.
A configurable threshold ensures only a small number of tests are stored in each bucket;
subsequent tests are discarded and, crucially, do not need to be reduced, which is expensive.
Additionally, gfauto supports downloading and running our Vulkan CTS tests on the target
device, capturing the signatures (if an error occurs), and ignoring these signatures during the
next fuzzing run. This allows gfauto to ignore bugs that can already be found by existing
tests, even if the signatures change between fuzzing runs; this might happen due to a graphics
driver update on the target device or due to changes in gfauto’s get_signature function. In
particular this allows unfixed bugs found in previous fuzzing runs to be ignored, assuming
appropriate CTS tests were created.

Bug de-duplication challenges. The above approach works well most of the time, but some
issues remain. Some bugs are nondeterministic in nature. In particular, some of our tests
appear to trigger memory leaks in certain shader compilers, which can cause an abort to
occur at arbitrary places. Our glsl-reduce tool runs the test up to five times initially (before
commencing reduction) in order to validate that the the originally-observed crash signature
can be reproduced. Highly nondeterministic tests will often fail this validation step, as the
signature will be different every time.

Another issue is when a driver returns a “shader compile error” or “shader link error”
message, even though the provided shaders are valid. The driver often provides no additional
information, and so there is no way to further distinguish the shader compiler bug. Thus, if
we find hundreds of “shader compile error” bugs, we may have found hundreds of distinct
compiler bugs, or just one, or any number in between. The same issue applies for tests that
expose wrong image bugs, which are simply given a signature of “wrong_image”. In future

A. F. Donaldson, H. Evrard, and P. Thomson 22:19

work, we hope to identify tests that likely expose distinct wrong image bugs by comparing the
semantics-preserving transformations that remain in the fully-reduced variant shaders. Tests
that contain very distinct transformations are perhaps more likely to be triggering different
shader compiler bugs than tests that contain similar transformations. For compile/link
errors (where reduction need not be semantics-preserving) we may be able to use a similarity
measure on fully-reduced shaders for de-duplication purposes, drawing on ideas for “taming”
compiler fuzzers [10].

4.3 Vulkan CTS test export
Creating a Vulkan CTS test from a bug found by GraphicsFuzz (using gfauto or otherwise)
requires some manual iteration on the test. As explained in §4.1, reproducing and investigating
a bug pre-gfauto was time-consuming, and information was liable to be lost. The self-contained
nature of a gfauto test greatly improves the experience. Iterating on a CTS test typically
requires tweaking the original GLSL shaders and re-generating the SPIR-V (using the correct
versions of glslang and spirv-opt) again and again. As already stated above, we believe this
has greatly decreased the time needed to get from a fuzzing run to a number of submitted
CTS tests, from about 1-2 days (pre-gfauto) down to 1-2 hours (when using gfauto).

We took the push-button nature of gfauto further by automating the end-to-end process
of adding a Vulkan CTS test (after manually tweaking the GLSL shaders). Alongside each
gfauto test, we store a Python script that generates the final .amber file for the Vulkan
CTS test. The .amber file is similar to the one generated when running the test, but with a
copyright header and, as illustrated in Figure 6, a short description and a comment explaining
why the test passes; note that the short description and comment are manually written by
us. The Python script includes the name of the output .amber file, the contents of these
comments, and some optional tweaks, such as additional AmberScript commands that we
might want to add to provide an oracle for the test. Another utility tool then takes this
.amber file and inserts it into the Vulkan CTS source tree, taking care of updating various
index files based on the .amber file name and the short description comment. This yields a
patch that can be directly put up for Vulkan CTS code review.

5 Finding Test Coverage Gaps Using GraphicsFuzz and gfauto

5.1 Absolute Code Coverage and its Limitations
Line coverage is a widely-used metric for assessing the adequacy of a test suite at a basic
level. While many more thorough notions of coverage have been proposed [1], line coverage
is appealing because it is both simple to compute and actionable [4] – a lack of line coverage
can typically be addressed by crafting appropriate tests. A simple idea for growing Vulkan
CTS is therefore to run CTS on an open source Vulkan driver and then attempt to write
tests to cover parts of the driver that are not reached.

This simple idea suffers from two key problems:
1. It might be inappropriate for a Vulkan CTS test to reach certain driver code;
2. For code that could be covered in principle, it is likely very labour-intensive to manually

write tests that cover it in practice.

To illustrate problem 1, a recent run of Vulkan CTS on the open source Mesa driver with
an AMD back-end [11] identified much uncovered code, but a lot of this code turned out to
be (a) debug code (such as routines for dumping data structures in text format), (b) code
specific to APIs other than Vulkan (such as OpenCL), and (c) code specific to non-AMD
GPUs. It is perfectly legitimate for this code to remain uncovered.

ECOOP 2020

22:20 Putting Randomized Compiler Testing into Production

GPU driver source code

Code covered by
a Vulkan CTS run

Code covered by
a 24h gfauto run

Unknown whether this
code can be covered
by Vulkan workloads

Achievable coverage
that is currently
missing from CTS

Figure 8 Illustration of differential code coverage. Driver code covered during a gfauto run but
not during a CTS run is code that can be exercised but for which CTS test coverage is lacking. The
tests that gfauto generated to achieve such coverage provide a basis for new CTS tests.

5.2 Differential Code Coverage
To partially solve problem 1 of §5.1 we appeal to differential code coverage. Suppose we
know which lines of an open source Vulkan driver are covered during a CTS run; call these
lines A. Suppose further that we know which lines of the driver are covered by running some
other valid Vulkan workload, such as a Vulkan-based game, or a 24-hour run of gfauto; call
these lines B. For any line l ∈ B \ A, we know that l can be exercised by valid use of the
Vulkan API, so the fact that a CTS run does not exercise l demonstrates a coverage gap in
CTS that can certainly be plugged in principle.11

The idea of using gfauto and differential coverage to identify code that CTS could in
principle cover is illustrated in Figure 8. One might also imagine that differential coverage
analysis could be used to drive improvements in GraphicsFuzz: code that CTS can cover but
that gfauto cannot might indicate that gfauto should be seeded with a richer set of reference
shaders, or that GraphicsFuzz should implement more adventurous transformations. However,
the scope of GraphicsFuzz is limited to shader compilers, while CTS tests the whole of the
Vulkan API, so some knowledge of which parts of the driver relate to shader compilation
specifically would be required.

Although the idea of differential coverage analysis is not new (e.g., continuous integration
systems often provide facilities for visualizing the coverage trajectory of a project), we could
not find a suitable open source project that provides it, so we implemented our own tooling
for differential coverage, which we describe in §5.5.

5.3 Using Test Case Reduction to Synthesize Small Tests
While differential coverage helps with problem 1 of §5.1, it does not help directly with
problem 2: just knowing that a line is coverable in principle does not yield a suitable CTS
test that covers the line. If workload B (see §5.2) were an interactive game, it might be very
difficult to reverse-engineer a stand-alone test that provides coverage of a particular line.

However, if workload B is a gfauto run, we can at least obtain a number of GraphicsFuzz-
generated variant shaders that provide new coverage. Adding these tests to CTS would serve
to fill the coverage gap, but recall from §3.2 that generated tests are very large, and virtually
impossible for humans to understand in practice, thus unsuitable for direct addition to CTS.

To overcome this problem, we appeal to test case reduction in the following manner.
Having performed a gfauto run for, say, 24 hours, and identified a set of driver source code
lines B \A that were reached by gfauto but not by CTS, we manually choose one such line

11 It is theoretically possible that, e.g. due to concurrency, reachability of line l might be nondeterministic,
but we have not encountered this in practice.

A. F. Donaldson, H. Evrard, and P. Thomson 22:21

and prefix it with assert(false) – i.e., we pretend that it is erroneous to reach the line.
We recompile the driver without coverage instrumentation and run gfauto again using the
same parameters (random seed and corpus of shaders) as in the original run. gfauto will,
once again, reach the line, this time leading to an assertion failure. gfauto will treat the
assertion failure as a shader compiler crash and invoke glsl-reduce to shrink the shader to a
minimal form that still covers the line. The minimized shader is an excellent candidate for
being added to CTS since it is small enough to be human-readable. The process is repeated
by choosing another line from B \A, avoiding lines that we believe are likely to already be
covered by the candidate CTS tests found so far. We periodically re-run CTS after adding
the new tests to update workload A, thus ensuring we don’t miss any coverage gaps.

At present we have been adopting this approach by collecting differential line coverage of
SwiftShader, which incorporates spirv-opt and large parts of LLVM internally. The fact that
SwiftShader is open source simplifies the process considerably, although it should be possible
to apply a similar process to closed-source binary drivers using instruction coverage instead
of line coverage, and by overwriting an instruction with an interrupt instruction (or some
invalid instruction) instead of prefixing a line with assert(false).

Custom interestingness test. Like many reducers, glsl-reduce supports a custom “interest-
ingness test” script that signals to the reducer whether the shader that is being reduced is
still “interesting” (e.g. still crashes the driver). Thus, instead of modifying the driver source
code, we could simply provide an interestingness test that runs the shader using the driver
with coverage instrumentation, processes the coverage data, and checks if the line of interest
was covered. Unfortunately, processing the coverage data is slow, and thus usually done
offline. glsl-reduce will typically run the interestingness test hundreds or thousands of times
before finding a minimal shader. Thus, making the driver crash via an assertion failure is
a much faster approach and, conveniently, already triggers a reduction in gfauto without
requiring a customized interestingness test.

Less coverage after reduction. A potential downside of our approach is that, after reduc-
tion, a shader may cover fewer lines of interest than before. For example, an unreduced
shader might cover three seemingly unrelated functions, f, g, and h, that are all not covered
by CTS, while the reduced shader might cover just one of the functions, f, because we only
added an assertion in f and thus the reducer did not try to preserve coverage of g and h.
Although this may seem undesirable, focusing on just one function at a time typically allows
the reducer to go further (potentially much further) in minimizing the shader. We would
much rather have three simple and small CTS tests, each covering a different function, than
one complex and large CTS test that covers all three functions.

5.4 Manually Tweaking Tests to Improve Oracles
Although the reduced tests could be added to the CTS directly, this is almost never appro-
priate. As with crash bugs, we need to add an oracle to the test, else a driver that does
nothing could pass the test. Again as with crash bugs, we typically add code to the shader
to make it render the colour red and add a check to the test to ensure all rendered pixels are
indeed red. However, the test can be made much more useful if the newly covered lines affect
the output colour value so that if a bug was introduced in the newly covered lines, the test
would fail. Also note that a coverage gap test will fill a coverage gap for the Vulkan driver
that we were running (e.g. SwiftShader), but the hope is that it may also be a meaningful
test for other drivers, especially if it relates to a feature for which test coverage is generally
lacking. The test should be written with this in mind, as we will see below.

ECOOP 2020

22:22 Putting Randomized Compiler Testing into Production

I Example 4. The following is a generated, reduced fragment shader that covers constant
folding code in SwiftShader that replaces a dot product call with zero if one of the operands
is a vector of zeros:

1 void main () {
2 if (1.0 >= dot(vec2 (1.0 , 0.0) , vec2 (0.0 , 0.0))) {
3 _GLF_color = vec4 (1.0);
4 }
5 }

To transform the shader into a form suitable for the Vulkan CTS, we could simply add
code to the end of main that assigns the colour red to _GLF_color, but this has two key
disadvantages: (1) any driver that incorrectly constant folds the dot function call will still
always pass the test, and; (2) a driver might eliminate everything above our final write to
_GLF_color, and thus, on this hypothetical driver, the test would not even cover code related
to the dot product operation. A simple fix is to use the output of the dot function call in the
output colour value, as follows:

1 void main () {
2 float zero = dot(vec2 (1.0 , 0.0) , vec2 (0.0));
3 _GLF_color = vec4 (1.0 , zero , 0.0, 1.0); // we expect red
4 }

However, even this is not ideal; if a driver incorrectly replaced the dot call with a negative
float value, the output colour would still be red, as the output colour components are clamped
by the driver to be between 0 and 1, as required by the Vulkan specification. In our final
version of the test,12 we check that the result of the dot call is exactly 0, and we only output
red in this case:

1 void main () {
2 if(dot(vec2 (1.0 , 0.0) , vec2 (0.0)) == 0.0) // precise check
3 _GLF_color = vec4 (1.0 , 0.0, 0.0, 1.0); // we expect red
4 else
5 _GLF_color = vec4 (0.0);
6 }

The process of manually changing the test to be useful is non-trivial and probably cannot
be automated as it requires some creativity, but the reduced test synthesized by gfauto is an
excellent starting point and is usually not that different to the final version of the test.

5.5 Implementing Differential Code Coverage
The GCC compiler supports compiling an application with coverage instrumentation, causing
coverage data to be output when the application runs, which can then be processed with the
gcov tool. For example, to capture line coverage of SwiftShader when running the Vulkan
CTS, we could perform the following steps:

Compile SwiftShader with GCC, adding the --coverage flag. This builds the
SwiftShader Vulkan library with coverage instrumentation. For each .o file that was
written, the compiler also writes a .gcno file at the same location. The .gcno (gcov
notes) files describe the control flow graph of the corresponding .o files, and include
mappings to source code file paths and line numbers.

12 https://github.com/KhronosGroup/VK-GL-CTS/blob/master/external/vulkancts/data/vulkan/
amber/graphicsfuzz/cov-const-folding-dot-determinant.amber

https://github.com/KhronosGroup/VK-GL-CTS/blob/master/external/vulkancts/data/vulkan/amber/graphicsfuzz/cov-const-folding-dot-determinant.amber
https://github.com/KhronosGroup/VK-GL-CTS/blob/master/external/vulkancts/data/vulkan/amber/graphicsfuzz/cov-const-folding-dot-determinant.amber

A. F. Donaldson, H. Evrard, and P. Thomson 22:23

Run the Vulkan CTS using SwiftShader. Due to the coverage instrumentation in
the SwiftShader library, .gcda files are output alongside the corresponding .o and .gcno
files. The .gcda (gcov data) files contain the control flow graph block and edge execution
counts (i.e. the number of times each block and edge was executed).
Run gcov to process the .gcno and .gcda files to get line coverage information.
Manually executing gcov on every .gcno file from the required directory (or directories)
while avoiding output filename clashes is a tedious process. Additionally, the line coverage
output from gcov is fairly primitive. Thus, there are third-party tools, such as lcov and
gcovr, that invoke gcov automatically, yielding information in an intermediate data format,
and then further process this data to generate, say, an HTML report that shows every
source file annotated with the execution count of each line.

Unfortunately, we could not find any tools capable of obtaining differential line coverage
as described in §5.2. Thus, we created our own set of tools13 that are similar in spirit to lcov
and gcovr, but support obtaining differential line coverage.

cov_from_gcov processes .gcno and .gcda files into a single .cov output file that contains
the set of source file lines that were executed. The .gcno and .gcda files are processed by
invoking gcov in each required directory to output intermediate data files that are then
processed further to produce the .cov output file.

cov_new takes A.cov and B.cov as inputs, and outputs the differential coverage to
new.cov. The new.cov file is simply A.cov minus B.cov (i.e. A \B from §5.2).

cov_to_source takes new.cov as its input, and outputs two parallel directory structures
zero/ and new/. Both directories contain copies of the original source files with a prefix
added to every line: the zero/ directory has a “0” prefix added to every line; the new/
directory has a “1” prefix added to every line present in new.cov, and a “0” prefix for every
other line. The two directory structures can be compared using a diff tool; lines that are
different are the lines of interest (i.e. the lines in A \B from §5.2), and will be highlighted.
The approach of generating parallel directory structures means we avoid generating large
HTML reports, which can be slow to open and navigate, and instead allows the use of any
existing diff tool that is already optimized for this type of task.

6 Fuzzing the SPIR-V Tooling Ecosystem

Recall the rich ecosystem of SPIR-V-related tools shown in Figure 2. Because gfauto uses
many of these tools during a fuzzing run, we have the potential to find bugs in them as
well as finding bugs in vendor shader compilers. Furthermore we have also conducted some
fuzzing runs that include the spirv-cross tool (not part of the default gfauto workflow).

We illustrate, via examples, both the strength of being able to find bugs in multiple tools
and the challenge associated with determining which tool is to blame when a problem arises.

I Example 5. Running spirv-opt on a shader generated by gfauto led to a non-zero exit code.
We reported this bug to the SPIRV-Tools project,14 assuming it to be a bug in spirv-opt.
The spirv-opt authors investigated and determined that in fact the shader contained invalid
SPIR-V that spirv-val (which gfauto runs at every transformation stage) had missed. This
identified a validator bug (in the form of a validator omission) but raised the question of
what had created the invalid SPIR-V. It turned out that gfauto had run spirv-opt as part of

13 https://github.com/google/graphicsfuzz/blob/master/gfauto/docs/coverage.md
14 https://github.com/KhronosGroup/SPIRV-Tools/issues/3031

ECOOP 2020

https://github.com/google/graphicsfuzz/blob/master/gfauto/docs/coverage.md
https://github.com/KhronosGroup/SPIRV-Tools/issues/3031

22:24 Putting Randomized Compiler Testing into Production

reference.glsl
glsl-fuzz variant.glsl

spirv-opt

variant(.opt).spvglslangdonor.glsl
Metal GPU

driverSPIRV-Cross variant.mtl

Figure 9 Fuzzing Metal drivers from GLSL.

generating the shader, and its block merging pass had been too aggressive: loops in SPIR-V
assembly have designated merge and continue blocks, the merge block denoting the loop’s
exit, and the continue block denoting the start of a region of code that must be traversed in
order to return to the loop head. The block merging pass was allowing the merge block of
one loop and the continue block of another loop to be merged. This turned out to be illegal
according to the SPIR-V specification, though the wording of the specification did not spell
the rule out very clearly. The SPIRV-Tools team enhanced spirv-val to detect this kind of
invalidity, and fixed the bug in spirv-opt’s block merging pass.15

This resolved the combined validator and optimizer bug that we had found with gfauto.
Unfortunately, it turned out that 55 existing Vulkan CTS tests contained SPIR-V that was
invalid for the same reason – in many cases the SPIR-V in question had been processed by
spirv-opt’s previously buggy block merging pass. This necessitated fixing these tests in the
master branch of CTS, as well as in multiple release branches.

The SPIR-V working group are discussing how to clarify the specification with respect to
its rules about the structure of loops and other control flow constructs, in part due to this
(and other) reports from our fuzzing efforts.

I Example 6. An early assertion failure that we triggered in spirv-opt,16 by fuzzing using a
random combination of optimizer flags, turned out to be due to a “merge return” optimization
pass being applied to a SPIR-V control flow graph that it was known not to be able to handle.
The SPIRV-Tools team hardened spirv-opt by having the “merge return” pass explicitly
check for unsupported control flow graph idioms and, on encountering an unsupported idiom,
gracefully exit with an error informing the user that they should run the “eliminate dead
code” pass first.

Subsequently, we ensured that gfauto only generates lists of spirv-opt optimization passes
in which “merge return” (if present) runs after “eliminate dead code”.

I Example 7. We ran some experiments testing MoltenVK [26], an implementation of most of
Vulkan on top of Apple’s Metal graphics API, on a MacBook Pro. MoltenVK uses spirv-cross
to translate SPIR-V to the Metal shading language (MetalSL) so it can be sent to the Metal
shader compiler within the Metal driver on a Mac or iOS device. The full translation pipeline
is illustrated in Figure 9. When a wrong image is produced in this setup, the bug could be
in the Metal driver or in any of the tools that come before (shown as rounded-rectangles
in Figure 9). Differential testing can come to the rescue here: if the bad image is also
produced by the variant shader in a “vanilla” setup, e.g. by using glslang and rendering the
resulting SPIR-V using some other Vulkan driver, the bug is very likely in glsl-fuzz or glslang.
Otherwise, if the bug manifests only when adding the same spirv-opt passes (before running
on this other Vulkan driver), the problem is likely in spirv-opt. Otherwise, the bug is likely
in spirv-cross or the Metal driver.

15 https://github.com/KhronosGroup/SPIRV-Tools/pull/3068
16 https://github.com/KhronosGroup/SPIRV-Tools/issues/1962

https://github.com/KhronosGroup/SPIRV-Tools/pull/3068
https://github.com/KhronosGroup/SPIRV-Tools/issues/1962

A. F. Donaldson, H. Evrard, and P. Thomson 22:25

We found such a wrong image bug in our testing, and used differential testing to conclude
that the bug was likely in spirv-cross or the Metal driver. After inspecting the MetalSL code,
we found it to be incorrect and so ascertained that the bug was in spirv-cross. We submitted
a bug report17 and the bug was promptly fixed.

7 Related Work

Randomized and metamorphic compiler testing techniques. Randomized testing of com-
pilers has a long history; see e.g. [21] for a very early example, and multiple surveys [8, 3, 30].
Random differential testing (RDT) of C compilers was investigated to some extent by McK-
eeman [36], and the Csmith project from the University of Utah [50] has triggered a lot
of interest in the topic over the last decade. An early approach to metamorphic compiler
testing involved generating equivalent programs from scratch [46]. More recent work on
equivalence modulo inputs testing (EMI) [31, 44], a form of metamorphic testing, showed
that approaches based on transforming programs in a manner that preserves semantics at
least for certain inputs can be an effective way of triggering wrong code bugs. The RDT
and EMI approaches have been extended to allow testing of OpenCL compilers [33], and
the EMI approach was the inspiration for the approach to metamorphic testing employed
by GraphicsFuzz [16, 15], on which the work described in this experience report was built.
Randomized differential testing has also been applied to other program processing tools,
such as refactoring engines [14] and static analyzers [13], and there is scope for applying
techniques from compiler testing to program analyzers more generally [6].

Experience reports related to compiler testing. A short report on work at the UK’s
National Physical Laboratory describes some experiences testing compilers for Pascal, Ada
and Haskell using random program generators, mainly focusing on the relative difficulty
of constructing program generators for each of these languages [48]. McKeeman’s seminal
paper on differential testing includes a section on randomized compiler testing that is written
in the style of an experience report [36]. In comparison to our paper, these reports do
not discuss the challenges of setting up a pathway from randomly-generated test cases to
test cases suitable for incorporation into a standard compiler test suite. An edited volume
on validation of Pascal compilers provides a number of experience reports related to the
testing and validation process [49]. These reports discuss issues related to constructing
compiler conformance tests, but do not mention randomized testing. Furthermore, none of
the aforementioned experience reports discuss the challenges of testing graphics compilers.

Empirical studies related to compiler bugs and compiler testing. There have been three
recent empirical studies related to compiler bugs and randomized compiler testing: a study
on the relative effectiveness of compiler testing based on RDT vs. EMI testing [7], a study
on the characteristics of bugs in the GCC and LLVM compilers (not specifically focusing on
bugs found via randomized testing) [45], and a study that aims to assess the relative impact
on end-user software of fuzzer-found compiler bugs compared with compiler bugs encountered
and reported “in the wild” by users [35]. Unlike our work these studies all focus on C/C++
compilers, not compilers for graphics shading languages. A main finding from [35] – that
bugs found by fuzzers appear to have at least as much practical impact as bugs reported by
users – supports our belief that adding fuzzer-found compiler bugs to compiler regression
test suites is a worthwhile endeavour.

17 https://github.com/KhronosGroup/SPIRV-Cross/issues/1091

ECOOP 2020

https://github.com/KhronosGroup/SPIRV-Cross/issues/1091

22:26 Putting Randomized Compiler Testing into Production

Compiler test case reduction and bug de-duplication. The semantics-changing reduction
mode of glsl-reduce is similar in nature to the approach taken by the C-Reduce tool [40],
following the well-known delta debugging method [51]. A difference between glsl-reduce and
C-Reduce is that glsl-reduce exclusively uses valid abstract syntax tree transformations to
reduce a shader, whereas C-Reduce uses a combination of methods, including language-aware
transformations built on top of the Clang framework, language-agnostic transformations
based on line and token deletion, and methods in-between that assume only basic language
properties, such as that the language is block-structured, with blocks delimited by braces.
As a result, C-Reduce can be applied to programs from a variety of languages (e.g. it has
been successfully applied to OpenCL C [39]), while glsl-reduce is specific to GLSL. It would
be interesting to investigate how well C-Reduce works for the reduction of GLSL programs
that induce shader compiler crashes.

The semantics-preserving mode of glsl-reduce is intimately tied to the semantics-preserving
transformations applied during metamorphic testing. As discussed in §3.5, the tight coupling
between glsl-fuzz and glsl-reduce related to this mode has made it hard to maintain the pair
of tools. Recent work proposes leveraging a test-case generator to provide test case reduction
“for free”, by repeatedly re-generation to search for smaller tests that still trigger a bug [34].
An approach along these lines may be effective in avoiding the need for a tightly coupled
generator and reducer in our domain.

Work on automated ranking of compiler bug reports proposes several metrics that can
be used to order bug-inducing tests, with the aim of presenting a diverse selection of test
cases exposing distinct bugs first [10]. Our de-duplication of crash bugs based on crash
signatures (see §4.2) has not yet required this level of sophistication, but we believe such
techniques could be brought to bear for de-duplication of wrong image bugs for which there
is no analogue to a crash signature.

8 Conclusions and Future Work

We have described our experience rolling out graphics shader compiler fuzzing, based on
the GraphicsFuzz tool chain, in a production environment with the goal of improving the
Vulkan Conformance Test Suite via new tests that expose shader compiler bugs or provide
additional coverage of shader processing tools. We hope the various insights in this report
will be useful to researchers interested in testing programming language implementations.

We identify several directions for future practical work in this area.

Direct fuzzing for SPIR-V. We have gotten significant mileage from testing SPIR-V shader
compilers via GLSL shaders, but the SPIR-V features this flow will exercise are inevitably
limited, motivating the need for a fuzzer that works at the SPIR-V level.

Stability tests. We discuss the avoidance of invalid tests in §3.5. However, unintentionally
invalid tests (due to bugs in the GraphicsFuzz tooling) have sometimes led to the discovery of
serious driver stability issues, e.g. Android devices rebooting after accessing invalid memory,
or failing to gracefully recover from long-running shaders [15]. It would be valuable to put in
place a suite of tests, distinct from Vulkan CTS, to check that invalid shaders cannot derail
an operating system.

Higher confidence in wrong image bugs. As discussed in §3.4 we are presently exercising
caution regarding adding wrong image tests to CTS. A corpus of highly numerically stable
shaders would allow us to proceed with greater confidence here, as would a more detailed
analysis of the possible floating-point effects of the transformations that glsl-fuzz employs.

A. F. Donaldson, H. Evrard, and P. Thomson 22:27

References
1 Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University Press,

2 edition, 2017.
2 Apple. About the security content of ios 10.3, 2017. see “Processing maliciously crafted web

content may result in the disclosure of process memory”. URL: https://support.apple.com/
en-gb/HT207617.

3 Abdulazeez S. Boujarwah and Kassem Saleh. Compiler test case generation methods: a
survey and assessment. Information & Software Technology, 39(9):617–625, 1997. doi:
10.1016/S0950-5849(97)00017-7.

4 Arkady Bron, Eitan Farchi, Yonit Magid, Yarden Nir, and Shmuel Ur. Applications of
synchronization coverage. In Keshav Pingali, Katherine A. Yelick, and Andrew S. Grimshaw,
editors, Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP 2005, June 15-17, 2005, Chicago, IL, USA, pages 206–212. ACM, 2005.
doi:10.1145/1065944.1065972.

5 bugs.chromium.org. Issue 675658: Security: Malicious WebGL page can capture and up-
load contents of other tabs, 2016. URL: https://bugs.chromium.org/p/chromium/issues/
detail?id=675658.

6 Cristian Cadar and Alastair F. Donaldson. Analysing the program analyser. In Laura K. Dillon,
Willem Visser, and Laurie Williams, editors, Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 - Companion
Volume, pages 765–768. ACM, 2016. doi:10.1145/2889160.2889206.

7 Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, and Bing Xie.
An empirical comparison of compiler testing techniques. In Laura K. Dillon, Willem Visser,
and Laurie Williams, editors, Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages 180–190. ACM, 2016.
doi:10.1145/2884781.2884878.

8 Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and
Lu Zhang. A survey of compiler testing techniques. ACM Computing Surveys, 2020. To
appear.

9 T.Y. Chen, S.C. Cheung, and S.M. Yiu. Metamorphic testing: a new approach for generating
next test cases. Technical Report HKUST-CS98-01, Department of Computer Science, The
Hong Kong University of Science and Technology, 1998.

10 Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Z. Fern, Eric Eide,
and John Regehr. Taming compiler fuzzers. In Hans-Juergen Boehm and Cormac Flanagan,
editors, ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 197–208. ACM, 2013. doi:10.1145/
2491956.2462173.

11 Igalia / codecov.io. Coverage report for vulkan cts on open source mesa driver with amd
bck-end, 2020. URL: https://codecov.io/gh/Igalia/mesa/.

12 Keith Cooper and Linda Torczon. Engineering a Compiler. Morgan Kaufmann, 2002.
13 Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John Regehr, Boris Yakobow-

ski, and Xuejun Yang. Testing static analyzers with randomly generated programs. In Alwyn
Goodloe and Suzette Person, editors, NASA Formal Methods - 4th International Symposium,
NFM 2012, Norfolk, VA, USA, April 3-5, 2012. Proceedings, volume 7226 of Lecture Notes in
Computer Science, pages 120–125. Springer, 2012. doi:10.1007/978-3-642-28891-3_12.

14 Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated testing of refactoring
engines. In Ivica Crnkovic and Antonia Bertolino, editors, Proceedings of the 6th joint meeting
of the European Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007, Dubrovnik, Croatia, September
3-7, 2007, pages 185–194. ACM, 2007. doi:10.1145/1287624.1287651.

15 Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. Automated testing
of graphics shader compilers. PACMPL, 1(OOPSLA):93:1–93:29, 2017. doi:10.1145/3133917.

ECOOP 2020

https://support.apple.com/en-gb/HT207617
https://support.apple.com/en-gb/HT207617
https://doi.org/10.1016/S0950-5849(97)00017-7
https://doi.org/10.1016/S0950-5849(97)00017-7
https://doi.org/10.1145/1065944.1065972
https://bugs.chromium.org/p/chromium/issues/detail?id=675658
https://bugs.chromium.org/p/chromium/issues/detail?id=675658
https://doi.org/10.1145/2889160.2889206
https://doi.org/10.1145/2884781.2884878
https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/2491956.2462173
https://codecov.io/gh/Igalia/mesa/
https://doi.org/10.1007/978-3-642-28891-3_12
https://doi.org/10.1145/1287624.1287651
https://doi.org/10.1145/3133917

22:28 Putting Randomized Compiler Testing into Production

16 Alastair F. Donaldson and Andrei Lascu. Metamorphic testing for (graphics) compilers. In
Proceedings of the 1st International Workshop on Metamorphic Testing, MET@ICSE 2016,
Austin, Texas, USA, May 16, 2016, pages 44–47. ACM, 2016. doi:10.1145/2896971.2896978.

17 Google. Amber GitHub repository, 2020. URL: https://github.com/google/amber.
18 Google. SwiftShader GitHub repository, 2020. URL: https://github.com/google/

SwiftShader.
19 GPUOpen Drivers. LLVM-based pipeline compiler GitHub repository, 2020. URL: https:

//github.com/GPUOpen-Drivers/llpc.
20 The Khronos Vulkan Working Group. Vulkan 1.1.141 - A Specification (with all registered

Vulkan extensions). The Khronos Group, 2019. URL: https://www.khronos.org/registry/
vulkan/specs/1.1-extensions/pdf/vkspec.pdf.

21 K. V. Hanford. Automatic generation of test cases. IBM Systems Journal, 9:242–257, 1970.
22 John Kessenich, editor. The OpenGL Shading Language Version 4.60.7. The Khronos

Group, 2019. URL: https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.
60.pdf.

23 John Kessenich, Boaz Ouriel, and Raun Krisch, editors. SPIR-V Specification, Version 1.5,
Revision 2, Unified. The Khronos Group, 2019. URL: https://www.khronos.org/registry/
spir-v/specs/unified1/SPIRV.pdf.

24 Khronos Group. glslang GitHub repository, 2020. URL: https://github.com/KhronosGroup/
glslang.

25 Khronos Group. Khronos Vulkan, OpenGL, and OpenGL ES conformance tests GitHub
repository, 2020. URL: https://github.com/KhronosGroup/VK-GL-CTS.

26 Khronos Group. MoltenVk GitHub repository, 2020. URL: https://github.com/
KhronosGroup/MoltenVK.

27 Khronos Group. SPIR-V Tools GitHub repository, 2020. URL: https://github.com/
KhronosGroup/SPIRV-Tools.

28 Khronos Group. SPIRV-Cross GitHub repository, 2020. URL: https://github.com/
KhronosGroup/SPIRV-Cross.

29 Jeffery Kline. Properties of the d-dimensional earth mover’s problem. Discrete Applied
Mathematics, 265:128–141, 2019. doi:10.1016/j.dam.2019.02.042.

30 Alexander S. Kossatchev and Mikhail Posypkin. Survey of compiler testing methods. Pro-
gramming and Computer Software, 31(1):10–19, 2005. doi:10.1007/s11086-005-0008-6.

31 Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence modulo
inputs. In Michael F. P. O’Boyle and Keshav Pingali, editors, ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, pages 216–226. ACM, 2014. doi:10.1145/2594291.2594334.

32 Jon Leech, editor. OpenGL ES Version 3.2. The Khronos Group, 2019. URL: https:
//www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf.

33 Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson. Many-core
compiler fuzzing. In David Grove and Steve Blackburn, editors, Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015, pages 65–76. ACM, 2015. doi:10.1145/2737924.2737986.

34 David R. MacIver and Alastair F. Donaldson. Test-case reduction via test-case generation:
Insights from the hypothesis reducer. In 34th European Conference on Object-Oriented
Programming, ECOOP 2020, volume 166 of LIPIcs, pages 13:1–13:28. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

35 Michaël Marcozzi, Qiyi Tang, Alastair F. Donaldson, and Cristian Cadar. Compiler fuzzing:
how much does it matter? PACMPL, 3(OOPSLA):155:1–155:29, 2019. doi:10.1145/3360581.

36 William M. McKeeman. Differential testing for software. Digital Technical Journal, 10(1):100–
107, 1998. URL: http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf.

37 Microsoft. DirectX shader compiler GitHub repository, 2020. URL: https://github.com/
microsoft/DirectXShaderCompiler.

https://doi.org/10.1145/2896971.2896978
https://github.com/google/amber
https://github.com/google/SwiftShader
https://github.com/google/SwiftShader
https://github.com/GPUOpen-Drivers/llpc
https://github.com/GPUOpen-Drivers/llpc
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/pdf/vkspec.pdf
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/pdf/vkspec.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf
https://github.com/KhronosGroup/glslang
https://github.com/KhronosGroup/glslang
https://github.com/KhronosGroup/VK-GL-CTS
https://github.com/KhronosGroup/MoltenVK
https://github.com/KhronosGroup/MoltenVK
https://github.com/KhronosGroup/SPIRV-Tools
https://github.com/KhronosGroup/SPIRV-Tools
https://github.com/KhronosGroup/SPIRV-Cross
https://github.com/KhronosGroup/SPIRV-Cross
https://doi.org/10.1016/j.dam.2019.02.042
https://doi.org/10.1007/s11086-005-0008-6
https://doi.org/10.1145/2594291.2594334
https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3360581
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://github.com/microsoft/DirectXShaderCompiler
https://github.com/microsoft/DirectXShaderCompiler

A. F. Donaldson, H. Evrard, and P. Thomson 22:29

38 NVIDIA. Security bulletin: Nvidia gpu display driver contains multiple vulnerabilities
in the kernel mode layer handler, 2018. , see “NVIDIA GPU Display Driver contains a
vulnerability in the kernel mode layer handler where an incorrect detection and recovery from
an invalid state produced by specific user actions may lead to a denial of service”. URL:
https://nvidia.custhelp.com/app/answers/detail/a_id/4525/.

39 Moritz Pflanzer, Alastair F. Donaldson, and Andrei Lascu. Automatic test case reduction for
opencl. In Proceedings of the 4th International Workshop on OpenCL, IWOCL 2016, Vienna,
Austria, April 19-21, 2016, pages 1:1–1:12. ACM, 2016. doi:10.1145/2909437.2909439.

40 John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. Test-case
reduction for C compiler bugs. In Jan Vitek, Haibo Lin, and Frank Tip, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’12, Beijing, China
- June 11 - 16, 2012, pages 335–346. ACM, 2012. doi:10.1145/2254064.2254104.

41 Mark Segal and Kurt Akeley, editors. The OpenGL Graphics System: A Specification Version
4.6 (Core Profile). The Khronos Group, 2019. URL: https://www.khronos.org/registry/
OpenGL/specs/gl/glspec46.core.pdf.

42 Sergio Segura, Gordon Fraser, Ana B. Sánchez, and Antonio Ruiz Cortés. A survey on
metamorphic testing. IEEE Trans. Software Eng., 42(9):805–824, 2016. doi:10.1109/TSE.
2016.2532875.

43 Robert J. Simpson and John Kessenich, editors. The OpenGL ES Shading Language Version
3.20.6. The Khronos Group, 2019. URL: https://www.khronos.org/registry/OpenGL/
specs/es/3.2/GLSL_ES_Specification_3.20.pdf.

44 Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via live code mutation. In
Eelco Visser and Yannis Smaragdakis, editors, Proceedings of the 2016 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November
4, 2016, pages 849–863. ACM, 2016. doi:10.1145/2983990.2984038.

45 Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. Toward understanding compiler bugs
in GCC and LLVM. In Andreas Zeller and Abhik Roychoudhury, editors, Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA 2016, Saarbrücken,
Germany, July 18-20, 2016, pages 294–305. ACM, 2016. doi:10.1145/2931037.2931074.

46 Qiuming Tao, Wei Wu, Chen Zhao, and Wuwei Shen. An automatic testing approach
for compiler based on metamorphic testing technique. In Jun Han and Tran Dan Thu,
editors, 17th Asia Pacific Software Engineering Conference, APSEC 2010, Sydney, Australia,
November 30 - December 3, 2010, pages 270–279. IEEE Computer Society, 2010. doi:
10.1109/APSEC.2010.39.

47 Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne,
Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu, and the scikit-image
contributors. scikit-image: image processing in Python. PeerJ, 2:e453, June 2014. doi:
10.7717/peerj.453.

48 Brian A. Wichmann. Some remarks about random testing, 1998. Available online at https:
//www.semanticscholar.org/paper/Some-Remarks-about-Random-Testing-Wichmann/
2ad3c4c2e1b0b5867a1aa3e7c2de4a17d9facead.

49 Brian A. Wichmann and Z. J. Ciechanowicz, editors. Pascal Compiler Validation. John Wiley
& Sons, Inc., 1983.

50 Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in
C compilers. In Mary W. Hall and David A. Padua, editors, Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011, pages 283–294. ACM, 2011. doi:10.1145/1993498.1993532.

51 Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng., 28(2):183–200, 2002. doi:10.1109/32.988498.

ECOOP 2020

https://nvidia.custhelp.com/app/answers/detail/a_id/4525/
https://doi.org/10.1145/2909437.2909439
https://doi.org/10.1145/2254064.2254104
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1109/TSE.2016.2532875
https://www.khronos.org/registry/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.pdf
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1109/APSEC.2010.39
https://doi.org/10.1109/APSEC.2010.39
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://www.semanticscholar.org/paper/Some-Remarks-about-Random-Testing-Wichmann/2ad3c4c2e1b0b5867a1aa3e7c2de4a17d9facead
https://www.semanticscholar.org/paper/Some-Remarks-about-Random-Testing-Wichmann/2ad3c4c2e1b0b5867a1aa3e7c2de4a17d9facead
https://www.semanticscholar.org/paper/Some-Remarks-about-Random-Testing-Wichmann/2ad3c4c2e1b0b5867a1aa3e7c2de4a17d9facead
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/32.988498

	Introduction
	Background
	The GLSL and SPIR-V Shading Languages
	The SPIR-V Tooling Ecosystem
	The Vulkan Conformance Test Suite
	Metamorphic Compiler Testing Using GraphicsFuzz

	Integrating GraphicsFuzz Tests With Vulkan CTS
	Fuzzing SPIR-V Compilers via GLSL Shaders
	Argument for Not Running Fuzzing in CTS
	Supporting Crash Tests
	Supporting Wrong Image Tests
	Avoiding Invalid Tests

	gfauto
	Creation and replay of self-contained tests
	Bug de-duplication and prioritization
	Vulkan CTS test export

	Finding Test Coverage Gaps Using GraphicsFuzz and gfauto
	Absolute Code Coverage and its Limitations
	Differential Code Coverage
	Using Test Case Reduction to Synthesize Small Tests
	Manually Tweaking Tests to Improve Oracles
	Implementing Differential Code Coverage

	Fuzzing the SPIR-V Tooling Ecosystem
	Related Work
	Conclusions and Future Work

