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Abstract
Subtyping is a concept frequently encountered in many programming languages and calculi. Various
forms of subtyping exist for different type system features, including intersection types, union types
or bounded quantification. Normally these features are designed independently of each other, without
exploiting obvious similarities (or dualities) between features.

This paper proposes a novel methodology for designing subtyping relations that exploits duality
between features. At the core of our methodology is a generalization of subtyping relations, which
we call Duotyping. Duotyping is parameterized by the mode of the relation. One of these modes is the
usual subtyping, while another mode is supertyping (the dual of subtyping). Using the mode it is
possible to generalize the usual rules of subtyping to account not only for the intended behaviour of
one particular language construct, but also of its dual. Duotyping brings multiple benefits, including:
shorter specifications and implementations, dual features that come essentially for free, as well as
new proof techniques for various properties of subtyping. To evaluate a design based on Duotyping
against traditional designs, we formalized various calculi with common OOP features (including
union types, intersection types and bounded quantification) in Coq in both styles. Our results show
that the metatheory when using Duotyping does not come at a significant cost: the metatheory
with Duotyping has similar complexity and size compared to the metatheory for traditional designs.
However, we discover new features as duals to well-known features. Furthermore, we also show that
Duotyping can significantly simplify transitivity proofs for many of the calculi studied by us.
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1 Introduction

Subtyping is a concept frequently encountered in many programming languages and calculi.
It is also a pervasive and fundamental feature in Object-Oriented Programming (OOP).
Various forms of subtyping exist for different type system features, including intersection
types [6], union types [6] or bounded quantification [15]. Modern OOP languages such as
Scala [34], Ceylon [29], Flow [19] or TypeScript [12] all support the aforementioned type
system features.
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29:2 The Duality of Subtyping

As programming languages evolve, new features are added. This requires that subtyping
for these new features is developed and also integrated with existing features. However, the
design and implementation of subtyping for new features is quite often non-trivial. There
are several, well-documented issues in the literature. These include finding algorithmic forms
for subtyping (for instance doing transitivity elimination) [43] or proving metatheoretical
properties such as transitivity or narrowing [1]. Such issues occur, for instance, in some
of the latest developments for OOP languages, such as the DOT calculi (which model the
essence of Scala) [3]. One possible way to reduce the non-trivial amount of work needed
to develop new features, would be if two related features could be develop at once with a
coherent design. This paper explores a new methodology that enables such benefits.

Normally programming language features are designed independently of each other.
However there are features that are closely related to each other, and can be viewed as dual
features. Various programming language features are known to be dual in programming
language theory. For instance sum and product types are well-known to be duals [14].
Similarly universal and existential quantification are dual concepts as well [9]. Moreover
duality is a key concept in category theory [30] and many abstractions widely used in
functional programming (such as Monads and CoMonads [44]) are also known to be duals.

In OOP type systems dual features are also common. For instance all OOP languages
contain a top type (called Object in Java or Any in Scala), which is the supertype of all
types. Many OOP languages also contain a bottom type, which is a subtype of all types. Top
and bottom types can be viewed as dual features, mirroring the functionality of each other.
Intersection and union types are another example of dual features. The intersection of two
types A and B can be used to type a value that implements both A and B. The union of two
types A and B can be used to type a value that implements either A or B.

Duality in OOP and subtyping is often only informally observed by humans. For instance,
by simply understanding the behaviour of the features and observing their complementary
roles, as we just did in the previous paragraph. At best duality is more precisely observed
by looking at the rules for the language constructs and their duals and observing a certain
symmetry between those rules. However existing formalisms and language designs for type
systems and subtyping relations do not directly incorporate duality. Unfortunately this
means that an opportunity to exploit obvious similarities between features is lost.

This paper proposes a novel methodology for designing subtyping relations that exploits
duality between features directly in the formalism. At the core of our methodology is a
generalization of subtyping relations, which we call Duotyping. Duotyping is parameterized
by the mode of the relation. One of these modes is the usual subtyping, while another
mode is supertyping (the dual of subtyping). Using the mode it is possible to generalize the
usual rules of subtyping to account not only for the intended behaviour of one particular
language construct, but also of its dual. This means that the behaviour of the language
construct and its dual is modelled by a single, common set of rules. In turn this ensures
that the behaviour of the two features is modelled consistently. Moreover it also enables
various theorems/properties of subtyping to be generalized to account for the dual features.
Therefore, Duotyping offers similar benefits to the how duality is exploited in category theory.
More concretely, Duotyping brings multiple benefits for the design of subtyping relations,
which are discussed next.

Shorter specifications. When duality is exploited in specifications of subtyping it leads to
shorter specifications because rules for dual features are shared. This also ensures a consistent
design of the rules between the dual features directly in the formalism. Such consistency is not
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enforceable in traditional formulations of subtyping where the rules are designed separately,
and thus their design is completely unconstrained with respect to the dual feature. A concrete
example that illustrates shorter specifications is a traditional subtyping relation with top,
bottom, union and intersection types, which would normally have 8 subtyping rules for those
constructs. In a design with Duotyping we only need 5 subtyping rules. Basically we need
only half of the rules (4 in this case) to model the feature-specific rules, plus an additional
duality rule which is generic (and plays a similar role to reflexivity and transitivity).

“Buy” one feature get one feature for free! Duality can lead to the discovery of new
features. While top and bottom types, or intersection and union types are well-known in the
literature (and understood to be duals), other features in languages with subtyping do not
have a known dual feature in the literature. This is partly because, when a language designer
employs traditional formulations of subtyping, he/she is often only interested in the design of
a feature (but not necessarily of its dual). Even for the case of union and intersection types,
intersection types were developed first and the development of union types occurred years
later. Because the dual feature is often also useful, the traditional way to design subtyping
rules represents a loss of opportunity to get another language feature essentially for free.

One well-known example of a language feature that has been widely exploited in the
literature, but its dual feature has received much less attention is bounded quantification [17].
Bounded quantification allows type variables to be defined with upper bounds. However
lower bounds are also useful. One can think of universal quantification with lower bounds
as a dual to universal quantification with upper bounds. The essence of (upper) bounded
quantification is captured by the well-known F<: calculus [17]. However, as far as we know,
there is no design that extends F<: with lower bounded quantification in the literature.
Applying a Duotyping design to F<: gives us, naturally, the two features at once (lower
and upper bounded quantification), as illustrated in our Section 4. Such generalization of
bounded quantification is related to the recent form of universal quantification with type
bounds employed in Scala and the DOT family of calculi [3]. However, while Scala’s type
bounds are more expressive than what we propose, they are also much more complex and
are in fact one of the key complications in the type systems of languages like Scala. Most
DOT calculi require a built-in transitivity rule in subtyping because it is not known how to
eliminate transitivity. In contrast, the generalization of F<: proposed by us has a formulation
of subtyping where transitivity can be proved as a separate lemma.

New proof techniques. Designs of subtyping with duality also enable new proof techniques
that exploit such duality. For instance there are various theorems that can be stated for both
a feature and its dual, instead of having separate theorems for both. Some of the properties
of union and intersection types are examples of this. Moreover, Duotyping also enables new
proof techniques to prove traditionally hard theorems such as transitivity. Surprisingly to us,
for the vast majority of the calculi that we have applied Duotyping to, transitivity proofs
have been considerably simpler than their corresponding traditional formulations due to the
use of Duotyping!

Shorter implementations. Finally Duotyping also enables for shorter implementations. The
benefits of shorter implementations are similar and follow from the benefits of shorter
specifications. However there is a complicating factor when moving from a relational
specification into an implementation: the duality rule is non-algorithmic. This is akin to what
happens with transitivity, which is often also used in declarative formulations of subtyping.

ECOOP 2020



29:4 The Duality of Subtyping

Eliminating transitivity to obtain an algorithmic system can often be a non-trivial challenge
(as illustrated, for instance, by the DOT family of calculi [3]). However, we show that there
is a simple and generally applicable technique that can be used to move from a declarative
formulation of Duotyping into an algorithmic version. This contrasts with transitivity, for
which there is not a generally applicable transitivity elimination technique.

To evaluate a design based on Duotyping against traditional designs of subtyping, we
formalized various calculi with common OOP features (including union types, intersection
types and bounded quantification) in Coq in both styles. Our results show that the metatheory
when using Duotyping has similar complexity and size compared to traditional designs.
However, the Duotyping formalizations come with more features (for instance lower-bounded
quantification) that dualize other well-known features (upper-bounded quantification). Finally,
we also show that Duotyping can significantly simplify transitivity proofs for many of the
calculi studied by us.

In summary, the contributions of this paper are:
Duotyping: A new methodology for the design of subtyping relations exploiting duality.
A case study on Duotyping: A comprehensive study of various existing type systems
and features, which were redesigned to employ the Duotyping methodology. Our results
show that in most systems the size of the metatheory without duality and with duality is
comparable, while often transitivity proofs become simpler when employing duality.
F<: with lower bounded quantification: We propose a new generalization of System
F<:, called Fk�, which allows not only type variables to be quantified with upper bounds
and lower bounds as well. While this system is weaker than Scala/DOT’s type bounds, it
nonetheless allows for simple transitivity proofs (which have been a significant challenge
in calculi with type bounds [40]).
Mechanization in Coq: All the systems in our case study have been formalized in the
Coq theorem prover [8].

2 Overview

This section gives an overview of Duotyping. We show how to design subtyping relations
employing Duotyping, and discuss the advantages of a design with Duotyping instead of a
traditional subtyping formulation in more detail.

2.1 Subtyping with union and intersection types

To motivate the design of Duotyping relations we first consider a traditional subtyping relation
with union and intersection types, as well as top and bottom types. We choose a system
with union and intersection types because these features are nowadays common in various
OOP languages, including Scala [34], TypeScript [12], Ceylon [29] or Flow [19]. Therefore
union and intersection types are of practical interest. Furthermore union and intersection
types are simple, intuitive and good for showing duality between concepts.

The types used for the subtyping relation include the top type >, the bottom type ⊥,
integer types Int, function types A→ B, intersection types A ∧ B and union types A ∨ B:

Types A,B ::= > | ⊥ | Int | A→ B | A ∧ B | A ∨ B
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A <: B (Traditional Subtyping)

A <: >
ts-top

⊥ <: A
ts-btm

Int <: Int
ts-int

B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2
ts-arrow

A <: A1 A <: A2

A <: A1 ∧A2
ts-anda

A1 <: A
A1 ∧A2 <: A

ts-andb
A2 <: A

A1 ∧A2 <: A
ts-andc

A1 <: A A2 <: A
A1 ∨A2 <: A

ts-ora
A <: A1

A <: A1 ∨A2
ts-orb

A <: A2

A <: A1 ∨A2
ts-orc

Figure 1 Subtyping for union and intersection types.

Traditional Subtyping. A simple subtyping relation accounting for union and intersection
types is given in Figure 1. Rule ts-top defines that every type is a subtype of >, and
Rule ts-btm states that every type is a supertype of ⊥. Rule ts-int is for integers, and
states that Int is a subtype of itself. Rule ts-arrow is the traditional subtyping rule for
function types. Rules ts-anda, ts-andb, and ts-andc are subtyping rules for intersection
types. Rules ts-ora, ts-orb, and ts-orc are subtyping rules for union types. The rules
that we employ here are quite common for systems with union and intersection types. For
instance they are the same rules used in various DOT-calculi [3] (which model the essence of
Scala). For simplicity we do not account for distributivity rules, which also appear in some
type systems and calculi [7, 11, 47].

2.2 Subtyping Specifications using Duotyping

In the subtyping relation presented in Figure 1, it is quite obvious that many rules look
alike. Some rules are essentially a “mirror image” of other rules. The rules for top and
bottom types are an example of this. Another example are the rules ts-andb and ts-orb.
Although informally humans can easily observe the similarity between many of the rules, this
similarity/duality is not expressed directly in the formalism. For example, there is nothing
preventing us from designing rules that are not duals. Duotyping aims at capturing duality in
the rules themselves, and expressing duality as part of the formalism, rather than just leaving
duality informally observable by humans. This can prevent, for instance, designing rules for
dual concepts that do not really dualize. Therefore Duotyping can enforce consistency of dual
rule designs.

To illustrate how Duotyping rules are designed and relate to the traditional subtyping
rules, lets refactor the traditional rules in a few basic steps. Firstly, lets assume that we have a
second relation A :> B that captures the supertyping between a type A and B. Supertyping
is nothing but the subtyping relation with its arguments flipped. So, the rules of supertyping
could be simply obtained by taking all the rules in Figure 1 and deriving corresponding rules
where all the arguments are flipped around. We skip that boring definition here. With both
supertyping and subtyping, the top and bottom rules can be presented as follows:

A <: >
ts-top

A :> ⊥
tsp-btm

ECOOP 2020



29:6 The Duality of Subtyping

Similarly the rules rule ts-andb and rule ts-orb, can be presented as:

A1 <: A
A1 ∧A2 <: A

ts-andb
A1 :> A

A1 ∨A2 :> A
tsp-orb

This simple refactoring shows that the only difference between dual rules is the relation itself,
and the (dual) language constructs. Apart from that everything else is the same.

Duotyping. With Duotyping we can provide a single unified rule, which captures the two
distinct subtyping rules, instead. The Duotyping relation is parameterized by a mode ♦:

Mode ♦ ::= <: | :>

which can be subtyping (<:) or supertyping (:>). Thus the Duotyping relation is of the form:

A♦B

The mode ♦ is a (third) parameter of the relation (besides A and B). With this mode in
place, we can readily capture the two refactored rules for supertyping of bottom types and
subtyping of top types as two Duotyping rules. However this still requires us to write two
distinct rules. To unify those rules into a single one, we introduce a function e♦d that chooses
the right bound depending on the mode being used:

e<:d = >
e :>d = ⊥

If the mode is subtyping the upper bound of the relation is the top type, otherwise it is the
bottom type. With e♦d we can then write a single unified rule that captures the upper bounds
of subtyping and supertyping, and which generalizes both rule ts-top and rule tsp-btm:

A♦ e♦d
gds-topbtm

The Duality rule. The Duotyping rule above captures the 2 rules that were refactored above.
However there are 4 rules in total for top and bottom types (two for subtyping and two for
supertyping). The two missing rules are:

⊥ <: A
ts-btm

> :> A
tsp-top

To capture these missing rules, the Duotyping relation includes a special duality rule:

B ♦A
A♦B

gds-dual

which simply inverts the mode and flips the arguments of the relation. The definition of ♦ is,
unsurprisingly:

<: = :>
:> = <:

With the duality rule it is clear that the two missing rules are now derivable from the
Duotyping rule for bounds and the duality rule. In essence this is the overall idea of the
design of Duotyping rules.
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A♦B (Declarative Duotyping)

A♦ e♦d
gds-topbtm

Int♦ Int
gds-int

A1 ♦A2 B1 ♦B2

A1 → B1 ♦A2 → B2
gds-arrow

A♦C
(A ♦? B)♦C

gds-Left
B ♦C

(A ♦? B)♦C
gds-Right

A♦B A♦C
A♦ (B ♦? C )

gds-both

B ♦A
A♦B

gds-dual

Figure 2 The Duotyping relation for a calculus with union and intersection types.

Complete set of rules. Figure 2 shows the complete version of declarative Duotyping rules
for a system with union and intersection types. Rule gds-topbtm defines the rule bounds
(which generalizes the rules for top and bottom types). Rule gds-int is a simple rule for
integers. Int is subtype and supertype of Int. Rule gds-arrow is an interesting case. In the
first premise A ♦ B we invert the mode instead of flipping the arguments of the relation, as
done in rule ts-arrow. One side-effect of this change is that it keeps the rule fully covariant,
which contrasts with subtyping relations where for arrow types we need contravariance for
subtyping of the inputs. This apparently innocent change has important consequences and
plays a fundamental role to simplify transitivity proofs as we shall see in Section 2.5.

Rules gds-Left, gds-Right, and gds-both each generalize two rules in the traditional
formulation of subtyping. Rule gds-Left generalizes rules ts-andb and ts-orb. Rule gds-
Right generalizes rules ts-andc and ts-orc. Rule gds-both generalizes rules ts-anda
and ts-ora. In the three rules an operation A ♦? B is used:

A <:? B = A ∧ B
A :>? B = A ∨ B

This operation is used to choose between intersection or union types depending on the mode.
If the Duotyping mode is subtyping then we get a rule for intersection types, otherwise we
get a dual rule for union types.

Uniform and dual rules. In the context of Duotyping it is useful to distinguish between two
different kinds of rules: uniform rules and dual rules.

Uniform rules are those that are essentially the same for supertyping and subtyping.
Rules gds-int and gds-arrow are uniform rules. In those rules the arguments of the
relation are exactly the same no matter which mode is being used (subtyping or supertyping).

Dual rules are those that employ dual constructs, like the rules for top and bottom or
the rules for union and intersections. Rules gds-topbtm, gds-left, gds-right, and
gds-both are dual rules. The interesting point in these rules is that they use different

(dual) constructs depending on the mode. For example, when instantiated with subtyping
and supertyping, respectively, the rule gds-topbtm results in:

A <: > A :> ⊥

ECOOP 2020



29:8 The Duality of Subtyping

2.3 Implementations using Duotyping
Figure 2 showed the declarative Duotyping rules for a calculus with union and intersection
types. All the rules are syntax directed, except for the duality rule (rule gds-dual). This
rule flips the mode and arguments to generate a formulation using the dual mode: i.e. it flips
subtyping to provide the equivalent supertyping formulation and vice versa. A benefit of
using a formulation with the duality rule is that it enables a short specification of Duotyping.
Unfortunately the duality rule is not algorithmic, because the duality rule can always be
applied indefinitely. In other words naively translating the rules into an program would
easily result in a non-terminating procedure. Therefore to obtain an algorithmic formulation
some additional work is needed.

Fortunately, for declarative formulations of Duotyping, there is a simple technique that
can be used to obtain an algorithmic formulation. A key observation is that Duotyping only
needs to be flipped (with the duality rule) at most one time. Flipping the relation two or
more times simply gets us back to the starting point. To capture this idea we can use a
(boolean) flag that keeps track of whether the procedure has already employed the duality
rule or not.

To make such an idea concrete, Figure 3 shows Haskell code that implements a procedure
duo for determining Duotyping for two types. The code is based on the rules in Figure 2, but
it uses a boolean flag to prevent the dual rule (the second to last case in duo) from being
applied indefinitely. The boolean is true in the initial call or recursive calls to structurally
smaller arguments. If the algorithm fails for the first five cases (which are basically a direct
translation of the rules gds-topbtm, gds-int, gds-arrow, gds-Left, and gds-Right),
then the algorithm simply flips the boolean flag, mode and arguments to run over a dual
formulation. This is the second to last line of the algorithm.

For example, if the algorithm is called with the mode set to subtyping and it is not able to
find any matching case with the first 5 rules, then it flips the boolean flag to False, subtyping
to supertyping and the arguments to check the equivalent supertyping formulation. If again
it fails to find a matching rule, False will be returned and the algorithm will terminate.
This illustrates that it is enough to flip the boolean flag once to exploit Duotyping. In all our
Coq formulations of Duotyping we have developed an alternative algorithmic formulation of
Duotyping which uses an extra boolean flag and is shown to be sound and complete to the
declarative formulations with the duality rule. In short there is an easy, general and provably
sound and complete way to implement algorithms based on the idea of Duotyping, while at
the same time retaining the benefits of reuse of the logic for rules for dual constructs.

2.4 Discovering new features
Duotyping can provide interesting extra features essentially for free. For example, the hallmark
feature of the well-known F<: calculus (a polymorphic calculus with subtyping) [15] is bounded
quantification, which is a feature used in most modern OOP languages (such as Scala or
Java). In F<:, bounded quantification allows type variables to be defined with upper bounds.
For example, the following Scala program illustrates the use of such upper bounds:

class Person {
def name: String = "person"

}

class Student extends Person {
override def name: String = "student"
def id: String = "id"

}
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data Op = And | Or
data Typ = TInt | TArrow Typ Typ | TOp Op Typ Typ | TBot | TTop
data Mode = Sub | Sup

duo :: Bool -> Mode -> Typ -> Typ -> Bool
duo f m TInt TInt = True
duo f m _ b | b == mode_to_sub m = True
duo f m (TArrow a b) (TArrow c d) =

duo True (flip m) a c && duo True m b d
duo f m (TOp op a b) c | choose m == op = duo True m a c || duo True m b c
duo f m a (TOp op b c) | choose m == op = duo True m a b && duo True m a c
duo True m a b = duo False (flip m) b a
duo _ _ _ _ = False

Figure 3 Haskell code for implementing an algorithmic formulation of Duotyping rules.

class StudentsCollection[S <: Student](obj: S) {
def student: S = obj

}

The Scala program shown above uses the upper bounds for the class StudentsCollection
written as S <: Student. This upper bound restricts StudentsCollection to be instantiated
with Student and its subtypes. Since the upper bound is Student, any class that is supertype
of Student like Person cannot be instantiated in StudentsCollection.
However lower bounds are also useful, and indeed the Scala language allows them (though
Java does not). One example of a program with lower bounds in Scala is:

class GraduateStudent extends Student {
def degree: String = "graduate degree"

}

class ResearchStudent extends GraduateStudent {
override def degree: String = "research degree"

}

class CollectionExcludingResearchStudents[S >: GraduateStudent](obj: S) {
def student: S = obj

}

In contrast to the upper bounds, the Scala program shown above uses the lower bounds for
the class CollectionExcludingResearchStudents written as S >: GraduateStudent. This lower
bound restricts CollectionExcludingResearchStudents to be instantiated with GraduateStudent
and its supertypes. Since the lower bound is GraduateStudent. Any class that is a subtype of
GraduateStudent (such as ResearchStudent) cannot be instantiated in CollectionExcludingRe-
searchStudents. But any supertype of GraduateStudent like Student and Person (including
GraduateStudent) can be instantiated in CollectionExcludingResearchStudents.

One can think of universal quantification with lower bounds as a dual to universal
quantification with upper bounds. While there is no extension of F<: that we know of that
presents universal quantification with lower bounds in the literature, applying a Duotyping
design to F<: gives us, naturally, the two features at once (lower and upper bounded
quantification).

ECOOP 2020



29:10 The Duality of Subtyping

Bounded quantification in F<:. The traditional subtyping rule of System kernel F<: with
upper bounded quantification is:

Γ,X <: A ` B <: C
Γ ` (∀X <: A.B) <: (∀X <: A.C )

ts-forallkfs

In the premise of this rule, we add the type variable X to the context with an upper bound
A. If under the extended context the bodies of the universal quantifier (B and C ) are in a
subtyping relation then the universal quantifiers are also in a subtyping relation.

To add lower bounded quantification the obvious idea is to add a second rule:

Γ,X :> A ` B <: C
Γ ` (∀X :> A.B) <: (∀X :> A.C )

ts-forallkfsb

However this alone is not quite right because the environment is also extended with a lower
bound (X >: A), which does not exist in F<: contexts. Therefore some additional care is
also needed for the variable cases of F<: extended with lower bounded quantification. When
an upper bounded constraint is found in the environment, the variable case needs to deal
with the upper bound appropriately. Since there are two rules dealing with the variable case
in F<:, one possible approach is to add two more rules for dealing with upper bounds:

X :>A ∈ Γ Γ ` B <: A
Γ ` B <: X

ts-TVarb
X :>A ∈ Γ

Γ ` X <: X
ts-ReflTvar

However such a design feels a little unsatisfactory. We need a total of 6 rules to fully deal
with lower and upper bounded quantification (instead of 3 rules in F<:). At the same time
the rules are nearly identical, differing only on the kind of bounds that is used. Furthermore
the metatheory of F<: also needs to be significantly changed. In particular narrowing has
to be adapted to account for the lower bounds and transitivity has to be extended with
several new cases. Since both narrowing and transitivity proofs for F<: are non-trivial, this
extension is also non-trivial and adds further complexity to already complex proofs.

A variant of Kernel F<: with Duotyping. We now reconsider the design of Kernel F<:
from scratch employing the Duotyping methodology. In the subtyping rule for universal
quantification, it is important to note that the subtyping relation between two universal
quantifiers in the conclusion is the same as the relation between types B and C in premise.
Similarly, the (subtyping/supertyping) bounds of type variable X in the conclusion are the
same as the bounds of type variable X in premise. In a design with Duotyping, we would like
to generalize the two uses of subtyping. Therefore, we can design a single unified rule with
the help of two modes:

Γ,X♦1A ` B ♦2 C
Γ ` (∀X♦1A.B)♦2 (∀X♦1A.C )

gs-forallkfs

Section 4.1 explains the Duotyping rules of our Duotyping kernel F<: variant with union and
intersection types (F∧∨k♦ ) in detail. Rule gs-forallkfs is the interesting case, capturing
both upper and lower bounded quantification in an elegant way. This rule states that if in a
well-formed context, type variable X has a ♦1 relation with type A and if type B has ♦2
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A♦B (Algorithmic Duotyping)

A♦ e♦d
gs-topbtma

e♦d♦A
gs-topbtmb

Int♦ Int
gs-int

A1 ♦A2 B1 ♦B2

A1 → B1 ♦A2 → B2
gs-arrow

Figure 4 The Duotyping relation for simply typed lambda calculus calculus.

relation with type C , then the universal quantification with body B has a ♦2 relation with
the universal quantification with body C . Correspondingly there are also two Duotyping
rules for variables:

X♦A ∈ Γ Γ ` A♦B
Γ ` X ♦B

gs-TVara
X♦1A ∈ Γ
Γ ` X ♦2 X

gs-ReflTvar

In short, the design of a variant of F<: with Duotyping leads to a system that naturally
accounts for both upper and lower bounded quantification. Moreover, the metatheory,
and in particular the proofs of narrowing and transitivity are not more complex than the
corresponding original F<: proofs. In fact the proof of transitivity is significantly simpler,
because Duotyping enables novel proof techniques as we discuss next.

2.5 New proof techniques
Transitivity proofs are usually a challenge for systems with subtyping. This is partly because
subtyping relations often need to deal with some contravariance. For instance, the rule ts-
arrow (in Figure 1) is contravariant on the input types. Such contravariance causes problems
in certain proofs, including transitivity. To illustrate the issue more concretely, let’s distill
the essence of the problem by considering a simple lambda calculus with subtyping called
λ<:, where the types are:

Types A,B ::= > | Int | A→ B

and the subtyping rules for those types are just the relevant subset of the rules in Figure 1.
The transitivity proof for this simple calculus is:

I Lemma 1 (λ<: Transitivity). If A <: B and B <: C then A <: C .

Proof. By induction on type B.
Case > and case Int are trivial to prove by destructing the hypothesis in context.
Case B1 → B2 requires inversion of the two hypotheses to discover that A can only be a
function type, while C is either a function type or >. J

In the arrow case, we need to invert both hypotheses to discover more information about
A and C . For this very simply language this double inversion is not too problematic, but
as the language of types grows and the subtyping relation becomes more complicated, such
inversions become significantly harder to deal with.

At this point one may wonder if the transitivity proof could be done using a different
inductive argument to start with, and thus avoid the double inversions. After all there are
various other possible choices. Perhaps the most obvious choice is to try induction on the
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subtyping relation itself (A <: B), rather than on type B. However this does not work
because of the contravariance for arrow types, which renders one of induction hypothesis
in the arrow case useless (and thus do not allow the case to be proved). Other alternative
choices for an inductive argument (such as type A or C) do not work for similar reasons.

Developing metatheory with Duotyping. In order to develop metatheory with Duotyping
it is convenient to use an equivalent formulation of Duotyping that eliminates the duality
rule (which is non-algorithmic and makes inversions more difficult). For λ♦, which is a
Duotyping version of λ<:, this would lead to the set of rules in Figure 4. This alternative
algorithmic version eliminates the duality rule. Rules gs-topbtma, gs-int, and gs-arrow
are similar to the rules we discussed in Section 2.2. Rule gs-topbtmb is the dual rule of
rule gs-topbtma. With Rule gs-topbtmb, the duality rule is unnecessary.

Transitivity with Duotyping. Now we turn our attention to the proof of transitivity:

I Lemma 2 (λ♦ Transitivity). If A♦B and B♦C then A♦C .

Proof. By induction on A♦B.
All cases are trivial to prove by destructing ♦ and inversion of the second hypothesis
(B♦C ). J

Transitivity of systems with Duotyping can often be proved by induction on the subtyping
relation itself. This has the nice advantage that all the cases essentially become trivial to
prove (for λ♦) and only a single inversion is needed for arrow types. A key reason why
such approach works in the formulation with Duotyping is that we can keep case for arrow
types covariant. Instead we only flip the mode. Another important observation is that
when we prove a transitivity lemma with Duotyping we are, in fact, proving two lemmas
simultaneously: one lemma for transitivity of subtyping, and another one for transitivity
of supertyping. When we use the induction hypothesis we have access to both lemmas (by
choosing the appropriate mode).

The proof of the transitivity lemma by induction on the Duotyping relation can scale
up to more complex subtyping/Duotyping relations. This includes subtyping relations with
advanced features such as intersection types, union types, parametric polymorphism and
bounded quantification. All of these can follow the same strategy (induction on the Duotyping
relation) to simplify the transitivity proof, as we shall see in Section 5.

3 The λ∧∨
♦ calculus

In Section 2 we gave an overview and discussed advantages of using the Duotyping relation.
In this section we introduce a lambda calculus with union and intersection types that is
based on Duotyping. We aim at showing that developing calculi and metatheory using
Duotyping is simple, requiring only a few small adaptations compared with more traditional
formulations based on subtyping. Our main aim is to show type soundness (subject-reduction
and preservation) for λ∧∨♦ .

3.1 Syntax and Duotyping
Syntax. Figure 5 shows the syntax of the calculus. The types for λ∧∨♦ were already introduced
in Section 2. Terms include all the constructs for the lambda calculus (variables x , functions
λx : A. e and applications e1 e2) and integers (n). Values are a subset of terms, consisting of
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Types A,B ::= > | ⊥ | Int | A→ B | A ∧ B | A ∨ B
Terms e ::= x | n | λx : A. e | e1 e2

Values v ::= n | λx : A. e
Context Γ ::= • | Γ, x : A
Mode ♦ ::= <: | :>

A♦B (Algorithmic Duotyping)

A♦C
(A ♦? B)♦C

gs-lefta
A♦B

A♦ (B ♦? C )
gs-leftb

B ♦C
(A ♦? B)♦C

gs-righta

A♦C
A♦ (B ♦? C )

gs-rightb
A♦B A♦C

A♦ (B ♦? C )
gs-botha

A♦C B ♦C
(A ♦? B)♦C

gs-bothb

Figure 5 Syntax and Duotyping relation for union and intersection types.

abstractions and integers only. The mode ♦ is used to choose the mode of the relation: it
can be either subtyping (<:) or supertyping (:>). Typing contexts Γ are standard and used
to track the types of the variables in a program. Finally, a well-formedness relation Γ ` ok
ensures that typing contexts are well-formed.

Duotyping for λ∧∨
♦ . The Duotyping rules for λ∧∨♦ were already partly presented in Figure 2.

In addition to the rules in the λ♦, we also need extra rules for union and intersection types.
These extra rules are presented in Figure 5. Rules gs-lefta, gs-righta, and gs-botha
are also similar to the rules gds-Left, gds-Right, and gds-both presented in Figure 2.
Since we eliminate the duality rule in the algorithmic version, we add dual subtyping rules.
Rules gs-leftb, gs-rightb, and gs-bothb are the dual versions of rules gs-lefta, gs-
righta, and gs-botha respectively. This formulation is shown to be sound and complete
with respect to the formulation with the duality rule in Figure 2. As explained in Section 2
this variant of the rules makes some proofs easier, thus we employ it here. The Duotyping
relation is reflexive and transitive:

I Theorem 3 (Reflexivity). A♦A.

Proof. By induction on type A. Reflexivity is trivial to prove by applying subtyping rules. J

I Theorem 4 (Transitivity). If A♦B and B♦C then A♦C .

Proof. By induction on subtyping relation.
Cases rule gs-topbtma, rule gs-int, rule gs-lefta, rule gs-righta and rule gs-botha
are trivial to prove.
Case rule gs-topbtmb requires an additional Lemma 5.
Case rule gs-arrow requires induction on hypothesis and subtyping rules.
Cases rule gs-leftb and rule gs-rightb requires an additional Lemma 6 to be applied
on hypothesis in context.
Case rule gs-bothb requires induction on the hypothesis. This case also requires rule gs-
leftb, rule gs-rightb, and rule gs-botha subtyping rules. J

We used the following auxiliary lemmas to prove transitivity.
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Γ ` e : A (Typing)

Γ ` ok x : A ∈ Γ
Γ ` x : A

g-var
Γ ` ok

Γ ` n : Int
g-int

Γ, x : A1 ` e2 : A2

Γ ` λx : A1. e2 : A1 → A2
g-abs

Γ ` e1 : A1 → A2 Γ ` e2 : A1

Γ ` e1 e2 : A2
g-app

Γ ` e : B B <: A
Γ ` e : A

g-sub

e1 −→ e2 (Reduction)

(λx : A1. e1) v2 −→ [x 7→ v2]e1
gred-AppAbs

e1 −→ e′
1

e1 e −→ e′
1 e

gred-Fun
e1 −→ e′

1

v e1 −→ v e′
1

gred-Arg

Figure 6 Typing and reduction for λ∧∨
♦ .

I Lemma 5 (Bound Selection). If e♦d♦B then A♦B.

This lemma captures the upper and lower bounds with respect to relation between two
types. If the mode is subtyping, then it states that any type that is supertype of > is
supertype of all the other types. If the mode is supertyping, then it states that any type
that is subtype of ⊥ is subtype of all the other types. In essence the lemma generalizes the
following two lemmas (defined directly over subtyping and supertyping):

If > <: B then A <: B
If ⊥ :> B then A :> B

I Lemma 6 (Inversion for rule GDS-Both). If C ♦ (A ♦? B) then (C ♦ A) and (C ♦ B).

This lemma captures the relation between types with respect to the duality of union and
intersection types. It is the general form of two lemmas:

I Lemma 7 (Inversion for Union types). If (A ∨ B) <: C then (A <: C ) and (B <: C ).

I Lemma 8 (Inversion for Intersection types). If C <: (A∧B) then (C <: A) and (C <: B).

Finally there is also a duality lemma, which complements reflexivity and transitivity:

I Lemma 9 (Duality). A♦B = B♦A.

This lemma captures the essence of duality, and enables us to switch the mode of the
relation by flipping the arguments as well. Furthermore, the duality lemma plays a crucial
role when proving soundness and completeness with respect to the declarative version of
Duotyping, which has duality as an axiom instead. All of these lemmas are used in later
proofs for type soundness.

3.2 Semantics and type soundness
Typing. The first part of Figure 6 presents the typing rules of λ∧∨♦ . The rules are standard.
Note that rule g-sub is the subsumption rule: if an expression e has type B and B is a
subtype of A then e has type A. Noteworthy, B <: A is the Duotyping relation being used
with the subtyping mode.
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Reduction. At the bottom of Figure 6 we show the reduction rules of λ∧∨♦ . Again, the
reduction rules are standard. Rule gred-AppAbs is the usual beta-reduction rule, which
substitutes a value v2 for x in the lambda body e1. Rule gred-Fun and rule gred-Arg are
the standard call-by-value rules for applications.

Type soundness. The proof for type soundness relies on the usual preservation and progress
lemmas:

I Lemma 10 (Type Preservation). If Γ ` e : A and e −→ e′ then: Γ ` e′ : A.

Proof. By induction on the typing relation and with the help of Lemma 9. J

I Lemma 11 (Progress). If Γ ` e : A then:
1. either e is a value.
2. or e can take a step to e′.

Proof. By induction on the typing relation. J

3.3 Summary and Comparison
Besides λ∧∨♦ , which employs the Duotyping relation, we have also formalized a lambda calculus
with union and intersection types using the traditional subtyping relation (λ∧∨<: ). Most of
the metatheory is similar with a great deal of theorems being almost the same. The main
differences are in the metatheory for subtyping which has to be generalized. For example
both reflexivity and transitivity have to be generalized to operate in the Duotyping relation
instead. The formalization with Duotyping only has two additional lemmas (the duality
lemma and the bound selection lemma), which have no counterparts with subtyping. The
number of lines of code for the formalization of λ∧∨<: is 596 whereas for λ∧∨♦ is 630. The total
number of lemmas required for λ∧∨<: are 23 and 25 for λ∧∨♦ . Following two lemmas in λ∧∨<: are
captured as one lemma in λ∧∨♦ (Lemma 6):

Inversion for Union Types. This lemma is already stated as Lemma 7: it is the inversion
of the subtyping rule for the union types in the traditional subtyping relation. The lemma
states that if the union of two types A and B is the subtype of a type C , then both types A
and B are subtypes of type C .

Inversion for Intersection Types. This lemma, which corresponds to Lemma 8, is the
inversion of the subtyping rule for the intersection types with the traditional subtyping
relation. It states that if a type C is the subtype of the intersection of two types A and B,
then the type C is a subtype of both types A and B.

4 The F ∧∨
k♦ calculus

In Section 3 we introduced a simple calculus with union and intersection types using
Duotyping. This section extends that calculus with bounded quantification based on kernel
F<:. This new variant also employs Duotyping and is called F∧∨k♦ . The main aim of this
section is to show that sometimes we can get interesting and novel dual features come for free.
In addition to upper bounded quantification of F<:, System F∧∨k♦ provides lower bounded
quantification as well. Additionally, we also show the type soundness of F∧∨k♦ .
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Types A,B ::= > | ⊥ | Int | A→ B | A ∧ B | A ∨ B | X | ∀(X♦A).B
Terms e ::= x | n | λx : A. e | e1 e2 | Λ(X ♦A).e | e A
Values v ::= n | λx : A. e | Λ(X ♦A).e
Context Γ ::= • | Γ, x : A | Γ,X ♦A
Mode ♦ ::= <: | :>

Γ ` A♦B (F∧∨
k♦ Duotyping)

Γ ` ok X♦1A ∈ Γ
Γ ` X ♦2 X

gs-ReflTvara
X♦A ∈ Γ Γ ` A♦B

Γ ` X ♦B
gs-TVara

X♦A ∈ Γ Γ ` B ♦A
Γ ` B ♦X

gs-TVarb
Γ,X♦1A ` B ♦2 C

Γ ` (∀X♦1A.B)♦2 (∀X♦1A.C )
gs-forallkfs

Figure 7 Syntax and additional rules for Duotyping in F∧∨
k♦ .

4.1 Syntax and Duotyping
Syntax. Figure 7 shows the syntax of the calculus F∧∨k♦ . Types >, ⊥, Int, A→ B, A ∧ B,
A ∨ B are already introduced in Section 2. Type variable X and a universal quantifier on
type variables ∀(X♦A).B are the two additional types in F∧∨k♦ . Terms x, n, λx : A. e, e1 e2
are already discussed in Section 3.1. Type abstraction Λ(X ♦A).e and type application e A
are two additional terms in F∧∨k♦ . Values are a subset of terms, consisting of term abstraction,
type abstraction and integers.

Duotyping for F∧∨
k♦ . Duotyping rules for a calculus with union and intersection types are

presented in Figure 4. F∧∨k♦ has two significant differences in its Duotyping rules in comparison
to Figure 4, which are presented in Figure 7. The first one is the addition of a typing context
in the Duotyping rules. This is important to ensure that type variables are bound. Thus,
Duotyping for F∧∨k♦ is now of the form Γ ` A♦B. The second difference is that there are
four more rules, three of them (rules gs-ReflTvara, gs-TVara, and gs-forallkfs)
were already explained in Section 2.4. Rule gs-TVarb is the dual of rule gs-TVara. We
introduce this rule to eliminate the duality rule.

The Duotyping relation for F∧∨k♦ is reflexive and transitive as well:

I Theorem 12 (Reflexivity). Γ ` A♦A.

Proof. By induction on type A. J

I Theorem 13 (Transitivity). If Γ ` A♦B and Γ ` B♦C then Γ ` A♦C .

Proof. By induction on Γ ` A♦B.
Cases rule gs-topbtma, rule gs-topbtmb, rule gs-int, rule gs-ReflTvar, rule gs-
TVara, rule gs-lefta, rule gs-righta, rule gs-botha are trivial to prove.
Case rule gs-arrow is proved using the induction hypotheses.
Case rule gs-TVarb can be proved using Lemma 16.
Case rule gs-forallkfs is proved using the induction hypotheses.
Case rule gs-leftb can be proved using an additional Lemma 15.
Case rule gs-rightb also uses Lemma 15.
Case rule gs-bothb is proved using the induction hypotheses. J
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The auxiliary lemmas for transitivity are described next and are essentially the same as
in Section 3.1.

I Lemma 14 (Bound Selection). If Γ `e♦d♦B then Γ ` A♦B.

I Lemma 15 (Inversion for rule GDS-Both). If Γ ` C ♦ (A ♦? B) then Γ ` (C ♦ A) and (C
♦ B).

There is also a duality lemma:

I Lemma 16 (Duality). Γ ` A♦B = Γ ` B♦A.

Finally, We also proved weakening and the narrowing lemmas for Duotyping calculus.
Here we briefly compare the narrowing lemma for F∧∨k<: and F∧∨k♦ :

I Lemma 17 (F∧∨k<: Narrowing Lemma). If Γ ` A <: B and Γ,X <: B,Γ1 ` C <: D then
Γ,X <: A,Γ1 ` C <: D

I Lemma 18 (F∧∨k♦ Narrowing Lemma). If Γ ` A♦1 B and Γ,X♦1B,Γ1 ` C♦2D then
Γ,X♦1A,Γ1 ` C♦2D

Lemma 17 exploits only the subtyping relation while Lemma 18 exploits our Duotyping
relation. Lemma 18 illustrates how lower and upper bounds are captured under a unified
mode relation in narrowing. Like the transitivity statement using a Duotyping formulation,
one can think of the Duotyping narrowing lemma as actually two distinct lemmas: one for
narrowing of upper bounds and another for narrowing of lower bounds. Also, it is important
to note that Lemma 18 is using two modes ♦1 and ♦2. ♦1 is the relation between types A,
B and the type variable X . Whereas, ♦2 is the relation between type C and type D. Those
two relations do not need to be the same.

4.2 Semantics and type soundness
Typing. The first part of Figure 8 presents the typing rules of F∧∨k♦ . The first five rules are
standard and are already explained in Section 2.1. Rules g-tabs and g-tapp are the two
additional rules in F∧∨k♦ . Rule g-tabs is similar to the standard rule for type abstractions
in F<: except that it generalizes the subtyping bound to a ♦ bound, which could either be
subtyping or supertyping. Rule g-app again differs from the rule for type applications in F<:
by using a ♦ bound instead of just a subtyping bound. These two rules rules are noteworthy
because they also illustrate an advantage of using Duotyping in the typing relation. Without
Duotyping we would need multiple typing rules to capture different variations of the bounds.

Reduction. The last part of Figure 8 presents the reduction rules of our calculus. Again,
reduction rules are standard except for the rule gred-TAppTAbs. In rule gred-TAppTAbs
the duality relation captures both upper and the lower bounds. Rule gred-TFun is the
standard reduction rule for the type applications.

Type Soundness. We proved the type soundness for our calculus. All the proofs are
formalized in Coq theorem prover.

I Lemma 19 (Type Preservation). If Γ ` e : A and e −→ e′ then: Γ ` e′ : A.

Proof. By induction on the typing relation.
Case rules g-var, g-int, g-abs, g-tabs, and g-subs are trivial to solve.
Case rule g-app uses Theorem 12 and Lemma 16.
Case rule g-tapp uses Theorem 12. J
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Γ ` e : A (Typing)

Γ ` ok x : A ∈ Γ
Γ ` x : A

g-var
Γ ` ok

Γ ` n : Int
g-int

Γ, x : A1 ` e2 : A2

Γ ` λx : A1. e2 : A1 → A2
g-abs

Γ ` e1 : A1 → A2 Γ ` e2 : A1

Γ ` e1 e2 : A2
g-app

Γ ` e : B Γ ` B <: A
Γ ` e : A

g-subs

Γ,X ♦A ` e : B
Γ ` ΛX ♦A. e : ∀(X♦A).B

g-tabs
Γ ` e : ∀(X♦A).B Γ ` C ♦A

Γ ` e C : [X 7→ C ]B
g-tapp

e1 −→ e2 (Reduction)

(λx : A1. e1) v2 −→ [x 7→ v2]e1
gred-AppAbs

e1 −→ e′
1

e1 e −→ e′
1 e

gred-Fun
e1 −→ e′

1

v e1 −→ v e′
1

gred-Arg

(ΛX ♦A. e1) B −→ [X 7→ B]e1
gred-TAppTAbs

e1 −→ e′
1

e1 A −→ e′
1 A

gred-TFun

Figure 8 Typing and reduction of the duotyped kernel F<:.

I Lemma 20 (Progress). If Γ ` e : A then:
1. either e is value.
2. or e can take step to e′.

Proof. By induction on the typing relation.
Case rules g-var, g-int, g-abs, g-tabs, and g-subs are trivial to solve.
Case rule g-app requires canonical forms.
Case rule g-tapp requires canonical forms. J

4.3 Summary and Comparison
Besides F∧∨k♦ , which employs the Duotyping relation, we have also formalized a calculus
F∧∨k<:: an extension of kernel F<: (only with upper bounded quantification) with union and
intersection types using the traditional subtyping relation. The essential differences are
similar to what we already discussed in Section 3.3. The formalization with Duotyping only
has two additional lemmas (the duality lemma and the bound selection lemma), besides a
few minor auxiliary lemmas. The number of lines for proof for the formalization of F∧∨k<: is
1648 whereas for F∧∨k♦ is 1770. The total lemmas required for F∧∨k<: are 74 and 81 for F∧∨k♦ .
We emphasize that one significant difference between F∧∨k<: and F∧∨k♦ is the additional lower
bounded quantification provided by F∧∨k♦ . This is an extra feature which comes essentially
for free with Duotyping.

5 A Case Study on Duotyping

In this section we present an empirical case study, which we conducted to validate some of
the benefits of Duotyping. Overall, the results of our case study indicate that: Duotyping does
allow for compact specifications; the complexity of developing formalization with Duotyping is
comparable to similar developments using traditional subtyping relations; transitivity proofs
are often significantly simpler; and Duotyping is a generally applicable technique.
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5.1 Case Study
We formalized a number of different calculi using Duotyping. All the proofs and metatheory
are mechanically checked by the Coq theorem prover. We also formalized a few traditional
subtyping systems for comparison. Table 1 shows a brief overview of various systems that we
formalized. λ<:, λ∧∨<: , Fk<:, F∧∨k<: and FF <: are the traditional subtyping systems. The Coq
formalizations for the traditional subtyping systems are based on existing Coq formalizations
from the locally nameless representation with cofinite quantification tutorial and repository
(https://www.chargueraud.org/softs/ln/) by Charguéraud [18]. The formalizations of
λ♦, λ∧∨♦ , Fk♦, F∧∨k♦ and FF♦ are their respective Duotyping formulations, and modify the
original ones with traditional subtyping. Subscript <: represents a calculus with traditional
subtyping whereas ♦ represents a calculus with Duotyping. Superscript ∧∨ is the notation
for a system with intersection and union types. Subscript k corresponds to the kernel version
of a variant of F<:, while subscript F corresponds to the corresponding full version. We also
formalized a simple polymorphic system without bounded quantification using Duotyping. We
have two Duotyping variants for this polymorphic type system without bounded quantification.
One without union and intersection types (F♦) and another with union and intersection
types (F∧∨♦ ).

In Table 1, the last column (Transitivity) summarizes the proof technique used in each
system to prove transitivity. Recall the transitivity lemma (using the Duotyping formulation):

I Theorem 21 (Transitivity). If A♦B and B♦C then A♦C .

Induction on the middle type means induction on type B (or well-formed type B for
polymorphic systems), whereas induction on the Duotyping relation means induction on
A♦B.

Research Questions. Section 1 discussed benefits of using Duotyping. This section attempts
to quantify some of these benefits. More concretely, we answer the following questions in
this section:

Does Duotyping provide shorter specifications?
Does Duotyping increase the complexity of the formalization and metatheory of the
language?
Does Duotyping make transitivity proofs simpler?
Is Duotyping a generally applicable technique?

We follow an empirical approach to answer these questions and address each question in
a separate (sub)section. Obviously a precise measure for complexity/simplicity is hard
to obtain. We use SLOC for the formalization and proofs as an approximation. All the
formalizations are written in the same Coq style to ensure that the comparisons are fair.

5.2 Does Duotyping provide shorter specifications?
This section answers our first question. In short our case study seems to support this
conclusion. The declarative Duotyping rules of all the systems that we formalized are shown
in Table 2. Please note that the formulation also contains the duality rule. λ♦ has the
basic set of Duotyping rules. These rules are common in all of the systems. λ∧∨♦ has the
subtyping rules for intersection types and union types in addition to the rules from λ♦.
F♦ contains two more rules (rules gds-ReflTvarp and gds-forallfsp) in addition to
the rules from λ♦. F∧∨♦ has all the rules from λ♦, λ∧∨♦ and F♦. Fk♦ has three additional
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Table 1 Description of all systems.

Name Description SLOC Transitivity
λ<: STLC with subtyping 537 By induction on the middle type.
λ♦ STLC with Duotyping 583 By induction on the Duotyping rela-

tion.
λ∧∨

<: STLC with subtyping, union types
and intersection types

595 By induction on the middle type.

λ∧∨
♦ STLC with Duotyping, union types

and intersection types
623 By induction on the Duotyping rela-

tion.
F♦ Simple polymorphic system with

Duotyping and without bounded
quantification

1466 By induction on the Duotyping rela-
tion.

F∧∨
♦ Simple polymorphic system with

Duotyping, union types and inter-
section types and without bounded
quantification

1546 By induction on the Duotyping rela-
tion.

Fk<: System F<: kernel 1542 By induction on the (well-formed)
middle type.

Fk♦ System F<: kernel with Duotyping 1579 By induction on the Duotyping rela-
tion.

F∧∨
k<: System F<: kernel with subtyping,

union types and intersection types
1648 By induction on the (well-formed)

middle type.
F∧∨

k♦ System F<: kernel with Duotyping,
union types and intersection types

1770 By induction on the Duotyping rela-
tion.

FF <: System full F<: 1518 By induction on the (well-formed)
middle type.

FF♦ System full F<: with Duotyping 1786 By induction on the (well-formed)
middle type.

subtyping rules gds-ReflTvar, gds-TVar, and gds-forallkfs in addition to the rules
from λ♦. F∧∨k♦ has all the rules from λ♦, λ∧∨♦ , and Fk♦. FF♦ has an additional subtyping
rule gds-forallffs.

Comparison with systems using traditional subtyping. Table 3 shows the number of rules
and features for different calculi formulated with subtyping and Duotyping. In our formulation,
λ<: has 3 types >, Int, and A→ B. This requires 3 subtyping rules to capture the subtyping
relation of these 3 types. If we wanted to support the ⊥ type in λ<: we would need to add
1 more subtyping rule. In the table we express the extra rules required for extra features
as (+n), where n is the number of extra rules. Duotyping supports ⊥ for free by exploiting
the dual nature of > with the help of duality rule. Systems with more rules follow the same
approach for traditional systems i.e more types require more subtyping rules. If we wanted to
support the ⊥ type in λ∧∨<: we also need 1 additional rule. To further extend our discussion
to the polymorphic systems with bounded quantification, we would need 4 additional rules
in Fk<: (1 for ⊥ type and 3 for lower bounded quantification). Similarly we would need 4
additional rules to support lower bounds and lower bounded quantification in F∧∨k<:.

In summary, in the systems that we compared Duotyping has a similar number of rules to
systems with subtyping, but it comes with extra features. If we wanted to add those features
to systems with traditional subtyping, then that would generally result in more rules for the
traditional versions compared to Duotyping. This would also have an impact in the SLOC of
the metatheory, increasing the metatheory for those systems considerably.
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Table 2 Declarative Duotyping rules of all systems.

Name Duotyping Rules
λ♦

A♦B (λ♦ Duotyping)

A♦ e♦d
gds-topbtm

Int♦ Int
gds-int

A1 ♦A2 B1 ♦B2

A1 → B1 ♦A2 → B2
gds-arrow

B ♦A
A♦B

gds-dual

λ∧∨
♦

A♦B (λ∧∨
♦ Duotyping plus all rules from λ♦)

A♦C
(A ♦? B)♦C

gds-Left
B ♦C

(A ♦? B)♦C
gds-Right

A♦B A♦C
A♦ (B ♦? C )

gds-both

F♦

A♦B (F♦ Duotyping plus all rules from λ♦)

X ♦X
gds-ReflTvarp

A♦B
(∀X .A)♦ (∀X .B)

gds-forallfsp

F∧∨
♦

A♦B (F∧∨
♦ Duotyping plus all rules from λ♦, λ∧∨

♦ and F♦)

Fk♦

Γ ` A♦B (Fk♦ Duotyping plus all rules from λ♦)

Γ ` ok X♦1A ∈ Γ
Γ ` X ♦2 X

gds-ReflTvar
X♦A ∈ Γ Γ ` A♦B

Γ ` X ♦B
gds-TVar

Γ,X♦1A ` B ♦2 C
Γ ` (∀X♦1A.B)♦2 (∀X♦1A.C )

gds-forallkfs

F∧∨
k♦

Γ ` A♦B (F∧∨
k♦ Duotyping plus all rules from λ♦, λ∧∨

♦ and Fk♦)

FF♦

Γ ` A♦B (FF♦ Duotyping plus all rules from Fk♦ excluding rule gs-forallkfs and
union/intersection rules)

Γ ` A |♦1 |♦2 B Γ,X♦1(A ♦̃ B) ` A1 ♦2 B1

Γ ` (∀X♦1A.A1)♦2 (∀X♦1B.B1)
gds-forallffs
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Table 3 Comparing the features and number of rules with subtyping and Duotyping.

System Subtyping
rules count

System Duotyping
rules count

Duotyping extra features

λ<: 3 (+1) λ♦ 4 lower bounds in λ♦

λ∧∨
<: 9 (+1) λ∧∨

♦ 7 lower bounds in λ∧∨
♦

Fk<: 5 (+4) Fk♦ 7 lower bounds and lower bounded
quantification in Fk♦

F∧∨
k<: 11 (+4) F∧∨

k♦ 10 lower bounds and lower bounded
quantification in F∧∨

k♦

Table 4 SLOC of traditional subtyping and Duotyping systems.

Subtyping
System

SLOC Duotyping
System

SLOC

λ<: 537 λ♦ 583
λ∧∨

<: 595 λ∧∨
♦ 623

Fk<: 1542 Fk♦ 1579
F∧∨

k<: 1648 F∧∨
k♦ 1770

5.3 Does Duotyping increase the complexity of the formalization and
metatheory of the language?

At first, one may think that Duotyping increases the complexity of formalization and metathe-
ory of the language, since it provides interesting extra features and generalizations normally
come at a cost. Interestingly, Duotyping does not add significant extra complexity in the
formalization and metatheory of the language. Table 4 shows the SLOC for formalizations
using traditional subtyping and Duotyping systems. The lines of code for λ∧∨<: are 595 and
the lines of code for λ∧∨♦ are 623. Similarly, the lines of code for F∧∨k<: are 1648 and 1770 for
F∧∨k♦ . Although SLOC for Duotyping systems are slightly more than traditional subtyping
systems, the Duotyping systems come with extra features. Nevertheless the mechanization
effort is roughly the same for version with and without Duotyping. Also, as illustrated in
Sections 3 and 4, the vast majority of the lemmas/metatheory for calculi with Duotyping are
similar to traditional systems with subtyping.

5.4 Does Duotyping make transitivity proofs simpler?

Transitivity is often the most difficult property to prove in the metatheory of a language with
subtyping. Table 1 highlights a brief comparison between the techniques for the transitivity
proof of various systems. Transitivity of systems with Duotyping is generally proved by
induction on the Duotyping relation. One exception is FF♦ where induction on the Duotyping
does not work. As discussed in Section 2.5 Duotyping allows us to simplify the transitivity
proof by using a different inductive argument.

Table 5 shows the SLOC for transitivity proofs of various systems. The SLOC for λ<:
transitivity proof are 7 and the SLOC for λ♦ transitivity proof are 4. Similarly, the SLOC
for F∧∨k<: transitivity proof are 38 and 18 for the transitivity proof of F∧∨k♦ . This evaluation
shows that Duotyping always allows us to reduce the size of the transitivity proof. Again,
it is important to note that Duotyping also provides extra features of lower bound and
lower bounded quantification. Despite these additional features in Duotyping systems, their
transitivity proofs are shorter than the traditional systems with subtyping.
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Table 5 SLOC for transitivity proofs.

Subtyping
System

Transitivity
SLOC

Duotyping
System

Transitivity
SLOC

λ<: 7 λ♦ 4
λ∧∨

<: 13 λ∧∨
♦ 11

Fk<: 26 Fk♦ 13
F∧∨

k<: 38 F∧∨
k♦ 18

However we could not employ this proof technique in our Duotyping version of full F<:
(FF♦). The problem is related to narrowing, which in FF♦ is closely coupled with transitivity.
Despite that we could still apply the technique to most systems with Duotyping, and even for
FF♦ we can still prove transitivity using the same technique as in the traditional F<: (i.e.
using the middle type as the inductive argument).

5.5 Is Duotyping a generally applicable technique?

Our case studies indicate that Duotyping is generally an applicable technique. In all the
systems that we have tried to use Duotyping, we have managed to successfully apply it.
Furthermore we believe that Duotyping can be essentially applied to any system with a
traditional subtyping relation. The most complex system where we have employed Duotyping
is FF♦. In FF♦ universal quantification allows Duotyping between the bounds, generalizing
the universal quantification presented in Section 4. Rule gds-forallffs in FF♦ employs
two operations |♦1|♦2 and A ♦̃ B:

|♦1|♦2

|<: |♦2 = ♦2

| :> |♦2 = ♦2

A ♦̃ B
A <̃: B = B
A :̃> B = A

|♦1|♦2 takes two modes ♦1 and ♦2 as input, and flips ♦2 if ♦1 is subtyping, otherwise it
returns ♦2. This operation chooses the mode to check the relationship between the bounds
of the two universal quantifiers being compared for Duotyping. The second operation A ♦̃ B
selects the bounds to use in the environment when checking the Duotyping of the bodies of
the universal quantifiers. It takes a mode ♦ and two types A B as inputs, and returns the
second type if the mode is subtyping, otherwise it returns the first type.

6 Related Work

Apart from informally observing duality of type system features, as far as we known, formally
exploiting duality in subtyping relations has not been investigated in the past. However there
is plenty of work on uses of duality in programming language theory. Furthermore there is
related work on type systems that exploit various generalizations for added expressive power
or economy in metatheory and implementation. We discuss these next.

ECOOP 2020



29:24 The Duality of Subtyping

6.1 Duality in Logic and Programming Language Theory
In type theory [5] and/or category theory [30, 14] duality occurs in various forms. For
instance, the duality between sum and product types is well-known in both type and category
theory. Properties about such types often explicitly acknowledge duality. Many properties
about sum types are presented as dual properties of corresponding properties on product
types and vice-versa. Our Lemma 6 is an example of a property that applies to both union
and/or intersection types. In this property duality is not only acknowledged, but directly
exploited in the lemma itself to provide a generalized property that can be specialized to one
construct and its dual. Various other dualities between constructs are known and exploited
in various ways in type and/or category theory. For example, existential and universal
quantification can be captured by an encoding by one through the other. The type ∃α. A
can be encoded as ∀β.(∀α. A→ β)→ β, which requires a kind of CPS translation [20] of the
corresponding terms. Similar encodings exist for sums and products.

In the field of proof-theoretic semantics [25] and in natural deduction the concept of
harmony is used to describe introduction and elimination rules that are in some sense dual.
For instance, the usual rules for introduction and elimination of conjunction are in perfect
harmony. The inversion principles by Prawitz [38] are a general procedure to associate to
any arbitrary collection of introduction rules a specific collection of elimination rules. The
elimination rules are in harmony with the given collection of introduction rules. Prawitz
inversion principles attempt to capture harmony in a more precise way, directly expressing it
formally. Therefore inversion principles have similar considerations to Duotyping in terms
of expressing some form of duality directly in a formalism. However inversion principles
focus on introduction and/or elimination rules, while Duotyping is focused on subtyping.
Nevertheless in future work we are interested in exploiting the use of duality in the typing
relation more. We believe that the notion of harmony and inversion principles could be quite
helpful in such work.

Double-line rules [21] are deduction rules that can be read both from top to bottom
(as usual) and also from bottom to top. In other words they express two standard (dual)
deduction rules in a single double-line rule. Like Duotyping, double-line rules aim at expressing
a form of duality in a single rule. Unlike Duotyping, double-line rules are concerned with
(dual) rules where the premises and conclusions of one rule become the conclusions and
premises of the other rule, respectively.

Bernardi et al. [10] explain duality relations in the context in session types. Binary
session types have two endpoints connected through one communication channel. In session
types, connected endpoints should have a dual relation in their session types. The duality
relation in session types is related to types and may have various interpretations. In contrast
Duotyping is about subtyping (or supertyping).

The duality between data and codata is well-known in programming language theory [14].
Data types and codata types are duals in the sense that data types are defined in terms
of constructors while codata types are defined in terms of destructors. More recently, such
duality has been exploited in language design [35, 13] to provide an automatic way to switch
between programs defined on datatypes and equivalent programs defined on codata types.
The use of duality in this line of work is quite different from ours.

6.2 Generalizations in Type Systems and Type Theory
Pure type systems (PTSs) [45, 31, 2, 28, 41, 48] capture a generalization of various type
systems (F, Fω, λP). Typing rules of multiple type systems are expressed in pure type systems
via parameterization. PTSs are parameterized by three sets: a set of sorts; a set of axioms;
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and a set of rules. Concrete type systems (such as System F ), are recovered with concrete
instantiations of those sets. Pure type systems with subtyping [48] are a variant of pure type
systems that captures a family of type systems with subtyping. This variant captures only the
upper bounds. It does not provide subtyping generalization with both upper and the lower
bounded quantification like our Duotyping generalizations of F<:. Pure subtype systems [26]
is a family of calculi based on subtyping only (and without a typing relation). This system
eliminates the need of typing and presents an alternative to typing using subtyping only. Pure
subtype systems support upper bounded quantification, but no lower bounded quantification.

Modal Type Theory. Modal type theory [33] is an extension of type theory which provides
type rules using modalities. Modal type theory can represent a proposition as types which
may be proved based upon the deduction rules in a given context. Modal type theory also
employs modes, for instance possibility and necessity [42, 33]. There are many type systems
that use modes to generalize typing relations. One can view Duotyping as a simple instance
of a relation with a mode. In Duotyping the mode is either subtyping or supertyping.

Bi-directional type checking. Bi-directional type checking [37, 23] also employs a mode,
but in the typing relation instead. Bi-directional type checking is a common technique,
used in implementations of programming languages, that can eliminate redundant type
annotations. Bi-directional type-checking is also employed is several type systems, especially
those where full type inference is undecidable [37, 24]. In such cases only partial inference
methods are feasible in practice, which means that some type annotations are necessary.
Bi-directional type checking is useful in such cases, allowing the type information to be easily
propagated without requiring further (redundant) annotations. The modes in bi-directional
type-checking are checking or synthesis. Checking checks a given term against a given type,
whereas the synthesis infers the type based upon the available information in the context.

Unified Subtyping. Unified subtyping [46] is a technique that can be used in dependently
typed systems supporting unified syntax to model typing and subtyping in a single relation.
The single unified subtyping relation generalizes both typing and subtyping. Like Duotyping,
unified subtyping can also help reducing language metatheory and duplication. However
unified subtyping is orthogonal to Duotyping and does not exploit duality of features. We
believe that both techniques can complement each other.

Bounded quantification and generalizations. System F<: [16] is extensively studied due
to its feature of bounded quantification. F-bounded quantification [15] is a generalization of
bounded quantification to handle recursive types. Although we are not aware of an extension
of F<: with lower bounded quantification, such notion has appeared before in some calculi.
For instance, Igarashi and Viroli [27] have pointed out correspondence between use-site
variance and existential types and, in order to capture contravariance, they introduced
lower-bounded existential types.

One generalization of F<: is studied by Amin and Rompf [4], which formalizes type bounds
in Scala. Type bounds is an interesting feature in Scala as elaborated by the following code
(code extended from Section 2.4):

class TypeBoundsCollection[S >: GraduateStudent <: Student](obj: S) {
def student: S = obj

}
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While in our variants of F<: we support either lower bounded quantification or upper bounded
quantification (but not both at once), Scala’s type bounds allow both upper and lower bounds
at once. This is clearly more expressive than what we have, but it comes with its own
problems. Formalisms with Scala-like type bounds often need to include a transitivity axiom
(and thus are non-algorithmic) and they have to deal with the bad bounds problem. In
contrast our simpler extension of type bounds is comparable in complexity to F<:’s upper
bounded quantification, and there is a set of algorithmic subtyping rules without a built-in
transitivity axiom.

Intersection and Union Types. Intersection and union types [6, 22, 32, 36] are getting
significant attention in recent years, and are used in several modern programming languages
(including Scala, Flow or TypeScript). Reynolds [39] was the first to promote the use of
intersection types in programming languages. Later on, Pierce [36] studied intersection
types, union types and polymorphism combined in a typed λ-calculus. Recently, Muehlboeck
and Tate [32] presented a generalized formulation of calculi with union and intersection
types. They demonstrated it with the help of Ceylon programming language [29]. Dunfield
[22] presented an expressive calculus with a merge operator and unrestricted intersection
types with union types. We exploit the duality of union and intersection types to illustrate
Duotyping. Our Duotyping calculi manages to capture the six common rules for unions and
intersections using three rules only (plus the duality rule), which provides a simple illustrative
example of the use of duality.

7 Conclusion

In this paper, we have presented a generalization of subtyping using a relation parameterized
by a mode. We call this relation Duotyping. Duotyping allows formalizations of subtyping to
exploit duality between features directly in the formalism, and provides multiple benefits over
traditional subtyping relation. It shortens subtyping specifications, provides dual features
essentially for free and simplifies the transitivity proof in many calculi. An example of
an extra dual feature that is obtained for free, with a Duotyping design, is lower bounded
quantification. Lower bounded quantification arises naturally when we apply the Duotyping
to conventional F<: type systems. To validate the benefits of Duotyping, we have conducted
an empirical evaluation, implemented multiple calculi using both a traditional subtyping
relation and a Duotyping formulation, and compared the resulting formalizations.

Duality has been studied extensively in several contexts in the past. However, as far as
we know, our work is the first to study duality in the context of subtyping. Future work on
Duotyping includes applying the Duotyping methodology to several other forms of subtyping
that are of practical interest. We are particularly interested to apply Duotyping to systems
that include a feature, but have no obvious dual feature. We hope to discover potentially
new features that are useful for programming. Furthermore, we hope to scale the approach
so that it can be used in real programming language implementations, leading to more
compact and consistent implementations of subtyping. Another domain for future work
on Duotyping is the typing relation. Although we already have some simple cases where
Duotyping also provides benefits for typing (see Section 4), we acknowledge that introduction
and elimination rules for some (dual) constructs introduce new challenges. For instance,
more complex introduction and elimination forms for union types and intersection types can
be quite different [22]. Further exploration is needed to see how much Duotyping can help in
typing relations for calculi with such features. More generally, Duotyping promotes the use of



B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:27

duality in language design. We envision that in the future new language designs can exploit
duality to ensure consistency between various language constructs, by exploiting techniques
similar to Duotyping.
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