
Reshape Your Layouts, Not Your Programs:
A Safe Language Extension for Better Cache
Locality
Alexandros Tasos
Imperial College London, United Kingdom
at1917@ic.ac.uk

Juliana Franco
Microsoft Research, London, United Kingdom
juliana.franco@microsoft.com

Sophia Drossopoulou
Imperial College London, United Kingdom
Microsoft Research, London, United Kingdom
scd@doc.ic.ac.uk

Tobias Wrigstad
Uppsala University, Sweden
tobias.wrigstad@it.uu.se

Susan Eisenbach
Imperial College London, United Kingdom
sue@doc.ic.ac.uk

Abstract
The vast gap between CPU and RAM speed means that on modern architectures, developers need
to carefully consider data placement in memory to exploit spatial and temporal cache locality and
use CPU caches effectively. To that extent, developers have devised various strategies regarding
data placement; for objects that should be close in memory, a contiguous pool of objects is allocated
and then new instances are constructed inside it; an array of objects is clustered into multiple arrays,
each holding the values of a specific field of the objects1. Such data placements, however, have to
be performed manually, hence readability, maintainability, memory safety, and key OO concepts
such as encapsulation and object identity need to be sacrificed and the business logic needs to be
modified accordingly.

We propose a language extension, SHAPES, which aims to offer developers high-level fine-grained
control over data placement, whilst retaining memory safety and the look-and-feel of OO. SHAPES
extends an OO language with the concepts of pools and layouts: Developers declare pools that
contain objects of a specific type and specify the pool’s layout. A layout specifies how objects in a
pool are laid out in memory. That is, it dictates how the values of the fields of the pool’s objects are
grouped together into clusters. Objects stored in pools behave identically to ordinary, standalone
objects; the type system allows the code to be oblivious to the layout being used. This means that
the business logic is completely decoupled from any placement concerns and the developer need not
deviate from the spirit of OO to better utilise the cache.

In this paper, we present the features of SHAPES, as well as the design rationale behind each
feature. We then showcase the merit of SHAPES through a sequence of case studies; we claim
that, compared to the manual pooling and clustering of objects, we can observe improvement in
readability and maintainability, and comparable (i.e., on par or better) performance.

We also present SHAPESh, an OO calculus which models the SHAPES ideas, we formalise the
type system, and prove soundness. The SHAPESh type system uses ideas from Ownership Types [1]
and Java Generics [2]: In SHAPESh, pools are part of the types; SHAPESh class and type definitions
are enriched with pool parameters. Moreover, class pool parameters are enriched with bounds, which

1 Commonly referred to as an Array-of-Structs (AoS) to Struct-of-Arrays (SoA) transformation.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Alexandros Tasos, Juliana Franco, Sophia Drossopoulou, Tobias Wrigstad, and
Susan Eisenbach;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 31; pp. 31:1–31:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:at1917@ic.ac.uk
mailto:juliana.franco@microsoft.com
mailto:scd@doc.ic.ac.uk
mailto:tobias.wrigstad@it.uu.se
mailto:sue@doc.ic.ac.uk
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 Reshape Your Layouts, Not Your Programs

1 class Professor<pProf: [Professor<pProf>]> {
2 � name: String; � ssn: String;
3 }
4 class Student<pStu: [Student<pStu, pProf>], pProf: [Professor<pProf>]> {
5 � name: String; � age: int; � supervisor: Professor<pProf>;
6 }
7 layout ProfL: Professor = rec{name} + rec{ssn};
8 layout StuL: Student = rec{name, age} + rec{supervisor};
9 ...

10 pools pStu1: StuL<pStu1, pProf1>, pProf1: ProfL<pProf1>;
11 stu = new Student<pStu1, pProf1>;
12 prof = new Professor<pProf1>;
13 stu.supervisor = prof;

Figure 1 Example SHAPES code and memory layout.

is what allows the business logic of SHAPES to be oblivious to the layout being used. SHAPESh

types also enforce pool uniformity and homogeneity. A pool is uniform if it contains objects of the
same class only; a pool is homogeneous if the corresponding fields of all its objects point to objects
in the same pool. These properties allow for more efficient implementation.

For performance considerations, we also designed SHAPESl, an untyped, unsafe low-level language
with no explicit support for objects or pools. We argue that it is possible to translate SHAPESl

into existing low-level intermediate representations, such as LLVM [3], present the translation of
SHAPESh into SHAPESl, and show its soundness.

Thus, we expect SHAPES to offer developers more fine-grained control over data placement,
without sacrificing memory safety or the OO look-and-feel.

2012 ACM Subject Classification Software and its engineering → Classes and objects; Theory of
computation → Formalisms; General and reference → Performance

Keywords and phrases Cache utilisation, Data representation, Memory safety

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.31

Category SCICO Journal-first

Related Version Full article available at https://doi.org/10.1016/j.scico.2020.102481.

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.19.

Funding Alexandros Tasos: Supported by an EPSRC Centre for Doctoral Training in High Perform-
ance Embedded and Distributed Systems (HiPEDS) Grant (Reference EP/L016796/1).

https://doi.org/10.4230/LIPIcs.ECOOP.2020.31
https://doi.org/10.1016/j.scico.2020.102481
https://doi.org/10.4230/DARTS.6.2.19


A. Tasos, J. Franco, S. Drossopoulou, T. Wrigstad, and S. Eisenbach 31:3

References
1 Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. Ownership Types: A Sur-

vey, pages 15–58. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. doi:10.1007/
978-3-642-36946-9_3.

2 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java Language
Specification, Java SE 8 Edition (Java Series), 2014.

3 Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In Proceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization, page 75. IEEE Computer Society,
2004.

ECOOP 2020

https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1007/978-3-642-36946-9_3

