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—— Abstract

Gradual typing is an effective approach to integrate static and dynamic typing, which supports
the smooth transition between both extremes via the (programmer-controlled) precision of type
annotations [19, 21]. Imprecision is normally introduced via the unknown type 7, e.g. function
type Int — Bool is more precise than ? — 7, and both more precise than 7. Gradual typing
relates types of different precision using consistent type relations, such as type consistency (resp.
consistent subtyping), the gradual counterpart of type equality (resp. subtyping). For instance,
7 — Int is consistent with Bool — 7. This approach has been applied in a number of settings, such
as objects [20], subtyping [20, 11], effects [4, 5], ownership [18], typestates [27, 12], information-
flow typing [9, 10, 23], session types [14], refinements [17], set-theoretic types [6], Hoare logic [3],
parametric polymorphism [1, 2, 16, 15, 28, 24], and references [19, 13, 22].

In particular, gradual typing for mutable references has seen the elaboration of various possible
semantics: invariant references [19], guarded references [13], monotonic references [22], and permissive
references [22]. Invariant references are a form of references where reference types are invariant
with respect to type consistency. Guarded references admit variance thanks to systematic runtime
checks on reference reads and writes; the runtime type of an allocated cell never changes during
execution. Guarded references have been formulated in a space-efficient coercion calculus, which
ensures that gradual programs do not accumulate unbounded pending checks during execution.
Hereafter, we refer to this language as HCC. Monotonic references favor efficiency over flexibility by
only allowing reference cells to vary towards more precise types. This allows reference operations in
statically-typed regions to safely proceed without any runtime checks. Permissive references are the
most flexible approach, in which reference cells can be initialized and updated to any value of any
type at any time.

These four developments reflect different design decisions with respect to gradual references: is the
reference type constructor variant under consistency? Can the programmer specify a precise bound
on the static type of a reference, and hence on the corresponding heap cell type? Can the heap cell
type evolve its precision at runtime, and if yes, how? There is obviously no absolute answer to these
questions, as they reflect different tradeoffs such as in efficiency and precision. This work explores
the semantics that results from the application of a systematic methodology to gradualize static type
systems. Currently we can find in the literature two methodologies to gradualize statically-typed
languages: Abstracting Gradual Typing (AGT) [11], and the Gradualizer [7]. In this work, we
consider the AGT methodology as it naturally scales to auxiliary structures such as a mutable heap.

The AGT methodology helps to systematically construct gradually-typed languages by using
abstract interpretation [8] at the type level. In brief, AGT interprets gradual types as an abstraction
of sets of possible static types, formally captured through a Galois connection. The static semantics
of a gradual language are then derived by lifting the semantics of a statically-typed language through
this connection, and the dynamic semantics follow by Curry-Howard from proof normalization
of the type safety argument. The AGT methodology has been shown to be effective in many
contexts: records and subtyping [11], type-and-effects [4, 5], refinement types [17, 26], set-theoretic
and union types [6, 25], information-flow typing [23], and parametric polymorphism [24]. However,
this methodology has never been applied to mutable references in isolation. Although Toro et al. [23]
apply AGT to a language with references, they only gradualize security levels of types (e.g. Ref Int7),
not whole types (e.g. Ref 7 is not supported). In this article we answer the following open questions:
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Which semantics for gradually-type references follows by systematically applying AGT? Does AGT
justify one of the existing approaches, or does it suggest yet another design? Can we recover other
semantics for gradual references, if yes, how?

This article first reviews the different existing gradual approaches to mutable references through
examples. It then presents the semantics for gradual references that is obtained by applying AGT,
and how to accommodate the other semantics. More specifically, this work makes the following
contributions:

We present A a gradual language with support for mutable references. We derive A= by

REF?’ REF
applying the AGT methodology to a fully-static simple language with mutable references called
Arer. This is the first application of AGT that focuses on gradually-typed mutable references.
We prove that Aqz satisfies the gradual guarantee of Siek et al. [21]. We also present the first
formal statement and proof of the conservative extension of the dynamic semantics of the static
language [21], for a gradual language derived using AGT.

We prove that the derived language, A, corresponds to the semantics of guarded references
from HCC. Formally, given a Az term and its compilation to HCC™ (an adapted version of
HCC extended with conditionals and binary operations) we prove that both terms are bisimilar,
and that consequently they either both terminate, both fail, or both diverge.

We observe that A7 and HCC™ differ in the order of combination of runtime checks. As a
result, HCC is space efficient whereas Az is not: we can write programs in Agzz that may
accumulate an unbounded number of checks. We formalize the changes needed in the dynamic
semantics of Az to achieve space efficiency. This technique to recover space efficiency is in
fact independent from mutable references, and is therefore applicable to other gradual languages
derived with AGT.

We formally describe how to support other gradual reference semantics in Agzz by presenting
)\%'%/F, an extension that additionally supports both permissive and monotonic references. Finally,
we prove for the first time that monotonic references satisfy the dynamic gradual guarantee, a

non-trivial result that requires careful consideration of updates to the store.

Additionally, we implemented \ as an interactive prototype that displays both typing

REF
derivations and reduction traces. All the examples mentioned in this paper are readily available in
the online prototype available at https://pleiad.cl/grefs.

As a result, this paper sheds further light on the design space of gradual languages with mutable

references and contributes to deepening the understanding of the AGT methodology.
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