
Conditional Bisimilarity for Reactive Systems
Mathias Hülsbusch
Universität Duisburg-Essen, Germany

Barbara König
Universität Duisburg-Essen, Germany
barbara_koenig@uni-due.de

Sebastian Küpper
FernUniversität in Hagen, Germany
sebastian.kuepper@fernuni-hagen.de

Lara Stoltenow
Universität Duisburg-Essen, Germany
lara.stoltenow@uni-due.de

Abstract
Reactive systems à la Leifer and Milner, an abstract categorical framework for rewriting, provide a
suitable framework for deriving bisimulation congruences. This is done by synthesizing interactions
with the environment in order to obtain a compositional semantics.

We enrich the notion of reactive systems by conditions on two levels: first, as in earlier work,
we consider rules enriched with application conditions and second, we investigate the notion of
conditional bisimilarity. Conditional bisimilarity allows us to say that two system states are bisimilar
provided that the environment satisfies a given condition. We present several equivalent definitions
of conditional bisimilarity, including one that is useful for concrete proofs and that employs an
up-to-context technique, and we compare with related behavioural equivalences. We instantiate
reactive systems in order to obtain DPO graph rewriting and consider a case study in this setting.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Program reasoning

Keywords and phrases conditional bisimilarity, reactive systems, up-to context, graph transformation

Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.10

Related Version A full version of the paper [17] is available at https://arxiv.org/abs/2004.11792.

Funding Research partially supported by DFG Project BEMEGA.

1 Introduction

Behavioural equivalences, such as bisimilarity, relate system states with the same behaviour.
Here, we are in particular interested in conditional bisimilarity, which allows us to say that
two states a, b are bisimilar provided that the environment satisfies a condition C. Work
on such conditional bisimulations appears somewhat scattered in the literature (see for
instance [21, 15, 11, 3]). They also play a role in the setting of featured transition systems
for modelling software product lines [7], where the behaviour of many products is specified in
a single transition system. In this setting it is possible to state that two states are bisimilar
for certain products, but not for others.

We believe that conditional notions of behavioural equivalence are worthy of further
study. In practice it may easily happen that two sub-systems are only ever used in restricted
environments and it is too much to ask that they behave equivalently under all possible
contexts. Furthermore, instead of giving a simple yes/no-answer, bisimulation checks can
answer in a more fine-grained way, specifying conditions which ensure bisimilarity.

© Mathias Hülsbusch, Barbara König, Sebastian Küpper, and Lara Stoltenow;
licensed under Creative Commons License CC-BY

5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020).
Editor: Zena M. Ariola; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barbara_koenig@uni-due.de
mailto:sebastian.kuepper@fernuni-hagen.de
mailto:lara.stoltenow@uni-due.de
https://doi.org/10.4230/LIPIcs.FSCD.2020.10
https://arxiv.org/abs/2004.11792
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Conditional Bisimilarity for Reactive Systems

We state our results in a very general setting: reactive systems à la Leifer and Milner [22],
a categorical abstract framework for rewriting, which provides a suitable framework for
deriving bisimulation congruences. In particular, this framework allows to synthesize labelled
transitions from plain reaction rules, such that the resulting bisimilarity is automatically
a congruence. Intuitively, the label is the minimal context that has to be borrowed from
the environment in order to trigger a reduction. (Transitions labelled with such a minimal
context will be called representative steps in the sequel. They are related to the idem pushout
steps of [22].) Here, we rely on the notion of saturated bisimilarity introduced in [5] and we
consider reactive system rules with application conditions, generalizing [16].

Important instances of reactive systems are process calculi with contextualization, bigraphs
[18] and double-pushout graph rewriting [8], or in general rewriting in adhesive categories [20].
Hence we can use our results to reason about process calculi as well as dynamically evolving
graphs and networks for various different types of graphs (node- or edge-labelled graphs,
hypergraphs, etc.). Our contributions in this paper can be summarized as follows:

We define the notion of conditional bisimilarity, in fact we provide three equivalent
definitions: two notions are derived from saturated bisimilarity, where a context step (or
a representative step) can be mimicked by several answering steps. Third, we compare
with the notion of conditional environment congruence, which is based on the idea of
annotating transitions with passive environments enabling a step.
Conditional bisimulation relations tend to be very large – often infinite in size. In order
to handle conditional bisimulation, we propose an up-to context technique that allows to
replace infinite conditional bisimulations by possibly finite bisimulations up-to context,
which provide witnesses for bisimilarity.
We compare conditional bisimilarity with related notions of behavioural equivalence.
To illustrate our concepts, we work out a small case study in the context of double-pushout
graph rewriting, where we model message passing over reliable and unreliable channels.

The article is structured as follows: First, in Section 2 we recite the fundamental ideas
for reactive systems without conditions, including all preliminary definitions and techniques
developed for reactive systems relevant to our work. In Section 3, we consider the refinement
to conditional reactive systems, before we turn towards our main contribution in Section 4,
which is conditional bisimulation and its up-to variant in Section 5. In Section 6 we give
an alternative characterization of conditional bisimilarity and compare to related notions of
behavioural equivalence and we conclude in Section 7. All proofs for the theorems in Sections 4
to 6, as well as additional examples can be found in the full version [17].

2 Reactive Systems

2.1 Reactive Systems without Conditions
We denote the composition of arrows f : A→ B, g : B → C by f ;g : A→ C.

We now define reactive systems, introduced in [22] and extended in [16] with application
conditions for rules:

▶ Definition 2.1 (Reactive system rules, reaction). Let C be a category with a distinguished
object 0 (not necessarily initial). A rule is a pair (ℓ, r) of arrows ℓ, r : 0→ I (called left-hand
side and right-hand side). A reactive system is a set of rules.

Let R be a reactive system and a, a′ : 0 → J be arrows. We say that a reduces to a′

(a⇝ a′) whenever there exists a rule (ℓ, r) ∈ R with ℓ, r : 0→ I and an arrow c : I → J (the
reactive context) such that a = ℓ;c and a′ = r;c.

M. Hülsbusch, B. König, S. Küpper, and L. Stoltenow 10:3

Using a notation closer to process caluli, we could write C[P]⇝ C[P ′] whenever there is
a reaction rule P → P ′ and a context C[_]. Fixing a distinguished object 0 means that we
consider only ground reaction rules (as opposed to open reactive systems [19]).

An important instance are reactive systems where the arrows are cospans in a base
category D with pushouts [27, 28]. A cospan is a pair of arrows fL : A → C, fR : B → C.
A cospan is input linear if its left arrow fL is mono.

A X

B

Y C

Z

fL

fR gL
gR

pL pR

f g

f ;g

(PO)

Figure 1 Composition of cospans via pushouts.

Two cospans f : A
fL−→ X

fR←−− B, g : B
gL−→ Y

gR←−− C are composed by taking the pushout
(pL, pR) of (fR, gL) as shown in Figure 1. The result is the cospan f ;g : A

fL;pL−−−−→ Z
gR;pR←−−−− C,

where Z is the pushout object of fR, gL. For adhesive categories [20], the composition of input
linear cospans again yields an input linear cospan (by applying [20, Lemma 12] to the cospan
composition diagram). Given an adhesive category D, ILC(D) is the category where the
objects are the objects of D, the arrows f : A→ C are input linear cospans f : A→ B ← C

of D and composition is performed via pushouts as above. We see an arrow f : A → C

of ILC(D) as an object B of D equipped with two interfaces A, C, and composition glues
the inner objects of two cospans via their interfaces. Input linearity is required since we
rely on adhesive categories where pushouts along monos are well-behaved and are stable
under pullbacks.

0 L I R 0

G C H

0

ℓ

a

c

r

a′

Figure 2 DPO graph transformation as reactive system steps.

In this article, as a running example we consider Graphfin, which is the category of
finite graphs (we use directed multigraphs with node and edge labels) and total graph
morphisms as arrows. In Graphfin, monos are exactly the injective graph morphisms. We
then use reactive systems over ILC(Graphfin) (input-linear cospans of graphs), i.e. we
rewrite graphs with interfaces. If the distinguished object 0 is the empty graph (the initial
object of Graphfin), such reactive systems coincide [27] with the well-known double pushout
(DPO) graph transformation approach [10, 13] when used with injective matches. As shown in
Figure 2, a DPO rewrite step G⇒ H can be expressed as a reactive system reaction a⇝ a′

where the pushouts of the DPO step are obtained from cospan compositions ℓ;c and r;c.

2.2 Deriving Bisimulation Congruences
The reduction relation ⇝ generates an unlabelled transition system, on reactive agents (in
our example, graphs) as states. A disadvantage of bisimilarity on ⇝ is that it usually is
not a congruence: it is easy to construct an example where neither a nor b can perform a

FSCD 2020

10:4 Conditional Bisimilarity for Reactive Systems

step since no complete left-hand side is present. However, by adding a suitable context c,
a;c could contain a full left-hand side and can reduce, whereas b;c can not.

Therefore, to check whether two components can be exchanged, they have to be combined
with every possible context and bisimilarity has to be shown for each.

In order to obtain a congruence, we can resort to defining bisimulation on labelled
transitions, using as labels the additional contexts that allow an agent to react [22, 16].

▶ Definition 2.2 (Context step (without conditions) [16]). Let R be a reactive system and
a : 0 → J, f : J → K, a′ : 0 → K be arrows. We write a

f−→C a′ whenever a;f ⇝ a′ (i.e.
there exists a rule (ℓ, r) ∈ R and an arrow c such that a;f = ℓ;c, a′ = r;c). Such steps are
called context steps.

0 I 0

J K

ℓ r

a′
a c

f

The name context step stems from the fact that a cannot do a reaction on its own, but
requires an additional context f . This can be seen in the following example:

▶ Example 2.3 (Context step (without conditions)). Consider the following reactive system
over ILC(Graphfin), where we model a network of nodes that pass messages (represented
by m-loops) over communication channels. Let the following graphs be given:

C0 =
c

Cℓ =
c

m
Cr =

c
m

N0 = Nm = m

We can now represent the transmission of a message from the left node to the right node
using the rule P = (∅ → Cℓ ← C0, ∅ → Cr ← C0). All graph morphisms are induced by
edge labels and position of nodes, i.e. the left node is always mapped to the left node.

Observe that a channel by itself (a = ∅ → C0 ← N0) cannot do a reaction, since there
is no message to be transferred. However, if a message on the left node is borrowed
(f = N0 → Nm ← N0), the example rule can be applied. As a result, we obtain the context
step (∅ → C0 ← N0) (N0→Nm←N0)−−−−−−−−−−→C (∅ → Cr ← N0).

A bisimulation relation over →C is called saturated bisimulation, as it checks all contexts.
Consequently, saturated bisimilarity ∼C (∼SAT in [16]) is a congruence [5, 16], i.e., it is
closed under contextualization. In other words a∼Cb implies a;c∼Cb;c for all contexts c.

2.3 Representative Squares
Checking bisimilarity of context steps is impractical: usually, f can be chosen from an infinite
set of possible contexts, which all have to be checked. Most of these contexts are larger than
necessary, that is, they contain elements that do not actively participate in the reduction.
(In Example 2.3, contexts can be arbitrarily large, as long as they have an m-loop on the left
node.) An improvement would be to check only the minimal contexts from which all other
context steps can be derived.

When checking which contexts are required to make a rule applicable, in the reaction
diagram (Definition 2.2) the arrows a, ℓ are given and we need to check for possible values of
f (which generate matching c, a′). To derive a set of contexts f which is as small as possible
– preferably finite – [6, 16] introduced the notion of representative squares, which describe
methods to produce squares from a pair a, ℓ in a representative way.

M. Hülsbusch, B. König, S. Küpper, and L. Stoltenow 10:5

▶ Definition 2.4 (Representative squares [6]). A class κ of commuting squares in a cat-
egory C is representative if κ satisfies the following condition: for each commuting square
(α1, α2, δ1, δ2) in C there exists a commuting square (α1, α2, β1, β2) in κ and an arrow γ,
such that δ1 = β1;γ, δ2 = β2;γ. This situation is depicted in Figure 3.

A B

C D′

α1

α2 δ1

δ2

→

A B

C
D

D′

α1

α2
β1

β2 γ δ1

δ2

Figure 3 Every commuting square of the category (left) can be reduced to a representative square
in κ and an arrow γ which extends the representative square to the original square (right).

For two arrows α1 : A→ B, α2 : A→ C, we define κ(α1, α2) as the set of pairs of arrows
(β1, β2) which, together with α1, α2, form representative squares in κ.

The original paper on reactive systems [22] used the (more restrictive) notion of idem
pushouts instead of representative squares. Unfortunately, the universal property of idem
pushouts leads to complications, in particular for cospan categories, where one has to resort
to the theory of bicategories in order to be able to express this requirement. For the purposes
of this paper, we stick to the simpler notion of representative squares, in order to keep our
results independent of the concrete class of squares chosen.

The question arises which constructions yield suitable classes of representative squares,
ideally with finite κ(α1, α2), in order to represent all possible contexts δ1, δ2 with a finite set
of representative contexts β1, β2. Pushouts can be used when they exist [16], however, they
do not exist for ILC(Graphfin).

For adhesive categories, borrowed context diagrams – initially introduced as an extension
of DPO rewriting [9] – can be used as representative squares. Before we can introduce such
diagrams, we first need the notion of jointly epi.

▶ Definition 2.5 (Jointly epi). A pair of arrows f : B → D, g : C → D is jointly epi (JE) if
for each pair of arrows d1, d2 : D → E the following holds: if f ;d1 = f ;d2 and g;d1 = g;d2,
then d1 = d2.

In Graphfin jointly epi equals jointly surjective, meaning that each node or edge of D is
required to have a preimage under f or g or both (it contains only elements from B or C).

▶ Definition 2.6 (Borrowed context diagram [16]). A commuting diagram in the category
ILC(C), where C is adhesive, is a borrowed context diagram whenever it has the form of
the diagram shown below, and the four squares in the base category C are jointly epi (JE),
pushout (PO) or pullback (PB) as indicated.

0 L I

G G+ C

J F K

JE PO

PO PB

ℓ

a c

f

FSCD 2020

10:6 Conditional Bisimilarity for Reactive Systems

The top left jointly epi square and the bottom left pushout ensure that the borrowed
context f is not larger than necessary [9]. We will discuss an example below (Example 2.9).
For additional examples, we refer to [9].

For adhesive categories, borrowed context diagrams form a representative class of
squares [16]. Furthermore, for some categories (such as Graphfin), there are – up to
isomorphism – only finitely many jointly epi squares for a given span of monos and hence
only finitely many borrowed context diagrams given a, ℓ (since pushout complements along
monos in adhesive categories are unique up to isomorphism).

This motivates the following finiteness assumption that we will refer to in this paper:
given a, ℓ, we require that κ(a, ℓ) is finite. (Fin)

2.4 Representative Steps
It is possible to define a reaction relation based on representative squares. By requiring that
the left square is representative, we ensure that the contexts f̂ are not larger than necessary:

▶ Definition 2.7 (Representative step (without conditions) [16]). Let a : 0→ J, f̂ : J → K,

a′ : 0→ K be arrows. We write a
f̂−→R a′ if a context step a

f̂−→C a′ is possible (i.e. a;f̂ ⇝ a′,
i.e. for some rule (ℓ, r) and some arrow ĉ we have a;f̂ = ℓ;ĉ and r;ĉ = a′) and additionally
κ(a, ℓ) ∋ (f̂ , ĉ) (i.e. the arrows (a, ℓ, f̂ , ĉ) form a representative square). Such steps are called
representative steps.

0 I

J K

ℓ

a c
f

0r

a′

0 I

J
K ′

K

ℓ

a
ĉ

f̂ ĝ
c

f

0r

a′

▶ Remark 2.8. Definitions 2.2 and 2.4 imply that every context step a
f−→C a′ (top diagram)

can be reduced to a representative step a
f̂−→R r;ĉ (bottom diagram), a fact used in the

proofs.
For this, we construct the representative square (a, ℓ, f̂ , ĉ) ∈ κ (which, according to

Definition 2.4, always exists) from the square (a, ℓ, f, c) describing the context step. We
obtain arrows f̂ , ĉ and an arrow ĝ which completes f̂ , ĉ to f, c (i.e. f̂ ;ĝ = f, ĉ;ĝ = c).

▶ Example 2.9 (Representative steps). Let the following graphs be given:

C0 =
c

Cℓ =
c

m
Cx =

c
m m

Cr =
c

m

N0 = Nm = m
Nx = m m

Crr =
c

m

m

As before (Example 2.3), the rule P = (∅ → Cℓ ← C0, ∅ → Cr ← C0) transfers a message.
One possible context step allows a channel C0 to borrow a message Nm and do a transfer:
(∅ → C0 ← N0) (N0→Nm←N0)−−−−−−−−−−→C (∅ → Cr ← N0).

M. Hülsbusch, B. König, S. Küpper, and L. Stoltenow 10:7

0 L c

m

I c

C cG c
G+ c

m

J F

m

K

JE PO

PO PB

(a) Borrowed context diagram for C0
Nm−−→R Cr.

0 L c

m

I c

C c

m

G c
G+ c

m m

J F

m m

K

PO

PO

(b) Commuting diagram for C0
Nx−−→C Crr.

Figure 4 Diagrams for the two steps described in Example 2.9.

Another possible context step is (∅ → C0 ← N0) (N0→Nx←N0)−−−−−−−−−→C (∅ → Crr ← N0), i.e. an
additional message on the right node is borrowed. Clearly, this is a valid context step, but
the right message is not required by the rule, and we do not want to consider such steps in
our analysis (by adding yet more messages, we obtain infinitely many context steps).

However, the second context step is not a representative step. We try to construct a
borrowed context diagram: First we fill in the graphs given by a, f and ℓ, then we construct
the bottom left pushout, we obtain G+ = Cx as depicted in Figure 4b. Then however the top
left square is not jointly epi, since neither Cℓ (from ℓ) nor C0 (from a) provide a preimage
for the right m-loop.

On the other hand, the first context step is representative, since there G+ = Cℓ does not
contain the problematic right m-loop and it is possible to complete the borrowed context
diagram as shown in Figure 4a. (To obtain the result of the step, the right-hand side a′ is
constructed just as for context steps (see Example 2.3), which is not depicted here.)

In a semi-saturated bisimulation,→R-steps are answered by→C -steps (for every (a, b) ∈ R

and step a
f−→R a′ there is b

f−→C b′ such that (a′, b′) ∈ R). The resulting bisimilarity ∼R

is identical [16] to saturated bisimilarity (i.e. ∼R = ∼C) and therefore also a congruence.
Whenever (Fin) holds, ∼R is amenable to mechanization, since we have to consider only
finitely many →R-steps (→R is finitely branching).

Note that answering→R-steps with→R-steps gives a different, finer notion of behavioural
equivalence, which we do not treat here [16].

3 Conditions for Reactive Systems

The reactive systems defined so far cannot represent rules where a certain component is
required to be absent: whenever a reaction a⇝ a′ is possible, a reaction a;c⇝ a′;c (with
additional context c) is also possible, with no method to prevent this. Restricting rule
applications can be useful, e.g. to model access to a shared resource, which may only be
accessed if no other entity is currently using it.

For graph transformation systems, application conditions with a first-order logic flavour
have been studied extensively (e.g. in [12, 14]) and generalized to reactive systems in [6]. If
we interpret such conditions in ILC(Graphfin), we obtain a logic that subsumes first-order
logic (for more details on expressiveness see [6]).

In this section, we summarize the definitions from [6] and define shifting of conditions as
partial evaluation. We then summarize the changes that are necessary to extend reactive
systems with conditions. An example for conditional reactive systems will be discussed later
(Example 4.3). For further examples, we refer to the full version and to [6].

FSCD 2020

10:8 Conditional Bisimilarity for Reactive Systems

3.1 Conditions and Satisfiability

▶ Definition 3.1 (Condition [6]). Let C be a category. The set of conditions Cond(A) over
an object A is defined inductively as:

trueA := (A,∀, ∅) ∈ Cond(A), falseA := (A,∃, ∅) ∈ Cond(A) (base case)
A = (A,Q, S) ∈ Cond(A), where A = Ro(A) is the root object of A,
Q ∈ {∀,∃} is a quantifier and
S is a finite set of pairs (h,A′), where h : A→ A′ is an arrow and A′ ∈ Cond(A′).

Note that conditions can be represented as finite trees.

▶ Definition 3.2 (Satisfiability of conditions [6]). Let A ∈ Cond(A). For an arrow a : A→ B

and a condition A we define the satisfaction relation a |= A as follows:
a |= (A,∀, S) iff for every pair (h,A′) ∈ S and every arrow g : Ro(A′) → B we have:
if a = h;g, then g |= A′.
a |= (A,∃, S) iff there exists a pair (h,A′) ∈ S and an arrow g : Ro(A′)→ B such that
a = h;g and g |= A′.

We write A |= B (A implies B) if for every arrow c with dom(c) = Ro(A) = Ro(B) we
have: if c |= A, then c |= B. Two conditions are equivalent (A ≡ B) if A |= B and B |= A.

▶ Proposition 3.3 (Boolean operations). We define the following Boolean operations on
conditions:
¬(A,∀, S) := (A,∃, {(h,¬A′) | (h,A′) ∈ S}) and
¬(A,∃, S) := (A,∀, {(h,¬A′) | (h,A′) ∈ S})
A ∨ B := (A,∃, {(idA,A), (idA,B)}) for two conditions A,B ∈ Cond(A)
A ∧ B := (A,∀, {(idA,A), (idA,B)}) for two conditions A,B ∈ Cond(A)

These operations satisfy the standard laws of propositional logic, i.e. trueA is satisfied by
every arrow with domain A, falseA is satisfied by no arrow; a |= ¬A if and only if a |̸= A;
a |= (A ∨ B) if and only if a |= A ∨ a |= B, analogously for A ∧ B.

3.2 Shifting as Partial Evaluation of Conditions

When evaluating conditions, it is sometimes known that a given context is guaranteed to be
present. In this case, a condition can be rewritten, using representative squares, under the
assumption that this context is provided by the environment. This operation is known as
shift [14]:

▶ Definition 3.4 (Shift of a condition [6]). Given a fixed class of representative squares κ, the
shift of a condition A = (A,Q, S) along an arrow c : A→ B is inductively defined as follows:

A↓c :=
(

B,Q,
{

(β,A′↓α)
∣∣∣ (h,A′) ∈ S, (α, β) ∈ κ(h, c)

})
The shift operation can be understood as a partial evaluation of A under the assumption

that c is already present. It satisfies c;d |= A ⇐⇒ d |= A↓c.

If we assume that (Fin) holds, shifting a finite condition will again result in a finite
condition. Representative squares as well as shift play a major role in the diagrammatic proofs.

M. Hülsbusch, B. König, S. Küpper, and L. Stoltenow 10:9

3.3 Conditional Reactive Systems
We now extend reactive systems with application conditions:

▶ Definition 3.5 (Conditional reactive system [6]). A rule with condition is a triple (ℓ, r,B)
where ℓ, r : 0→ I are arrows and B is a condition with root object I. A conditional reactive
system is a set of rules with conditions.

As the root object I of the condition is the codomain of the rule arrow, it is also the
domain of the reactive context, which has to satisfy the rule condition in order to be able to
apply the rule:

▶ Definition 3.6 (Reaction). Let a, a′ be arrows of a conditional reactive system with rules R.
We say that a reduces to a′ (a⇝ a′) whenever there exists a rule (ℓ, r,B) ∈ R with ℓ, r : 0→ I

and a reactive context c : I → J such that a = ℓ;c, a′ = r;c and additionally c |= B.

In order to define a bisimulation for conditional reactive systems that is also a congruence,
it is necessary to enrich labels with conditions derived from the application conditions. Since
we can not assume that the full context is present, the application condition might refer to
currently unknown parts of the context and this has to be suitably integrated into the label.

▶ Definition 3.7 (Context/representative step with conditions [16]). Let R be a conditional
reactive system, let a : 0 → J, f : J → K, a′ : 0 → K be arrows and A ∈ Cond(K) be a
condition. We write a

f,A−−→C a′ whenever there exists a rule (ℓ, r,B) ∈ R and an arrow c

such that a;f = ℓ;c, a′ = r;c (i.e. the reaction is possible without conditions) and furthermore
A |= B↓c (an additional context has to satisfy a condition A which is at least as strong as the
rule condition B, shifted over c). Such steps are called context steps.

We write a
f,A−−→R a′ whenever a

f,A−−→C a′, κ(a, ℓ) ∋ (f, c) and A = B↓c. Such steps are
called representative steps.

0 I 0

J K

ℓ r

a′
a c

f

B

A

Conditions are represented graphically in the form of “arrowhead shapes” depicted next
to the root object. Intuitively a

f,A−−→C a′ means that a can make a step to a′ when borrowing
f , if the yet unknown context beyond f satisfies condition A (since this context does not
directly participate in the reduction, we call it passive context). In the case of a representative
step, we require that a context step is possible, the borrowed context is minimal, and the
condition on the passive context is not stronger than necessary.
▶ Remark 3.8. Definitions 2.4 and 3.7 imply, analogously to Remark 2.8, that every con-

text step a
f,A−−→C a′ can be reduced to a representative step a

f̂, B↓ĉ−−−−→R r;ĉ.
We now extend (semi-)saturated bisimilarity to rules with conditions:

▶ Definition 3.9 ((Semi-)Saturated bisimilarity [16]). A saturated bisimulation is a symmetric
relation R, relating pairs of arrows a, b : 0→ J , such that: for all (a, b) ∈ R and for every
context step a

f,A−−→C a′ there exist answering moves b
f,Bi−−−→C b′i, i ∈ I, such that (a′, b′i) ∈ R

and A |=
∨

i∈I Bi.

FSCD 2020

10:10 Conditional Bisimilarity for Reactive Systems

Two arrows a, b are called saturated bisimilar ((a, b) ∈ ∼C) whenever there exists a
saturated bisimulation R with (a, b) ∈ R. Similarly, for semi-saturated bisimilarity we
require that →R-steps of a can be answered by →C-steps of b. Saturated and semi-saturated
bisimilarity agree and both are congruences [16].

The logic does not support infinite disjunctions, so A |=
∨

i∈I Bi means that for every d

with d |= A, there exists i ∈ I such that d |= Bi.

4 Conditional Bisimilarity

We will now introduce our new results on conditional bisimilarity: as stated earlier, our
motivation is to extend the notion of saturated bisimilarity, which is often too strict, since
it requires that two system states behave identically in all possible contexts. However,
sometimes it is enough to ensure behavioural equivalence only in specific environments.

Hence we now replace standard bisimilarity, which is a binary relation, by a ternary
relation – called conditional relation – with tuples of the form (a, b, C), which can be read as:
a, b are bisimilar in all contexts satisfying C.

4.1 Definition, Properties and Examples
▶ Definition 4.1 (Conditional relation, closure under contextualization, conditional congruence).
A conditional relation is a set of triples (a, b, C), where a, b : 0→ J are arrows with identical
target and C is a condition over J . A conditional relation R is reflexive if (a, a, C) ∈ R for
all a, C with codom(a) = Ro(C); symmetric if (a, b, C) ∈ R implies (b, a, C) ∈ R; transitive if
(a, b, C) ∈ R and (b, c, C) ∈ R implies (a, c, C) ∈ R. R is closed under contextualization if
(a, b, C) ∈ R implies (a;d, b;d, C↓d) ∈ R. R is a conditional congruence if it is additionally an
equivalence (reflexive, symmetric, transitive).

Closure under contextualization means that whenever a, b are related under a context
satisfying C, then they are still related when we contextualize under d, where however the
condition has to be shifted since we commit to the fact that the context is of the form d;c
for some c.

Note that the root object of the condition is not the source of a (as is the case for
satisfiability), but the target codom(a). This is because we do not state a condition on the
arrows a, b themselves, but on the context in which they are embedded (a;f resp. b;f for
some context f), so the condition is over dom(f) = codom(a).

▶ Definition 4.2 (Conditional bisimulation). A conditional bisimulation R is a symmetric
conditional relation such that the following holds: for each triple (a, b, C) ∈ R and each
context step a

f,A−−→C a′, there are answering steps b
f,Bi−−−→C b′i, i ∈ I, and conditions C′i such

that (a′, b′i, C′i) ∈ R and A ∧ C↓f |=
∨

i∈I (C′i ∧ Bi). Two arrows are conditionally bisimilar
under C ((a, b, C) ∈ ◦∼C) whenever a conditional bisimulation R with (a, b, C) ∈ R exists.1

The condition is to be understood as follows: For every step, we have a borrowed context f

and an additional passive context d (as explained below Definition 3.7). The condition C from
the triple refers to the full context of a (hence f ;d |= C or equivalently d |= C↓f), while A,
coming from the context step, only refers to the passive context (hence d |= A).

1 Note that since conditional bisimulations are closed under union, ◦∼C is itself a conditional bisimulation.

M. Hülsbusch, B. König, S. Küpper, and L. Stoltenow 10:11

If these two are satisfied (left-hand side of the implication), we require answering steps
which also impose conditions on the passive context (d |= Bi). Additionally, we choose
conditions C′i, which ensure that the chosen answering steps yield pairs a′, b′i which are
bisimilar under C′i. As for saturated bisimilarity [16, remark after Definition 15], we need to
allow several answering moves for a single step of a: the answering step taken by b might
depend on the context, using different rules for contexts satisfying different conditions Bi. We
just have to ensure that all answering step conditions together (disjunction on the right-hand
side) fully cover the conditions under which the step of a is feasible (left-hand side).

▶ Example 4.3 (Message passing over unreliable channels). We now work in the category of
input-linear cospans of graphs, i.e., ILC(Graphfin).

We extend our previous example (cf. Example 2.3) of networked nodes, introducing
different types of channels. A channel can be reliable or unreliable, indicated by an r-edge or
u-edge respectively. Sending a message over a reliable channel always succeeds (rule PR),
while an unreliable channel only transmits a message if there is no noise (indicated by a
parallel n-edge) in the environment that disturbs the transmission (rule PU).

To represent this situation as a reactive system, let the following graphs be given:

R0 =
r

Rℓ =
r

m
Rr =

r

m

U0 =
u

Uℓ =
u

m
Ur =

u

m
UN =

u

n

I0 = Iℓ =
m

Ir =
m

IN =
n

We can now represent the transmission of a message using the following rules with
application conditions, where AU states that no n-edge exists:

PR =
(
∅ → Rℓ ← R0, ∅ → Rr ← R0, trueR0

)
PU =

(
∅ → Uℓ ← U0, ∅ → Ur ← U0, AU

)
AU =

(
U0,∀,

{
(U0 → UN ← U0, falseU0)

})
Hence the application condition AU says that the context must not be decomposable

into U0 → UN ← U0 and some other cospan, i.e., the u-edge in the interface has no parallel
n-edge. In other words: there is no noise.

We compare the behaviour of a reliable channel (r := ∅ → R0 ← I0) to that of an
unreliable channel (u := ∅ → U0 ← I0). It is easy to see that they are not saturated bisimilar:
r can do a step by borrowing a message on the left (f := I0 → Iℓ ← I0) without further
restrictions (i.e. using an environment condition A = true). But u is unable to answer this
step, because the corresponding rule is only applicable if no n-edge is present.

However, r and u are conditionally bisimilar under the assumption that no n-edge is
present (C = AC =

(
I0,∀,

{
(I0 → IN ← I0, falseI0)

})
), i.e. there exists a conditional

bisimulation that contains (r, u,AC). A direct proof is hard, since the proof involves checking
infinitely many context steps, since messages accumulate on the right-hand side. However, in
Example 4.9 we will use an argument based on representative steps to construct a proof.

▶ Remark 4.4 (Condition strengthening). It holds that (a, b, C′) ∈ ◦∼C , C |= C′ implies
(a, b, C) ∈ ◦∼C . (This is due to the fact that C |= C′ implies C↓f |= C′↓f which, in Definition 4.2,
implies A ∧ C↓f |= A ∧ C′↓f for any condition A and arrow f .)

FSCD 2020

10:12 Conditional Bisimilarity for Reactive Systems

▶ Remark 4.5. It can be shown that conditional bisimilarity ◦∼C is a conditional congruence,
this follows as a corollary of Theorem 6.3 which will be shown later. This is an important
plausibility check, since reactive systems have been introduced with the express purpose to
define and reason about bisimulation congruences.

Our motivation for introducing the notion of conditional bisimilarity was to check whether
two systems are behaviourally equivalent, when they are put into a context that satisfies
some condition C. It is not immediately obvious that our definition can be used for this
purpose, since all context steps are checked, not just the ones that actually satisfy C.

Hence we now show that our definition is sound, i.e. if two systems are conditionally
bisimilar, then they show identical behaviour under all contexts that satisfy C.

▶ Theorem 4.6. Let R be a conditional bisimulation. Then R′ = {(a;d, b;d) | (a, b, C) ∈ R

∧ d |= C} is a bisimulation for the reaction relation ⇝.

Note that the converse of Theorem 4.6 (if R′ is a bisimulation, then R is a conditional
bisimulation) does not hold. For a counterexample, we refer to the full version.

4.2 Representative Conditional Bisimulations
Checking whether two arrows are conditionally bisimilar, or whether a given relation is a
conditional bisimulation, can be hard in practice, since we have to check all possible context
steps, of which there are typically infinitely many.

For saturated bisimilarity, we used representative steps instead of context steps (cf.
Sections 2.3 and 2.4) to reduce the number of contexts to be checked. In this section, we
extend our definition of conditional bisimulation to use representative steps and prove that
the resulting bisimilarity is identical to the one previously defined.

▶ Definition 4.7 (Representative conditional bisimulation). A representative conditional
bisimulation R is a symmetric conditional relation such that the following holds: for each
triple (a, b, C) ∈ R and each representative step a

f,A−−→R a′, there are answering context
steps b

f,Bi−−−→C b′i and conditions C′i such that (a′, b′i, C′i) ∈ R and A ∧ C↓f |=
∨

i∈I (C′i ∧ Bi).
Two arrows are representative conditionally bisimilar under C ((a, b, C) ∈ ◦∼R) whenever a
representative conditional bisimulation R with (a, b, C) ∈ R exists.

We now show that these two conditional bisimilarities are equivalent.

▶ Theorem 4.8. Conditional bisimilarity and representative conditional bisimilarity coincide,
that is, ◦∼C = ◦∼R.

▶ Example 4.9 (Message passing over unreliable channels, continued). Consider the reactive
system of Example 4.3. There exists a representative conditional bisimulation R such that
(∅ → R0 ← I0, ∅ → U0 ← I0, AC) ∈ R.

We consider the representative steps that are possible from either R0 or U0 and only
explain the most interesting cases:

R0 can do a step using rule PR by borrowing a message on the left node, that is,
f = I0 → Iℓ ← I0, and reacting to Rr. No further restrictions on the environment are
necessary, so A = true. U0 can answer this step using PU and reacts to Ur, but only
if no noise is present (environment satisfies Bi = AC). We evaluate the implication
A∧C↓f ≡ true∧AC↓f ≡ AC |=

∨
i∈I (C′i ∧ AC) ≡

∨
i∈I (C′i ∧ Bi), setting C′i = AC . (Note

that AC↓f ≡ AC since AC forbids the existence of an n-edge between the two interface
nodes and f is unrelated, providing an m-loop on the left-hand node.) We now require
(∅ → Rr ← I0, ∅ → Ur ← I0, AC) ∈ R.

M. Hülsbusch, B. König, S. Küpper, and L. Stoltenow 10:13

Symmetrically, U0 can do a step using PU by borrowing a message on the left node,
reacting to Ur in an environment without noise (A = AC). R0 can answer this step under
any condition Bi. Then, the implication is satisfied if we set C′i = AC , so we require again
(∅ → Rr ← I0, ∅ → Ur ← I0, AC) ∈ R.
There are additional representative steps that differ in how much of the left-hand side is
borrowed, but can be proven analogously to the two previously discussed steps.

This means that we have to add the pair (∅ → Rr ← I0, ∅ → Ur ← I0, AC) to R and
to continue adding pairs until we obtain a bisimulation: with every step, a new triple with
an additional m-loop on the right node is added to the relation, therefore, the smallest
conditional bisimulation has infinite size. However, except for the additional m-loop on the
right node, which does not affect rule application, this pair is identical to the initial one and
we can hence use a similar argument. In Section 5 we show how to make this formal, using
up-to techniques, and thus obtain a completely mechanized proof. In summary, we conclude
that R0 is conditionally bisimilar to U0 under the condition AC .

▶ Example 4.10 (Unreliable channel vs. no channel). For Examples 4.3 and 4.9, it can also be
shown that under the condition ¬AC , the unreliable channel ∅ → U0 ← I0 is conditionally
bisimilar to not having a channel between the two nodes (∅ → I0 ← I0).

In this case, U0 can still do a reaction under AC . Then, I0 can answer with an empty set
of steps. The implication AC ∧ C↓f |=

∨
i∈I (C′i ∧ Bi) is then simplified to AC ∧ ¬AC |= false,

which is easily seen to be valid.

5 Up-to Techniques for Proving Conditional Bisimilarity

Our optimizations so far involved replacing context steps by representative steps, which ensure
finite branching and thus greatly reduce the proof obligations for a single step. However,
it can still happen very easily that the smallest possible bisimulation is of infinite size, in
which case automated proving of conditional bisimilarity becomes impossible. For instance,
in Example 4.9, the least conditional bisimulation relating the two cospans u, r (representing
(un)reliable channels) contains infinitely many triples (u;mn, r;mn, AC) for any number n

of messages on the right node (m = I0 → Ir ← I0).
On the other hand, conditional bisimilarity is closed under contextualization, hence if

u, r are related, we can conclude that u;m and r;m must be related as well. Intuitively
the relation R = {(u, r,AC)} is a sufficient witness, since after one step we reach the triple
(u;m, r;m, AC), from which we can “peel off” a common context m to obtain a triple already
contained in R.

This is an instance of an up-to technique, which can be used to obtain smaller witness
relations by identifying and removing redundant elements from a bisimulation relation.
Instead of requiring the redundant triple (u;m, r;m, AC) to be contained in the relation, it
is sufficient to say that up to the passive context m, the triple is represented by (u, r,AC),
which is already contained in the relation. In particular, this specific up-to technique is
known as up-to context [25], a well-known proof technique for process calculi.

Note that in general, a bisimulation up-to context is not a bisimulation relation. However,
it can be converted into a bisimulation by closing it under all contexts.

In this section, we show how to adapt this concept to conditional bisimilarity and in
particular discuss how to deal with the conditions in a conditional bisimulation up-to context.

FSCD 2020

10:14 Conditional Bisimilarity for Reactive Systems

5.1 Conditional Bisimilarity Up-To Context
We start our investigation of conditional bisimilarity up-to context with the idea of a relation
that can be extended to a conditional bisimulation. To show, using such a conditional
bisimulation up-to context R, that a pair of arrows is conditionally bisimilar, one cannot
necessarily find the pair in R, but instead extends a pair in R to the pair under review.
As this extension might provide parts of the context that the original condition referred to,
it is necessary to shift the associated condition over the extension.

▶ Definition 5.1 (Conditional bisimulation up-to context (CBUC)). A symmetric conditional
relation R is a conditional bisimulation up-to context if the following holds: for each triple
(a, b, C) ∈ R and each context step a

f,A−−→C a′, there are answering steps b
f,Bi−−−→C b′i, i ∈ I,

and conditions C′′i such that for each i ∈ I there exists (a′′i , b′′i , C′′i) ∈ R with a′ = a′′i ;ji,
b′i = b′′i ;ji for some arrow ji and additionally A ∧ C↓f |=

∨
i∈I

(
C′′i↓ji

∧ Bi

)
.

0 I 0

J K J ′

0 Ii 0

ℓ r

a′

ℓi ri

b′i

a

b

c

ei

a′′i

b′′i

f ji

D

C

Di

C′′i

Figure 5 A single answer step in conditional bisimulation up-to context.

The situation for one answer step is depicted in Figure 5. The conditions A,Bi over K

are not shown in the diagram. The weakest possible A,Bi can be derived from the rule
conditions as A = D↓c, Bi = Di↓ei

.
Compared to a regular conditional bisimulation, which directly relates the results of the

answering steps (a′, b′i, C′i), in a CBUC it is sufficient to relate some pair (a′′i , b′′i , C′′i), where
a′′i , b′′i are obtained from a′, b′i by removing an identical context ji.

We now show that this up-to technique is useful or sound, that is, all elements recognized
as bisimilar by the up-to technique are actually bisimilar [26, 25].

▶ Theorem 5.2 (Characterization of CBUC). A symmetric conditional relation R satisfies
Definition 5.1 (is a CBUC) iff its closure under contextualization R̂ := {(a;d, b;d, C↓d) |
(a, b, C) ∈ R, a, b : 0→ J, d : J → K} is a conditional bisimulation.

▶ Remark 5.3. From Theorem 5.2 we easily obtain as a corollary that every CBUC R

is contained in ◦∼C (R ⊆ ◦∼C), i.e. all elements contained in some CBUC are indeed
conditionally bisimilar. This follows from the fact that R ⊆ R̂ (set d = idJ) and R̂ ⊆ ◦∼C

(since by Theorem 5.2 R̂ is a conditional bisimulation).

Note that while Theorem 5.2 gives a more accessible definition of CBUCs than Defini-
tion 5.1, the latter definition is amenable to mechanization, since R might be finite, whereas
R̂ is infinite.

M. Hülsbusch, B. König, S. Küpper, and L. Stoltenow 10:15

5.2 Conditional Bisimilarity Up-To Context with Representative Steps
CBUCs allow us to represent certain infinite bisimulation relations in a finite way. For
instance, we can use a finite CBUC in Example 4.9. However, automated checking for
conditional bisimilarity up-to context is still hard, since all possible context steps have to be
checked, of which there can be infinitely many.

For conditional bisimulations, we introduced an alternative definition using representative
steps (Definition 4.7) and showed that it yields an equivalent notion of conditional bisimilarity
(Theorem 4.8). We will show that the same approach can be used for CBUCs.

▶ Definition 5.4 (CBUC with representative steps). A CBUC with representative steps is a
symmetric conditional relation R such that the following holds: for each triple (a, b, C) ∈ R

and each representative step a
f,A−−→R a′, there are answering steps b

f,Bi−−−→C b′i and conditions
C′′i such that for each answering step there exists (a′′i , b′′i , C′′i) ∈ R with a′ = a′′i ;ji, b′i = b′′i ;ji

for some arrow ji per answering step, and additionally A ∧ C↓f |=
∨

i∈I

(
C′′i↓ji

∧ Bi

)
.

▶ Theorem 5.5. A conditional relation is a CBUC (Definition 5.1) if and only if it is a
CBUC with representative steps (Definition 5.4).

▶ Example 5.6. Consider again Examples 4.3 and 4.9. We have previously seen that it
is possible to repeatedly borrow a message on the left-hand node and transfer it to the
right-hand node, which leads to more and more received messages accumulating at the
right-hand node. We now show that the two types of channels are conditionally bisimilar
by showing that R =

{
(∅ → R0 ← I0, ∅ → U0 ← I0, AC)

}
is a CBUC, i.e. it satisfies

Definition 5.4. We consider the same steps as in Example 4.9:
R0 can do a step using rule PR by borrowing a message on the left node, with environment
condition A = true, and reduces to a′ = ∅ → Rr ← I0. U0 can answer this step using PU

under Bi = AC (no noise) and reacts to b′i = ∅ → Ur ← I0.
Now set ji = I0 → Ir ← I0, i.e. we consider the m-loop on the right node as irrelevant
context. Then, using a′′i = ∅ → R0 ← I0, b′′i = ∅ → U0 ← I0, C′′i = AC we have
a′ = a′′i ;ji, b′i = b′′i ;ji, and we find that the triple without the irrelevant context ji, that
is (a′′i , b′′i , C′′i) (which happens to be the same as our initial triple), is contained in R. As
before, the implication A ∧ C↓f |=

∨
i∈I (C′′i ∧ Bi) holds.

Symmetrically, U0 borrows a message on the left node and reacts to Ur under A = AC .
Analogously to the previous case and to Example 4.9, R0 answers this step, using C′′i = AC

and ji = I0 → Ir ← I0.
Again, the remaining representative steps can be proven in an analogous way.

Note that instead of working with an infinite bisimulation, we now have a singleton.

6 Comparison and An Alternative Characterization

6.1 An Equivalent Characterization Based on Environment Steps
We will now give a more natural characterization of conditional bisimilarity, in order to justify
Definitions 4.2 and 4.7. This alternative definition is more elegant since it characterizes ◦∼C

as the largest conditional congruence that is a conditional environment bisimulation. On the
other hand, this definition is not directly suitable for mechanization.

In [16], environment steps, which capture the idea that a reaction is possible under some
passive context d, have been defined to obtain a more natural characterization of saturated
bisimilarity. Unlike the borrowed context f , the passive context d does not participate in the
reaction itself, but we refer to it to ensure that the application condition of the rule holds.

FSCD 2020

10:16 Conditional Bisimilarity for Reactive Systems

▶ Definition 6.1 (Environment step [16]). Let R be a set of reactive system rules and
a : 0→ K, a′ : 0→ K, d : K → J be arrows. We write a

d
⇝ a′ whenever there exists a rule

(ℓ, r,B) ∈ R and an arrow c such that a = ℓ;c, a′ = r;c and c;d |= B.

Environment steps and context steps are related: they can be transformed into each other.
Furthermore saturated bisimilarity is the coarsest bisimulation relation over environment
steps that is also a congruence [16]. We now give a characterization of conditional bisimilarity
based on environment steps:

▶ Definition 6.2 (Conditional environment congruence). A symmetric conditional relation
R is a conditional environment bisimulation if whenever (a, b, C) ∈ R and a

d
⇝ a′ for some

d |= C, then b
d
⇝ b′ and (a′, b′, C′) ∈ R for some condition C′ such that d |= C′. We denote by

◦∼E the largest conditional environment bisimulation that is also a conditional congruence
and call it conditional environment congruence.

▶ Theorem 6.3. Conditional bisimilarity and conditional environment congruence coincide,
that is, ◦∼C = ◦∼E.

6.2 Comparison to Other Equivalences
We conclude this section by considering ◦∼T := {(a, b) | (a, b, true) ∈ ◦∼C}, a binary relation
derived from conditional bisimilarity, which is ternary. Intuitively it contains pairs (a, b),
where a, b are system states that behave equivalently in every possible context. We investigate
how ◦∼T compares to other behavioural equivalences that also check for identical behaviour
in all contexts. First, we consider saturated bisimilarity (∼C), which has been characterized
in [16] as the coarsest relation which is a congruence as well as a bisimilarity:

▶ Theorem 6.4. Saturated bisimilarity implies true-conditional bisimilarity (∼C ⊆ ◦∼T).
However, true-conditional bisimilarity does not imply saturated bisimilarity (◦∼T ⊈ ∼C).

For saturated bisimilarity, if a step of a is answered by b with multiple steps, all b′i reached
in this way must be saturated bisimilar to a′ (that is, show the same behaviour even if the
environment is later changed to one which did not allow the given b′i to be reached). In
fact, it was an explicit goal in the design of saturated bisimilarity to account for external
modification of the environment.

On the other hand, for conditional bisimilarity, each b′i is only required to be conditionally
bisimilar to a′ under the condition which allowed this particular answering step – that is,
after a step, the environment is fixed (or, depending on the system, can only assume a subset
of all possible environments, cf. Definition 6.2 and Theorem 6.3).

Next, we compare ◦∼T to id-congruence, the coarsest congruence contained in bisimilarity
over the reaction relation ⇝. It simply relates two agents whenever they are bisimilar in all
contexts, i.e. ∼id := {(a, b) | for all contexts d, a;d, b;d are bisimilar wrt.⇝}.

▶ Theorem 6.5. It holds that true-conditional bisimilarity implies id-congruence (◦∼T ⊆ ∼id).
However, id-congruence does not imply true-conditional bisimilarity (∼id ⊈ ◦∼T).

Intuitively, true-conditional bisimilarity allows to observe whether some item is consumed
and recreated (by including it in both sides of a rule) or whether it is simply required (using
an existential rule condition, cf. Theorem 6.5). On the other hand, id-congruence does not
recognize this and simply checks whether reactions are possible in the same set of contexts.

M. Hülsbusch, B. König, S. Küpper, and L. Stoltenow 10:17

Hence we have ∼C ⊊ ◦∼T ⊊ ∼id, which implies that checking for identical behaviour in
all contexts using conditional bisimilarity gives rise to a new kind of behavioural equivalence,
which does not allow arbitrary changes to the environment (as ∼C does), yet allows distin-
guishing borrowed and passive context (which ∼id does not). For two of those equivalences
(∼C , ◦∼T) we can mechanize bisimulation proofs.

7 Conclusion, Related and Future Work

As stated earlier, there are some scattered approaches to notions of behavioural equivalence
that can be compared to conditional bisimilarity. The concept of behaviour depending on a
context is also present in Larsen’s PhD thesis [21]. There, the idea is to embed an LTS into an
environment, which is modelled as an action transducer, an LTS that consumes transitions of
the system under investigation – similar to CCS synchronization. He then defines environment-
parameterized bisimulation by considering only those transitions that are consumed in a
certain environment. In [15], Hennessy and Lin describe symbolic bisimulations in the setting
of value-passing processes, where Boolean expressions restrict the interpretations for which
one shows bisimilarity. Instead in [2], Baldan, Bracciali and Bruni propose bisimilarity on
open systems, specified by terms with a hole or place-holder. Instead of imposing conditions
on the environment, they restrict the components that are filling the holes.

In [11], Fitting studies a matrix view of unlabelled transition system, annotated by
Boolean conditions. In [3] we have shown that such systems can alternatively be viewed as
conditional transition systems, where activation of transitions depends on conditions of the
environment and one can state the bisimilarity of two states provided that the environment
meets certain requirements. This view is closely tied to featured transition systems, which
have been studied extensively in the software engineering literature. The idea here is to
specify system behaviour dependent on the features that are present in the product (see for
instance [7] for simulations on featured transition systems).

Our contribution in this paper is to consider conditional bisimilarity based on contextual-
ization in a rule-based setting. That is, system behaviour is specified by generic rewriting
rules, system states can be composed with a context specifying the environment and we
impose restrictions on those contexts. By viewing both system states and contexts as arrows
of a category, we can work in the framework of reactive systems à la Leifer and Milner and
define a general theory of conditional bisimilarity. While in [16] conditions were only used
to restrict applicability of the rules and bisimilarity was checked for all contexts, we here
additionally use conditions to establish behavioural equivalence only in specific contexts.

As future work we want to take a closer look at the logic that we used to specify conditions.
Conditional bisimilarity is defined in a way that is largely independent of the kind of logic,
provided that the logic supports Boolean operators and shift. It is unclear and worth
exploring whether the logic considered by us is expressive enough to characterize all contexts
that ensure bisimilarity of two given arrows.

Up-to techniques can be elegantly stated in a lattice-theoretical framework [24] and it is
not difficult to reframe the results of Section 5 in this setting, using the notion of compatibility.
This view might help to incorporate further optimizations into the up-to technique.

Furthermore, it is an open question whether there is an alternative characterization of
the id-congruence of Theorem 6.5 that is amenable to mechanization.

We have already implemented label derivation and bisimulation checking in the borrowed
context approach, see for instance [23], however without taking conditions into account. Our
aim is to obtain an efficient implementation for the scenario described in this paper. Note

FSCD 2020

10:18 Conditional Bisimilarity for Reactive Systems

that our conditions subsume first-order logic [6] and hence in order to come to terms with the
undecidability of implication we have to resort to simpler conditions or use approximative
methods.

One natural question is whether our results can be stated in a coalgebraic setting, since
coalgebra provides a generic framework for behavioural equivalences. We have already
studied a much simplified coalgebraic version of conditional systems (without considering
contextualization) in [1], using coalgebras living in Kleisli categories. Reactive systems can
also be viewed as coalgebras (see [4]). However, a combination of these features has not yet
been considered as far as we know.

References
1 Jiří Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius, and Alexandra

Silva. A coalgebraic perspective on minimization and determinization. In Proc. of FOSSACS
’12, pages 58–73. Springer, 2012. LNCS/ARCoSS 7213.

2 Paolo Baldan, Andrea Bracciali, and Roberto Bruni. Bisimulation by unification. In Proc. of
AMAST ’02, pages 254–270. Springer, 2002. LNCS 2422.

3 Harsh Beohar, Barbara König, Sebastian Küpper, and Alexandra Silva. Conditional transition
systems with upgrades. In Proc. of TASE ’17 (Theoretical Aspects of Software Engineering).
IEEE Xplore, 2017.

4 Filippo Bonchi. Abstract Semantics by Observable Contexts. PhD thesis, Università degli Studi
di Pisa, Dipartimento di Informatica, May 2008.

5 Filippo Bonchi, Barbara König, and Ugo Montanari. Saturated semantics for reactive systems.
In Proc. of LICS ’06, pages 69–80. IEEE, 2006.

6 H.J. Sander Bruggink, Raphaël Cauderlier, Mathias Hülsbusch, and Barbara König. Condi-
tional reactive systems. In Proc. of FSTTCS ’11, volume 13 of LIPIcs. Schloss Dagstuhl –
Leibniz Center for Informatics, 2011.

7 Maxime Cordy, Andreas Classen, Gilles Perrouin, Pierre-Yves Schobbens, Patrick Heymans,
and Axel Legay. Simulation-based abstractions for software product-line model checking. In
Proc. of ICSE ’12, pages 672–682. IEEE, 2012.

8 Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel, and Michael
Löwe. Algebraic approaches to graph transformation—part I: Basic concepts and double
pushout approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 1: Foundations, chapter 3. World Scientific, 1997.

9 Hartmut Ehrig and Barbara König. Deriving bisimulation congruences in the DPO approach
to graph rewriting. In Proc. of FOSSACS ’04, pages 151–166. Springer, 2004. LNCS 2987.

10 Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph-grammars: An algebraic
approach. In 14th Annual Symposium on Switching and Automata Theory (SWAT 1973),
pages 167–180, October 1973.

11 Melvin Fitting. Bisimulations and boolean vectors. In Advances in Modal Logic, volume 4,
pages 1–29. World Scientific Publishing, 2002.

12 Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with negative
application conditions. Fundamenta Informaticae, 26(3,4):287–313, December 1996.

13 Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph transformation
revisited. Mathematical Structures in Computer Science, 11(5):637–688, October 2001.

14 Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science, 19(2):245–296,
2009.

15 Matthew Hennessy and Huimin Lin. Symbolic bisimulations. Theoretical Computer Science,
138(2):353–389, 1995.

M. Hülsbusch, B. König, S. Küpper, and L. Stoltenow 10:19

16 Mathias Hülsbusch and Barbara König. Deriving bisimulation congruences for conditional
reactive systems. In Proc. of FOSSACS ’12, pages 361–375. Springer, 2012. LNCS/ARCoSS
7213.

17 Mathias Hülsbusch, Barbara König, Sebastian Küpper, and Lara Stoltenow. Conditional
bisimilarity for reactive systems, 2020. arXiv:2004.11792. URL: https://arxiv.org/abs/
2004.11792.

18 Ole Høgh Jensen and Robin Milner. Bigraphs and transitions. In Proc. of POPL 2003, pages
38–49. ACM, 2003.

19 Bartek Klin, Vladimiro Sassone, and Paweł Sobociński. Labels from reductions: towards a
general theory. In Proc. of CALCO ’05, pages 30–50. Springer, 2005. LNCS 3629.

20 Stephen Lack and Paweł Sobociński. Adhesive and quasiadhesive categories. RAIRO –
Theoretical Informatics and Applications, 39(3):511–545, 2005.

21 Kim Guldstrand Larsen. Context-Dependent Bisimulation between Processes. PhD thesis,
University of Edinburgh, 1986.

22 James J. Leifer and Robin Milner. Deriving bisimulation congruences for reactive systems. In
CONCUR 2000 — Concurrency Theory: 11th International Conference University Park, PA,
USA, August 22–25, 2000 Proceedings, pages 243–258. Springer Berlin Heidelberg, 2000.

23 Dennis Nolte. Automatischer Nachweis von Bisimulationsäquivalenzen bei Graphtransforma-
tionssystemen. Master’s thesis, Universität Duisburg-Essen, November 2012.

24 Damien Pous. Complete lattices and up-to techniques. In Proc. of APLAS ’07, pages 351–366.
Springer, 2007. LNCS 4807.

25 Damien Pous and Davide Sangiorgi. Enhancements of the coinductive proof method. In
Davide Sangiorgi and Jan Rutten, editors, Advanced Topics in Bisimulation and Coinduction.
Cambridge University Press, 2011.

26 Davide Sangiorgi. On the bisimulation proof method. Mathematical Structures in Computer
Science, 8(5):447–479, 1998.

27 Vladimiro Sassone and Paweł Sobociński. Reactive systems over cospans. In Proc. of LICS
’05, pages 311–320. IEEE, 2005.

28 Paweł Sobociński. Deriving process congruences from reaction rules. PhD thesis, University of
Aarhus, 2004.

FSCD 2020

https://arxiv.org/abs/2004.11792
https://arxiv.org/abs/2004.11792

	Introduction
	Reactive Systems
	Reactive Systems without Conditions
	Deriving Bisimulation Congruences
	Representative Squares
	Representative Steps

	Conditions for Reactive Systems
	Conditions and Satisfiability
	Shifting as Partial Evaluation of Conditions
	Conditional Reactive Systems

	Conditional Bisimilarity
	Definition, Properties and Examples
	Representative Conditional Bisimulations

	Up-to Techniques for Proving Conditional Bisimilarity
	Conditional Bisimilarity Up-To Context
	Conditional Bisimilarity Up-To Context with Representative Steps

	Comparison and An Alternative Characterization
	An Equivalent Characterization Based on Environment Steps
	Comparison to Other Equivalences

	Conclusion, Related and Future Work

