String Diagrams for Optics

Guillaume Boisseau
University of Oxford, UK

—— Abstract

Optics are a data representation for compositional data access, with lenses as a popular special case.
Hedges has presented a diagrammatic calculus for lenses, but in a way that does not generalize to
other classes of optic. We present a calculus that works for all optics, not just lenses; this is done by
embedding optics into their presheaf category, which naturally features string diagrams. We apply
our calculus to the common case of lenses, extend it to effectful lenses, and explore how the laws of
optics manifest in this setting.

2012 ACM Subject Classification Software and its engineering — Visual languages; Software and
its engineering — Data types and structures; Software and its engineering — Specialized application
languages; Software and its engineering — Functional languages

Keywords and phrases Optic, string diagram, lens, category theory, Yoneda lemma
Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.17

Related Version A preprint of this paper is available at [2], https://arxiv.org/abs/2002.11480.
That version may be extended in the future.

Funding Guillaume Boisseau: Work funded by the EPSRC.

Acknowledgements I want to thank the reviewers for the SYCO6 workshop for their thorough

reviews, and Jeremy Gibbons for his ever helpful comments.

1 Introduction

Optics are a versatile categorical structure. Their best-known special case, lenses, have found
uses in a variety of contexts, from machine learning to game theory [5]. Their more general
instantiations have been studied in the context of bidirectional data transformations [14]. In
all cases, their main feature of interest is their composability and their peculiar bidirectional
information flow.

In the interest of making them easier to represent and manipulate, authors often spon-
taneously use diagrams to construct instances of optics [13, 14]. These diagrams are usually
informal, with one notable exception in the work of Hedges [4] on diagrams for lenses. Hedges’
diagrammatic calculus however assumes a lot of structure on the underlying categories, in a
way that doesn’t extend to more general optics.

Here we propose instead a different approach that embeds optics into a larger space
(namely its presheaf category) that naturally has string diagrams. Not only does this work
for the most general optics, but all the diagrammatic gadgets follow naturally from the
embedding, and it even allows for useful diagrams that would not be expressible in the
category Optic alone.

2 Background

We fix a monoidal category (M, ®, I, A\, u,a) throughout the paper.
We assume readers are familiar with coends. For an introduction to the material relevant
to the study of optics, see [15, Chapter 2.

» Note. We will prefer diagrammatic order for composition, using the symbol .

© Guillaume Boisseau;
37 licensed under Creative Commons License CC-BY

5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020).
Editor: Zena M. Ariola; Article No. 17; pp. 17:1-17:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5244-893X
https://doi.org/10.4230/LIPIcs.FSCD.2020.17
https://arxiv.org/abs/2002.11480
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2

String Diagrams for Optics

2.1 Actegories

» Definition 1 ([10]). An M-actegory (contraction of “action” and “category”) is a category
C equipped with a functor ©¢c : M x C — C (the “action”) and two natural structure
isomorphisms Ay : I ©c © = x and apmpny : (MR N) Oc z — m Oc (n Oc¢ z) that satisfy
compatibility axioms with the monoidal structure of M.

We will drop the subscripts when the relevant actegory is clear from context. The naming
of the structure morphisms clashes with those of M on purpose:

» Proposition 2. M has canonically the structure of an M -actegory, with ©®p = ®, and A
and a as the actegory structure morphisms.

In what follows, when we use M as an M-actegory, we assume this canonical structure.

2.2 Optics

» Definition 3 ([15, Proposition 3.1.1]). Given two M -actegories C' and D, we construct the
category Optice p as follows: objects are pairs () where v : C and u : D, and arrows are
elements of the set

m:M
Optice,p(3).(1)i= [Claym®oy) x Dimop v,u)

Given a: C(x,m O¢c y) and 5 : D(m ©p v,u), we will denote the corresponding arrow by
(a| BYm. Composition and identities are defined componentwise in the expected way; see [15]
for more details.

» Note. Expanding the definition of coends in Set, we get that the coend above denotes the
set of pairs (| 8), with a: C(z,m ®¢c y) and 8 : D(m ®p v,u), quotiented by the equation
(a5 (fOcy) [B)m = {a|(f ©p v)§ B)n for f: M(n, m).

Except in special cases, this category is not monoidal. This prevents us from having
string diagrams in the usual way. We will see how to work around this limitation in the rest
of the paper.

» Example 4. The canonical example of optics are lenses. They arise when C =D = M
and the monoidal structure of C' is cartesian. We get:

c:C
Lensc((5), (%)) ::/ C(z,cxy) x Cc X v,u)

While this presentation is pleasantly symmetrical, lenses are usually described as a pair
of functions without this unfamiliar coend. We can in fact calculate that both presentations
are equivalent:

c:C
Lensc((ﬁ),(%)):/ C(z,exy) x Cle x vyu)

c:C
g/ C(z,y) x C(x,c) x Clec X v,u)

c:C
) X C(z,c) x C(e x v,u)

Il

C(z,y
C(z,y) x C(z x v,u)

I

G. Boisseau

We recover the usual formulation: a lens from (7) to (¥) is a pair of functions get : . — y
and put : x X v — u. The intuition is that get extracts some y from a datum z, and put
allows replacing that y by a new v, yielding an updated datum wu. It is often the case that
x = w and y = v, making this intuition clearer, but having distinct types allows for more
flexibility.

A concrete example of a lens that gives access to a field of a record can be written in
Haskell:

data Lens x uy v =L (x > y) (x ->v ->u)

data Person = P { name :: String, address :: String }
personName :: Lens Person Person String String
personName = L get put
where get (P name _) = name
put (P _ address) name = P name address

The case for distinct types is well illustrated on tuples:

tupleSnd :: Lens (a, b) (a, ¢) b c
tupleSnd = L get put
where get (_, b) = b
put (a,) ¢ = (a, ¢)

2.3 Tambara Modules

» Definition 5 ([15, Proposition 5.1.1]). Given two M -actegories C and D, we construct the
category Tambe,p as follows: objects are (pro)functors P : C°P x D — Set equipped with
a natural transformation strength : [P(a,b) = P(m ®¢ a,m ©Op b) compatible with the
actegory structures; arrows are strength-preserving natural transformations.

This generalizes the usual notion of strength for a profunctor.

» Definition 6. We construct the bicategory Tamb as follows: objects are M -actegories;
Hom-categories are the categories Tambc,p.

It inherits its bicategorical structure from the bicategory Prof of profunctors: the identities
are the hom-profunctors C(—,=), and the tensor (horizontal composition) is profunctor
composition, defined as usual as follows:

(P ®Q)(a.c) = / Pla.b) x Q(b.c)

» Note. Prof and Tamb share in fact a lot of structure. In a sense Tamb is the analogue
of Prof for M-actegories, and we will see that like Prof it supports a rich diagrammatic
calculus.

Our interest in Tambara modules comes from the following strong relationship with
optics:
» Theorem 7 ([15, Proposition 5.5.2]). [Optice p, Set] = Tambe,p
Proof. The proof can be found in [15, Proposition 5.5.2], but initially comes from [12,

Proposition 6.1] in the special case where M = C' = D, along with more results on the
structure of both of those categories. <

17:3

FSCD 2020

17:4

String Diagrams for Optics

3 Diagrams for Tambara Modules

3.1 Basics

As in any bicategory, cells in Tamb can be represented as diagrams, as follows:

A 0-cell (an M-actegory) is represented as a planar region delimited by the other types
of cells. For technical reasons we will not represent them in what follows, but it should be
kept in mind that 1-cells can only be composed if their types match.

A 1-cell P: Tambc, p is represented as a wire, with C' above and D below:

pP——P

Tensoring (1-cell composition) is vertical juxtaposition (for P : Tambcp and Q :
Tame,E):

P——P

PRQ—P® =
Q Q 0— 0

A 2<cell a: P— Q (for P,Q : Tambc,p) is represented as:

P—a}—¢q

Composition is horizontal juxtaposition:

and tensoring is vertical juxtaposition:

por—{marl—qes - [T ¢

For example, one could represent the following complex composition of cells diagrammat-
ically:

Q
RO

The axioms of bicategories ensure that we can interchange boxes like we do in string
diagrams for monoidal categories.
3.2 Oriented Wires

So far, this was common to any bicategory. We can now investigate gadgets specific to Tamb.
Let us fix an M-actegory C.

» Definition 8. Given x : C, let us define two profunctors R, = C(—,= O¢ x) and
L, = C(* Oc :L',:).

» Proposition 9. R, is in Tambc y and Ly is in Tambysc, where M is taken with its
canonical M-actegory structure.

G. Boisseau

Proof. R, is a profunctor C°P? x M — Set. The action of the (m ®¢ —) functor provides it
with a strength. The same works for L. |

» Proposition 10. R, extends to a functor R : C' — Tambc ar, and L, extends to a functor
L:C%? = Tamby,c

Proof. Straightforward from their definitions. |

» Proposition 11. R and L respect the actegory structures: Ry & Ly =2 M(—,=), R, QR =
Rm@w; and Lm & Lw = Lme.

Proof. See appendix A.1l. <
This justifies the following notation:

rT—>—2 .— R,— R, (1)
and

r>{fb-v = R—{R}—R, 2)
similarly

Yy—~<—vy = Ly——1°L, (3)
and

yac = LyLw (4)

» Note. This choice of notation could create confusion as to whether a box on an oriented
wire is meant to be seen as in the image of R/L or not. However we will see later that R
and L are fully faithful, and thus this confusion fades away: all boxes on an oriented wire
are arrows in C.

From the propositions above, we see that this notation respects composition in C' as
well as the M-actegory structures (note the inversion that happens when tensoring on a
right-oriented wire):

T—>—2z

= mor —>—mQoux
m-—>—m
m—<—1m

= mor —<—mQoux
r —<—
I—>—1 = empty diagram
I —<—1 = emptly diagram

17:5

FSCD 2020

17:6

String Diagrams for Optics

» Note. Note that because of the types of the 1-cells (that are not shown in the diagrams),
not all tensorings of the oriented wires are allowed. For example, it could be tempting to
think that R, ® Ry = Ryg. for z,y : C, but not only is C' not monoidal in general, the
tensoring doesn’t even type-check since both R, and R, are objects of Tambc .

» Note. When C'is chosen to be M, both R and L provide a monoidal embedding of M into
Tambas ar; we will see later that it is also fully faithful. This means that the string diagrams
in M have two full and faithful embeddings into the string diagrams of Tamb, using the
oriented wires.

3.3 Bending Wires

» Proposition 12. For a given x : C, the modules R, and L, are adjoint. Moreover, the
structure maps of the adjunction are dinatural in x.

Proof. R, = C(—,=0®xz) and L, = C(— ®x,=) are clearly adjoint in Prof. The adjunction
lifts to Tamb; see appendix A.2. Dinaturality in z is straightforward from the definition of
the unit and counit. <

This means that there exist two 2-cells, that we will draw as:

T T
(and)
T T

that satisfy the so-called “snake equations”:

T

and
E: = T—X—7 (6)

Those maps are additionally dinatural in z, which means we can also slide C-arrows
around them:

(7)

and

xT

®)

b
¢

Y

We have discovered an additional property of the diagrammatic language: oriented arrows
can be bent downwards. Note that bending upwards is not in general possible.
» Note. In the case of set-based lenses (i.e. C = D = M = Set with the cartesian product),
the second of those maps (the “cap”) was featured in the calculus of [4]. The first map (the
“cup”) however cannot be expressed in that calculus.

G. Boisseau

4 Embedding Optics

4.1 A Representation Theorem

We will now use this calculus to express optics. Recall from Theorem 7 that presheaves
on optics are equivalent to Tambara modules. Consequently, the Yoneda embedding Y :
Opticc p — [Optic%’j p,Set] = Tambe, p provides a fully faithful embedding of optics into
Tamb. This is the crucial property that enables our calculus.

» Lemma 13. Y () = R, ® L,
Proof. By definition of Y, R and L, modulo the equivalence of Theorem 7. <

Thus Y (7)) has the following nice diagrammatic notation:

r—>—2

Y(e) —Y (@) = v (9)

From this we deduce the main theorem of this paper:

» Theorem 14 (Representation theorem). Optics [: Opticc p((3),(¥)) are in bijection with
arrows in Tambc,p of type:

and moreover this bijection is functorial, i.e. composition of optics becomes horizontal
composition of diagrams and the identity optic is the identity diagram.

Proof. By full-faithfulness and functoriality of the Yoneda embedding. |

The consequences of this property need stressing: any diagram of this type represents an
optic, even if it is made of subcomponents that are not themselves optics. A parallel can be
drawn with complex numbers: a complex number with no imaginary part represents a real
number, regardless of whether it was constructed (using complex operations like rotation)
from complex numbers that were not themselves real numbers. In both cases, we can work in
this more general space (complex numbers/Tambara modules) to reason more flexibly about
the simpler objects (reals/optics).

For example, the following diagram is a valid optic, even though several of its subcom-
ponents are not optics.

x '

4.2 Simple Arrows

The simplest optic we can construct is made out of two simple arrows (i.e. arrows in the base
M-actegories). This is sometimes called an adapter. Given f : C(x,y) and g : D(v,u), we
can see from its type that Ry ® L, is an optic:

z>{fb-v
w-Jgl v

17:7

FSCD 2020

17:8

String Diagrams for Optics

» Lemma 15. The optic corresponding to this diagram is (f §)\;1 [\ Sg)r.

Proof. By a straightforward calculation; see appendix A.3. <

The special case of a single simple arrow is particularly interesting:

» Theorem 16. All morphisms of type
[
are of the form

my

for some unique f: C(x,y).
Stmilarly for L and wires going to the left.

Proof. Since L; = M(—,=), we have (using a potentially confusing notation):
T
’ T J —— T =<1

Thus by the representation theorem, I can be seen as an optic in Optico p((7),(}))-
We then calculate (see appendix A.4) that Opticg ((7),(7)) = C(z,y), with the reverse
direction given by the action of R. The proof for L is identical. |

» Corollary 17. R and L are fully faithful.

» Note. As pointed out earlier, in the particular case where we choose C' = D = M (as in
the case of lenses), then R and L both provide a fully-faithful and monoidal embedding of
the arrows in M into diagrams.

4.3 Refining the Representation Theorem

Together, simple arrows and the cap are enough to represent any optic as a string diagram.

» Theorem 18. Given a: C(z,m ©y) and B : D(m ©v,u), the optic l := {a|) can be
represented as follows:

T - (10)

Proof. By calculating the composition of the pair of simple arrows with the cap; see
appendix A.5. <

G. Boisseau

» Note. Recall that the pairs (|), are defined modulo an equivalence relation. How is this
compatible with the diagrammatic notation? The equivalence says that {(« ¢ (f © y)|B)m =
(a|(f ©®v) ¢ B)n; diagrammatically, this becomes:

Y

Y
:c z > al

= (11)
. .

v
Which we already know holds, by sliding f along the bent wire!

5 Applications

We present two examples of applications of the calculus that illustrate its expressivity.

5.1 Lawful Optics

One of the most striking consequences of this calculus (and the question that led to its
discovery) is the neatness with which it can express optic laws.

As originally constructed by the Haskell community [9], optics were required to abide by
certain round-trip laws that ensure coherence of their operations. Those laws in particular
coincide with very-well-behavedness [3] in the case of lenses, which we investigate in more
detail in the next section. Riley formalized those laws in a general form [14, Section 3], but
the result is rather hard to manipulate. The string calculus enables an alternative (and
equivalent) description that is purely diagrammatic:

» Definition 19. An optic 1 : () — () is said to be lawful when

and

Y x

8 8
[~]
< <
|
QR v ow

—

—

w

=

Y x

» Note. We can see that lawful optics are exactly the homomorphisms for the “pair-of-pants”
comonoid made from pairs of oriented wires. Interestingly, if we view this comonoid as a
procomonad on C', then lawful optics are in bijection with its coalgebras on the carrier R,.
This is a significant generalization of the result by O’Connor [11] that lawful lenses are the
coalgebras for the store comonad: here the “pair-of-pants” procomonad precisely generalizes
the store comonad.

» Theorem 20. This notion of lawfulness is equivalent to the one defined by Riley in [14,
Section 3].

17:9

FSCD 2020

17:10

String Diagrams for Optics

Proof. See appendix A.6. <

Thus this diagrammatic definition captures properly the useful and very general notion
of lawfulness for optics. Using this theorem, many properties of lawfulness can be derived
purely diagrammatically. As an example, let us reprove [14, Proposition 3.0.4]:

» Proposition 21 ([14, Proposition 3.0.4]). If « and B are mutual inverses, then the optic
(a| BYm is lawful.

Proof.

7 >1a] v >{a] [#]

. O

Y - Y
v Y v Y

5.2 Cartesian Lenses

The canonical special case of optics, that we mentioned in Example 4, is cartesian lenses.
They arise when we restrict ourselves to C' = D = M and the monoidal product of C is
cartesian.

In this setting, we have two important gadgets in C: duplication and deletion, cor-
responding respectively to the diagonal map C(z,z x x) and the terminal map C(z,T).
Diagrammatically, we represent them as follows:

€T
w+{: and @ >
xr

G. Boisseau

» Lemma 22. Given f: C(X,Y x Z), we have

Proof. This corresponds to the standard fact that f = (fsto f,sndo f).

» Theorem 23. A lens!: (¥) can be expressed as:

for some get : C(x,y) and put : C(x X v, u).

Proof.

T (o] Y
u .

<
=]
2]

which has the required shape. We have:

Vo= eofa]

(o] x
U put v = U B
- .
v
v

<

» Note. Observe that it is diagrammatically clear that the definition of put and get in terms

of (a| B)m respects the equivalence relation induced by the coend.

17:11

FSCD 2020

17:12 String Diagrams for Optics

We recovered purely diagrammatically the usual formulation of lenses in terms of get and
put, that we had derived in Example 4. In this setting, various properties of lenses can be
investigated purely diagrammatically. As an example, let us revisit [14, Proposition 3.0.3],
which captures the fact that the general notion of lawfulness for optics coincides with the
familiar PutGet, GetPut and PutPut laws [3] (together called “very-well-behavedness”) in
the case of lenses.

» Proposition 24 ([14, Proposition 3.0.3]). A lens: (3) — () is lawful iff the following
three laws (respectively called PutGet, GetPut and PutPut) hold in C:

x ut r = T o7
— [put]
Yy Yy——-1mY
s i =
Yy Yy
Yy T = Y->—e |put x
o B -

Proof. Diagrammatically, the fact that a lens is lawful reads:

) m
-0
<[]

which is exactly the PutGet law, and:

G. Boisseau

It is straightforward to see that the PutPut and the GetPut laws together entail this
equality. By applying the deletion map successively to the outputs, one can also show that
this equation entails those two laws, when y is inhabited. |

5.3 Effectful Lenses

We now turn to a less common example: effectful lenses. They stem from the desire to allow
lenses to perform effects while retrieving or updating data. Various approaches have been
proposed; see Abou-Saleh et al. [1] for an overview.

Let C be a cartesian category and T' a monad on C. We would like an optic that
resembles cartesian lenses from the previous section, but with effectful arrows. This means
that we would like our arrows to live in the Kleisli category C'r. This category however is
rarely monoidal, let alone cartesian: for it to be monoidal, the monad T" would need to be
commutative, which rules out large classes of effects that we might want to use. Thus we
cannot reuse the results from the previous section. Here we can instead make good use of
the generality of monoidal actions: Cr may not be monoidal, but when T is strong (which is
rather common), the product of C' extends to an action of C on Cp [14, Proposition 4.9.3].
This is enough to define an optic for monadic lenses:

c:C
MLensr((5),(¥)) ::/ Cr(z, e xy) X Cr(cx v,u)

Let us now investigate the diagrams for such an optic. Recall the details of how oriented
wires are typed. Here the acting category is C, which means that in a diagram like the
following, the typing rules enforce that x, y and f can live in Cp, but a, b and g can only
live in C.

> {fb-v
e

This is why we don’t need Cp to be monoidal: this calculus only allows an arrow in Cp
to be tensored with arrows in C. This gives us a string diagram calculus where otherwise
none would have been possible.

The distinction between effectful maps (in Cr) and pure maps (in C) is an important
aspect of this calculus. Note that every pure map f can be lifted to an effectful map written
1, via a canonical functor. This functor also respects the actegory structures, and therefore
allows us to embed the pure lenses from the previous section as monadic lenses.

This calculus even inherits some of the diagrammatic features of the previous section:
the duplication map and the swap still exist and are represented as before.

S G a5

The difference is that the bottom wire can only carry maps living in C. Whereas before,
all maps could be “slid through” the duplication map and swap, now only C-maps (aka pure
maps) can:

I£1

17:13

FSCD 2020

17:14 String Diagrams for Optics

We now restrict ourselves to the monadic lenses proposed by Abou-Saleh et al. [1]. Those
lenses are modeled closer to ordinary lenses, in particular their definition does not involve a
coend. They are composed of get : C(x,y) and put : Cr(z X v,u). Diagrammatically they
look quite like cartesian lenses:

xy
’ y

Note that get is required to be pure. This is important to ensure that composing two
such lenses stays of that simplified shape. This non-trivial fact can be seen diagrammatically
in what follows: if get was not pure, it couldn’t be slid across the duplication map.

Finally, this new calculus can express the laws proposed by Abou-Saleh et al. [1], making
them much easier to reason about:

Tget]
put —

get >—y

8

6 Conclusion and Future Work

We have presented a calculus that flowed naturally from the Yoneda embedding of optics into
Tambara modules. We have shown that it was well-suited for expressing common properties
of optics and proving useful theorems generally, some of which would otherwise be painful
to prove. This work however is only the start: it provides the basis of a calculus, whose
expressive power hasn’t yet been explored in the plethora of topics where optics have found
a use. In particular, we expect new specific diagrammatic properties like those of lenses to
arise for other kinds of optics like prisms or traversals.

Then, the calculus could be linked with related constructions, like the calculus for
teleological categories from [4], or the Int construction from [7].

G. Boisseau

Properties of Tamb as a bicategory also seem worth exploring, in particular its strong

similarity with Prof, and the link between the properties of M and those of Tamb.

Finally, diagrams in Tamb with multiple ingoing and outgoing legs seem to relate to

combs as in [8] and dialogues in the style of [6]; there is potential for using Tamb to provide
a basis for general diagrammatic descriptions of those objects.

—— References

1

10
11

12

13

14

15

Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna, and Perdita Stevens.
Reflections on Monadic Lenses. A List of Successes That Can Change the World, 9600:1-31,
April 2016. doi:10.1007/978-3-319-30936-1_1.

Guillaume Boisseau. String Diagrams for Optics. arXiv:2002.11480 [math], February 2020.

arXiv:2002.11480.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and
Alan Schmitt. Combinators for bi-directional tree transformations: A linguistic approach
to the view update problem. In Jens Palsberg and Martin Abadi, editors, Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2005, Long Beach, California, USA, January 12-14, 2005, pages 233-246. ACM, 2005.

doi:10.1145/1040305.1040325.

Jules Hedges. Coherence for lenses and open games. arXiv:1704.02230 [cs, math], September
2017. arXiv:1704.02230.

Jules Hedges. Lenses for Philosophers, August 2018. URL: https://julesh.com/2018/08/
16/lenses-for-philosophers/.

Jules Hedges. The game semantics of game theory. arXiv:1904.11287 [cs], April 2019.

arXiv:1904.11287.

André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical
Proceedings of the Cambridge Philosophical Society, 119(3):447-468, April 1996. doi:10.1017/
S0305004100074338.

Aleks Kissinger and Sander Uijlen. A categorical semantics for causal structure. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, pages 1-12. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005095.

Edward Kmett. Haskell lens library, February 2020. URL: https://hackage.haskell.org/
package/lens.

nLab authors. Actegory. URL: http://ncatlab.org/nlab/show/actegory.

Russell O’Connor. Lenses Are Exactly the Coalgebras for the Store Comonad, November 2010.

URL: https://r6research.livejournal.com/23705.html.

Craig Pastro and Ross Street. Doubles for monoidal categories. Theory and Applications of
Categories, 21, November 2007. arXiv:0711.1859.

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor optics: Modular data

accessors. Programming Journal, 1(2):7, March 2017. doi:10.22152/programming-journal.

org/2017/1/7.

Mitchell Riley. Categories of Optics. arXiv:1809.00738 [math], September 2018. arXiv:
1809.00738.

Mario Roméan. Profunctor Optics and Traversals. Msc Thesis, University of Oxford, January
2020. arXiv:2001.08045.

17:15

FSCD 2020

https://doi.org/10.1007/978-3-319-30936-1_1
http://arxiv.org/abs/2002.11480
https://doi.org/10.1145/1040305.1040325
http://arxiv.org/abs/1704.02230
https://julesh.com/2018/08/16/lenses-for-philosophers/
https://julesh.com/2018/08/16/lenses-for-philosophers/
http://arxiv.org/abs/1904.11287
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1109/LICS.2017.8005095
https://hackage.haskell.org/package/lens
https://hackage.haskell.org/package/lens
http://ncatlab.org/nlab/show/actegory
https://r6research.livejournal.com/23705.html
http://arxiv.org/abs/0711.1859
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.22152/programming-journal.org/2017/1/7
http://arxiv.org/abs/1809.00738
http://arxiv.org/abs/1809.00738
http://arxiv.org/abs/2001.08045

17:16 String Diagrams for Optics

A Proofs

A.1 R Respects the Actegory Structure (Proposition 11)

Proof (Proposition 11).

R[ZM(—,ZQMI)
=M(—,=®I)

n:M
Rz®Rm:/ C(—,nO¢cz)x M(n,=0n m)

n:M
:/ C(=,nGcz)x M(n,=®m)

> C(—,(=®@m) Q¢ x)
= (0(—,=0¢ (mO¢ x))

- Rm(Dcx

Li=M(-06pu1,=)
=M(-®1,=)
gM(fa:)

n:M
Lm®Lx:/ M(— Gy m,n) x CnG¢ z,=)

n:M
:/ M(—®@m,n) x C(nO¢ x,=)

= O((- & m) o o,-)
2 (C0(—Oc (mee x),=)

- Lm@gz

It is easy to check that the corresponding strengths coincide as well. |

A.2 R and L Are Adjoint (Proposition 12)

Proof (Proposition 12). The counit ¢ : R, ® L, — C(—,=) of the adjunction in Prof is
given by composition in C. We need it to commute with strength:

be(a7b®x)®C(b®x,c) — 5 C(a0)

strengthi J{strength

fb/C(m®a7b’@x)@C(U@x,m@c) — 5 Cm®a,m®c)

G. Boisseau

We inline the definition of strength, and move the coends out by continuity, to get an
equivalent square:

Cla,boz)C(bO z,c) d C(a,c)
(mo-)9(me-)| Jme-)
Cm®a,me®boz)Cme(box),mec) —— C(mGa,m®c)
C(id,a71)®C(a,id)l lid

Cimoa,(mb)0z)C(MRbL)®r,mec) . Cim®a,m®oc)

The top square commutes by functoriality of (m ® —); the bottom one by the fact that
alsa=id

Similarly, the unit also lives in Tamb. This is enough for the adjunction to lift from Prof
to Tamb. <

A.3 Diagram for Simple Arrows (Lemma 15)

Proof (Lemma 15). The diagram corresponds to the 2-cell Ry @ L.
It has type

Ry ®Ly:R,®L, — R, ®L,

- /ab(/m Ru(a,m) x Lu(m,b)) — (/m R,(a,m) x Ly(m.b))
And value

(B @ Lg)((p | @)m) = (B (p) | Lg(q))m
=Ps(mo f)l(mog)sam
To get the preimage through Y, we apply this map to the identity optic.

(R @ Lg)(id =) = (Rf @ Lg)((Az " | Au)1)
=50 NI g)5 A
=(fs2 [As9)1 <
A.4 Simple Arrows Embed Fully-Faithfully (Theorem 16)
Proof (Theorem 16). We calculate:
Optice v ((7),(7))

:/ Cx,mocy) x M(m oy I,T)
:/ Cle,m®cy) x Mm@ I,1)

’:V/ Clz,mOcy) x M(m,I)

= C(x, I ©cy)

= C(z,y)

By following the isomorphisms, we get that the reverse direction is the function f :

Clz,y) = (f$;" | Ar)r, which as we saw previously corresponds to f — u(f,id;) =
Rf X Lid; = Rf. <

17:17

FSCD 2020

17:18 String Diagrams for Optics

A.5 Representation Theorem (Theorem 18)

» Lemma 25. The optic corresponding to this diagram is (idmez | tdmeou)m
r—>—z

o

Proof. Let us name the map corresponding to this diagram A ., .
Knowing the action of the cap e, we obtain by a tedious calculation that we will omit
here:

Ao Y (30) = Y (2)
= (a|B)n (a3 a;,lm,x ‘ Qn,m,u 3 B)nem

Thus the corresponding optic is:
,,(Z(mgu)) mu(Pmor [Amou)1)

= (Mnbz 3 9 me | O § Amou) 16m

=\t ®x|/\ O U rgm

(A 5 2m) © 2 | idmou)m

= (idmoz | idmou)m <

Proof (Theorem 18). The right-hand-side diagram is the composition of two optics of which
we know the value: the first is (ag)\fngy | Mmoo § B)1; the second is (idmey | idmov)m

The resulting optic is thus their composition:

<)‘ml@y ‘ Am@’u ;ﬁ>[; <de®y | idm@v)m

)‘mgy 9 (I O] idm@y) ;a;«bll ‘ Am, T g (I © idm@v) ;)\m(Dv ; B>I®m

= (a

=(a I’_I’L@y 9 am 11 @m.1 3 Amow $ B) 1em

= (as (A @ Y |(Ar©v) s Biem

=5 (A7 0y)s(Aroy) | Bm

= (| B)m <

A.6 Lawfulness in Diagrams (Theorem 20)

Proof (Theorem 20). Lawfulness in [14, Section 3] is based on three maps named outside,
once, and twice. Unpacking the definitions, those three maps applied to an optic ! correspond
respectively to the three diagrams:

y Y
T x Yy y
T T ¢)
Yy x y

The interesting insight is that the complicated Optic3, coend from Riley’s paper can be
easily constructed diagrammatically by tensoring oriented wires as above. The theorem then
follows directly from Riley’s definition of lawfulness. <

	Introduction
	Background
	Actegories
	Optics
	Tambara Modules

	Diagrams for Tambara Modules
	Basics
	Oriented Wires
	Bending Wires

	Embedding Optics
	A Representation Theorem
	Simple Arrows
	Refining the Representation Theorem

	Applications
	Lawful Optics
	Cartesian Lenses
	Effectful Lenses

	Conclusion and Future Work
	Proofs
	R Respects the Actegory Structure ()
	R and L Are Adjoint ()
	Diagram for Simple Arrows ()
	Simple Arrows Embed Fully-Faithfully ()
	Representation Theorem ()
	Lawfulness in Diagrams ()

